Currently, there is an issue in the sequential scrub code which
prevents self healing from working in some cases. The scrub code
will split up all DVA copies of a bp and issue each of them
separately. The problem is that, since each of the DVAs is no
longer associated with the others, the self healing code doesn't
have the opportunity to repair problems that show up in one of the
DVAs with the data from the others.
This patch fixes this issue by ensuring that all IOs issued by the
sequential scrub code include all DVAs. Initially, only the first
DVA of each is attempted. If an issue arises, the IO is retried
with all available copies, giving the self healing code a chance
to correct the issue.
To test this change, this patch also adds the ability for zinject
to specify individual DVAs to inject read errors into. We then
add a new test case that utilizes this functionality to ensure
scrubs and self-healing reads can handle and transparently fix
issues with individual copies of blocks.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes#8453
Currently, there is an issue in the raw receive code where
raw receives are allowed to happen on top of previously
non-raw received datasets. This is a problem because the
source-side dataset doesn't know about how the blocks on
the destination were encrypted. As a result, any MAC in
the objset's checksum-of-MACs tree that is a parent of both
blocks encrypted on the source and blocks encrypted by the
destination will be incorrect. This will result in
authentication errors when we decrypt the dataset.
This patch fixes this issue by adding a new check to the
raw receive code. The code now maintains an "IVset guid",
which acts as an identifier for the set of IVs used to
encrypt a given snapshot. When a snapshot is raw received,
the destination snapshot will take this value from the
DRR_BEGIN payload. Non-raw receives and normal "zfs snap"
operations will cause ZFS to generate a new IVset guid.
When a raw incremental stream is received, ZFS will check
that the "from" IVset guid in the stream matches that of
the "from" destination snapshot. If they do not match, the
code will error out the receive, preventing the problem.
This patch requires an on-disk format change to add the
IVset guids to snapshots and bookmarks. As a result, this
patch has errata handling and a tunable to help affected
users resolve the issue with as little interruption as
possible.
Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes#8308
This patch adds the bookmark v2 feature to the on-disk format. This
feature will be needed for the upcoming redacted sends and for an
upcoming fix that for raw receives. The feature is not currently
used by any code and thus this change is a no-op, aside from the
fact that the user can now enable the feature.
Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Issue #8308
Currently, the receive code can create an unreadable dataset from
a correct raw send stream. This is because it is currently
impossible to set maxblkid to a lower value without freeing the
associated object. This means truncating files on the send side
to a non-0 size could result in corruption. This patch solves this
issue by adding a new 'force' flag to dnode_new_blkid() which will
allow the raw receive code to force the DMU to accept the provided
maxblkid even if it is a lower value than the existing one.
For testing purposes the send_encrypted_files.ksh test has been
extended to include a variety of truncated files and multiple
snapshots. It also now leverages the xattrtest command to help
ensure raw receives correctly handle xattrs.
Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes#8168Closes#8487
By default, when multihost is enabled for a pool, the pool is
suspended if (zfs_multihost_fail_intervals*zfs_multihost_interval) ms
pass without a successful MMP write. This is the recommended
configuration.
The default value for zfs_multihost_fail_intervals has been 5, and the
default value for zfs_multihost_interval has been 1000, so pool
suspension occurred at 5 seconds.
There have been multiple cases where a single misbehaving device in a
pool triggered a SCSI reset, and all I/O paused for 5-6 seconds. This
in turn caused MMP to suspend the pool.
In the cases observed, the rest of the devices were healthy and the
pool was otherwise correctly performing I/O. The reset was handled
correctly by ZFS, and by suspending the pool MMP made replacing the
device more difficult as well as forcing the host to be rebooted.
Increase the default value of zfs_multihost_fail_intervals to 10, so
that MMP tolerates up to 10 seconds of failed MMP writes before
suspending the pool.
Increase the default value of zfs_multihost_import_intervals to 20, to
maintain the 2:1 safety factor. This results in a force import taking
approximately 20 seconds when MMP is enabled, with default values.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Andreas Dilger <andreas.dilger@whamcloud.com>
Reviewed-by: George Melikov <mail@gmelikov.ru>
Signed-off-by: Olaf Faaland <faaland1@llnl.gov>
Closes#7709Closes#8495
This patch modifies the zfs_ioc_snapshot_list_next() ioctl to enable it
to take input parameters that alter the way looping through the list of
snapshots is performed. The idea here is to restrict functions that
throw away some of the snapshots returned by the ioctl to a range of
snapshots that these functions actually use. This improves efficiency
and execution speed for some rollback and send operations.
Reviewed-by: Tom Caputi <tcaputi@datto.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed by: Matt Ahrens <mahrens@delphix.com>
Signed-off-by: Alek Pinchuk <apinchuk@datto.com>
Closes#8077
Instead of choosing a leaf vdev quasi-randomly, by starting at the root
vdev and randomly choosing children, rotate over leaves to issue MMP
writes. This fixes an issue in a pool whose top-level vdevs have
different numbers of leaves.
The issue is that the frequency at which individual leaves are chosen
for MMP writes is based not on the total number of leaves but based on
how many siblings the leaves have.
For example, in a pool like this:
root-vdev
+------+---------------+
vdev1 vdev2
| |
| +------+-----+-----+----+
disk1 disk2 disk3 disk4 disk5 disk6
vdev1 and vdev2 will each be chosen 50% of the time. Every time vdev1
is chosen, disk1 will be chosen. However, every time vdev2 is chosen,
disk2 is chosen 20% of the time. As a result, disk1 will be sent 5x as
many MMP writes as disk2.
This may create wear issues in the case of SSDs. It also reduces the
effectiveness of MMP as it depends on the writes being evenly
distributed for the case where some devices fail or are partitioned.
The new code maintains a list of leaf vdevs in the pool. MMP records
the last leaf used for an MMP write in mmp->mmp_last_leaf. To choose
the next leaf, MMP starts at mmp->mmp_last_leaf and traverses the list,
continuing from the head if the tail is reached. It stops when a
suitable leaf is found or all leaves have been examined.
Added a test to verify MMP write distribution is even.
Reviewed-by: Tom Caputi <tcaputi@datto.com>
Reviewed-by: Kash Pande <kash@tripleback.net>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: loli10K <ezomori.nozomu@gmail.com>
Signed-off-by: Olaf Faaland <faaland1@llnl.gov>
Closes#7953
The function bpobj_iterate_impl overflows the stack when bpobjs
are deeply nested. Rewrite the function to eliminate the recursion.
Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Zuchowski <pzuchowski@datto.com>
Closes#7674Closes#7675Closes#7908
Soft lockups could happen when multiple threads trying
to get zrl on the same dnode handle in order to allocate
and initialize the dnode marked as DN_SLOT_ALLOCATED.
Don't loop from beginning when we can't get zrl, otherwise
we would increase the zrl refcount and nobody can actually
lock it.
Reviewed by: Tom Caputi <tcaputi@datto.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Li Dongyang <dongyangli@ddn.com>
Closes#8433
This patch introduces 3 new histograms per metaslab. These
histograms track segments that have made it to the metaslab's
space map histogram (and are part of the spacemap) but have
not yet reached the ms_allocatable tree on loaded metaslab's
because these metaslab's are currently syncing and haven't
gone through metaslab_sync_done() yet.
The histograms help when we decide whether to load an unloaded
metaslab in-order to allocate from it. When calculating the
weight of an unloaded metaslab traditionally, we look at the
highest bucket of its spacemap's histogram. The problem is
that we are not guaranteed to be able to allocated that
segment when we load the metaslab because it may still be at
the freeing, freed, or defer trees. The new histograms are
used when we try to calculate an unloaded metaslab's weight
to deal with this issue by removing segments that have would
not be in the allocatable tree at runtime. Note, that this
method of dealing with this is not completely accurate as
adjacent segments are not always consolidated in the space
map histogram of a metaslab.
In addition and to make things deterministic, we always reset
the weight of unloaded metaslabs based on their space map
weight (instead of doing that on a need basis). Thus, every
time a metaslab is loaded and its weight is reset again (from
the weight based on its space map to the one based on its
allocatable range tree) we expect (and assert) that this
change in weight can only get better if it doesn't stay the
same.
Reviewed by: Paul Dagnelie <pcd@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed by: Matt Ahrens <mahrens@delphix.com>
Signed-off-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Closes#8358
Add -h switch to zfs send command to send dataset holds. If
holds are present in the stream, zfs receive will create them
on the target dataset, unless the zfs receive -h option is used
to skip receive of holds.
Reviewed-by: Alek Pinchuk <apinchuk@datto.com>
Reviewed-by: loli10K <ezomori.nozomu@gmail.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed by: Paul Dagnelie <pcd@delphix.com>
Signed-off-by: Paul Zuchowski <pzuchowski@datto.com>
Closes#7513
This patch is an async implementation of the existing sync
zfs_unlinked_drain() function. This function is called at mount time and
is responsible for freeing znodes that we didn't get to freeing before.
We don't have to hold mounting of the dataset until the unlinked list is
fully drained as is done now. Since we can process the unlinked set
asynchronously this results in a better user experience when mounting a
dataset with entries in the unlinked set.
Reviewed by: Jorgen Lundman <lundman@lundman.net>
Reviewed by: Tom Caputi <tcaputi@datto.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed by: Paul Dagnelie <pcd@delphix.com>
Signed-off-by: Alek Pinchuk <apinchuk@datto.com>
Closes#8142
Initially, metaslabs and space maps used to be the same thing
in ZFS. Later, we started differentiating them by referring
to the space map as the on-disk state of the metaslab, making
the metaslab a higher-level concept that is metadata that deals
with space accounting. Today we've managed to split that code
furthermore, with the space map being its own on-disk data
structure used in areas of ZFS besides metaslabs (e.g. the
vdev-wide space maps used for zpool checkpoint or vdev removal
features).
This patch refactors the space map code to further split the
space map code from the metaslab code. It does so by getting
rid of the idea that the space map can have a different in-core
and on-disk length (sm_length vs smp_length) which is something
that is only used for the metaslab code, and other consumers
of space maps just have to deal with. Instead, this patch
introduces changes that move the old in-core length of the
metaslab's space map to the metaslab structure itself (see
ms_synced_length field) while making the space map code only
care about the actual space map's length on-disk.
The result of this is that space map consumers no longer have
to deal with syncing two different lengths for the same
structure (e.g. space_map_update() goes away) while metaslab
specific behavior stays within the metaslab code. Specifically,
the ms_synced_length field keeps track of the amount of data
metaslab_load() can read from the metaslab's space map while
working concurrently with metaslab_sync() that may be
appending to that same space map.
As a side note, the patch also adds a few comments around
the metaslab code documenting some assumptions and expected
behavior.
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com>
Signed-off-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Closes#8328
zfs create, receive and rename can bypass this hierarchy rule. Update
both userland and kernel module to prevent this issue and use pyzfs
unit tests to exercise the ioctls directly.
Note: this commit slightly changes zfs_ioc_create() ABI. This allow to
differentiate a generic error (EINVAL) from the specific case where we
tried to create a dataset below a ZVOL (ZFS_ERR_WRONG_PARENT).
Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Tom Caputi <tcaputi@datto.com>
Signed-off-by: loli10K <ezomori.nozomu@gmail.com>
The range_tree_verify function looks for a segment in a
range tree and panics if the segment is present on the
tree. This patch gives the function a more descriptive
name.
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: George Melikov <mail@gmelikov.ru>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Closes#8327
Most callers that need to operate on a loaded metaslab, always
call metaslab_load_wait() before loading the metaslab just in
case someone else is already doing the work.
Factoring metaslab_load_wait() within metaslab_load() makes the
later more robust, as callers won't have to do the load-wait
check explicitly every time they need to load a metaslab.
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Closes#8290
Reviewed-by: Richard Elling <Richard.Elling@RichardElling.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed-by: Igor Kozhukhov <igor@dilos.org>
Reviewed-by: George Melikov <mail@gmelikov.ru>
Signed-off-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Closes#8299
Currently, the functions dbuf_prefetch_indirect_done() and
dmu_assign_arcbuf_by_dnode() assume that dbuf_hold_level() cannot
fail. In the event of an error the former will cause a NULL pointer
dereference and the later will trigger a VERIFY. This patch adds
error handling to these functions and their callers where necessary.
Reviewed by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes#8291
The following fields from the vdev_t struct are not used anywhere.
Reviewed-by: George Melikov <mail@gmelikov.ru>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Closes#8285
Adds a new lock for serializing operations on zthrs.
The commit also includes some code cleanup and
refactoring.
Reviewed by: Matt Ahrens <mahrens@delphix.com>
Reviewed by: Tom Caputi <tcaputi@datto.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Closes#8229
Object allocation performance can be improved for complex operations
by providing an interface which returns the newly allocated dnode.
This allows the caller to immediately use the dnode without incurring
the expense of looking up the dnode by object number.
The functions dmu_object_alloc_hold(), zap_create_hold(), and
dmu_bonus_hold_by_dnode() were added for this purpose.
The zap_create_* functions have been updated to take advantage of
this new functionality. The dmu_bonus_hold_impl() function should
really have never been included in sys/dmu.h and was removed.
It's sole caller was converted to use dmu_bonus_hold_by_dnode().
The new symbols have been exported for use by Lustre.
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Reviewed by: Matt Ahrens <mahrens@delphix.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#8015
PROBLEM
========
When invoking "zpool initialize" on a pool the command will
create a thread to initialize each disk. Unfortunately, it does
this serially across many transaction groups which can result
in commands taking a long time to return to the user and may
appear hung. The same thing is true when trying to suspend/cancel
the operation.
SOLUTION
=========
This change refactors the way we invoke the initialize interface
to ensure we can start or stop the intialization in just a few
transaction groups.
When stopping or cancelling a vdev initialization perform it
in two phases. First signal each vdev initialization thread
that it should exit, then after all threads have been signaled
wait for them to exit.
On a pool with 40 leaf vdevs this reduces the vdev initialize
stop/cancel time from ~10 minutes to under a second. The reason
for this is spa_vdev_initialize() no longer needs to wait on
multiple full TXGs per leaf vdev being stopped.
This commit additionally adds some missing checks for the passed
"initialize_vdevs" input nvlist. The contents of the user provided
input "initialize_vdevs" nvlist must be validated to ensure all
values are uint64s. This is done in zfs_ioc_pool_initialize() in
order to keep all of these checks in a single location.
Updated the innvl and outnvl comments to match the formatting used
for all other new sytle ioctls.
Reviewed by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: loli10K <ezomori.nozomu@gmail.com>
Reviewed-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: George Wilson <george.wilson@delphix.com>
Closes#8230
PROBLEM
========
The first access to a block incurs a performance penalty on some platforms
(e.g. AWS's EBS, VMware VMDKs). Therefore we recommend that volumes are
"thick provisioned", where supported by the platform (VMware). This can
create a large delay in getting a new virtual machines up and running (or
adding storage to an existing Engine). If the thick provision step is
omitted, write performance will be suboptimal until all blocks on the LUN
have been written.
SOLUTION
=========
This feature introduces a way to 'initialize' the disks at install or in the
background to make sure we don't incur this first read penalty.
When an entire LUN is added to ZFS, we make all space available immediately,
and allow ZFS to find unallocated space and zero it out. This works with
concurrent writes to arbitrary offsets, ensuring that we don't zero out
something that has been (or is in the middle of being) written. This scheme
can also be applied to existing pools (affecting only free regions on the
vdev). Detailed design:
- new subcommand:zpool initialize [-cs] <pool> [<vdev> ...]
- start, suspend, or cancel initialization
- Creates new open-context thread for each vdev
- Thread iterates through all metaslabs in this vdev
- Each metaslab:
- select a metaslab
- load the metaslab
- mark the metaslab as being zeroed
- walk all free ranges within that metaslab and translate
them to ranges on the leaf vdev
- issue a "zeroing" I/O on the leaf vdev that corresponds to
a free range on the metaslab we're working on
- continue until all free ranges for this metaslab have been
"zeroed"
- reset/unmark the metaslab being zeroed
- if more metaslabs exist, then repeat above tasks.
- if no more metaslabs, then we're done.
- progress for the initialization is stored on-disk in the vdev’s
leaf zap object. The following information is stored:
- the last offset that has been initialized
- the state of the initialization process (i.e. active,
suspended, or canceled)
- the start time for the initialization
- progress is reported via the zpool status command and shows
information for each of the vdevs that are initializing
Porting notes:
- Added zfs_initialize_value module parameter to set the pattern
written by "zpool initialize".
- Added zfs_vdev_{initializing,removal}_{min,max}_active module options.
Authored by: George Wilson <george.wilson@delphix.com>
Reviewed by: John Wren Kennedy <john.kennedy@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: loli10K <ezomori.nozomu@gmail.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Richard Lowe <richlowe@richlowe.net>
Signed-off-by: Tim Chase <tim@chase2k.com>
Ported-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/9102
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/c3963210ebCloses#8230
Following the fix for 9018 (Replace kmem_cache_reap_now() with
kmem_cache_reap_soon), the arc_reclaim_thread() no longer blocks
while reaping. However, the code is still confusing and error-prone,
because this thread has two responsibilities. We should instead
separate this into two threads each with their own responsibility:
1. keep `arc_size` under `arc_c`, by calling `arc_adjust()`, which
improves `arc_is_overflowing()`
2. keep enough free memory in the system, by calling
`arc_kmem_reap_now()` plus `arc_shrink()`, which improves
`arc_available_memory()`.
Furthermore, we can use the zthr infrastructure to separate the
"should we do something" from "do it" parts of the logic, and
normalize the start up / shut down of the threads.
Authored by: Brad Lewis <brad.lewis@delphix.com>
Reviewed by: Matt Ahrens <mahrens@delphix.com>
Reviewed by: Serapheim Dimitropoulos <serapheim@delphix.com>
Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed by: Paul Dagnelie <pcd@delphix.com>
Reviewed by: Dan McDonald <danmcd@joyent.com>
Reviewed by: Tim Kordas <tim.kordas@joyent.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Ported-by: Brad Lewis <brad.lewis@delphix.com>
Signed-off-by: Brad Lewis <brad.lewis@delphix.com>
OpenZFS-issue: https://www.illumos.org/issues/9284
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/de753e34f9Closes#8165
As a result of the changes made in 8585, it's possible for an excessive
amount of vdev flush commands to be issued under some workloads.
Specifically, when the workload consists of mostly async write activity,
interspersed with some sync write and/or fsync activity, we can end up
issuing more flush commands to the underlying storage than is actually
necessary. As a result of these flush commands, the write latency and
overall throughput of the pool can be poorly impacted (latency
increases, throughput decreases).
Currently, any time an lwb completes, the vdev(s) written to as a result
of that lwb will be issued a flush command. The intenion is so the data
written to that vdev is on stable storage, prior to communicating to any
waiting threads that their data is safe on disk.
The problem with this scheme, is that sometimes an lwb will not have any
threads waiting for it to complete. This can occur when there's async
activity that gets "converted" to sync requests, as a result of calling
the zil_async_to_sync() function via zil_commit_impl(). When this
occurs, the current code may issue many lwbs that don't have waiters
associated with them, resulting in many flush commands, potentially to
the same vdev(s).
For example, given a pool with a single vdev, and a single fsync() call
that results in 10 lwbs being written out (e.g. due to other async
writes), that will result in 10 flush commands to that single vdev (a
flush issued after each lwb write completes). Ideally, we'd only issue a
single flush command to that vdev, after all 10 lwb writes completed.
Further, and most important as it pertains to this change, since the
flush commands are often very impactful to the performance of the pool's
underlying storage, unnecessarily issuing these flush commands can
poorly impact the performance of the lwb writes themselves. Thus, we
need to avoid issuing flush commands when possible, in order to acheive
the best possible performance out of the pool's underlying storage.
This change attempts to address this problem by changing the ZIL's logic
to only issue a vdev flush command when it detects an lwb that has a
thread waiting for it to complete. When an lwb does not have threads
waiting for it, the responsibility of issuing the flush command to the
vdevs involved with that lwb's write is passed on to the "next" lwb.
It's only once a write for an lwb with waiters completes, do we issue
the vdev flush command(s). As a result, now when we issue the flush(s),
we will issue them to the vdevs involved with that specific lwb's write,
but potentially also to vdevs involved with "previous" lwb writes (i.e.
if the previous lwbs did not have waiters associated with them).
Thus, in our prior example with 10 lwbs, it's only once the last lwb
completes (which will be the lwb containing the waiter for the thread
that called fsync) will we issue the vdev flush command; all of the
other lwbs will find they have no waiters, so they'll pass the
responsibility of the flush to the "next" lwb (until reaching the last
lwb that has the waiter).
Porting Notes:
* Reconciled conflicts with the fastwrite feature.
Authored by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Matt Ahrens <matt@delphix.com>
Reviewed by: Brad Lewis <brad.lewis@delphix.com>
Reviewed by: Patrick Mooney <patrick.mooney@joyent.com>
Reviewed by: Jerry Jelinek <jerry.jelinek@joyent.com>
Approved by: Joshua M. Clulow <josh@sysmgr.org>
Ported-by: Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
OpenZFS-issue: https://www.illumos.org/issues/9962
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/545190c6Closes#8188
This commit adds a new test case to the ZFS Test Suite to verify ZED
can detect when a device is physically removed from a running system:
the device will be offlined if a spare is not available in the pool.
We implement this by using the existing libudev functionality and
without relying solely on the FM kernel module capabilities which have
been observed to be unreliable with some kernels.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Don Brady <don.brady@delphix.com>
Signed-off-by: loli10K <ezomori.nozomu@gmail.com>
Closes#1537Closes#7926
This patch adds a new slow I/Os (-s) column to zpool status to show the
number of VDEV slow I/Os. This is the number of I/Os that didn't
complete in zio_slow_io_ms milliseconds. It also adds a new parsable
(-p) flag to display exact values.
