2008-11-20 20:01:55 +00:00
|
|
|
/*
|
|
|
|
* CDDL HEADER START
|
|
|
|
*
|
|
|
|
* The contents of this file are subject to the terms of the
|
|
|
|
* Common Development and Distribution License (the "License").
|
|
|
|
* You may not use this file except in compliance with the License.
|
|
|
|
*
|
|
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
|
|
* See the License for the specific language governing permissions
|
|
|
|
* and limitations under the License.
|
|
|
|
*
|
|
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
|
|
*
|
|
|
|
* CDDL HEADER END
|
|
|
|
*/
|
|
|
|
/*
|
2010-05-28 20:45:14 +00:00
|
|
|
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
|
2020-05-07 16:36:33 +00:00
|
|
|
* Copyright (c) 2011, 2020 by Delphix. All rights reserved.
|
2018-09-06 01:33:36 +00:00
|
|
|
* Copyright (c) 2017, Intel Corporation.
|
2008-11-20 20:01:55 +00:00
|
|
|
*/
|
|
|
|
|
|
|
|
#ifndef _SYS_VDEV_IMPL_H
|
|
|
|
#define _SYS_VDEV_IMPL_H
|
|
|
|
|
|
|
|
#include <sys/avl.h>
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 16:30:13 +00:00
|
|
|
#include <sys/bpobj.h>
|
2008-11-20 20:01:55 +00:00
|
|
|
#include <sys/dmu.h>
|
|
|
|
#include <sys/metaslab.h>
|
|
|
|
#include <sys/nvpair.h>
|
|
|
|
#include <sys/space_map.h>
|
|
|
|
#include <sys/vdev.h>
|
|
|
|
#include <sys/dkio.h>
|
|
|
|
#include <sys/uberblock_impl.h>
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 16:30:13 +00:00
|
|
|
#include <sys/vdev_indirect_mapping.h>
|
|
|
|
#include <sys/vdev_indirect_births.h>
|
2020-07-03 18:05:50 +00:00
|
|
|
#include <sys/vdev_rebuild.h>
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 16:30:13 +00:00
|
|
|
#include <sys/vdev_removal.h>
|
2016-10-19 19:55:59 +00:00
|
|
|
#include <sys/zfs_ratelimit.h>
|
2008-11-20 20:01:55 +00:00
|
|
|
|
|
|
|
#ifdef __cplusplus
|
|
|
|
extern "C" {
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Virtual device descriptors.
|
|
|
|
*
|
|
|
|
* All storage pool operations go through the virtual device framework,
|
|
|
|
* which provides data replication and I/O scheduling.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Forward declarations that lots of things need.
|
|
|
|
*/
|
|
|
|
typedef struct vdev_queue vdev_queue_t;
|
|
|
|
typedef struct vdev_cache vdev_cache_t;
|
|
|
|
typedef struct vdev_cache_entry vdev_cache_entry_t;
|
2016-07-22 15:52:49 +00:00
|
|
|
struct abd;
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2016-10-14 00:59:18 +00:00
|
|
|
extern int zfs_vdev_queue_depth_pct;
|
OpenZFS 9112 - Improve allocation performance on high-end systems
Overview
========
We parallelize the allocation process by creating the concept of
"allocators". There are a certain number of allocators per metaslab
group, defined by the value of a tunable at pool open time. Each
allocator for a given metaslab group has up to 2 active metaslabs; one
"primary", and one "secondary". The primary and secondary weight mean
the same thing they did in in the pre-allocator world; primary metaslabs
are used for most allocations, secondary metaslabs are used for ditto
blocks being allocated in the same metaslab group. There is also the
CLAIM weight, which has been separated out from the other weights, but
that is less important to understanding the patch. The active metaslabs
for each allocator are moved from their normal place in the metaslab
tree for the group to the back of the tree. This way, they will not be
selected for use by other allocators searching for new metaslabs unless
all the passive metaslabs are unsuitable for allocations. If that does
happen, the allocators will "steal" from each other to ensure that IOs
don't fail until there is truly no space left to perform allocations.
In addition, the alloc queue for each metaslab group has been broken
into a separate queue for each allocator. We don't want to dramatically
increase the number of inflight IOs on low-end systems, because it can
significantly increase txg times. On the other hand, we want to ensure
that there are enough IOs for each allocator to allow for good
coalescing before sending the IOs to the disk. As a result, we take a
compromise path; each allocator's alloc queue max depth starts at a
certain value for every txg. Every time an IO completes, we increase the
max depth. This should hopefully provide a good balance between the two
failure modes, while not dramatically increasing complexity.
We also parallelize the spa_alloc_tree and spa_alloc_lock, which cause
very similar contention when selecting IOs to allocate. This
parallelization uses the same allocator scheme as metaslab selection.
Performance Results
===================
Performance improvements from this change can vary significantly based
on the number of CPUs in the system, whether or not the system has a
NUMA architecture, the speed of the drives, the values for the various
tunables, and the workload being performed. For an fio async sequential
write workload on a 24 core NUMA system with 256 GB of RAM and 8 128 GB
SSDs, there is a roughly 25% performance improvement.
Future Work
===========
Analysis of the performance of the system with this patch applied shows
that a significant new bottleneck is the vdev disk queues, which also
need to be parallelized. Prototyping of this change has occurred, and
there was a performance improvement, but more work needs to be done
before its stability has been verified and it is ready to be upstreamed.
Authored by: Paul Dagnelie <pcd@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com>
Reviewed by: Alexander Motin <mav@FreeBSD.org>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Gordon Ross <gwr@nexenta.com>
Ported-by: Paul Dagnelie <pcd@delphix.com>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Porting Notes:
* Fix reservation test failures by increasing tolerance.
OpenZFS-issue: https://illumos.org/issues/9112
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/3f3cc3c3
Closes #7682
2018-02-12 20:56:06 +00:00
|
|
|
extern int zfs_vdev_def_queue_depth;
|
2016-10-14 00:59:18 +00:00
|
|
|
extern uint32_t zfs_vdev_async_write_max_active;
|
|
|
|
|
2008-11-20 20:01:55 +00:00
|
|
|
/*
|
|
|
|
* Virtual device operations
|
|
|
|
*/
|
Distributed Spare (dRAID) Feature
This patch adds a new top-level vdev type called dRAID, which stands
for Distributed parity RAID. This pool configuration allows all dRAID
vdevs to participate when rebuilding to a distributed hot spare device.
This can substantially reduce the total time required to restore full
parity to pool with a failed device.
A dRAID pool can be created using the new top-level `draid` type.
Like `raidz`, the desired redundancy is specified after the type:
`draid[1,2,3]`. No additional information is required to create the
pool and reasonable default values will be chosen based on the number
of child vdevs in the dRAID vdev.
zpool create <pool> draid[1,2,3] <vdevs...>
Unlike raidz, additional optional dRAID configuration values can be
provided as part of the draid type as colon separated values. This
allows administrators to fully specify a layout for either performance
or capacity reasons. The supported options include:
zpool create <pool> \
draid[<parity>][:<data>d][:<children>c][:<spares>s] \
<vdevs...>
- draid[parity] - Parity level (default 1)
- draid[:<data>d] - Data devices per group (default 8)
- draid[:<children>c] - Expected number of child vdevs
- draid[:<spares>s] - Distributed hot spares (default 0)
Abbreviated example `zpool status` output for a 68 disk dRAID pool
with two distributed spares using special allocation classes.
```
pool: tank
state: ONLINE
config:
NAME STATE READ WRITE CKSUM
slag7 ONLINE 0 0 0
draid2:8d:68c:2s-0 ONLINE 0 0 0
L0 ONLINE 0 0 0
L1 ONLINE 0 0 0
...
U25 ONLINE 0 0 0
U26 ONLINE 0 0 0
spare-53 ONLINE 0 0 0
U27 ONLINE 0 0 0
draid2-0-0 ONLINE 0 0 0
U28 ONLINE 0 0 0
U29 ONLINE 0 0 0
...
U42 ONLINE 0 0 0
U43 ONLINE 0 0 0
special
mirror-1 ONLINE 0 0 0
L5 ONLINE 0 0 0
U5 ONLINE 0 0 0
mirror-2 ONLINE 0 0 0
L6 ONLINE 0 0 0
U6 ONLINE 0 0 0
spares
draid2-0-0 INUSE currently in use
draid2-0-1 AVAIL
```
When adding test coverage for the new dRAID vdev type the following
options were added to the ztest command. These options are leverages
by zloop.sh to test a wide range of dRAID configurations.
-K draid|raidz|random - kind of RAID to test
-D <value> - dRAID data drives per group
-S <value> - dRAID distributed hot spares
-R <value> - RAID parity (raidz or dRAID)
The zpool_create, zpool_import, redundancy, replacement and fault
test groups have all been updated provide test coverage for the
dRAID feature.
Co-authored-by: Isaac Huang <he.huang@intel.com>
Co-authored-by: Mark Maybee <mmaybee@cray.com>
Co-authored-by: Don Brady <don.brady@delphix.com>
Co-authored-by: Matthew Ahrens <mahrens@delphix.com>
Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Mark Maybee <mmaybee@cray.com>
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #10102
2020-11-13 21:51:51 +00:00
|
|
|
typedef int vdev_init_func_t(spa_t *spa, nvlist_t *nv, void **tsd);
|
|
|
|
typedef void vdev_fini_func_t(vdev_t *vd);
|
2012-01-24 02:43:32 +00:00
|
|
|
typedef int vdev_open_func_t(vdev_t *vd, uint64_t *size, uint64_t *max_size,
|
2020-08-21 19:53:17 +00:00
|
|
|
uint64_t *ashift, uint64_t *pshift);
|
2008-11-20 20:01:55 +00:00
|
|
|
typedef void vdev_close_func_t(vdev_t *vd);
|
|
|
|
typedef uint64_t vdev_asize_func_t(vdev_t *vd, uint64_t psize);
|
Distributed Spare (dRAID) Feature
This patch adds a new top-level vdev type called dRAID, which stands
for Distributed parity RAID. This pool configuration allows all dRAID
vdevs to participate when rebuilding to a distributed hot spare device.
This can substantially reduce the total time required to restore full
parity to pool with a failed device.
A dRAID pool can be created using the new top-level `draid` type.
Like `raidz`, the desired redundancy is specified after the type:
`draid[1,2,3]`. No additional information is required to create the
pool and reasonable default values will be chosen based on the number
of child vdevs in the dRAID vdev.
zpool create <pool> draid[1,2,3] <vdevs...>
Unlike raidz, additional optional dRAID configuration values can be
provided as part of the draid type as colon separated values. This
allows administrators to fully specify a layout for either performance
or capacity reasons. The supported options include:
zpool create <pool> \
draid[<parity>][:<data>d][:<children>c][:<spares>s] \
<vdevs...>
- draid[parity] - Parity level (default 1)
- draid[:<data>d] - Data devices per group (default 8)
- draid[:<children>c] - Expected number of child vdevs
- draid[:<spares>s] - Distributed hot spares (default 0)
Abbreviated example `zpool status` output for a 68 disk dRAID pool
with two distributed spares using special allocation classes.
```
pool: tank
state: ONLINE
config:
NAME STATE READ WRITE CKSUM
slag7 ONLINE 0 0 0
draid2:8d:68c:2s-0 ONLINE 0 0 0
L0 ONLINE 0 0 0
L1 ONLINE 0 0 0
...
U25 ONLINE 0 0 0
U26 ONLINE 0 0 0
spare-53 ONLINE 0 0 0
U27 ONLINE 0 0 0
draid2-0-0 ONLINE 0 0 0
U28 ONLINE 0 0 0
U29 ONLINE 0 0 0
...
U42 ONLINE 0 0 0
U43 ONLINE 0 0 0
special
mirror-1 ONLINE 0 0 0
L5 ONLINE 0 0 0
U5 ONLINE 0 0 0
mirror-2 ONLINE 0 0 0
L6 ONLINE 0 0 0
U6 ONLINE 0 0 0
spares
draid2-0-0 INUSE currently in use
draid2-0-1 AVAIL
```
When adding test coverage for the new dRAID vdev type the following
options were added to the ztest command. These options are leverages
by zloop.sh to test a wide range of dRAID configurations.
-K draid|raidz|random - kind of RAID to test
-D <value> - dRAID data drives per group
-S <value> - dRAID distributed hot spares
-R <value> - RAID parity (raidz or dRAID)
The zpool_create, zpool_import, redundancy, replacement and fault
test groups have all been updated provide test coverage for the
dRAID feature.
Co-authored-by: Isaac Huang <he.huang@intel.com>
Co-authored-by: Mark Maybee <mmaybee@cray.com>
Co-authored-by: Don Brady <don.brady@delphix.com>
Co-authored-by: Matthew Ahrens <mahrens@delphix.com>
Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Mark Maybee <mmaybee@cray.com>
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #10102
2020-11-13 21:51:51 +00:00
|
|
|
typedef uint64_t vdev_min_asize_func_t(vdev_t *vd);
|
|
|
|
typedef uint64_t vdev_min_alloc_func_t(vdev_t *vd);
|
2014-10-20 22:07:45 +00:00
|
|
|
typedef void vdev_io_start_func_t(zio_t *zio);
|
2008-12-03 20:09:06 +00:00
|
|
|
typedef void vdev_io_done_func_t(zio_t *zio);
|
2008-11-20 20:01:55 +00:00
|
|
|
typedef void vdev_state_change_func_t(vdev_t *vd, int, int);
|
Distributed Spare (dRAID) Feature
This patch adds a new top-level vdev type called dRAID, which stands
for Distributed parity RAID. This pool configuration allows all dRAID
vdevs to participate when rebuilding to a distributed hot spare device.
This can substantially reduce the total time required to restore full
parity to pool with a failed device.
A dRAID pool can be created using the new top-level `draid` type.
Like `raidz`, the desired redundancy is specified after the type:
`draid[1,2,3]`. No additional information is required to create the
pool and reasonable default values will be chosen based on the number
of child vdevs in the dRAID vdev.
zpool create <pool> draid[1,2,3] <vdevs...>
Unlike raidz, additional optional dRAID configuration values can be
provided as part of the draid type as colon separated values. This
allows administrators to fully specify a layout for either performance
or capacity reasons. The supported options include:
zpool create <pool> \
draid[<parity>][:<data>d][:<children>c][:<spares>s] \
<vdevs...>
- draid[parity] - Parity level (default 1)
- draid[:<data>d] - Data devices per group (default 8)
- draid[:<children>c] - Expected number of child vdevs
- draid[:<spares>s] - Distributed hot spares (default 0)
Abbreviated example `zpool status` output for a 68 disk dRAID pool
with two distributed spares using special allocation classes.
```
pool: tank
state: ONLINE
config:
NAME STATE READ WRITE CKSUM
slag7 ONLINE 0 0 0
draid2:8d:68c:2s-0 ONLINE 0 0 0
L0 ONLINE 0 0 0
L1 ONLINE 0 0 0
...
U25 ONLINE 0 0 0
U26 ONLINE 0 0 0
spare-53 ONLINE 0 0 0
U27 ONLINE 0 0 0
draid2-0-0 ONLINE 0 0 0
U28 ONLINE 0 0 0
U29 ONLINE 0 0 0
...
U42 ONLINE 0 0 0
U43 ONLINE 0 0 0
special
mirror-1 ONLINE 0 0 0
L5 ONLINE 0 0 0
U5 ONLINE 0 0 0
mirror-2 ONLINE 0 0 0
L6 ONLINE 0 0 0
U6 ONLINE 0 0 0
spares
draid2-0-0 INUSE currently in use
draid2-0-1 AVAIL
```
When adding test coverage for the new dRAID vdev type the following
options were added to the ztest command. These options are leverages
by zloop.sh to test a wide range of dRAID configurations.
-K draid|raidz|random - kind of RAID to test
-D <value> - dRAID data drives per group
-S <value> - dRAID distributed hot spares
-R <value> - RAID parity (raidz or dRAID)
The zpool_create, zpool_import, redundancy, replacement and fault
test groups have all been updated provide test coverage for the
dRAID feature.
Co-authored-by: Isaac Huang <he.huang@intel.com>
Co-authored-by: Mark Maybee <mmaybee@cray.com>
Co-authored-by: Don Brady <don.brady@delphix.com>
Co-authored-by: Matthew Ahrens <mahrens@delphix.com>
Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Mark Maybee <mmaybee@cray.com>
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #10102
2020-11-13 21:51:51 +00:00
|
|
|
typedef boolean_t vdev_need_resilver_func_t(vdev_t *vd, const dva_t *dva,
|
|
|
|
size_t psize, uint64_t phys_birth);
|
2010-05-28 20:45:14 +00:00
|
|
|
typedef void vdev_hold_func_t(vdev_t *vd);
|
|
|
|
typedef void vdev_rele_func_t(vdev_t *vd);
|
2008-11-20 20:01:55 +00:00
|
|
|
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 16:30:13 +00:00
|
|
|
typedef void vdev_remap_cb_t(uint64_t inner_offset, vdev_t *vd,
|
|
|
|
uint64_t offset, uint64_t size, void *arg);
|
|
|
|
typedef void vdev_remap_func_t(vdev_t *vd, uint64_t offset, uint64_t size,
|
|
|
|
vdev_remap_cb_t callback, void *arg);
|
OpenZFS 9102 - zfs should be able to initialize storage devices
PROBLEM
========
The first access to a block incurs a performance penalty on some platforms
(e.g. AWS's EBS, VMware VMDKs). Therefore we recommend that volumes are
"thick provisioned", where supported by the platform (VMware). This can
create a large delay in getting a new virtual machines up and running (or
adding storage to an existing Engine). If the thick provision step is
omitted, write performance will be suboptimal until all blocks on the LUN
have been written.
SOLUTION
=========
This feature introduces a way to 'initialize' the disks at install or in the
background to make sure we don't incur this first read penalty.
When an entire LUN is added to ZFS, we make all space available immediately,
and allow ZFS to find unallocated space and zero it out. This works with
concurrent writes to arbitrary offsets, ensuring that we don't zero out
something that has been (or is in the middle of being) written. This scheme
can also be applied to existing pools (affecting only free regions on the
vdev). Detailed design:
- new subcommand:zpool initialize [-cs] <pool> [<vdev> ...]
- start, suspend, or cancel initialization
- Creates new open-context thread for each vdev
- Thread iterates through all metaslabs in this vdev
- Each metaslab:
- select a metaslab
- load the metaslab
- mark the metaslab as being zeroed
- walk all free ranges within that metaslab and translate
them to ranges on the leaf vdev
- issue a "zeroing" I/O on the leaf vdev that corresponds to
a free range on the metaslab we're working on
- continue until all free ranges for this metaslab have been
"zeroed"
- reset/unmark the metaslab being zeroed
- if more metaslabs exist, then repeat above tasks.
- if no more metaslabs, then we're done.
- progress for the initialization is stored on-disk in the vdev’s
leaf zap object. The following information is stored:
- the last offset that has been initialized
- the state of the initialization process (i.e. active,
suspended, or canceled)
- the start time for the initialization
- progress is reported via the zpool status command and shows
information for each of the vdevs that are initializing
Porting notes:
- Added zfs_initialize_value module parameter to set the pattern
written by "zpool initialize".
- Added zfs_vdev_{initializing,removal}_{min,max}_active module options.
Authored by: George Wilson <george.wilson@delphix.com>
Reviewed by: John Wren Kennedy <john.kennedy@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: loli10K <ezomori.nozomu@gmail.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Richard Lowe <richlowe@richlowe.net>
Signed-off-by: Tim Chase <tim@chase2k.com>
Ported-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/9102
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/c3963210eb
Closes #8230
2018-12-19 14:54:59 +00:00
|
|
|
/*
|
|
|
|
* Given a target vdev, translates the logical range "in" to the physical
|
|
|
|
* range "res"
|
|
|
|
*/
|
Distributed Spare (dRAID) Feature
This patch adds a new top-level vdev type called dRAID, which stands
for Distributed parity RAID. This pool configuration allows all dRAID
vdevs to participate when rebuilding to a distributed hot spare device.
This can substantially reduce the total time required to restore full
parity to pool with a failed device.
A dRAID pool can be created using the new top-level `draid` type.
Like `raidz`, the desired redundancy is specified after the type:
`draid[1,2,3]`. No additional information is required to create the
pool and reasonable default values will be chosen based on the number
of child vdevs in the dRAID vdev.
zpool create <pool> draid[1,2,3] <vdevs...>
Unlike raidz, additional optional dRAID configuration values can be
provided as part of the draid type as colon separated values. This
allows administrators to fully specify a layout for either performance
or capacity reasons. The supported options include:
zpool create <pool> \
draid[<parity>][:<data>d][:<children>c][:<spares>s] \
<vdevs...>
- draid[parity] - Parity level (default 1)
- draid[:<data>d] - Data devices per group (default 8)
- draid[:<children>c] - Expected number of child vdevs
- draid[:<spares>s] - Distributed hot spares (default 0)
Abbreviated example `zpool status` output for a 68 disk dRAID pool
with two distributed spares using special allocation classes.
```
pool: tank
state: ONLINE
config:
NAME STATE READ WRITE CKSUM
slag7 ONLINE 0 0 0
draid2:8d:68c:2s-0 ONLINE 0 0 0
L0 ONLINE 0 0 0
L1 ONLINE 0 0 0
...
U25 ONLINE 0 0 0
U26 ONLINE 0 0 0
spare-53 ONLINE 0 0 0
U27 ONLINE 0 0 0
draid2-0-0 ONLINE 0 0 0
U28 ONLINE 0 0 0
U29 ONLINE 0 0 0
...
U42 ONLINE 0 0 0
U43 ONLINE 0 0 0
special
mirror-1 ONLINE 0 0 0
L5 ONLINE 0 0 0
U5 ONLINE 0 0 0
mirror-2 ONLINE 0 0 0
L6 ONLINE 0 0 0
U6 ONLINE 0 0 0
spares
draid2-0-0 INUSE currently in use
draid2-0-1 AVAIL
```
When adding test coverage for the new dRAID vdev type the following
options were added to the ztest command. These options are leverages
by zloop.sh to test a wide range of dRAID configurations.
-K draid|raidz|random - kind of RAID to test
-D <value> - dRAID data drives per group
-S <value> - dRAID distributed hot spares
-R <value> - RAID parity (raidz or dRAID)
The zpool_create, zpool_import, redundancy, replacement and fault
test groups have all been updated provide test coverage for the
dRAID feature.
Co-authored-by: Isaac Huang <he.huang@intel.com>
Co-authored-by: Mark Maybee <mmaybee@cray.com>
Co-authored-by: Don Brady <don.brady@delphix.com>
Co-authored-by: Matthew Ahrens <mahrens@delphix.com>
Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Mark Maybee <mmaybee@cray.com>
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #10102
2020-11-13 21:51:51 +00:00
|
|
|
typedef void vdev_xlation_func_t(vdev_t *cvd, const range_seg64_t *logical,
|
|
|
|
range_seg64_t *physical, range_seg64_t *remain);
|
|
|
|
typedef uint64_t vdev_rebuild_asize_func_t(vdev_t *vd, uint64_t start,
|
|
|
|
uint64_t size, uint64_t max_segment);
|
|
|
|
typedef void vdev_metaslab_init_func_t(vdev_t *vd, uint64_t *startp,
|
|
|
|
uint64_t *sizep);
|
|
|
|
typedef void vdev_config_generate_func_t(vdev_t *vd, nvlist_t *nv);
|
|
|
|
typedef uint64_t vdev_nparity_func_t(vdev_t *vd);
|
|
|
|
typedef uint64_t vdev_ndisks_func_t(vdev_t *vd);
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 16:30:13 +00:00
|
|
|
|
2013-02-15 04:37:43 +00:00
|
|
|
typedef const struct vdev_ops {
|
Distributed Spare (dRAID) Feature
This patch adds a new top-level vdev type called dRAID, which stands
for Distributed parity RAID. This pool configuration allows all dRAID
vdevs to participate when rebuilding to a distributed hot spare device.