NAME STATE READ WRITE CKSUM SLOW
testpool ONLINE 0 0 0 -
mirror-0 ONLINE 0 0 0 -
loop0 ONLINE 0 0 0 20
loop1 ONLINE 0 0 0 0
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Signed-off-by: Tony Hutter <hutter2@llnl.gov>
Closes#7756Closes#6885
Adds a libzutil for utility functions that are common to libzfs and
libzpool consumers (most of what was in libzfs_import.c). This
removes the need for utilities to link against both libzpool and
libzfs.
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Don Brady <don.brady@delphix.com>
Closes#8050
This patch resolves a problem where the -G option in both zdb and
ztest would cause the code to call __dprintf() to print zfs_dbgmsg
output. This function was not properly wired to add messages to the
dbgmsg log as it is in userspace and so the messages were simply
dropped. This patch also tries to add some degree of distinction to
dprintf() (which now prints directly to stdout) and zfs_dbgmsg()
(which adds messages to an internal list that can be dumped with
zfs_dbgmsg_print()).
In addition, this patch corrects an issue where ztest used a global
variable to decide whether to dump the dbgmsg buffer on a crash.
This did not work because ztest spins up more instances of itself
using execv(), which did not copy the global variable to the new
process. The option has been moved to the ztest_shared_opts_t
which already exists for interprocess communication.
This patch also changes zfs_dbgmsg_print() to use write() calls
instead of printf() so that it will not fail when used in a signal
handler.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com>
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes#8010
Currently, if a resilver is triggered for any reason while an
existing one is running, zfs will immediately restart the existing
resilver from the beginning to include the new drive. This causes
problems for system administrators when a drive fails while another
is already resilvering. In this case, the optimal thing to do to
reduce risk of data loss is to wait for the current resilver to end
before immediately replacing the second failed drive, which allows
the system to operate with two incomplete drives for the minimum
amount of time.
This patch introduces the resilver_defer feature that essentially
does this for the admin without forcing them to wait and monitor
the resilver manually. The change requires an on-disk feature
since we must mark drives that are part of a deferred resilver in
the vdev config to ensure that we do not assume they are done
resilvering when an existing resilver completes.
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: @mmaybee
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes#7732
Since Linux does not have an in-kernel SMB server, we don't need the
code to manage it.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: George Melikov <mail@gmelikov.ru>
Reviewed-by: Richard Elling <Richard.Elling@RichardElling.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes#8032
The boolean featureflags in use thus far in ZFS are extremely useful,
but because they take advantage of the zap layer, more interesting data
than just a true/false value can be stored in a featureflag. In redacted
send/receive, this is used to store the list of redaction snapshots for
a redacted dataset.
This change adds the ability for ZFS to store types other than a boolean
in a featureflag. The only other implemented type is a uint64_t array.
It also modifies the interfaces around dataset features to accomodate
the new capabilities, and adds a few new functions to increase
encapsulation.
This functionality will be used by the Redacted Send/Receive feature.
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes#7981
The bug time sequence:
1. thread #1, `zfs_write` assign a txg "n".
2. In a same process, thread #2, mmap page fault (which means the
`mm_sem` is hold) occurred, `zfs_dirty_inode` open a txg failed,
and wait previous txg "n" completed.
3. thread #1 call `uiomove` to write, however page fault is occurred
in `uiomove`, which means it need `mm_sem`, but `mm_sem` is hold by
thread #2, so it stuck and can't complete, then txg "n" will
not complete.
So thread #1 and thread #2 are deadlocked.
Reviewed-by: Chunwei Chen <tuxoko@gmail.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Signed-off-by: Grady Wong <grady.w@xtaotech.com>
Closes#7939
The vdev_checkpoint_sm_object(), vdev_obsolete_sm_object(), and
vdev_obsolete_counts_are_precise() functions assume that the
only way a zap_lookup() can fail is if the requested entry is
missing. While this is the most common cause, it's not the only
cause. Attemping to access a damaged ZAP will result in other
errors.
The most likely scenario for accessing a damaged ZAP is during
an extreme rewind pool import. Under these conditions the pool
is expected to contain damaged objects and the import code was
updated to handle this gracefully. Getting an ECKSUM error from
these ZAPs after the pool in import a far less likely, therefore
the behavior for call paths was not modified.
Reviewed-by: Tim Chase <tim@chase2k.com>
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#7809Closes#7921
The ZFS range locking code in zfs_rlock.c/h depends on ZPL-specific
data structures, specifically znode_t. However, it's also used by
the ZVOL code, which uses a "dummy" znode_t to pass to the range
locking code.
We should clean this up so that the range locking code is generic
and can be used equally by ZPL and ZVOL, and also can be used by
future consumers that may need to run in userland (libzpool) as
well as the kernel.
Porting notes:
* Added missing sys/avl.h include to sys/zfs_rlock.h.
* Removed 'dbuf is within the locked range' ASSERTs from dmu_sync().
This was needed because ztest does not yet use a locked_range_t.
* Removed "Approved by:" tag requirement from OpenZFS commit
check to prevent needless warnings when integrating changes
which has not been merged to illumos.
* Reverted free_list range lock changes which were originally
needed to defer the cv_destroy() which was called immediately
after cv_broadcast(). With d2733258 this should be safe but
if not we may need to reintroduce this logic.
* Reverts: The following two commits were reverted and squashed in
to this change in order to make it easier to apply OpenZFS 9689.
- d88895a0, which removed the dummy znode from zvol_state
- e3a07cd0, which updated ztest to use range locks
* Preserved optimized rangelock comparison function. Preserved the
rangelock free list. The cv_destroy() function will block waiting
for all processes in cv_wait() to be scheduled and drop their
reference. This is done to ensure it's safe to free the condition
variable. However, blocking while holding the rl->rl_lock mutex
can result in a deadlock on Linux. A free list is introduced to
defer the cv_destroy() and kmem_free() until after the mutex is
released.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Brad Lewis <brad.lewis@delphix.com>
Ported-by: Brian Behlendorf <behlendorf1@llnl.gov>
OpenZFS-issue: https://illumos.org/issues/9689
OpenZFS-commit: https://github.com/openzfs/openzfs/pull/680
External-issue: DLPX-58662
Closes#7980
This change moves the bottom half of dmu_send.c (where the receive
logic is kept) into a new file, dmu_recv.c, and does similarly
for receive-related changes in header files.
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes#7982
When debugging is enabled and a zfs_refcount_t contains multiple holders
using the same key, but different ref_counts, the wrong reference_t may
be transferred. Add a zfs_refcount_transfer_ownership_many() function,
like the existing zfs_refcount_*_many() functions, to match and transfer
the correct refcount_t;
This issue may occur when using encryption with refcount debugging
enabled. An arc_buf_hdr_t can have references for both the
hdr->b_l1hdr.b_pabd and hdr->b_crypt_hdr.b_rabd both of which use
the hdr as the reference holder. When unsharing the buffer the
p_abd should be transferred.
This issue does not impact production builds because refcount holders
are not tracked.
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#7219Closes#8000
Porting notes:
* Renamed zfs_dirty_data_sync_pct to zfs_dirty_data_sync_percent and
changed the type to be consistent with the other dirty module params.
* Updated zfs-module-parameters.5 accordingly.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com>
Reviewed by: Brad Lewis <brad.lewis@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Andrew Stormont <andyjstormont@gmail.com>
Reviewed-by: George Melikov <mail@gmelikov.ru>
Approved by: Robert Mustacchi <rm@joyent.com>
Ported-by: Brian Behlendorf <behlendorf1@llnl.gov>
OpenZFS-issue: https://illumos.org/issues/9617
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7928f4baCloses#7976
Since native ZFS encryption was merged, we have been fighting
against a series of bugs that come down to the same problem: Key
mappings (which must be present during all I/O operations) are
created and destroyed based on dataset ownership, but I/Os can
have traditionally been allowed to "leak" into the next txg after
the dataset is disowned.
In the past we have attempted to solve this problem by trying to
ensure that datasets are disowned ater all I/O is finished by
calling txg_wait_synced(), but we have repeatedly found edge cases
that need to be squashed and code paths that might incur a high
number of txg syncs. This patch attempts to resolve this issue
differently, by adding a reference to the key mapping for each txg
it is dirtied in. By doing so, we can remove many of the
unnecessary calls to txg_wait_synced() we have added in the past
and ensure we don't need to deal with this problem in the future.
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes#7949
Recent changes in the Linux kernel made it necessary to prefix
the refcount_add() function with zfs_ due to a name collision.
To bring the other functions in line with that and to avoid future
collisions, prefix the other refcount functions as well.
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Tim Schumacher <timschumi@gmx.de>
Closes#7963
The DD_FIELD_LAST_REMAP_TXG macro was added twice (with the same value).
This change removes one of them.
Reviewed-by: Giuseppe Di Natale <guss80@gmail.com>
Reviewed-by: George Melikov <mail@gmelikov.ru>
Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes#7968
There are some issues with the way the seq_file interface is implemented
for kstats backed by linked lists (zfs_dbgmsgs and certain per-pool
debugging info):
* We don't account for the fact that seq_file sometimes visits a node
multiple times, which results in missing messages when read through
procfs.
* We don't keep separate state for each reader of a file, so concurrent
readers will receive incorrect results.
* We don't account for the fact that entries may have been removed from
the list between read syscalls, so reading from these files in procfs
can cause the system to crash.
This change fixes these issues and adds procfs_list, a wrapper around a
linked list which abstracts away the details of implementing the
seq_file interface for a list and exposing the contents of the list
through procfs.
Reviewed by: Don Brady <don.brady@delphix.com>
Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Reviewed by: Brad Lewis <brad.lewis@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: John Gallagher <john.gallagher@delphix.com>
External-issue: LX-1211
Closes#7819
torvalds/linux@59b57717f ("blkcg: delay blkg destruction until
after writeback has finished") added a refcount_t to the blkcg
structure. Due to the refcount_t compatibility code, zfs_refcount_t
was used by mistake.
Resolve this by removing the compatibility code and replacing the
occurrences of refcount_t with zfs_refcount_t.
Reviewed-by: Franz Pletz <fpletz@fnordicwalking.de>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Tim Schumacher <timschumi@gmx.de>
Closes#7885Closes#7932
The recent sysfs zfs properties feature breaks the in-kernel
builds of zfs (sans module). When not built as a module add
the sysfs entries under /sys/fs/zfs/.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Don Brady <don.brady@delphix.com>
Closes#7868Closes#7872
Allocation Classes add the ability to have allocation classes in a
pool that are dedicated to serving specific block categories, such
as DDT data, metadata, and small file blocks. A pool can opt-in to
this feature by adding a 'special' or 'dedup' top-level VDEV.
Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed-by: Richard Laager <rlaager@wiktel.com>
Reviewed-by: Alek Pinchuk <apinchuk@datto.com>
Reviewed-by: Håkan Johansson <f96hajo@chalmers.se>
Reviewed-by: Andreas Dilger <andreas.dilger@chamcloud.com>
Reviewed-by: DHE <git@dehacked.net>
Reviewed-by: Richard Elling <Richard.Elling@RichardElling.com>
Reviewed-by: Gregor Kopka <gregor@kopka.net>
Reviewed-by: Kash Pande <kash@tripleback.net>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Signed-off-by: Don Brady <don.brady@delphix.com>
Closes#5182
We want newer versions of libzfs_core to run against an existing
zfs kernel module (i.e. a deferred reboot or module reload after
an update).