This can substantially reduce the total time required to restore full
parity to pool with a failed device.
A dRAID pool can be created using the new top-level `draid` type.
Like `raidz`, the desired redundancy is specified after the type:
`draid[1,2,3]`. No additional information is required to create the
pool and reasonable default values will be chosen based on the number
of child vdevs in the dRAID vdev.
zpool create <pool> draid[1,2,3] <vdevs...>
Unlike raidz, additional optional dRAID configuration values can be
provided as part of the draid type as colon separated values. This
allows administrators to fully specify a layout for either performance
or capacity reasons. The supported options include:
zpool create <pool> \
draid[<parity>][:<data>d][:<children>c][:<spares>s] \
<vdevs...>
- draid[parity] - Parity level (default 1)
- draid[:<data>d] - Data devices per group (default 8)
- draid[:<children>c] - Expected number of child vdevs
- draid[:<spares>s] - Distributed hot spares (default 0)
Abbreviated example `zpool status` output for a 68 disk dRAID pool
with two distributed spares using special allocation classes.
```
pool: tank
state: ONLINE
config:
NAME STATE READ WRITE CKSUM
slag7 ONLINE 0 0 0
draid2:8d:68c:2s-0 ONLINE 0 0 0
L0 ONLINE 0 0 0
L1 ONLINE 0 0 0
...
U25 ONLINE 0 0 0
U26 ONLINE 0 0 0
spare-53 ONLINE 0 0 0
U27 ONLINE 0 0 0
draid2-0-0 ONLINE 0 0 0
U28 ONLINE 0 0 0
U29 ONLINE 0 0 0
...
U42 ONLINE 0 0 0
U43 ONLINE 0 0 0
special
mirror-1 ONLINE 0 0 0
L5 ONLINE 0 0 0
U5 ONLINE 0 0 0
mirror-2 ONLINE 0 0 0
L6 ONLINE 0 0 0
U6 ONLINE 0 0 0
spares
draid2-0-0 INUSE currently in use
draid2-0-1 AVAIL
```
When adding test coverage for the new dRAID vdev type the following
options were added to the ztest command. These options are leverages
by zloop.sh to test a wide range of dRAID configurations.
-K draid|raidz|random - kind of RAID to test
-D <value> - dRAID data drives per group
-S <value> - dRAID distributed hot spares
-R <value> - RAID parity (raidz or dRAID)
The zpool_create, zpool_import, redundancy, replacement and fault
test groups have all been updated provide test coverage for the
dRAID feature.
Co-authored-by: Isaac Huang <he.huang@intel.com>
Co-authored-by: Mark Maybee <mmaybee@cray.com>
Co-authored-by: Don Brady <don.brady@delphix.com>
Co-authored-by: Matthew Ahrens <mahrens@delphix.com>
Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Mark Maybee <mmaybee@cray.com>
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #10102
2020-11-13 21:51:51 +00:00
|
|
|
vdev_init_func_t *vdev_op_init;
|
|
|
|
vdev_fini_func_t *vdev_op_fini;
|
2008-11-20 20:01:55 +00:00
|
|
|
vdev_open_func_t *vdev_op_open;
|
|
|
|
vdev_close_func_t *vdev_op_close;
|
|
|
|
vdev_asize_func_t *vdev_op_asize;
|
Distributed Spare (dRAID) Feature
This patch adds a new top-level vdev type called dRAID, which stands
for Distributed parity RAID. This pool configuration allows all dRAID
vdevs to participate when rebuilding to a distributed hot spare device.
This can substantially reduce the total time required to restore full
parity to pool with a failed device.
A dRAID pool can be created using the new top-level `draid` type.
Like `raidz`, the desired redundancy is specified after the type:
`draid[1,2,3]`. No additional information is required to create the
pool and reasonable default values will be chosen based on the number
of child vdevs in the dRAID vdev.
zpool create <pool> draid[1,2,3] <vdevs...>
Unlike raidz, additional optional dRAID configuration values can be
provided as part of the draid type as colon separated values. This
allows administrators to fully specify a layout for either performance
or capacity reasons. The supported options include:
zpool create <pool> \
draid[<parity>][:<data>d][:<children>c][:<spares>s] \
<vdevs...>
- draid[parity] - Parity level (default 1)
- draid[:<data>d] - Data devices per group (default 8)
- draid[:<children>c] - Expected number of child vdevs
- draid[:<spares>s] - Distributed hot spares (default 0)
Abbreviated example `zpool status` output for a 68 disk dRAID pool
with two distributed spares using special allocation classes.
```
pool: tank
state: ONLINE
config:
NAME STATE READ WRITE CKSUM
slag7 ONLINE 0 0 0
draid2:8d:68c:2s-0 ONLINE 0 0 0
L0 ONLINE 0 0 0
L1 ONLINE 0 0 0
...
U25 ONLINE 0 0 0
U26 ONLINE 0 0 0
spare-53 ONLINE 0 0 0
U27 ONLINE 0 0 0
draid2-0-0 ONLINE 0 0 0
U28 ONLINE 0 0 0
U29 ONLINE 0 0 0
...
U42 ONLINE 0 0 0
U43 ONLINE 0 0 0
special
mirror-1 ONLINE 0 0 0
L5 ONLINE 0 0 0
U5 ONLINE 0 0 0
mirror-2 ONLINE 0 0 0
L6 ONLINE 0 0 0
U6 ONLINE 0 0 0
spares
draid2-0-0 INUSE currently in use
draid2-0-1 AVAIL
```
When adding test coverage for the new dRAID vdev type the following
options were added to the ztest command. These options are leverages
by zloop.sh to test a wide range of dRAID configurations.
-K draid|raidz|random - kind of RAID to test
-D <value> - dRAID data drives per group
-S <value> - dRAID distributed hot spares
-R <value> - RAID parity (raidz or dRAID)
The zpool_create, zpool_import, redundancy, replacement and fault
test groups have all been updated provide test coverage for the
dRAID feature.
Co-authored-by: Isaac Huang <he.huang@intel.com>
Co-authored-by: Mark Maybee <mmaybee@cray.com>
Co-authored-by: Don Brady <don.brady@delphix.com>
Co-authored-by: Matthew Ahrens <mahrens@delphix.com>
Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Mark Maybee <mmaybee@cray.com>
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #10102
2020-11-13 21:51:51 +00:00
|
|
|
vdev_min_asize_func_t *vdev_op_min_asize;
|
|
|
|
vdev_min_alloc_func_t *vdev_op_min_alloc;
|
2008-11-20 20:01:55 +00:00
|
|
|
vdev_io_start_func_t *vdev_op_io_start;
|
|
|
|
vdev_io_done_func_t *vdev_op_io_done;
|
|
|
|
vdev_state_change_func_t *vdev_op_state_change;
|
2017-05-13 00:28:03 +00:00
|
|
|
vdev_need_resilver_func_t *vdev_op_need_resilver;
|
2010-05-28 20:45:14 +00:00
|
|
|
vdev_hold_func_t *vdev_op_hold;
|
|
|
|
vdev_rele_func_t *vdev_op_rele;
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 16:30:13 +00:00
|
|
|
vdev_remap_func_t *vdev_op_remap;
|
OpenZFS 9102 - zfs should be able to initialize storage devices
PROBLEM
========
The first access to a block incurs a performance penalty on some platforms
(e.g. AWS's EBS, VMware VMDKs). Therefore we recommend that volumes are
"thick provisioned", where supported by the platform (VMware). This can
create a large delay in getting a new virtual machines up and running (or
adding storage to an existing Engine). If the thick provision step is
omitted, write performance will be suboptimal until all blocks on the LUN
have been written.
SOLUTION
=========
This feature introduces a way to 'initialize' the disks at install or in the
background to make sure we don't incur this first read penalty.
When an entire LUN is added to ZFS, we make all space available immediately,
and allow ZFS to find unallocated space and zero it out. This works with
concurrent writes to arbitrary offsets, ensuring that we don't zero out
something that has been (or is in the middle of being) written. This scheme
can also be applied to existing pools (affecting only free regions on the
vdev). Detailed design:
- new subcommand:zpool initialize [-cs] <pool> [<vdev> ...]
- start, suspend, or cancel initialization
- Creates new open-context thread for each vdev
- Thread iterates through all metaslabs in this vdev
- Each metaslab:
- select a metaslab
- load the metaslab
- mark the metaslab as being zeroed
- walk all free ranges within that metaslab and translate
them to ranges on the leaf vdev
- issue a "zeroing" I/O on the leaf vdev that corresponds to
a free range on the metaslab we're working on
- continue until all free ranges for this metaslab have been
"zeroed"
- reset/unmark the metaslab being zeroed
- if more metaslabs exist, then repeat above tasks.
- if no more metaslabs, then we're done.
- progress for the initialization is stored on-disk in the vdev’s
leaf zap object. The following information is stored:
- the last offset that has been initialized
- the state of the initialization process (i.e. active,
suspended, or canceled)
- the start time for the initialization
- progress is reported via the zpool status command and shows
information for each of the vdevs that are initializing
Porting notes:
- Added zfs_initialize_value module parameter to set the pattern
written by "zpool initialize".
- Added zfs_vdev_{initializing,removal}_{min,max}_active module options.
Authored by: George Wilson <george.wilson@delphix.com>
Reviewed by: John Wren Kennedy <john.kennedy@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: loli10K <ezomori.nozomu@gmail.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Richard Lowe <richlowe@richlowe.net>
Signed-off-by: Tim Chase <tim@chase2k.com>
Ported-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/9102
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/c3963210eb
Closes #8230
2018-12-19 14:54:59 +00:00
|
|
|
vdev_xlation_func_t *vdev_op_xlate;
|
Distributed Spare (dRAID) Feature
This patch adds a new top-level vdev type called dRAID, which stands
for Distributed parity RAID. This pool configuration allows all dRAID
vdevs to participate when rebuilding to a distributed hot spare device.
This can substantially reduce the total time required to restore full
parity to pool with a failed device.
A dRAID pool can be created using the new top-level `draid` type.
Like `raidz`, the desired redundancy is specified after the type:
`draid[1,2,3]`. No additional information is required to create the
pool and reasonable default values will be chosen based on the number
of child vdevs in the dRAID vdev.
zpool create <pool> draid[1,2,3] <vdevs...>
Unlike raidz, additional optional dRAID configuration values can be
provided as part of the draid type as colon separated values. This
allows administrators to fully specify a layout for either performance
or capacity reasons. The supported options include:
zpool create <pool> \
draid[<parity>][:<data>d][:<children>c][:<spares>s] \
<vdevs...>
- draid[parity] - Parity level (default 1)
- draid[:<data>d] - Data devices per group (default 8)
- draid[:<children>c] - Expected number of child vdevs
- draid[:<spares>s] - Distributed hot spares (default 0)
Abbreviated example `zpool status` output for a 68 disk dRAID pool
with two distributed spares using special allocation classes.
```
pool: tank
state: ONLINE
config:
NAME STATE READ WRITE CKSUM
slag7 ONLINE 0 0 0
draid2:8d:68c:2s-0 ONLINE 0 0 0
L0 ONLINE 0 0 0
L1 ONLINE 0 0 0
...