Programmatically document, via a zfs_ioc_key_t, the valid arguments
for the ioc commands that rely on nvpair input arguments (i.e. non
legacy commands from libzfs_core). Automatically verify the expected
pairs before dispatching a command.
This initial phase focuses on the non-legacy ioctls. A follow-on
change can address the legacy ioctl input from the zfs_cmd_t.
The zfs_ioc_key_t for zfs_keys_channel_program looks like:
static const zfs_ioc_key_t zfs_keys_channel_program[] = {
{"program", DATA_TYPE_STRING, 0},
{"arg", DATA_TYPE_UNKNOWN, 0},
{"sync", DATA_TYPE_BOOLEAN_VALUE, ZK_OPTIONAL},
{"instrlimit", DATA_TYPE_UINT64, ZK_OPTIONAL},
{"memlimit", DATA_TYPE_UINT64, ZK_OPTIONAL},
};
Introduce four input errors to identify specific input failures
(in addition to generic argument value errors like EINVAL, ERANGE,
EBADF, and E2BIG).
ZFS_ERR_IOC_CMD_UNAVAIL the ioctl number is not supported by kernel
ZFS_ERR_IOC_ARG_UNAVAIL an input argument is not supported by kernel
ZFS_ERR_IOC_ARG_REQUIRED a required input argument is missing
ZFS_ERR_IOC_ARG_BADTYPE an input argument has an invalid type
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Don Brady <don.brady@delphix.com>
Closes#7780
This extends our sysfs '/sys/module/zfs' entry to include feature
and property attributes. The primary consumer of this information
is user processes, like the zfs CLI, that need to know what the
current loaded ZFS module supports. The libzfs binary will consult
this information when instantiating the zfs and zpool property
tables and the pool features table.
This introduces 4 kernel objects (dirs) into '/sys/module/zfs'
with corresponding attributes (files):
features.runtime
features.pool
properties.dataset
properties.pool
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Don Brady <don.brady@delphix.com>
Closes#7706
Currently, when unmounting a filesystem, ZFS will only wait for
a txg sync if the dataset is dirty and not readonly. However, this
can be problematic in cases where a dataset is remounted readonly
immediately before being unmounted, which often happens when the
system is being shut down. Since encrypted datasets require that
all I/O is completed before the dataset is disowned, this issue
causes problems when write I/Os leak into the txgs after the
dataset is disowned, which can happen when sync=disabled.
While looking into fixes for this issue, it was discovered that
dsl_dataset_is_dirty() does not return B_TRUE when the dataset has
been removed from the txg dirty datasets list, but has not actually
been processed yet. Furthermore, the implementation is comletely
different from dmu_objset_is_dirty(), adding to the confusion.
Rather than relying on this function, this patch forces the umount
code path (and the remount readonly code path) to always perform a
txg sync on read-write datasets and removes the function altogether.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes#7753Closes#7795
This patch simply adds some missing locking to the txg_list
functions and refactors txg_verify() so that it is only compiled
in for debug builds.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes#7795
The following patch introduces a few statistics on reads and writes
grouped by dataset. These statistics are implemented as kstats
(backed by aggregate sums for performance) and can be retrieved by
using the dataset objset ID number. The motivation for this change is
to provide some preliminary analytics on dataset usage/performance.
Reviewed-by: Richard Elling <Richard.Elling@RichardElling.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Signed-off-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Closes#7705
This patch fixes a bug where attempting to receive a send stream
with embedded data into an encrypted dataset would not cleanup
that dataset when the error was reached. The check was moved into
dmu_recv_begin_check(), preventing this issue.
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Richard Elling <Richard.Elling@RichardElling.com>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes#7650
One small integration that was absent from b52563 was
support for zfs recv -o / -x with regards to encryption
parameters. The main use cases of this are as follows:
* Receiving an unencrypted stream as encrypted without
needing to create a "dummy" encrypted parent so that
encryption can be inheritted.
* Allowing users to change their keylocation on receive,
so long as the receiving dataset is an encryption root.
* Allowing users to explicitly exclude or override the
encryption property from an unencrypted properties stream,
allowing it to be received as encrypted.
* Receiving a recursive heirarchy of unencrypted datasets,
encrypting the top-level one and forcing all children to
inherit the encryption.
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Richard Elling <Richard.Elling@RichardElling.com>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes#7650
When doing a read from disk, ZFS creates 3 ZIO's: a zio_null(), the
logical zio_read(), and then a physical zio. Currently, each of these
results in a separate taskq_dispatch(zio_execute).
On high-read-iops workloads, this causes a significant performance
impact. By processing all 3 ZIO's in a single taskq entry, we reduce the
overhead on taskq locking and context switching. We accomplish this by
allowing zio_done() to return a "next zio to execute" to zio_execute().
This results in a ~12% performance increase for random reads, from
96,000 iops to 108,000 iops (with recordsize=8k, on SSD's).
Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed by: George Wilson <george.wilson@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
External-issue: DLPX-59292
Closes#7736
Linux specific zpl_* entry points, such as xattrs, must include
the same unmounted and sa handle checks as the common zfs_ entry
points. The additional ZPL_* wrappers are identical to their
ZFS_ counterparts except the errno is negated since they are
expected to be used at the zpl_ layer.
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: John Gallagher <john.gallagher@delphix.com>
Closes#5866Closes#7761
- Add two new module parameters to icp (icp_aes_impl, icp_gcm_impl)
that control the crypto implementation. At the moment there is a
choice between generic and aesni (on platforms that support it).
- This enables support for AES-NI and PCLMULQDQ-NI on AMD Family
15h (bulldozer) and newer CPUs (zen).
- Modify aes_key_t to track what implementation it was generated
with as key schedules generated with various implementations
are not necessarily interchangable.
Reviewed by: Gvozden Neskovic <neskovic@gmail.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Tom Caputi <tcaputi@datto.com>
Reviewed-by: Richard Laager <rlaager@wiktel.com>
Signed-off-by: Nathaniel R. Lewis <linux.robotdude@gmail.com>
Closes#7102Closes#7103
This change reintroduces logic required by OpenZFS 9577. When
OpenZFS 9337, zfs get all is slow due to uncached metadata, was
merged in it ended up removing logic required by OpenZFS 9577,
remove zfs_dbuf_evict_key, and inadvertently reintroduced the
bug that 9577 was designed to fix.
This change re-enables the "evicting" flag to dbuf_rele_and_unlock
and dnode_rele_and_unlock and updates all callers to provide the
correct parameter.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: George Wilson <george.wilson@delphix.com>
Closes#7758
Overview
========
We parallelize the allocation process by creating the concept of
"allocators". There are a certain number of allocators per metaslab
group, defined by the value of a tunable at pool open time. Each
allocator for a given metaslab group has up to 2 active metaslabs; one
"primary", and one "secondary". The primary and secondary weight mean
the same thing they did in in the pre-allocator world; primary metaslabs
are used for most allocations, secondary metaslabs are used for ditto
blocks being allocated in the same metaslab group. There is also the
CLAIM weight, which has been separated out from the other weights, but
that is less important to understanding the patch. The active metaslabs
for each allocator are moved from their normal place in the metaslab
tree for the group to the back of the tree. This way, they will not be
selected for use by other allocators searching for new metaslabs unless
all the passive metaslabs are unsuitable for allocations. If that does
happen, the allocators will "steal" from each other to ensure that IOs
don't fail until there is truly no space left to perform allocations.
In addition, the alloc queue for each metaslab group has been broken
into a separate queue for each allocator. We don't want to dramatically
increase the number of inflight IOs on low-end systems, because it can
significantly increase txg times. On the other hand, we want to ensure
that there are enough IOs for each allocator to allow for good
coalescing before sending the IOs to the disk. As a result, we take a
compromise path; each allocator's alloc queue max depth starts at a
certain value for every txg. Every time an IO completes, we increase the
max depth. This should hopefully provide a good balance between the two
failure modes, while not dramatically increasing complexity.
We also parallelize the spa_alloc_tree and spa_alloc_lock, which cause
very similar contention when selecting IOs to allocate. This
parallelization uses the same allocator scheme as metaslab selection.
Performance Results
===================
Performance improvements from this change can vary significantly based
on the number of CPUs in the system, whether or not the system has a
NUMA architecture, the speed of the drives, the values for the various
tunables, and the workload being performed. For an fio async sequential
write workload on a 24 core NUMA system with 256 GB of RAM and 8 128 GB
SSDs, there is a roughly 25% performance improvement.
Future Work
===========
Analysis of the performance of the system with this patch applied shows
that a significant new bottleneck is the vdev disk queues, which also
need to be parallelized. Prototyping of this change has occurred, and
there was a performance improvement, but more work needs to be done
before its stability has been verified and it is ready to be upstreamed.
Authored by: Paul Dagnelie <pcd@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com>
Reviewed by: Alexander Motin <mav@FreeBSD.org>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Gordon Ross <gwr@nexenta.com>
Ported-by: Paul Dagnelie <pcd@delphix.com>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Porting Notes:
* Fix reservation test failures by increasing tolerance.
OpenZFS-issue: https://illumos.org/issues/9112
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/3f3cc3c3Closes#7682
In the case of one pool being built on another pool, we want
to make sure we don't end up throttling the lower (backing)
pool when the upper pool is the majority contributor to dirty
data. To insure we make forward progress during throttling, we
also check the current pool's net dirty data and only throttle
if it exceeds zfs_arc_pool_dirty_percent of the anonymous dirty
data in the cache.
Authored by: Don Brady <don.brady@delphix.com>
Reviewed by: Sebastien Roy <sebastien.roy@delphix.com>
Reviewed by: Matt Ahrens <matt@delphix.com>
Reviewed by: Prashanth Sreenivasa <pks@delphix.com>
Approved by: Robert Mustacchi <rm@joyent.com>
Ported-by: Brian Behlendorf <behlendorf1@llnl.gov>
Porting Notes:
* The new global variables zfs_arc_dirty_limit_percent,
zfs_arc_anon_limit_percent, and zfs_arc_pool_dirty_percent
were intentially not added as tunable module parameters.
OpenZFS-issue: https://illumos.org/issues/9465
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/d6a4c3efCloses#7749
= Motivation
While dealing with another performance issue (see 126118f) we noticed
that we spend a lot of time in various places in the kernel when
constructing long nvlists. The problem is that when an nvlist is created
with the NV_UNIQUE_NAME set (which is the case most of the time), we do
a linear search through the whole list to ensure uniqueness for every
entry we add.
An example of the above scenario can be seen in the following
flamegraph, where more than have the time of the zfsdev_ioctl() is spent
on constructing nvlists. Flamegraph:
https://sdimitro.github.io/img/flame/sdimitro_snap_unmount3.svg
Adding a table to speed up lookups will help situations where we just
construct an nvlist (like the scenario above), in addition to regular
lookups and removals.
= What this patch does
In this diff we've implemented a hash-table on top of the nvlist code
that converts most nvlist operations from O(# number of entries) to
O(1)* (the start is for amortized time as the hash-table grows and
shrinks depending on the # of entries - plain lookup is strictly O(1)).
= Performance Analysis
To analyze the performance improvement I just used the setup from the
snapshot deletion issue mentioned above in the Motivation section.
Basically I created 10K filesystems with one snapshot each and then I
just used the API of libZFS_Core to pass down an nvlist of all the
snapshots to have them deleted. The reason I used my own driver program
was to have clean performance results of what actually happens in the
kernel. The flamegraphs and wall clock times mentioned below were
gathered from the start to the end of the driver program's run. Between
trials the testpool used was completely destroyed, the system was
rebooted and the testpool was completely recreated. The reason for this
dance was to get consistent results.
== Results (before patch):
=== Sampling Flamegraphs
[Trial 1] https://sdimitro.github.io/img/flame/DLPX-53417/trial-A.svg
[Trial 2] https://sdimitro.github.io/img/flame/DLPX-53417/trial-A2.svg
[Trial 3] https://sdimitro.github.io/img/flame/DLPX-53417/trial-A3.svg
=== Wall clock times (in seconds)
```
[Trial 4]
real 5.3
user 0.4
sys 2.3
[Trial 5]
real 8.2
user 0.4
sys 2.4
[Trial 6]
real 6.0
user 0.5
sys 2.3
```
== Results (after patch):
=== Sampling Flamegraphs
[Trial 1] https://sdimitro.github.io/img/flame/DLPX-53417/trial-Ae.svg
[Trial 2] https://sdimitro.github.io/img/flame/DLPX-53417/trial-A2e.svg
[Trial 3] https://sdimitro.github.io/img/flame/DLPX-53417/trial-A3e.svg
=== Wall clock times (in seconds)
```
[Trial 4]
real 4.9
user 0.0
sys 0.9
[Trial 5]
real 3.8
user 0.0
sys 0.9
[Trial 6]
real 3.6
user 0.0
sys 0.9
```
== Analysis
The results between the trials are consistent so in this sections I will
only talk about the flamegraph results from trial-1 and the wall-clock
results from trial-4.
From trial-1 we can see that zfs_dev_ioctl() goes from 2,331 to 996
samples counts. Specifically, the samples from fnvlist_add_nvlist() and
spa_history_log_nvl() are almost gone (~500 & ~800 to 5 & 5 samples),
leaving zfs_ioc_destroy_snaps() to dominate most samples from
zfs_dev_ioctl().
From trial-4 we see that the user time dropped to 0 secods. I believe
the consistent 0.4 seconds before my patch was applied was due to my
driver program constructing the long nvlist of snapshots so it can pass
it to the kernel. As for the system time, the effect there is more clear
(2.3 down to 0.9 seconds).
Porting Notes:
* DATA_TYPE_DONTCARE case added to switch in fm_nvprintr() and
zpool_do_events_nvprint().
Authored by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com>
Reviewed by: Matt Ahrens <matt@delphix.com>
Reviewed by: Sebastien Roy <sebastien.roy@delphix.com>
Approved by: Robert Mustacchi <rm@joyent.com>
Ported-by: Brian Behlendorf <behlendorf1@llnl.gov>
OpenZFS-issue: https://www.illumos.org/issues/9580
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/b5eca7b1Closes#7748
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Albert Lee <trisk@forkgnu.org>
Reviewed by: Igor Kozhukhov <igor@dilos.org>
Reviewed by: George Melikov <mail@gmelikov.ru>
Approved by: Dan McDonald <danmcd@joyent.com>
Ported-by: Brian Behlendorf <behlendorf1@llnl.gov>
Updates to indirect blocks of spacemaps can contribute significantly to
write inflation. Therefore we want to reduce the indirect block size of
spacemaps from 128K to 16K.
Porting notes:
* Refactored to allow the dmu_object_alloc(), dmu_object_alloc_ibs()
and dmu_object_alloc_dnsize() functions to use a common shared
dmu_object_alloc_impl() function.
OpenZFS-issue: https://www.illumos.org/issues/9442
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/0c2e6408bCloses#7712
It is helpful to tune zfs_per_txg_dirty_frees_percent for commit
539d33c7(OpenZFS 6569 - large file delete can starve out write ops).
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed by: Richard Elling <Richard.Elling@RichardElling.com>
Signed-off-by: Feng Sun <loyou85@gmail.com>
Closes#7718
While the autoexpand property may seem like a small feature it
depends on a significant amount of system infrastructure. Enough
of that infrastructure is now in place that with a few modifications
for Linux it can be supported.
Auto-expand works as follows; when a block device is modified
(re-sized, closed after being open r/w, etc) a change uevent is
generated for udev. The ZED, which is monitoring udev events,
passes the change event along to zfs_deliver_dle() if the disk
or partition contains a zfs_member as identified by blkid.
From here the device is matched against all imported pool vdevs
using the vdev_guid which was read from the label by blkid. If
a match is found the ZED reopens the pool vdev. This re-opening
is important because it allows the vdev to be briefly closed so
the disk partition table can be re-read. Otherwise, it wouldn't
be possible to report the maximum possible expansion size.
Finally, if the property autoexpand=on a vdev expansion will be
attempted. After performing some sanity checks on the disk to
verify that it is safe to expand, the primary partition (-part1)
will be expanded and the partition table updated. The partition
is then re-opened (again) to detect the updated size which allows
the new capacity to be used.
In order to make all of the above possible the following changes
were required:
* Updated the zpool_expand_001_pos and zpool_expand_003_pos tests.
These tests now create a pool which is layered on a loopback,
scsi_debug, and file vdev. This allows for testing of non-
partitioned block device (loopback), a partition block device
(scsi_debug), and a file which does not receive udev change
events. This provided for better test coverage, and by removing
the layering on ZFS volumes there issues surrounding layering
one pool on another are avoided.
* zpool_find_vdev_by_physpath() updated to accept a vdev guid.
This allows for matching by guid rather than path which is a
more reliable way for the ZED to reference a vdev.
* Fixed zfs_zevent_wait() signal handling which could result
in the ZED spinning when a signal was not handled.
* Removed vdev_disk_rrpart() functionality which can be abandoned
in favor of kernel provided blkdev_reread_part() function.
* Added a rwlock which is held as a writer while a disk is being
reopened. This is important to prevent errors from occurring
for any configuration related IOs which bypass the SCL_ZIO lock.
The zpool_reopen_007_pos.ksh test case was added to verify IO
error are never observed when reopening. This is not expected
to impact IO performance.
Additional fixes which aren't critical but were discovered and
resolved in the course of developing this functionality.
* Added PHYS_PATH="/dev/zvol/dataset" to the vdev configuration for
ZFS volumes. This is as good as a unique physical path, while the
volumes are not used in the test cases anymore for other reasons
this improvement was included.
Reviewed by: Richard Elling <Richard.Elling@RichardElling.com>
Signed-off-by: Sara Hartse <sara.hartse@delphix.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#120Closes#2437Closes#5771Closes#7366Closes#7582Closes#7629
This project's goal is to make read-heavy channel programs and zfs(1m)
administrative commands faster by caching all the metadata that they will
need in the dbuf layer. This will prevent the data from being evicted, so
that any future call to i.e. zfs get all won't have to go to disk (very
much). There are two parts:
The dbuf_metadata_cache. We identify what to put into the cache based on
the object type of each dbuf. Caching objset properties os
{version,normalization,utf8only,casesensitivity} in the objset_t. The reason
these needed to be cached is that although they are queried frequently,
they aren't stored in a dbuf type which we can easily recognize and cache in
the dbuf layer; instead, we have to explicitly store them. There's already
existing infrastructure for maintaining cached properties in the objset
setup code, so I simply used that.
Performance Testing:
- Disabled kmem_flags
- Tuned dbuf_cache_max_bytes very low (128K)
- Tuned zfs_arc_max very low (64M)
Created test pool with 400 filesystems, and 100 snapshots per filesystem.
Later on in testing, added 600 more filesystems (with no snapshots) to make
sure scaling didn't look different between snapshots and filesystems.
Results:
| Test | Time (trunk / diff) | I/Os (trunk / diff) |
+------------------------+---------------------+---------------------+
| zpool import | 0:05 / 0:06 | 12.9k / 12.9k |
| zfs get all (uncached) | 1:36 / 0:53 | 16.7k / 5.7k |
| zfs get all (cached) | 1:36 / 0:51 | 16.0k / 6.0k |
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Thomas Caputi <tcaputi@datto.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Richard Lowe <richlowe@richlowe.net>
Ported-by: Alek Pinchuk <apinchuk@datto.com>
Signed-off-by: Alek Pinchuk <apinchuk@datto.com>
OpenZFS-issue: https://illumos.org/issues/9337
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7dec52fCloses#7668
Commit 93b43af10 inadvertently introduced the following scenario which
can result in a deadlock. This issue was most easily reproduced by
LXD containers using a ZFS storage backend but should be reproducible
under any workload which is frequently mounting and unmounting.
-- THREAD A --
spa_sync()
spa_sync_upgrades()
rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); <- Waiting on B
-- THREAD B --
mount_fs()
zpl_mount()
zpl_mount_impl()
dmu_objset_hold()
dmu_objset_hold_flags()
dsl_pool_hold()
dsl_pool_config_enter()
rrw_enter(&dp->dp_config_rwlock, RW_READER, tag);
sget()
sget_userns()
grab_super()
down_write(&s->s_umount); <- Waiting on C
-- THREAD C --
cleanup_mnt()
deactivate_super()
down_write(&s->s_umount);
deactivate_locked_super()
zpl_kill_sb()
kill_anon_super()
generic_shutdown_super()
sync_filesystem()
zpl_sync_fs()
zfs_sync()
zil_commit()
txg_wait_synced() <- Waiting on A
Reviewed by: Alek Pinchuk <apinchuk@datto.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#7598Closes#7659Closes#7691Closes#7693
Motivation
==========
The current space map encoding has the following disadvantages:
[1] Assuming 512 sector size each entry can represent at most 16MB for a segment.
This makes the encoding very inefficient for large regions of space.
[2] As vdev-wide space maps have started to be used by new features (i.e.
device removal, zpool checkpoint) we've started imposing limits in the
vdevs that can be used with them based on the maximum addressable offset
(currently 64PB for a top-level vdev).
New encoding
============
The layout can be found at space_map.h and it remains backwards compatible with
the old one. The introduced two-word entry format, besides extending the limits
imposed by the single-entry layout, also includes a vdev field and some extra
padding after its prefix.
The extra padding after the prefix should is reserved for future usage (e.g.
new prefixes for future encodings or new fields for flags). The new vdev field
not only makes the space maps more self-descriptive, but also opens the doors
for pool-wide space maps (expected to be used in the log spacemap project).
One final important note is that the number of bits used for vdevs is reduced
to 24 bits for blkptrs. That was decided as we don't know of any setups that
use more than 16M vdevs for the time being and we wanted to fit the vdev field
in the space map. In addition that gives us some extra bits in dva_t.
Other references:
=================
The new encoding is also discussed towards the end of the Log Space Map
presentation from 2017's OpenZFS summit.