U25 ONLINE 0 0 0
U26 ONLINE 0 0 0
spare-53 ONLINE 0 0 0
U27 ONLINE 0 0 0
draid2-0-0 ONLINE 0 0 0
U28 ONLINE 0 0 0
U29 ONLINE 0 0 0
...
U42 ONLINE 0 0 0
U43 ONLINE 0 0 0
special
mirror-1 ONLINE 0 0 0
L5 ONLINE 0 0 0
U5 ONLINE 0 0 0
mirror-2 ONLINE 0 0 0
L6 ONLINE 0 0 0
U6 ONLINE 0 0 0
spares
draid2-0-0 INUSE currently in use
draid2-0-1 AVAIL
```
When adding test coverage for the new dRAID vdev type the following
options were added to the ztest command. These options are leverages
by zloop.sh to test a wide range of dRAID configurations.
-K draid|raidz|random - kind of RAID to test
-D <value> - dRAID data drives per group
-S <value> - dRAID distributed hot spares
-R <value> - RAID parity (raidz or dRAID)
The zpool_create, zpool_import, redundancy, replacement and fault
test groups have all been updated provide test coverage for the
dRAID feature.
Co-authored-by: Isaac Huang <he.huang@intel.com>
Co-authored-by: Mark Maybee <mmaybee@cray.com>
Co-authored-by: Don Brady <don.brady@delphix.com>
Co-authored-by: Matthew Ahrens <mahrens@delphix.com>
Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Mark Maybee <mmaybee@cray.com>
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #10102
2020-11-13 21:51:51 +00:00
|
|
|
vdev_rebuild_asize_func_t *vdev_op_rebuild_asize;
|
|
|
|
vdev_metaslab_init_func_t *vdev_op_metaslab_init;
|
|
|
|
vdev_config_generate_func_t *vdev_op_config_generate;
|
|
|
|
vdev_nparity_func_t *vdev_op_nparity;
|
|
|
|
vdev_ndisks_func_t *vdev_op_ndisks;
|
2008-11-20 20:01:55 +00:00
|
|
|
char vdev_op_type[16];
|
|
|
|
boolean_t vdev_op_leaf;
|
|
|
|
} vdev_ops_t;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Virtual device properties
|
|
|
|
*/
|
|
|
|
struct vdev_cache_entry {
|
2016-07-22 15:52:49 +00:00
|
|
|
struct abd *ve_abd;
|
2008-11-20 20:01:55 +00:00
|
|
|
uint64_t ve_offset;
|
2014-02-25 09:32:21 +00:00
|
|
|
clock_t ve_lastused;
|
2008-11-20 20:01:55 +00:00
|
|
|
avl_node_t ve_offset_node;
|
|
|
|
avl_node_t ve_lastused_node;
|
|
|
|
uint32_t ve_hits;
|
|
|
|
uint16_t ve_missed_update;
|
|
|
|
zio_t *ve_fill_io;
|
|
|
|
};
|
|
|
|
|
|
|
|
struct vdev_cache {
|
|
|
|
avl_tree_t vc_offset_tree;
|
|
|
|
avl_tree_t vc_lastused_tree;
|
|
|
|
kmutex_t vc_lock;
|
|
|
|
};
|
|
|
|
|
Illumos #4045 write throttle & i/o scheduler performance work
4045 zfs write throttle & i/o scheduler performance work
1. The ZFS i/o scheduler (vdev_queue.c) now divides i/os into 5 classes: sync
read, sync write, async read, async write, and scrub/resilver. The scheduler
issues a number of concurrent i/os from each class to the device. Once a class
has been selected, an i/o is selected from this class using either an elevator
algorithem (async, scrub classes) or FIFO (sync classes). The number of
concurrent async write i/os is tuned dynamically based on i/o load, to achieve
good sync i/o latency when there is not a high load of writes, and good write
throughput when there is. See the block comment in vdev_queue.c (reproduced
below) for more details.
2. The write throttle (dsl_pool_tempreserve_space() and
txg_constrain_throughput()) is rewritten to produce much more consistent delays
when under constant load. The new write throttle is based on the amount of
dirty data, rather than guesses about future performance of the system. When
there is a lot of dirty data, each transaction (e.g. write() syscall) will be
delayed by the same small amount. This eliminates the "brick wall of wait"
that the old write throttle could hit, causing all transactions to wait several
seconds until the next txg opens. One of the keys to the new write throttle is
decrementing the amount of dirty data as i/o completes, rather than at the end
of spa_sync(). Note that the write throttle is only applied once the i/o
scheduler is issuing the maximum number of outstanding async writes. See the
block comments in dsl_pool.c and above dmu_tx_delay() (reproduced below) for
more details.
This diff has several other effects, including:
* the commonly-tuned global variable zfs_vdev_max_pending has been removed;
use per-class zfs_vdev_*_max_active values or zfs_vdev_max_active instead.
* the size of each txg (meaning the amount of dirty data written, and thus the
time it takes to write out) is now controlled differently. There is no longer
an explicit time goal; the primary determinant is amount of dirty data.
Systems that are under light or medium load will now often see that a txg is
always syncing, but the impact to performance (e.g. read latency) is minimal.
Tune zfs_dirty_data_max and zfs_dirty_data_sync to control this.
* zio_taskq_batch_pct = 75 -- Only use 75% of all CPUs for compression,
checksum, etc. This improves latency by not allowing these CPU-intensive tasks
to consume all CPU (on machines with at least 4 CPU's; the percentage is
rounded up).
--matt
APPENDIX: problems with the current i/o scheduler
The current ZFS i/o scheduler (vdev_queue.c) is deadline based. The problem
with this is that if there are always i/os pending, then certain classes of
i/os can see very long delays.
For example, if there are always synchronous reads outstanding, then no async
writes will be serviced until they become "past due". One symptom of this
situation is that each pass of the txg sync takes at least several seconds
(typically 3 seconds).
If many i/os become "past due" (their deadline is in the past), then we must
service all of these overdue i/os before any new i/os. This happens when we
enqueue a batch of async writes for the txg sync, with deadlines 2.5 seconds in
the future. If we can't complete all the i/os in 2.5 seconds (e.g. because
there were always reads pending), then these i/os will become past due. Now we
must service all the "async" writes (which could be hundreds of megabytes)
before we service any reads, introducing considerable latency to synchronous
i/os (reads or ZIL writes).
Notes on porting to ZFS on Linux:
- zio_t gained new members io_physdone and io_phys_children. Because
object caches in the Linux port call the constructor only once at
allocation time, objects may contain residual data when retrieved
from the cache. Therefore zio_create() was updated to zero out the two
new fields.
- vdev_mirror_pending() relied on the depth of the per-vdev pending queue
(vq->vq_pending_tree) to select the least-busy leaf vdev to read from.
This tree has been replaced by vq->vq_active_tree which is now used
for the same purpose.
- vdev_queue_init() used the value of zfs_vdev_max_pending to determine
the number of vdev I/O buffers to pre-allocate. That global no longer
exists, so we instead use the sum of the *_max_active values for each of
the five I/O classes described above.
- The Illumos implementation of dmu_tx_delay() delays a transaction by
sleeping in condition variable embedded in the thread
(curthread->t_delay_cv). We do not have an equivalent CV to use in
Linux, so this change replaced the delay logic with a wrapper called
zfs_sleep_until(). This wrapper could be adopted upstream and in other
downstream ports to abstract away operating system-specific delay logic.
- These tunables are added as module parameters, and descriptions added
to the zfs-module-parameters.5 man page.
spa_asize_inflation
zfs_deadman_synctime_ms
zfs_vdev_max_active
zfs_vdev_async_write_active_min_dirty_percent
zfs_vdev_async_write_active_max_dirty_percent
zfs_vdev_async_read_max_active
zfs_vdev_async_read_min_active
zfs_vdev_async_write_max_active
zfs_vdev_async_write_min_active
zfs_vdev_scrub_max_active
zfs_vdev_scrub_min_active
zfs_vdev_sync_read_max_active
zfs_vdev_sync_read_min_active
zfs_vdev_sync_write_max_active
zfs_vdev_sync_write_min_active
zfs_dirty_data_max_percent
zfs_delay_min_dirty_percent
zfs_dirty_data_max_max_percent
zfs_dirty_data_max
zfs_dirty_data_max_max
zfs_dirty_data_sync
zfs_delay_scale
The latter four have type unsigned long, whereas they are uint64_t in
Illumos. This accommodates Linux's module_param() supported types, but
means they may overflow on 32-bit architectures.
The values zfs_dirty_data_max and zfs_dirty_data_max_max are the most
likely to overflow on 32-bit systems, since they express physical RAM
sizes in bytes. In fact, Illumos initializes zfs_dirty_data_max_max to
2^32 which does overflow. To resolve that, this port instead initializes
it in arc_init() to 25% of physical RAM, and adds the tunable
zfs_dirty_data_max_max_percent to override that percentage. While this
solution doesn't completely avoid the overflow issue, it should be a
reasonable default for most systems, and the minority of affected
systems can work around the issue by overriding the defaults.
- Fixed reversed logic in comment above zfs_delay_scale declaration.
- Clarified comments in vdev_queue.c regarding when per-queue minimums take
effect.
- Replaced dmu_tx_write_limit in the dmu_tx kstat file
with dmu_tx_dirty_delay and dmu_tx_dirty_over_max. The first counts
how many times a transaction has been delayed because the pool dirty
data has exceeded zfs_delay_min_dirty_percent. The latter counts how
many times the pool dirty data has exceeded zfs_dirty_data_max (which
we expect to never happen).
- The original patch would have regressed the bug fixed in
zfsonlinux/zfs@c418410, which prevented users from setting the
zfs_vdev_aggregation_limit tuning larger than SPA_MAXBLOCKSIZE.
A similar fix is added to vdev_queue_aggregate().
- In vdev_queue_io_to_issue(), dynamically allocate 'zio_t search' on the
heap instead of the stack. In Linux we can't afford such large
structures on the stack.
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Reviewed by: Ned Bass <bass6@llnl.gov>
Reviewed by: Brendan Gregg <brendan.gregg@joyent.com>
Approved by: Robert Mustacchi <rm@joyent.com>
References:
http://www.illumos.org/issues/4045
illumos/illumos-gate@69962b5647e4a8b9b14998733b765925381b727e
Ported-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #1913
2013-08-29 03:01:20 +00:00
|
|
|
typedef struct vdev_queue_class {
|
|
|
|
uint32_t vqc_active;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Sorted by offset or timestamp, depending on if the queue is
|
|
|
|
* LBA-ordered vs FIFO.
|
|
|
|
*/
|
|
|
|
avl_tree_t vqc_queued_tree;
|
|
|
|
} vdev_queue_class_t;
|
|
|
|
|
2008-11-20 20:01:55 +00:00
|
|
|
struct vdev_queue {
|
Illumos #4045 write throttle & i/o scheduler performance work
4045 zfs write throttle & i/o scheduler performance work
1. The ZFS i/o scheduler (vdev_queue.c) now divides i/os into 5 classes: sync
read, sync write, async read, async write, and scrub/resilver. The scheduler
issues a number of concurrent i/os from each class to the device. Once a class
has been selected, an i/o is selected from this class using either an elevator
algorithem (async, scrub classes) or FIFO (sync classes). The number of
concurrent async write i/os is tuned dynamically based on i/o load, to achieve
good sync i/o latency when there is not a high load of writes, and good write
throughput when there is. See the block comment in vdev_queue.c (reproduced
below) for more details.