Link: https://www.youtube.com/watch?v=jj2IxRkl5bQ
Authored by: Serapheim Dimitropoulos <serapheim@delphix.com>
Reviewed by: Matt Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <gwilson@zfsmail.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Gordon Ross <gwr@nexenta.com>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/90a56e6d
OpenZFS-issue: https://www.illumos.org/issues/9238Closes#7665
Details about the motivation of this feature and its usage can
be found in this blogpost:
https://sdimitro.github.io/post/zpool-checkpoint/
A lightning talk of this feature can be found here:
https://www.youtube.com/watch?v=fPQA8K40jAM
Implementation details can be found in big block comment of
spa_checkpoint.c
Side-changes that are relevant to this commit but not explained
elsewhere:
* renames members of "struct metaslab trees to be shorter without
losing meaning
* space_map_{alloc,truncate}() accept a block size as a
parameter. The reason is that in the current state all space
maps that we allocate through the DMU use a global tunable
(space_map_blksz) which defauls to 4KB. This is ok for metaslab
space maps in terms of bandwirdth since they are scattered all
over the disk. But for other space maps this default is probably
not what we want. Examples are device removal's vdev_obsolete_sm
or vdev_chedkpoint_sm from this review. Both of these have a
1:1 relationship with each vdev and could benefit from a bigger
block size.
Porting notes:
* The part of dsl_scan_sync() which handles async destroys has
been moved into the new dsl_process_async_destroys() function.
* Remove "VERIFY(!(flags & FWRITE))" in "kernel.c" so zhack can write
to block device backed pools.
* ZTS:
* Fix get_txg() in zpool_sync_001_pos due to "checkpoint_txg".
* Don't use large dd block sizes on /dev/urandom under Linux in
checkpoint_capacity.
* Adopt Delphix-OS's setting of 4 (spa_asize_inflation =
SPA_DVAS_PER_BP + 1) for the checkpoint_capacity test to speed
its attempts to fill the pool
* Create the base and nested pools with sync=disabled to speed up
the "setup" phase.
* Clear labels in test pool between checkpoint tests to avoid
duplicate pool issues.
* The import_rewind_device_replaced test has been marked as "known
to fail" for the reasons listed in its DISCLAIMER.
* New module parameters:
zfs_spa_discard_memory_limit,
zfs_remove_max_bytes_pause (not documented - debugging only)
vdev_max_ms_count (formerly metaslabs_per_vdev)
vdev_min_ms_count
Authored by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: John Kennedy <john.kennedy@delphix.com>
Reviewed by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Richard Lowe <richlowe@richlowe.net>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://illumos.org/issues/9166
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7159fdb8Closes#7570
Commit torvalds/linux@95582b0 changes the inode i_atime, i_mtime,
and i_ctime members form timespec's to timespec64's to make them
2038 safe. As part of this change the current_time() function was
also updated to return the timespec64 type.
Resolve this issue by introducing a new inode_timespec_t type which
is defined to match the timespec type used by the inode. It should
be used when working with inode timestamps to ensure matching types.
The timestruc_t type under Illumos was used in a similar fashion but
was specified to always be a timespec_t. Rather than incorrectly
define this type all timespec_t types have been replaced by the new
inode_timespec_t type.
Finally, the kernel and user space 'sys/time.h' headers were aligned
with each other. They define as appropriate for the context several
constants as macros and include static inline implementation of
gethrestime(), gethrestime_sec(), and gethrtime().
Reviewed-by: Chunwei Chen <tuxoko@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#7643
This patch simply adds an ASSERT that confirms that the last
decrypting reference on a dataset waits until the dataset is
no longer dirty. This should help to debug issues where the
ZIO layer cannot find encryption keys after a dataset has been
disowned.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes#7637
This patch adds tunables for modifying the maximum memory limit and
maximum instruction limit that can be specified when running a channel
program.
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov
Reviewed-by: Sara Hartse <sara.hartse@delphix.com>
Signed-off-by: John Gallagher <john.gallagher@delphix.com>
External-issue: LX-1085
Closes#7618
Reserve bit 25 for the ZSTD compression feature from FreeBSD.
Reviewed-by: George Melikov <mail@gmelikov.ru>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Signed-off-by: Allan Jude <allanjude@freebsd.org>
Closes#7626
The zfs_dbuf_evict_key TSD (thread-specific data) is not necessary -
we can instead pass a flag down in a few places to prevent recursive
dbuf eviction. Making this change has 3 benefits:
1. The code semantics are easier to understand.
2. On Linux, performance is improved, because creating/removing
TSD values (by setting to NULL vs non-NULL) is expensive, and
we do it very often.
3. According to Nexenta, the current semantics can cause a
deadlock when concurrently calling dmu_objset_evict_dbufs()
(which is rare today, but they are working on a "parallel
unmount" change that triggers this more easily):
Porting Notes:
* Minor conflict with OpenZFS 9337 which has not yet been ported.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com>
Reviewed by: Brad Lewis <brad.lewis@delphix.com>
Reviewed-by: George Melikov <mail@gmelikov.ru>
Ported-by: Brian Behlendorf <behlendorf1@llnl.gov>
OpenZFS-issue: https://illumos.org/issues/9577
OpenZFS-commit: https://github.com/openzfs/openzfs/pull/645
External-issue: DLPX-58547
Closes#7602
This patch fixes a small bug found where receive_spill() sometimes
attempted to decrypt spill blocks when doing a raw receive. In
addition, this patch fixes another small issue in arc_buf_fill()'s
error handling where a decryption failure (which could be caused by
the first bug) would attempt to set the arc header's IO_ERROR flag
without holding the header's lock.
Reviewed-by: Matthew Thode <prometheanfire@gentoo.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes#7564Closes#7584Closes#7592
In pursuit of improving performance on multi-core systems, we should
implements fanned out counters and use them to improve the performance of
some of the arc statistics. These stats are updated extremely frequently,
and can consume a significant amount of CPU time.
Authored by: Paul Dagnelie <pcd@delphix.com>
Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Approved by: Dan McDonald <danmcd@joyent.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Ported-by: Paul Dagnelie <pcd@delphix.com>
OpenZFS-issue: https://www.illumos.org/issues/8484
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7028a8b92b7
Issue #3752Closes#7462
1. Add a proc entry to display the pool's state:
$ cat /proc/spl/kstat/zfs/tank/state
ONLINE
This is done without using the spa config locks, so it will
never hang.
2. Fix 'zpool status' and 'zpool list -o health' output to print
"SUSPENDED" instead of "ONLINE" for suspended pools.
Reviewed-by: Olaf Faaland <faaland1@llnl.gov>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed by: Richard Elling <Richard.Elling@RichardElling.com>
Signed-off-by: Tony Hutter <hutter2@llnl.gov>
Closes#7331Closes#7563
The only remaining consumer of the rwlock compatibility wrappers
is ztest. Remove the wrappers and convert the few remaining
calls to the underlying pthread functions.
rwlock_init() -> pthread_rwlock_init()
rwlock_destroy() -> pthread_rwlock_destroy()
rw_rdlock() -> pthread_rwlock_rdlock()
rw_wrlock() -> pthread_rwlock_wrlock()
rw_unlock() -> pthread_rwlock_unlock()
Note pthread_rwlock_init() defaults to PTHREAD_PROCESS_PRIVATE
which is equivilant to the USYNC_THREAD behavior. There is no
functional change.
Reviewed-by: Olaf Faaland <faaland1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#7591
txg_kick() fails to see that we are quiescing, forcing transactions to
their next stages without leaving them accumulate changes
Creating a fragmented pool in a DCenter VM and continuously writing to it with
multiple instances of randwritecomp, we get the following output from txg.d:
0ms 311MB in 4114ms (95% p1) 75MB/s 544MB (76%) 336us 153ms 0ms
0ms 8MB in 51ms ( 0% p1) 163MB/s 474MB (66%) 129us 34ms 0ms
0ms 366MB in 4454ms (93% p1) 82MB/s 572MB (79%) 498us 20ms 0ms
0ms 406MB in 5212ms (95% p1) 77MB/s 591MB (82%) 661us 37ms 0ms
0ms 340MB in 5110ms (94% p1) 66MB/s 622MB (86%) 1048us 41ms 1ms
0ms 3MB in 61ms ( 0% p1) 51MB/s 419MB (58%) 33us 0ms 0ms
0ms 361MB in 3555ms (88% p1) 101MB/s 542MB (75%) 335us 40ms 0ms
0ms 356MB in 4592ms (92% p1) 77MB/s 561MB (78%) 430us 89ms 1ms
0ms 11MB in 129ms (13% p1) 90MB/s 507MB (70%) 222us 15ms 0ms
0ms 281MB in 2520ms (89% p1) 111MB/s 542MB (75%) 334us 42ms 0ms
0ms 383MB in 3666ms (91% p1) 104MB/s 557MB (77%) 411us 133ms 0ms
0ms 404MB in 5757ms (94% p1) 70MB/s 635MB (88%) 1274us 123ms 2ms
4ms 367MB in 4172ms (89% p1) 88MB/s 556MB (77%) 401us 51ms 0ms
0ms 42MB in 470ms (44% p1) 90MB/s 557MB (77%) 412us 43ms 0ms
0ms 261MB in 2273ms (88% p1) 114MB/s 556MB (77%) 407us 27ms 0ms
0ms 394MB in 3646ms (85% p1) 108MB/s 552MB (77%) 393us 304ms 0ms
0ms 275MB in 2416ms (89% p1) 113MB/s 510MB (71%) 200us 53ms 0ms
0ms 9MB in 53ms ( 0% p1) 169MB/s 483MB (67%) 140us 100ms 1ms
The TXGs that are getting synced and don't have lots of changes are pushed by
txg_kick() which basically forces the current open txg to get to the quiesced
state:
if (tx->tx_syncing_txg == 0 &&
tx->tx_quiesce_txg_waiting <= tx->tx_open_txg &&
tx->tx_sync_txg_waiting <= tx->tx_synced_txg &&
tx->tx_quiesced_txg <= tx->tx_synced_txg) {
tx->tx_quiesce_txg_waiting = tx->tx_open_txg + 1;
cv_broadcast(&tx->tx_quiesce_more_cv);
}
The problem is that the above code doesn't check if we are currently quiescing
anything (only if a quiesce or a sync has been requested, ..etc) so the
following scenario can happen:
1] We have an open txg A that had enough dirty data (more than
zfs_dirty_data_sync) and it was pushed to the quiesced state, and opened
a new txg B. No txg is currently being synced.
2] Immediately after the opening of B, txg_kick() was run by some other write
(and because of A's dirty data) and saw that we are not currently syncing
any txg and no one has requested quiescing so it requests one by bumping
tx_quiesce_txg_waiting and broadcasts the quiesce thread.
3] The quiesce thread just passed txg A to be synced and sees that a quiescing
request has been sent to it so it immediately grabs B without letting it
gather enough data, putting it in a quiesced state and opening a new txg C.
In this scenario txg B, is an example of how the entries of interest show up in
the txg.d output.
Ideally we would like txg_kick() to get triggered only when we are sure that
we are not syncing AND not quiescing any txg. This way we can kick an open TXG
to the quiescing state when we are sure that there is nothing going on and we
would benefit from the different states running concurrently.