2. The write throttle (dsl_pool_tempreserve_space() and
txg_constrain_throughput()) is rewritten to produce much more consistent delays
when under constant load. The new write throttle is based on the amount of
dirty data, rather than guesses about future performance of the system. When
there is a lot of dirty data, each transaction (e.g. write() syscall) will be
delayed by the same small amount. This eliminates the "brick wall of wait"
that the old write throttle could hit, causing all transactions to wait several
seconds until the next txg opens. One of the keys to the new write throttle is
decrementing the amount of dirty data as i/o completes, rather than at the end
of spa_sync(). Note that the write throttle is only applied once the i/o
scheduler is issuing the maximum number of outstanding async writes. See the
block comments in dsl_pool.c and above dmu_tx_delay() (reproduced below) for
more details.
This diff has several other effects, including:
* the commonly-tuned global variable zfs_vdev_max_pending has been removed;
use per-class zfs_vdev_*_max_active values or zfs_vdev_max_active instead.
* the size of each txg (meaning the amount of dirty data written, and thus the
time it takes to write out) is now controlled differently. There is no longer
an explicit time goal; the primary determinant is amount of dirty data.
Systems that are under light or medium load will now often see that a txg is
always syncing, but the impact to performance (e.g. read latency) is minimal.
Tune zfs_dirty_data_max and zfs_dirty_data_sync to control this.
* zio_taskq_batch_pct = 75 -- Only use 75% of all CPUs for compression,
checksum, etc. This improves latency by not allowing these CPU-intensive tasks
to consume all CPU (on machines with at least 4 CPU's; the percentage is
rounded up).
--matt
APPENDIX: problems with the current i/o scheduler
The current ZFS i/o scheduler (vdev_queue.c) is deadline based. The problem
with this is that if there are always i/os pending, then certain classes of
i/os can see very long delays.
For example, if there are always synchronous reads outstanding, then no async
writes will be serviced until they become "past due". One symptom of this
situation is that each pass of the txg sync takes at least several seconds
(typically 3 seconds).
If many i/os become "past due" (their deadline is in the past), then we must
service all of these overdue i/os before any new i/os. This happens when we
enqueue a batch of async writes for the txg sync, with deadlines 2.5 seconds in
the future. If we can't complete all the i/os in 2.5 seconds (e.g. because
there were always reads pending), then these i/os will become past due. Now we
must service all the "async" writes (which could be hundreds of megabytes)
before we service any reads, introducing considerable latency to synchronous
i/os (reads or ZIL writes).
Notes on porting to ZFS on Linux:
- zio_t gained new members io_physdone and io_phys_children. Because
object caches in the Linux port call the constructor only once at
allocation time, objects may contain residual data when retrieved
from the cache. Therefore zio_create() was updated to zero out the two
new fields.
- vdev_mirror_pending() relied on the depth of the per-vdev pending queue
(vq->vq_pending_tree) to select the least-busy leaf vdev to read from.
This tree has been replaced by vq->vq_active_tree which is now used
for the same purpose.
- vdev_queue_init() used the value of zfs_vdev_max_pending to determine
the number of vdev I/O buffers to pre-allocate. That global no longer
exists, so we instead use the sum of the *_max_active values for each of
the five I/O classes described above.
- The Illumos implementation of dmu_tx_delay() delays a transaction by
sleeping in condition variable embedded in the thread
(curthread->t_delay_cv). We do not have an equivalent CV to use in
Linux, so this change replaced the delay logic with a wrapper called
zfs_sleep_until(). This wrapper could be adopted upstream and in other
downstream ports to abstract away operating system-specific delay logic.
- These tunables are added as module parameters, and descriptions added
to the zfs-module-parameters.5 man page.
spa_asize_inflation
zfs_deadman_synctime_ms
zfs_vdev_max_active
zfs_vdev_async_write_active_min_dirty_percent
zfs_vdev_async_write_active_max_dirty_percent
zfs_vdev_async_read_max_active
zfs_vdev_async_read_min_active
zfs_vdev_async_write_max_active
zfs_vdev_async_write_min_active
zfs_vdev_scrub_max_active
zfs_vdev_scrub_min_active
zfs_vdev_sync_read_max_active
zfs_vdev_sync_read_min_active
zfs_vdev_sync_write_max_active
zfs_vdev_sync_write_min_active
zfs_dirty_data_max_percent
zfs_delay_min_dirty_percent
zfs_dirty_data_max_max_percent
zfs_dirty_data_max
zfs_dirty_data_max_max
zfs_dirty_data_sync
zfs_delay_scale
The latter four have type unsigned long, whereas they are uint64_t in
Illumos. This accommodates Linux's module_param() supported types, but
means they may overflow on 32-bit architectures.
The values zfs_dirty_data_max and zfs_dirty_data_max_max are the most
likely to overflow on 32-bit systems, since they express physical RAM
sizes in bytes. In fact, Illumos initializes zfs_dirty_data_max_max to
2^32 which does overflow. To resolve that, this port instead initializes
it in arc_init() to 25% of physical RAM, and adds the tunable
zfs_dirty_data_max_max_percent to override that percentage. While this
solution doesn't completely avoid the overflow issue, it should be a
reasonable default for most systems, and the minority of affected
systems can work around the issue by overriding the defaults.
- Fixed reversed logic in comment above zfs_delay_scale declaration.
- Clarified comments in vdev_queue.c regarding when per-queue minimums take
effect.
- Replaced dmu_tx_write_limit in the dmu_tx kstat file
with dmu_tx_dirty_delay and dmu_tx_dirty_over_max. The first counts
how many times a transaction has been delayed because the pool dirty
data has exceeded zfs_delay_min_dirty_percent. The latter counts how
many times the pool dirty data has exceeded zfs_dirty_data_max (which
we expect to never happen).
- The original patch would have regressed the bug fixed in
zfsonlinux/zfs@c418410, which prevented users from setting the
zfs_vdev_aggregation_limit tuning larger than SPA_MAXBLOCKSIZE.
A similar fix is added to vdev_queue_aggregate().
- In vdev_queue_io_to_issue(), dynamically allocate 'zio_t search' on the
heap instead of the stack. In Linux we can't afford such large
structures on the stack.
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Reviewed by: Ned Bass <bass6@llnl.gov>
Reviewed by: Brendan Gregg <brendan.gregg@joyent.com>
Approved by: Robert Mustacchi <rm@joyent.com>
References:
http://www.illumos.org/issues/4045
illumos/illumos-gate@69962b5647e4a8b9b14998733b765925381b727e
Ported-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #1913
2013-08-29 03:01:20 +00:00
|
|
|
vdev_t *vq_vdev;
|
|
|
|
vdev_queue_class_t vq_class[ZIO_PRIORITY_NUM_QUEUEABLE];
|
|
|
|
avl_tree_t vq_active_tree;
|
2015-04-11 18:51:06 +00:00
|
|
|
avl_tree_t vq_read_offset_tree;
|
|
|
|
avl_tree_t vq_write_offset_tree;
|
2019-03-29 16:13:20 +00:00
|
|
|
avl_tree_t vq_trim_offset_tree;
|
Illumos #4045 write throttle & i/o scheduler performance work
4045 zfs write throttle & i/o scheduler performance work
1. The ZFS i/o scheduler (vdev_queue.c) now divides i/os into 5 classes: sync
read, sync write, async read, async write, and scrub/resilver. The scheduler
issues a number of concurrent i/os from each class to the device. Once a class
has been selected, an i/o is selected from this class using either an elevator
algorithem (async, scrub classes) or FIFO (sync classes). The number of
concurrent async write i/os is tuned dynamically based on i/o load, to achieve
good sync i/o latency when there is not a high load of writes, and good write
throughput when there is. See the block comment in vdev_queue.c (reproduced
below) for more details.
2. The write throttle (dsl_pool_tempreserve_space() and
txg_constrain_throughput()) is rewritten to produce much more consistent delays
when under constant load. The new write throttle is based on the amount of
dirty data, rather than guesses about future performance of the system. When
there is a lot of dirty data, each transaction (e.g. write() syscall) will be
delayed by the same small amount. This eliminates the "brick wall of wait"
that the old write throttle could hit, causing all transactions to wait several
seconds until the next txg opens. One of the keys to the new write throttle is
decrementing the amount of dirty data as i/o completes, rather than at the end
of spa_sync(). Note that the write throttle is only applied once the i/o
scheduler is issuing the maximum number of outstanding async writes. See the
block comments in dsl_pool.c and above dmu_tx_delay() (reproduced below) for
more details.
This diff has several other effects, including:
* the commonly-tuned global variable zfs_vdev_max_pending has been removed;
use per-class zfs_vdev_*_max_active values or zfs_vdev_max_active instead.
* the size of each txg (meaning the amount of dirty data written, and thus the
time it takes to write out) is now controlled differently. There is no longer
an explicit time goal; the primary determinant is amount of dirty data.
Systems that are under light or medium load will now often see that a txg is
always syncing, but the impact to performance (e.g. read latency) is minimal.
Tune zfs_dirty_data_max and zfs_dirty_data_sync to control this.
* zio_taskq_batch_pct = 75 -- Only use 75% of all CPUs for compression,
checksum, etc. This improves latency by not allowing these CPU-intensive tasks
to consume all CPU (on machines with at least 4 CPU's; the percentage is
rounded up).
--matt
APPENDIX: problems with the current i/o scheduler
The current ZFS i/o scheduler (vdev_queue.c) is deadline based. The problem
with this is that if there are always i/os pending, then certain classes of
i/os can see very long delays.
For example, if there are always synchronous reads outstanding, then no async
writes will be serviced until they become "past due". One symptom of this
situation is that each pass of the txg sync takes at least several seconds
(typically 3 seconds).
If many i/os become "past due" (their deadline is in the past), then we must
service all of these overdue i/os before any new i/os. This happens when we
enqueue a batch of async writes for the txg sync, with deadlines 2.5 seconds in
the future. If we can't complete all the i/os in 2.5 seconds (e.g. because
there were always reads pending), then these i/os will become past due. Now we
must service all the "async" writes (which could be hundreds of megabytes)
before we service any reads, introducing considerable latency to synchronous
i/os (reads or ZIL writes).
Notes on porting to ZFS on Linux:
- zio_t gained new members io_physdone and io_phys_children. Because
object caches in the Linux port call the constructor only once at
allocation time, objects may contain residual data when retrieved
from the cache. Therefore zio_create() was updated to zero out the two
new fields.
- vdev_mirror_pending() relied on the depth of the per-vdev pending queue
(vq->vq_pending_tree) to select the least-busy leaf vdev to read from.
This tree has been replaced by vq->vq_active_tree which is now used
for the same purpose.
- vdev_queue_init() used the value of zfs_vdev_max_pending to determine
the number of vdev I/O buffers to pre-allocate. That global no longer
exists, so we instead use the sum of the *_max_active values for each of
the five I/O classes described above.
- The Illumos implementation of dmu_tx_delay() delays a transaction by
sleeping in condition variable embedded in the thread
(curthread->t_delay_cv). We do not have an equivalent CV to use in
Linux, so this change replaced the delay logic with a wrapper called
zfs_sleep_until(). This wrapper could be adopted upstream and in other
downstream ports to abstract away operating system-specific delay logic.
- These tunables are added as module parameters, and descriptions added
to the zfs-module-parameters.5 man page.
spa_asize_inflation
zfs_deadman_synctime_ms
zfs_vdev_max_active
zfs_vdev_async_write_active_min_dirty_percent
zfs_vdev_async_write_active_max_dirty_percent
zfs_vdev_async_read_max_active
zfs_vdev_async_read_min_active
zfs_vdev_async_write_max_active
zfs_vdev_async_write_min_active
zfs_vdev_scrub_max_active
zfs_vdev_scrub_min_active
zfs_vdev_sync_read_max_active
zfs_vdev_sync_read_min_active
zfs_vdev_sync_write_max_active
zfs_vdev_sync_write_min_active
zfs_dirty_data_max_percent
zfs_delay_min_dirty_percent
zfs_dirty_data_max_max_percent
zfs_dirty_data_max
zfs_dirty_data_max_max
zfs_dirty_data_sync
zfs_delay_scale
The latter four have type unsigned long, whereas they are uint64_t in
Illumos. This accommodates Linux's module_param() supported types, but
means they may overflow on 32-bit architectures.
The values zfs_dirty_data_max and zfs_dirty_data_max_max are the most
likely to overflow on 32-bit systems, since they express physical RAM
sizes in bytes. In fact, Illumos initializes zfs_dirty_data_max_max to
2^32 which does overflow. To resolve that, this port instead initializes
it in arc_init() to 25% of physical RAM, and adds the tunable
zfs_dirty_data_max_max_percent to override that percentage. While this
solution doesn't completely avoid the overflow issue, it should be a
reasonable default for most systems, and the minority of affected
systems can work around the issue by overriding the defaults.
- Fixed reversed logic in comment above zfs_delay_scale declaration.
- Clarified comments in vdev_queue.c regarding when per-queue minimums take
effect.
- Replaced dmu_tx_write_limit in the dmu_tx kstat file
with dmu_tx_dirty_delay and dmu_tx_dirty_over_max. The first counts
how many times a transaction has been delayed because the pool dirty
data has exceeded zfs_delay_min_dirty_percent. The latter counts how
many times the pool dirty data has exceeded zfs_dirty_data_max (which
we expect to never happen).
- The original patch would have regressed the bug fixed in
zfsonlinux/zfs@c418410, which prevented users from setting the
zfs_vdev_aggregation_limit tuning larger than SPA_MAXBLOCKSIZE.
A similar fix is added to vdev_queue_aggregate().
- In vdev_queue_io_to_issue(), dynamically allocate 'zio_t search' on the
heap instead of the stack. In Linux we can't afford such large
structures on the stack.
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Reviewed by: Ned Bass <bass6@llnl.gov>
Reviewed by: Brendan Gregg <brendan.gregg@joyent.com>
Approved by: Robert Mustacchi <rm@joyent.com>
References:
http://www.illumos.org/issues/4045
illumos/illumos-gate@69962b5647e4a8b9b14998733b765925381b727e
Ported-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #1913
2013-08-29 03:01:20 +00:00
|
|
|
uint64_t vq_last_offset;
|
Reduce latency effects of non-interactive I/O
Investigating influence of scrub (especially sequential) on random read
latency I've noticed that on some HDDs single 4KB read may take up to 4
seconds! Deeper investigation shown that many HDDs heavily prioritize
sequential reads even when those are submitted with queue depth of 1.
This patch addresses the latency from two sides:
- by using _min_active queue depths for non-interactive requests while
the interactive request(s) are active and few requests after;
- by throttling it further if no interactive requests has completed
while configured amount of non-interactive did.
While there, I've also modified vdev_queue_class_to_issue() to give
more chances to schedule at least _min_active requests to the lowest
priorities. It should reduce starvation if several non-interactive
processes are running same time with some interactive and I think should
make possible setting of zfs_vdev_max_active to as low as 1.
I've benchmarked this change with 4KB random reads from ZVOL with 16KB
block size on newly written non-fragmented pool. On fragmented pool I
also saw improvements, but not so dramatic. Below are log2 histograms
of the random read latency in milliseconds for different devices:
4 2x mirror vdevs of SATA HDD WDC WD20EFRX-68EUZN0 before:
0, 0, 2, 1, 12, 21, 19, 18, 10, 15, 17, 21
after:
0, 0, 0, 24, 101, 195, 419, 250, 47, 4, 0, 0
, that means maximum latency reduction from 2s to 500ms.
4 2x mirror vdevs of SATA HDD WDC WD80EFZX-68UW8N0 before:
0, 0, 2, 31, 38, 28, 18, 12, 17, 20, 24, 10, 3
after:
0, 0, 55, 247, 455, 470, 412, 181, 36, 0, 0, 0, 0
, i.e. from 4s to 250ms.
1 SAS HDD SEAGATE ST14000NM0048 before:
0, 0, 29, 70, 107, 45, 27, 1, 0, 0, 1, 4, 19
after:
1, 29, 681, 1261, 676, 1633, 67, 1, 0, 0, 0, 0, 0
, i.e. from 4s to 125ms.
1 SAS SSD SEAGATE XS3840TE70014 before (microseconds):
0, 0, 0, 0, 0, 0, 0, 0, 70, 18343, 82548, 618
after:
0, 0, 0, 0, 0, 0, 0, 0, 283, 92351, 34844, 90
I've also measured scrub time during the test and on idle pools. On
idle fragmented pool I've measured scrub getting few percent faster
due to use of QD3 instead of QD2 before. On idle non-fragmented pool
I've measured no difference. On busy non-fragmented pool I've measured
scrub time increase about 1.5-1.7x, while IOPS increase reached 5-9x.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored-By: iXsystems, Inc.
Closes #11166
2020-11-24 17:26:42 +00:00
|
|
|
zio_priority_t vq_last_prio; /* Last sent I/O priority. */
|
|
|
|
uint32_t vq_ia_active; /* Active interactive I/Os. */
|
|
|
|
uint32_t vq_nia_credit; /* Non-interactive I/Os credit. */
|
Illumos #4045 write throttle & i/o scheduler performance work
4045 zfs write throttle & i/o scheduler performance work
1. The ZFS i/o scheduler (vdev_queue.c) now divides i/os into 5 classes: sync
read, sync write, async read, async write, and scrub/resilver. The scheduler
issues a number of concurrent i/os from each class to the device. Once a class
has been selected, an i/o is selected from this class using either an elevator
algorithem (async, scrub classes) or FIFO (sync classes). The number of
concurrent async write i/os is tuned dynamically based on i/o load, to achieve
good sync i/o latency when there is not a high load of writes, and good write
throughput when there is. See the block comment in vdev_queue.c (reproduced
below) for more details.
2. The write throttle (dsl_pool_tempreserve_space() and
txg_constrain_throughput()) is rewritten to produce much more consistent delays
when under constant load. The new write throttle is based on the amount of
dirty data, rather than guesses about future performance of the system. When
there is a lot of dirty data, each transaction (e.g. write() syscall) will be
delayed by the same small amount. This eliminates the "brick wall of wait"
that the old write throttle could hit, causing all transactions to wait several
seconds until the next txg opens. One of the keys to the new write throttle is
decrementing the amount of dirty data as i/o completes, rather than at the end
of spa_sync(). Note that the write throttle is only applied once the i/o
scheduler is issuing the maximum number of outstanding async writes. See the
block comments in dsl_pool.c and above dmu_tx_delay() (reproduced below) for
more details.
This diff has several other effects, including:
* the commonly-tuned global variable zfs_vdev_max_pending has been removed;
use per-class zfs_vdev_*_max_active values or zfs_vdev_max_active instead.
* the size of each txg (meaning the amount of dirty data written, and thus the
time it takes to write out) is now controlled differently. There is no longer
an explicit time goal; the primary determinant is amount of dirty data.
Systems that are under light or medium load will now often see that a txg is
always syncing, but the impact to performance (e.g. read latency) is minimal.
Tune zfs_dirty_data_max and zfs_dirty_data_sync to control this.
* zio_taskq_batch_pct = 75 -- Only use 75% of all CPUs for compression,
checksum, etc. This improves latency by not allowing these CPU-intensive tasks
to consume all CPU (on machines with at least 4 CPU's; the percentage is
rounded up).
--matt
APPENDIX: problems with the current i/o scheduler
The current ZFS i/o scheduler (vdev_queue.c) is deadline based. The problem
with this is that if there are always i/os pending, then certain classes of
i/os can see very long delays.
For example, if there are always synchronous reads outstanding, then no async
writes will be serviced until they become "past due". One symptom of this
situation is that each pass of the txg sync takes at least several seconds
(typically 3 seconds).
If many i/os become "past due" (their deadline is in the past), then we must
service all of these overdue i/os before any new i/os. This happens when we
enqueue a batch of async writes for the txg sync, with deadlines 2.5 seconds in
the future. If we can't complete all the i/os in 2.5 seconds (e.g. because
there were always reads pending), then these i/os will become past due. Now we
must service all the "async" writes (which could be hundreds of megabytes)
before we service any reads, introducing considerable latency to synchronous
i/os (reads or ZIL writes).
Notes on porting to ZFS on Linux:
- zio_t gained new members io_physdone and io_phys_children. Because
object caches in the Linux port call the constructor only once at
allocation time, objects may contain residual data when retrieved
from the cache. Therefore zio_create() was updated to zero out the two
new fields.
- vdev_mirror_pending() relied on the depth of the per-vdev pending queue
(vq->vq_pending_tree) to select the least-busy leaf vdev to read from.
This tree has been replaced by vq->vq_active_tree which is now used
for the same purpose.
- vdev_queue_init() used the value of zfs_vdev_max_pending to determine
the number of vdev I/O buffers to pre-allocate. That global no longer
exists, so we instead use the sum of the *_max_active values for each of
the five I/O classes described above.
- The Illumos implementation of dmu_tx_delay() delays a transaction by
sleeping in condition variable embedded in the thread
(curthread->t_delay_cv). We do not have an equivalent CV to use in
Linux, so this change replaced the delay logic with a wrapper called
zfs_sleep_until(). This wrapper could be adopted upstream and in other
downstream ports to abstract away operating system-specific delay logic.
- These tunables are added as module parameters, and descriptions added
to the zfs-module-parameters.5 man page.
spa_asize_inflation
zfs_deadman_synctime_ms
zfs_vdev_max_active
zfs_vdev_async_write_active_min_dirty_percent
zfs_vdev_async_write_active_max_dirty_percent
zfs_vdev_async_read_max_active
zfs_vdev_async_read_min_active
zfs_vdev_async_write_max_active
zfs_vdev_async_write_min_active
zfs_vdev_scrub_max_active
zfs_vdev_scrub_min_active
zfs_vdev_sync_read_max_active
zfs_vdev_sync_read_min_active
zfs_vdev_sync_write_max_active
zfs_vdev_sync_write_min_active
zfs_dirty_data_max_percent
zfs_delay_min_dirty_percent
zfs_dirty_data_max_max_percent
zfs_dirty_data_max
zfs_dirty_data_max_max
zfs_dirty_data_sync
zfs_delay_scale
The latter four have type unsigned long, whereas they are uint64_t in
Illumos. This accommodates Linux's module_param() supported types, but
means they may overflow on 32-bit architectures.
The values zfs_dirty_data_max and zfs_dirty_data_max_max are the most
likely to overflow on 32-bit systems, since they express physical RAM
sizes in bytes. In fact, Illumos initializes zfs_dirty_data_max_max to
2^32 which does overflow. To resolve that, this port instead initializes
it in arc_init() to 25% of physical RAM, and adds the tunable
zfs_dirty_data_max_max_percent to override that percentage. While this
solution doesn't completely avoid the overflow issue, it should be a
reasonable default for most systems, and the minority of affected
systems can work around the issue by overriding the defaults.
- Fixed reversed logic in comment above zfs_delay_scale declaration.
- Clarified comments in vdev_queue.c regarding when per-queue minimums take
effect.
- Replaced dmu_tx_write_limit in the dmu_tx kstat file
with dmu_tx_dirty_delay and dmu_tx_dirty_over_max. The first counts
how many times a transaction has been delayed because the pool dirty
data has exceeded zfs_delay_min_dirty_percent. The latter counts how
many times the pool dirty data has exceeded zfs_dirty_data_max (which
we expect to never happen).
- The original patch would have regressed the bug fixed in
zfsonlinux/zfs@c418410, which prevented users from setting the
zfs_vdev_aggregation_limit tuning larger than SPA_MAXBLOCKSIZE.
A similar fix is added to vdev_queue_aggregate().