Authored by: Serapheim Dimitropoulos <serapheim@delphix.com>
Reviewed by: Matt Ahrens <matt@delphix.com>
Reviewed by: Brad Lewis <brad.lewis@delphix.com>
Reviewed by: Andriy Gapon <avg@FreeBSD.org>
Approved by: Dan McDonald <danmcd@joyent.com>
Ported-by: Brian Behlendorf <behlendorf1@llnl.gov>
OpenZFS-issue: https://illumos.org/issues/9464
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/1cd7635bCloses#7587
We want to be able to pass various settings during import/open of a
pool, which are not only related to rewind. Instead of adding a new
policy and duplicate a bunch of code, we should just rename
rewind_policy to a more generic term like load_policy.
For instance, we'd like to set spa->spa_import_flags from the nvlist,
rather from a flags parameter passed to spa_import as in some cases we
want those flags not only for the import case, but also for the open
case. One such flag could be ZFS_IMPORT_MISSING_LOG (as used in zdb)
which would allow zfs to open a pool when logs are missing.
Authored by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: Matt Ahrens <matt@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Approved by: Robert Mustacchi <rm@joyent.com>
Ported-by: Brian Behlendorf <behlendorf1@llnl.gov>
OpenZFS-issue: https://illumos.org/issues/9235
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/d2b1e44Closes#7532
Update bdev_capacity to have wholedisk vdevs query the
size of the underlying block device (correcting for the size
of the efi parition and partition alignment) and therefore detect
expanded space.
Correct vdev_get_stats_ex so that the expandsize is aligned
to metaslab size and new space is only reported if it is large
enough for a new metaslab.
Reviewed by: Don Brady <don.brady@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: John Wren Kennedy <jwk404@gmail.com>
Signed-off-by: sara hartse <sara.hartse@delphix.com>
External-issue: LX-165
Closes#7546
Issue #7582
Minimal changes required to integrate the SPL sources in to the
ZFS repository build infrastructure and packaging.
Build system and packaging:
* Renamed SPL_* autoconf m4 macros to ZFS_*.
* Removed redundant SPL_* autoconf m4 macros.
* Updated the RPM spec files to remove SPL package dependency.
* The zfs package obsoletes the spl package, and the zfs-kmod
package obsoletes the spl-kmod package.
* The zfs-kmod-devel* packages were updated to add compatibility
symlinks under /usr/src/spl-x.y.z until all dependent packages
can be updated. They will be removed in a future release.
* Updated copy-builtin script for in-kernel builds.
* Updated DKMS package to include the spl.ko.
* Updated stale AUTHORS file to include all contributors.
* Updated stale COPYRIGHT and included the SPL as an exception.
* Renamed README.markdown to README.md
* Renamed OPENSOLARIS.LICENSE to LICENSE.
* Renamed DISCLAIMER to NOTICE.
Required code changes:
* Removed redundant HAVE_SPL macro.
* Removed _BOOT from nvpairs since it doesn't apply for Linux.
* Initial header cleanup (removal of empty headers, refactoring).
* Remove SPL repository clone/build from zimport.sh.
* Use of DEFINE_RATELIMIT_STATE and DEFINE_SPINLOCK removed due
to build issues when forcing C99 compilation.
* Replaced legacy ACCESS_ONCE with READ_ONCE.
* Include needed headers for `current` and `EXPORT_SYMBOL`.
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Reviewed-by: Olaf Faaland <faaland1@llnl.gov>
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Pavel Zakharov <pavel.zakharov@delphix.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
TEST_ZIMPORT_SKIP="yes"
Closes#7556
Device removal allocates a new location for each allocated segment on
the disk that's being removed. Each allocation results in one entry in
the mapping table, which maps from old location + length to new
location. When a fragmented disk is removed, this can result in a large
number of mapping entries, and thus a large amount of memory consumed by
the mapping table. In the worst real-world cases, we've seen around 1GB
of RAM per 1TB of storage removed.
We can improve on this situation by allocating larger segments, which
span across both allocated and free regions of the device being removed.
By including free regions in the allocation (and thus mapping), we
reduce the number of mapping entries. For example, if we have a 4K
allocation followed by 1K free and then 4K allocated, we would allocate
4+1+4 = 9KB, and then move the entire region (including allocated and
free parts). In this case we used one mapping where previously we would
have used two, but often the ratio is much higher (up to 20:1 in
real-world use). We then need to mark the regions that were free on the
removing device as free in the new locations, and also obsolete in the
mapping entry.
This method preserves the fragmentation of the removing device, rather
than consolidating its allocated space into a small number of chunks
where possible. But it results in drastic reduction of memory used by
the mapping table - around 20x in the most-fragmented cases.
In the most fragmented real-world cases, this reduces memory used by the
mapping from ~1GB to ~50MB of RAM per 1TB of storage removed. Less
fragmented cases will typically also see around 50-100MB of RAM per 1TB
of storage.
Porting notes:
* Add the following as module parameters:
* zfs_condense_indirect_vdevs_enable
* zfs_condense_max_obsolete_bytes
* Document the following module parameters:
* zfs_condense_indirect_vdevs_enable
* zfs_condense_max_obsolete_bytes
* zfs_condense_min_mapping_bytes
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://illumos.org/issues/9486
OpenZFS-commit: https://github.com/ahrens/illumos/commit/07152e142e44c
External-issue: DLPX-57962
Closes#7536
Some work has been done lately to improve the debugability of the ZFS pool
load (and import) process. This includes:
7638 Refactor spa_load_impl into several functions
8961 SPA load/import should tell us why it failed
7277 zdb should be able to print zfs_dbgmsg's
To iterate on top of that, there's a few changes that were made to make the
import process more resilient and crash free. One of the first tasks during the
pool load process is to parse a config provided from userland that describes
what devices the pool is composed of. A vdev tree is generated from that config,
and then all the vdevs are opened.
The Meta Object Set (MOS) of the pool is accessed, and several metadata objects
that are necessary to load the pool are read. The exact configuration of the
pool is also stored inside the MOS. Since the configuration provided from
userland is external and might not accurately describe the vdev tree
of the pool at the txg that is being loaded, it cannot be relied upon to safely
operate the pool. For that reason, the configuration in the MOS is read early
on. In the past, the two configurations were compared together and if there was
a mismatch then the load process was aborted and an error was returned.
The latter was a good way to ensure a pool does not get corrupted, however it
made the pool load process needlessly fragile in cases where the vdev
configuration changed or the userland configuration was outdated. Since the MOS
is stored in 3 copies, the configuration provided by userland doesn't have to be
perfect in order to read its contents. Hence, a new approach has been adopted:
The pool is first opened with the untrusted userland configuration just so that
the real configuration can be read from the MOS. The trusted MOS configuration
is then used to generate a new vdev tree and the pool is re-opened.
When the pool is opened with an untrusted configuration, writes are disabled
to avoid accidentally damaging it. During reads, some sanity checks are
performed on block pointers to see if each DVA points to a known vdev;
when the configuration is untrusted, instead of panicking the system if those
checks fail we simply avoid issuing reads to the invalid DVAs.
This new two-step pool load process now allows rewinding pools accross
vdev tree changes such as device replacement, addition, etc. Loading a pool
from an external config file in a clustering environment also becomes much
safer now since the pool will import even if the config is outdated and didn't,
for instance, register a recent device addition.
With this code in place, it became relatively easy to implement a
long-sought-after feature: the ability to import a pool with missing top level
(i.e. non-redundant) devices. Note that since this almost guarantees some loss
of data, this feature is for now restricted to a read-only import.
Porting notes (ZTS):
* Fix 'make dist' target in zpool_import
* The maximum path length allowed by tar is 99 characters. Several
of the new test cases exceeded this limit resulting in them not
being included in the tarball. Shorten the names slightly.
* Set/get tunables using accessor functions.
* Get last synced txg via the "zfs_txg_history" mechanism.
* Clear zinject handlers in cleanup for import_cache_device_replaced
and import_rewind_device_replaced in order that the zpool can be
exported if there is an error.
* Increase FILESIZE to 8G in zfs-test.sh to allow for a larger
ext4 file system to be created on ZFS_DISK2. Also, there's
no need to partition ZFS_DISK2 at all. The partitioning had
already been disabled for multipath devices. Among other things,
the partitioning steals some space from the ext4 file system,
makes it difficult to accurately calculate the paramters to
parted and can make some of the tests fail.
* Increase FS_SIZE and FILE_SIZE in the zpool_import test
configuration now that FILESIZE is larger.
* Write more data in order that device evacuation take lonnger in
a couple tests.
* Use mkdir -p to avoid errors when the directory already exists.
* Remove use of sudo in import_rewind_config_changed.
Authored by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Andrew Stormont <andyjstormont@gmail.com>
Approved by: Hans Rosenfeld <rosenfeld@grumpf.hope-2000.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://illumos.org/issues/9075
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/619c0123Closes#7459
Problem
=======
When we fail to open or import a storage pool, we typically don't
get any additional diagnostic information, just "no pool found" or
"can not import".
While there may be no additional user-consumable information, we should
at least make this situation easier to debug/diagnose for developers
and support. For example, we could start by using `zfs_dbgmsg()`
to log each thing that we try when importing, and which things
failed. E.g. "tried uberblock of txg X from label Y of device Z". Also,
we could log each of the stages that we go through in `spa_load_impl()`.
Solution
========
Following the cleanup to `spa_load_impl()`, debug messages have been
added to every point of failure in that function. Additionally,
debug messages have been added to strategic places, such as
`vdev_disk_open()`.
Authored by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Andrew Stormont <andyjstormont@gmail.com>
Approved by: Dan McDonald <danmcd@joyent.com>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://illumos.org/issues/8961
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/418079e0Closes#7459
This patch adds the ability for zinject to trigger decryption
and authentication faults in the ZIO and ARC layers. This
functionality is exposed via the new "decrypt" error type, which
may be provided for "data" object types.
This patch also refactors some of the core encryption / decryption
functions so that they have consistent prototypes, handle errors
consistently, and do not have unused arguments.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes#7474
As of RHEL 7.5 the mainline fops.iterate() method was added to
the file_operations structure and is correctly detected by the
configure script.
Normally this is what we want, but in order to maintain KABI
compatibility the RHEL change additionally does the following:
* Requires that callers intending to use this extended interface
set the FMODE_KABI_ITERATE flag on the file structure when
opening the directory.
* Adds the fops.iterate() method to the end of the structure,
without removing fops.readdir().
This change updates the configure check to ignore the RHEL 7.5+
variant of fops.iterate() when detected. Instead fallback to
the fops.readdir() interface which will be available.
Finally, add the 'zpl_' prefix to the directory context wrappers
to avoid colliding with the kernel provided symbols when both
the fops.iterate() and fops.readdir() are provided by the kernel.