- In vdev_queue_io_to_issue(), dynamically allocate 'zio_t search' on the
heap instead of the stack. In Linux we can't afford such large
structures on the stack.
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Reviewed by: Ned Bass <bass6@llnl.gov>
Reviewed by: Brendan Gregg <brendan.gregg@joyent.com>
Approved by: Robert Mustacchi <rm@joyent.com>
References:
http://www.illumos.org/issues/4045
illumos/illumos-gate@69962b5647e4a8b9b14998733b765925381b727e
Ported-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #1913
2013-08-29 03:01:20 +00:00
|
|
|
hrtime_t vq_io_complete_ts; /* time last i/o completed */
|
2013-03-21 22:47:36 +00:00
|
|
|
hrtime_t vq_io_delta_ts;
|
2014-08-05 20:57:59 +00:00
|
|
|
zio_t vq_io_search; /* used as local for stack reduction */
|
2008-11-20 20:01:55 +00:00
|
|
|
kmutex_t vq_lock;
|
|
|
|
};
|
|
|
|
|
2018-09-06 01:33:36 +00:00
|
|
|
typedef enum vdev_alloc_bias {
|
|
|
|
VDEV_BIAS_NONE,
|
|
|
|
VDEV_BIAS_LOG, /* dedicated to ZIL data (SLOG) */
|
|
|
|
VDEV_BIAS_SPECIAL, /* dedicated to ddt, metadata, and small blks */
|
|
|
|
VDEV_BIAS_DEDUP /* dedicated to dedup metadata */
|
|
|
|
} vdev_alloc_bias_t;
|
|
|
|
|
|
|
|
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 16:30:13 +00:00
|
|
|
/*
|
|
|
|
* On-disk indirect vdev state.
|
|
|
|
*
|
|
|
|
* An indirect vdev is described exclusively in the MOS config of a pool.
|
|
|
|
* The config for an indirect vdev includes several fields, which are
|
|
|
|
* accessed in memory by a vdev_indirect_config_t.
|
|
|
|
*/
|
|
|
|
typedef struct vdev_indirect_config {
|
|
|
|
/*
|
|
|
|
* Object (in MOS) which contains the indirect mapping. This object
|
|
|
|
* contains an array of vdev_indirect_mapping_entry_phys_t ordered by
|
|
|
|
* vimep_src. The bonus buffer for this object is a
|
|
|
|
* vdev_indirect_mapping_phys_t. This object is allocated when a vdev
|
|
|
|
* removal is initiated.
|
|
|
|
*
|
|
|
|
* Note that this object can be empty if none of the data on the vdev
|
|
|
|
* has been copied yet.
|
|
|
|
*/
|
|
|
|
uint64_t vic_mapping_object;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Object (in MOS) which contains the birth times for the mapping
|
|
|
|
* entries. This object contains an array of
|
|
|
|
* vdev_indirect_birth_entry_phys_t sorted by vibe_offset. The bonus
|
|
|
|
* buffer for this object is a vdev_indirect_birth_phys_t. This object
|
|
|
|
* is allocated when a vdev removal is initiated.
|
|
|
|
*
|
|
|
|
* Note that this object can be empty if none of the vdev has yet been
|
|
|
|
* copied.
|
|
|
|
*/
|
|
|
|
uint64_t vic_births_object;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This is the vdev ID which was removed previous to this vdev, or
|
|
|
|
* UINT64_MAX if there are no previously removed vdevs.
|
|
|
|
*/
|
|
|
|
uint64_t vic_prev_indirect_vdev;
|
|
|
|
} vdev_indirect_config_t;
|
|
|
|
|
2008-11-20 20:01:55 +00:00
|
|
|
/*
|
|
|
|
* Virtual device descriptor
|
|
|
|
*/
|
|
|
|
struct vdev {
|
|
|
|
/*
|
|
|
|
* Common to all vdev types.
|
|
|
|
*/
|
|
|
|
uint64_t vdev_id; /* child number in vdev parent */
|
|
|
|
uint64_t vdev_guid; /* unique ID for this vdev */
|
|
|
|
uint64_t vdev_guid_sum; /* self guid + all child guids */
|
2010-05-28 20:45:14 +00:00
|
|
|
uint64_t vdev_orig_guid; /* orig. guid prior to remove */
|
2008-11-20 20:01:55 +00:00
|
|
|
uint64_t vdev_asize; /* allocatable device capacity */
|
2009-07-02 22:44:48 +00:00
|
|
|
uint64_t vdev_min_asize; /* min acceptable asize */
|
2012-01-24 02:43:32 +00:00
|
|
|
uint64_t vdev_max_asize; /* max acceptable asize */
|
2008-11-20 20:01:55 +00:00
|
|
|
uint64_t vdev_ashift; /* block alignment shift */
|
2020-08-21 19:53:17 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Logical block alignment shift
|
|
|
|
*
|
|
|
|
* The smallest sized/aligned I/O supported by the device.
|
|
|
|
*/
|
|
|
|
uint64_t vdev_logical_ashift;
|
|
|
|
/*
|
|
|
|
* Physical block alignment shift
|
|
|
|
*
|
|
|
|
* The device supports logical I/Os with vdev_logical_ashift
|
|
|
|
* size/alignment, but optimum performance will be achieved by
|
|
|
|
* aligning/sizing requests to vdev_physical_ashift. Smaller
|
|
|
|
* requests may be inflated or incur device level read-modify-write
|
|
|
|
* operations.
|
|
|
|
*
|
|
|
|
* May be 0 to indicate no preference (i.e. use vdev_logical_ashift).
|
|
|
|
*/
|
|
|
|
uint64_t vdev_physical_ashift;
|
2008-11-20 20:01:55 +00:00
|
|
|
uint64_t vdev_state; /* see VDEV_STATE_* #defines */
|
|
|
|
uint64_t vdev_prevstate; /* used when reopening a vdev */
|
|
|
|
vdev_ops_t *vdev_ops; /* vdev operations */
|
|
|
|
spa_t *vdev_spa; /* spa for this vdev */
|
|
|
|
void *vdev_tsd; /* type-specific data */
|
|
|
|
vdev_t *vdev_top; /* top-level vdev */
|
|
|
|
vdev_t *vdev_parent; /* parent vdev */
|
|
|
|
vdev_t **vdev_child; /* array of children */
|
|
|
|
uint64_t vdev_children; /* number of children */
|
|
|
|
vdev_stat_t vdev_stat; /* virtual device statistics */
|
2016-02-29 18:05:23 +00:00
|
|
|
vdev_stat_ex_t vdev_stat_ex; /* extended statistics */
|
2009-07-02 22:44:48 +00:00
|
|
|
boolean_t vdev_expanding; /* expand the vdev? */
|
2010-05-28 20:45:14 +00:00
|
|
|
boolean_t vdev_reopening; /* reopen in progress? */
|
2015-08-29 16:01:07 +00:00
|
|
|
boolean_t vdev_nonrot; /* true if solid state */
|
2009-08-18 18:43:27 +00:00
|
|
|
int vdev_open_error; /* error on last open */
|
|
|
|
kthread_t *vdev_open_thread; /* thread opening children */
|
2010-05-28 20:45:14 +00:00
|
|
|
uint64_t vdev_crtxg; /* txg when top-level was added */
|
2008-11-20 20:01:55 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Top-level vdev state.
|
|
|
|
*/
|
|
|
|
uint64_t vdev_ms_array; /* metaslab array object */
|
|
|
|
uint64_t vdev_ms_shift; /* metaslab size shift */
|
|
|
|
uint64_t vdev_ms_count; /* number of metaslabs */
|
|
|
|
metaslab_group_t *vdev_mg; /* metaslab group */
|
Set aside a metaslab for ZIL blocks
Mixing ZIL and normal allocations has several problems:
1. The ZIL allocations are allocated, written to disk, and then a few
seconds later freed. This leaves behind holes (free segments) where the
ZIL blocks used to be, which increases fragmentation, which negatively
impacts performance.
2. When under moderate load, ZIL allocations are of 128KB. If the pool
is fairly fragmented, there may not be many free chunks of that size.
This causes ZFS to load more metaslabs to locate free segments of 128KB
or more. The loading happens synchronously (from zil_commit()), and can
take around a second even if the metaslab's spacemap is cached in the
ARC. All concurrent synchronous operations on this filesystem must wait
while the metaslab is loading. This can cause a significant performance
impact.
3. If the pool is very fragmented, there may be zero free chunks of
128KB or more. In this case, the ZIL falls back to txg_wait_synced(),
which has an enormous performance impact.
These problems can be eliminated by using a dedicated log device
("slog"), even one with the same performance characteristics as the
normal devices.
This change sets aside one metaslab from each top-level vdev that is
preferentially used for ZIL allocations (vdev_log_mg,
spa_embedded_log_class). From an allocation perspective, this is
similar to having a dedicated log device, and it eliminates the
above-mentioned performance problems.
Log (ZIL) blocks can be allocated from the following locations. Each
one is tried in order until the allocation succeeds:
1. dedicated log vdevs, aka "slog" (spa_log_class)
2. embedded slog metaslabs (spa_embedded_log_class)
3. other metaslabs in normal vdevs (spa_normal_class)
The space required for the embedded slog metaslabs is usually between
0.5% and 1.0% of the pool, and comes out of the existing 3.2% of "slop"
space that is not available for user data.
On an all-ssd system with 4TB storage, 87% fragmentation, 60% capacity,
and recordsize=8k, testing shows a ~50% performance increase on random
8k sync writes. On even more fragmented systems (which hit problem #3
above and call txg_wait_synced()), the performance improvement can be
arbitrarily large (>100x).
Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Reviewed-by: George Wilson <gwilson@delphix.com>
Reviewed-by: Don Brady <don.brady@delphix.com>
Reviewed-by: Mark Maybee <mark.maybee@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes #11389
2021-01-21 23:12:54 +00:00
|
|
|
metaslab_group_t *vdev_log_mg; /* embedded slog metaslab group */
|
2008-11-20 20:01:55 +00:00
|
|
|
metaslab_t **vdev_ms; /* metaslab array */
|
Add FASTWRITE algorithm for synchronous writes.
Currently, ZIL blocks are spread over vdevs using hint block pointers
managed by the ZIL commit code and passed to metaslab_alloc(). Spreading
log blocks accross vdevs is important for performance: indeed, using
mutliple disks in parallel decreases the ZIL commit latency, which is
the main performance metric for synchronous writes. However, the current
implementation suffers from the following issues:
1) It would be best if the ZIL module was not aware of such low-level
details. They should be handled by the ZIO and metaslab modules;
2) Because the hint block pointer is managed per log, simultaneous
commits from multiple logs might use the same vdevs at the same time,
which is inefficient;
3) Because dmu_write() does not honor the block pointer hint, indirect
writes are not spread.
The naive solution of rotating the metaslab rotor each time a block is
allocated for the ZIL or dmu_sync() doesn't work in practice because the
first ZIL block to be written is actually allocated during the previous
commit. Consequently, when metaslab_alloc() decides the vdev for this
block, it will do so while a bunch of other allocations are happening at
the same time (from dmu_sync() and other ZILs). This means the vdev for
this block is chosen more or less at random. When the next commit
happens, there is a high chance (especially when the number of blocks
per commit is slightly less than the number of the disks) that one disk
will have to write two blocks (with a potential seek) while other disks
are sitting idle, which defeats spreading and increases the commit
latency.
This commit introduces a new concept in the metaslab allocator:
fastwrites. Basically, each top-level vdev maintains a counter
indicating the number of synchronous writes (from dmu_sync() and the
ZIL) which have been allocated but not yet completed. When the metaslab
is called with the FASTWRITE flag, it will choose the vdev with the
least amount of pending synchronous writes. If there are multiple vdevs
with the same value, the first matching vdev (starting from the rotor)
is used. Once metaslab_alloc() has decided which vdev the block is
allocated to, it updates the fastwrite counter for this vdev.