Reviewed-by: Olaf Faaland <faaland1@llnl.gov>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#7460Closes#7463
We should use zfs_dbgmsg instead of spa_dbgmsg. Or at least,
metaslab_condense() should call zfs_dbgmsg because it's important and
rare enough to always log. It's possible that the message in
zio_dva_allocate() would be too high-frequency for zfs_dbgmsg.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com>
Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Richard Elling <Richard.Elling@RichardElling.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Richard Lowe <richlowe@richlowe.net>
Ported-by: Giuseppe Di Natale <dinatale2@llnl.gov>
Patch Notes:
* Removed ZFS_DEBUG_SPA from zfs-module-parameters.5
OpenZFS-issue: https://www.illumos.org/issues/9236
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/cfaba7f668Closes#7467
Commit cc63068 caused ENOSPC error when copy a large amount of files
between two directories. The reason is that the patch limits zap leaf
expansion to 2 retries, and return ENOSPC when failed.
The intent for limiting retries is to prevent pointlessly growing table
to max size when adding a block full of entries with same name in
different case in mixed mode. However, it turns out we cannot use any
limit on the retry. When we copy files from one directory in readdir
order, we are copying in hash order, one leaf block at a time. Which
means that if the leaf block in source directory has expanded 6 times,
and you copy those entries in that block, by the time you need to expand
the leaf in destination directory, you need to expand it 6 times in one
go. So any limit on the retry will result in error where it shouldn't.
Note that while we do use different salt for different directories, it
seems that the salt/hash function doesn't provide enough randomization
to the hash distance to prevent this from happening.
Since cc63068 has already been reverted. This patch adds it back and
removes the retry limit.
Also, as it turn out, failing on zap_add() has a serious side effect for
mzap_upgrade(). When upgrading from micro zap to fat zap, it will
call zap_add() to transfer entries one at a time. If it hit any error
halfway through, the remaining entries will be lost, causing those files
to become orphan. This patch add a VERIFY to catch it.
Reviewed-by: Sanjeev Bagewadi <sanjeev.bagewadi@gmail.com>
Reviewed-by: Richard Yao <ryao@gentoo.org>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Reviewed-by: Albert Lee <trisk@forkgnu.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Signed-off-by: Chunwei Chen <david.chen@nutanix.com>
Closes#7401Closes#7421
In the existing code, when doing a raw (encrypted) zfs receive,
we call arc_convert_to_raw() from open context. This creates a
race condition between arc_release()/arc_change_state() and
writing out the block from syncing context (arc_write_ready/done()).
This change makes it so that when we are doing a raw (encrypted)
zfs receive, we save the crypt parameters (salt, iv, mac) of dnode
blocks in the dbuf_dirty_record_t, and call arc_convert_to_raw()
from syncing context when writing out the block of dnodes.
Additionally, we can eliminate dr_raw and associated setters, and
instead know that dnode blocks are always raw when doing a zfs
receive (see the new field os_raw_receive).
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Tom Caputi <tcaputi@datto.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes#7424Closes#7429
The timeline of the race condition is the following:
[1] Thread A is about to finish condesing the first vdev in
spa_condense_indirect_thread(), so it calls the
spa_condense_indirect_complete_sync() sync task which sets
the spa_condensing_indirect field to NULL. Waiting for the
sync task to finish, thread A sleeps until the txg is done.
When this happens, thread A will acquire spa_async_lock and
set spa_condense_thread to NULL.
[2] While thread A waits for the txg to finish, thread B which is
running spa_sync() checks whether it should condense the
second vdev in vdev_indirect_should_condense() by checking the
spa_condensing_indirect field which was set to NULL by
spa_condense_indirect_thread() from thread A. So it goes on
and tries to spawn a new condensing thread in
spa_condense_indirect_start_sync() and the aforementioned
assertions fails because thread A has not set spa_condense_thread
to NULL (which is basically the last thing it does before returning).
The main issue here is that we rely on both spa_condensing_indirect
and spa_condense_thread to signify whether a condensing thread is
running. Ideally we would only use one throughout the codebase. In
addition, for managing spa_condense_thread we currently use
spa_async_lock which basically tights condensing to scrubing when
it comes to pausing and resuming those actions during spa export.
This commit introduces the ZTHR infrastructure, which is basically
threads created during spa_load()/spa_create() and exist until we
export or destroy the pool. ZTHRs sleep the majority of the time,
until they are notified to wake up and do some predefined type of work.
In the context of the current bug, a zthr to does the condensing of
indirect mappings replacing the older code that used bare kthreads.
When a pool is created, the condensing zthr is spawned but sleeps
right away, until it is awaken by a signal from spa_sync(). If an
existing pool is loaded, the condensing zthr looks if there is
anything to condense before going to sleep, in case we were condensing
mappings in the pool before it got exported.
The benefits of this solution are the following:
- The current bug is fixed
- spa_condensing_indirect is the sole indicator of whether we are
currently condensing or not
- condensing is more decoupled from the spa_async_thread related
functionality.
As a final note, this commit also sets up the path on upstreaming
other features that use the ZTHR code like zpool checkpoint and
fast clone deletion.
Authored by: Serapheim Dimitropoulos <serapheim@delphix.com>
Reviewed by: Matt Ahrens <mahrens@delphix.com>
Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com>
Approved by: Hans Rosenfeld <rosenfeld@grumpf.hope-2000.org>
Ported-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://illumos.org/issues/9079
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/3dc606eeCloses#6900
Mirrors are supposed to provide redundancy in the face of whole-disk
failure and silent damage (e.g. some data on disk is not right, but ZFS
hasn't detected the whole device as being broken). However, the current
device removal implementation bypasses some of the mirror's redundancy.
Note that in no case is incorrect data returned, but we might get a
checksum error when we should have been able to find the right data.
There are two underlying problems:
1. When we remove a mirror device, we only read one side of the mirror.
Since we can't verify the checksum, this side may be silently bad, but
the good data is on the other side of the mirror (which we didn't read).
This can cause the removal to "bake in" the busted data – all copies of
the data in the new location are the same, busted version, while we left
the good version behind.
The fix for this is to read and copy both sides of the mirror. If the
old and new vdevs are mirrors, we will read both sides of the old
mirror, and write each copy to the corresponding side of the new mirror.
(If the old and new vdevs have a different number of children, we will
do this as best as possible.) Even though we aren't verifying checksums,
this ensures that as long as there's a good copy of the data, we'll have
a good copy after the removal, even if there's silent damage to one side
of the mirror. If we're removing a mirror that has some silent damage,
we'll have exactly the same damage in the new location (assuming that
the new location is also a mirror).
2. When we read from an indirect vdev that points to a mirror vdev, we
only consider one copy of the data. This can lead to reduced effective
redundancy, because we might read a bad copy of the data from one side
of the mirror, and not retry the other, good side of the mirror.
Note that the problem is not with the removal process, but rather after
the removal has completed (having copied correct data to both sides of
the mirror), if one side of the new mirror is silently damaged, we
encounter the problem when reading the relocated data via the indirect
vdev. Also note that the problem doesn't occur when ZFS knows that one
side of the mirror is bad, e.g. when a disk entirely fails or is
offlined.
The impact is that reads (from indirect vdevs that point to mirrors) may
return a checksum error even though the good data exists on one side of
the mirror, and scrub doesn't repair all data on the mirror (if some of
it is pointed to via an indirect vdev).
The fix for this is complicated by "split blocks" - one logical block
may be split into two (or more) pieces with each piece moved to a
different new location. In this case we need to read all versions of
each split (one from each side of the mirror), and figure out which
combination of versions results in the correct checksum, and then repair
the incorrect versions.
This ensures that we supply the same redundancy whether you use device
removal or not. For example, if a mirror has small silent errors on all
of its children, we can still reconstruct the correct data, as long as
those errors are at sufficiently-separated offsets (specifically,
separated by the largest block size - default of 128KB, but up to 16MB).
Porting notes:
* A new indirect vdev check was moved from dsl_scan_needs_resilver_cb()
to dsl_scan_needs_resilver(), which was added to ZoL as part of the
sequential scrub work.
* Passed NULL for zfs_ereport_post_checksum()'s zbookmark_phys_t
parameter. The extra parameter is unique to ZoL.
* When posting indirect checksum errors the ABD can be passed directly,
zfs_ereport_post_checksum() is not yet ABD-aware in OpenZFS.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Ported-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://illumos.org/issues/9290
OpenZFS-commit: https://github.com/openzfs/openzfs/pull/591Closes#6900
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1ebCloses#6900
Currently, dnode_check_slots_free() works by checking dn->dn_type
in the dnode to determine if the dnode is reclaimable. However,
there is a small window of time between dnode_free_sync() in the
first call to dsl_dataset_sync() and when the useraccounting code
is run when the type is set DMU_OT_NONE, but the dnode is not yet
evictable, leading to crashes. This patch adds the ability for
dnodes to track which txg they were last dirtied in and adds a
check for this before performing the reclaim.
This patch also corrects several instances when dn_dirty_link was
treated as a list_node_t when it is technically a multilist_node_t.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes#7147Closes#7388
This reverts commit cc63068e95.
Under certain circumstances this change can result in an ENOSPC
error when adding new files to a directory. See #7401 for full
details.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Tony Hutter <hutter2@llnl.gov>
Issue #7401
Cloes #7416
mdb doesn't have dmu_ot[], so we need a different mechanism for its
SNPRINTF_BLKPTR() to determine if the BP is encrypted vs authenticated.
Additionally, since it already relies on BP_IS_ENCRYPTED (etc),
SNPRINTF_BLKPTR might as well figure out the "crypt_type" on its own,
rather than making the caller do so.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Tom Caputi <tcaputi@datto.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes#7390
Currently, the decryption and block authentication code in
the ZIO / ARC layers is a bit inconsistent with regards to
the ereports that are produces and the error codes that are
passed to calling functions. This patch ensures that all of
these errors (which begin as ECKSUM) are converted to EIO
before they leave the ZIO or ARC layer and that ereports
are correctly generated on each decryption / authentication
failure.
In addition, this patch fixes a bug in zio_decrypt() where
ECKSUM never gets written to zio->io_error.
Reviewed by: Matt Ahrens <matt@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes#7372
During a receive operation zvol_create_minors_impl() can wait
needlessly for the prefetch thread because both share the same tasks
queue. This results in hung tasks:
<3>INFO: task z_zvol:5541 blocked for more than 120 seconds.
<3> Tainted: P O 3.16.0-4-amd64
<3>"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
The first z_zvol:5541 (zvol_task_cb) is waiting for the long running
traverse_prefetch_thread:260
root@linux:~# cat /proc/spl/taskq
taskq act nthr spwn maxt pri mina
spl_system_taskq/0 1 2 0 64 100 1
active: [260]traverse_prefetch_thread [zfs](0xffff88003347ae40)
wait: 5541
spl_delay_taskq/0 0 1 0 4 100 1
delay: spa_deadman [zfs](0xffff880039924000)
z_zvol/1 1 1 0 1 120 1
active: [5541]zvol_task_cb [zfs](0xffff88001fde6400)
pend: zvol_task_cb [zfs](0xffff88001fde6800)
This change adds a dedicated, per-pool, prefetch taskq to prevent the
traverse code from monopolizing the global (and limited) system_taskq by
inappropriately scheduling long running tasks on it.
Reviewed-by: Albert Lee <trisk@forkgnu.org>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: loli10K <ezomori.nozomu@gmail.com>
Closes#6330Closes#6890Closes#7343