The rationale goes like this: when an allocation is done with
FASTWRITE, it "reserves" the vdev until the data is written. Until then,
all future allocations will naturally avoid this vdev, even after a full
rotation of the rotor. As a result, pending synchronous writes at a
given point in time will be nicely spread over all vdevs. This contrasts
with the previous algorithm, which is based on the implicit assumption
that blocks are written instantaneously after they're allocated.
metaslab_fastwrite_mark() and metaslab_fastwrite_unmark() are used to
manually increase or decrease fastwrite counters, respectively. They
should be used with caution, as there is no per-BP tracking of fastwrite
information, so leaks and "double-unmarks" are possible. There is,
however, an assert in the vdev teardown code which will fire if the
fastwrite counters are not zero when the pool is exported or the vdev
removed. Note that as stated above, marking is also done implictly by
metaslab_alloc().
ZIO also got a new FASTWRITE flag; when it is used, ZIO will pass it to
the metaslab when allocating (assuming ZIO does the allocation, which is
only true in the case of dmu_sync). This flag will also trigger an
unmark when zio_done() fires.
A side-effect of the new algorithm is that when a ZIL stops being used,
its last block can stay in the pending state (allocated but not yet
written) for a long time, polluting the fastwrite counters. To avoid
that, I've implemented a somewhat crude but working solution which
unmarks these pending blocks in zil_sync(), thus guaranteeing that
linguering fastwrites will get pruned at each sync event.
The best performance improvements are observed with pools using a large
number of top-level vdevs and heavy synchronous write workflows
(especially indirect writes and concurrent writes from multiple ZILs).
Real-life testing shows a 200% to 300% performance increase with
indirect writes and various commit sizes.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #1013
2012-06-27 13:20:20 +00:00
|
|
|
uint64_t vdev_pending_fastwrite; /* allocated fastwrites */
|
2008-11-20 20:01:55 +00:00
|
|
|
txg_list_t vdev_ms_list; /* per-txg dirty metaslab lists */
|
|
|
|
txg_list_t vdev_dtl_list; /* per-txg dirty DTL lists */
|
|
|
|
txg_node_t vdev_txg_node; /* per-txg dirty vdev linkage */
|
|
|
|
boolean_t vdev_remove_wanted; /* async remove wanted? */
|
2008-12-03 20:09:06 +00:00
|
|
|
boolean_t vdev_probe_wanted; /* async probe wanted? */
|
|
|
|
list_node_t vdev_config_dirty_node; /* config dirty list */
|
|
|
|
list_node_t vdev_state_dirty_node; /* state dirty list */
|
2008-11-20 20:01:55 +00:00
|
|
|
uint64_t vdev_deflate_ratio; /* deflation ratio (x512) */
|
|
|
|
uint64_t vdev_islog; /* is an intent log device */
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 21:25:53 +00:00
|
|
|
uint64_t vdev_removing; /* device is being removed? */
|
2016-10-14 00:59:18 +00:00
|
|
|
boolean_t vdev_ishole; /* is a hole in the namespace */
|
2016-04-11 20:16:57 +00:00
|
|
|
uint64_t vdev_top_zap;
|
2018-09-06 01:33:36 +00:00
|
|
|
vdev_alloc_bias_t vdev_alloc_bias; /* metaslab allocation bias */
|
2008-11-20 20:01:55 +00:00
|
|
|
|
2016-12-16 22:11:29 +00:00
|
|
|
/* pool checkpoint related */
|
|
|
|
space_map_t *vdev_checkpoint_sm; /* contains reserved blocks */
|
|
|
|
|
2019-03-29 16:13:20 +00:00
|
|
|
/* Initialize related */
|
OpenZFS 9102 - zfs should be able to initialize storage devices
PROBLEM
========
The first access to a block incurs a performance penalty on some platforms
(e.g. AWS's EBS, VMware VMDKs). Therefore we recommend that volumes are
"thick provisioned", where supported by the platform (VMware). This can
create a large delay in getting a new virtual machines up and running (or
adding storage to an existing Engine). If the thick provision step is
omitted, write performance will be suboptimal until all blocks on the LUN
have been written.
SOLUTION
=========
This feature introduces a way to 'initialize' the disks at install or in the
background to make sure we don't incur this first read penalty.
When an entire LUN is added to ZFS, we make all space available immediately,
and allow ZFS to find unallocated space and zero it out. This works with
concurrent writes to arbitrary offsets, ensuring that we don't zero out
something that has been (or is in the middle of being) written. This scheme
can also be applied to existing pools (affecting only free regions on the
vdev). Detailed design:
- new subcommand:zpool initialize [-cs] <pool> [<vdev> ...]
- start, suspend, or cancel initialization
- Creates new open-context thread for each vdev
- Thread iterates through all metaslabs in this vdev
- Each metaslab:
- select a metaslab
- load the metaslab
- mark the metaslab as being zeroed
- walk all free ranges within that metaslab and translate
them to ranges on the leaf vdev
- issue a "zeroing" I/O on the leaf vdev that corresponds to
a free range on the metaslab we're working on
- continue until all free ranges for this metaslab have been
"zeroed"
- reset/unmark the metaslab being zeroed
- if more metaslabs exist, then repeat above tasks.
- if no more metaslabs, then we're done.
- progress for the initialization is stored on-disk in the vdev’s
leaf zap object. The following information is stored:
- the last offset that has been initialized
- the state of the initialization process (i.e. active,
suspended, or canceled)
- the start time for the initialization
- progress is reported via the zpool status command and shows
information for each of the vdevs that are initializing
Porting notes:
- Added zfs_initialize_value module parameter to set the pattern
written by "zpool initialize".
- Added zfs_vdev_{initializing,removal}_{min,max}_active module options.
Authored by: George Wilson <george.wilson@delphix.com>
Reviewed by: John Wren Kennedy <john.kennedy@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: loli10K <ezomori.nozomu@gmail.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Richard Lowe <richlowe@richlowe.net>
Signed-off-by: Tim Chase <tim@chase2k.com>
Ported-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/9102
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/c3963210eb
Closes #8230
2018-12-19 14:54:59 +00:00
|
|
|
boolean_t vdev_initialize_exit_wanted;
|
|
|
|
vdev_initializing_state_t vdev_initialize_state;
|
2018-12-19 16:20:39 +00:00
|
|
|
list_node_t vdev_initialize_node;
|
OpenZFS 9102 - zfs should be able to initialize storage devices
PROBLEM
========
The first access to a block incurs a performance penalty on some platforms
(e.g. AWS's EBS, VMware VMDKs). Therefore we recommend that volumes are
"thick provisioned", where supported by the platform (VMware). This can
create a large delay in getting a new virtual machines up and running (or
adding storage to an existing Engine). If the thick provision step is
omitted, write performance will be suboptimal until all blocks on the LUN
have been written.
SOLUTION
=========
This feature introduces a way to 'initialize' the disks at install or in the
background to make sure we don't incur this first read penalty.
When an entire LUN is added to ZFS, we make all space available immediately,
and allow ZFS to find unallocated space and zero it out. This works with
concurrent writes to arbitrary offsets, ensuring that we don't zero out
something that has been (or is in the middle of being) written. This scheme
can also be applied to existing pools (affecting only free regions on the
vdev). Detailed design:
- new subcommand:zpool initialize [-cs] <pool> [<vdev> ...]
- start, suspend, or cancel initialization
- Creates new open-context thread for each vdev
- Thread iterates through all metaslabs in this vdev
- Each metaslab:
- select a metaslab
- load the metaslab
- mark the metaslab as being zeroed
- walk all free ranges within that metaslab and translate
them to ranges on the leaf vdev
- issue a "zeroing" I/O on the leaf vdev that corresponds to
a free range on the metaslab we're working on
- continue until all free ranges for this metaslab have been
"zeroed"
- reset/unmark the metaslab being zeroed
- if more metaslabs exist, then repeat above tasks.
- if no more metaslabs, then we're done.
- progress for the initialization is stored on-disk in the vdev’s
leaf zap object. The following information is stored:
- the last offset that has been initialized
- the state of the initialization process (i.e. active,
suspended, or canceled)
- the start time for the initialization
- progress is reported via the zpool status command and shows
information for each of the vdevs that are initializing
Porting notes:
- Added zfs_initialize_value module parameter to set the pattern
written by "zpool initialize".
- Added zfs_vdev_{initializing,removal}_{min,max}_active module options.
Authored by: George Wilson <george.wilson@delphix.com>
Reviewed by: John Wren Kennedy <john.kennedy@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: loli10K <ezomori.nozomu@gmail.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Richard Lowe <richlowe@richlowe.net>
Signed-off-by: Tim Chase <tim@chase2k.com>
Ported-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/9102
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/c3963210eb
Closes #8230
2018-12-19 14:54:59 +00:00
|
|
|
kthread_t *vdev_initialize_thread;
|
|
|
|
/* Protects vdev_initialize_thread and vdev_initialize_state. */
|
|
|
|
kmutex_t vdev_initialize_lock;
|
|
|
|
kcondvar_t vdev_initialize_cv;
|
|
|
|
uint64_t vdev_initialize_offset[TXG_SIZE];
|
|
|
|
uint64_t vdev_initialize_last_offset;
|
|
|
|
range_tree_t *vdev_initialize_tree; /* valid while initializing */
|
|
|
|
uint64_t vdev_initialize_bytes_est;
|
|
|
|
uint64_t vdev_initialize_bytes_done;
|
2020-02-26 21:18:07 +00:00
|
|
|
uint64_t vdev_initialize_action_time; /* start and end time */
|
OpenZFS 9102 - zfs should be able to initialize storage devices
PROBLEM
========
The first access to a block incurs a performance penalty on some platforms
(e.g. AWS's EBS, VMware VMDKs). Therefore we recommend that volumes are
"thick provisioned", where supported by the platform (VMware). This can
create a large delay in getting a new virtual machines up and running (or
adding storage to an existing Engine). If the thick provision step is
omitted, write performance will be suboptimal until all blocks on the LUN
have been written.
SOLUTION
=========
This feature introduces a way to 'initialize' the disks at install or in the
background to make sure we don't incur this first read penalty.
When an entire LUN is added to ZFS, we make all space available immediately,
and allow ZFS to find unallocated space and zero it out. This works with
concurrent writes to arbitrary offsets, ensuring that we don't zero out
something that has been (or is in the middle of being) written. This scheme
can also be applied to existing pools (affecting only free regions on the
vdev). Detailed design:
- new subcommand:zpool initialize [-cs] <pool> [<vdev> ...]
- start, suspend, or cancel initialization
- Creates new open-context thread for each vdev
- Thread iterates through all metaslabs in this vdev
- Each metaslab:
- select a metaslab
- load the metaslab
- mark the metaslab as being zeroed
- walk all free ranges within that metaslab and translate
them to ranges on the leaf vdev
- issue a "zeroing" I/O on the leaf vdev that corresponds to
a free range on the metaslab we're working on
- continue until all free ranges for this metaslab have been
"zeroed"
- reset/unmark the metaslab being zeroed
- if more metaslabs exist, then repeat above tasks.
- if no more metaslabs, then we're done.
- progress for the initialization is stored on-disk in the vdev’s
leaf zap object. The following information is stored:
- the last offset that has been initialized
- the state of the initialization process (i.e. active,
suspended, or canceled)
- the start time for the initialization
- progress is reported via the zpool status command and shows
information for each of the vdevs that are initializing
Porting notes:
- Added zfs_initialize_value module parameter to set the pattern
written by "zpool initialize".
- Added zfs_vdev_{initializing,removal}_{min,max}_active module options.
Authored by: George Wilson <george.wilson@delphix.com>
Reviewed by: John Wren Kennedy <john.kennedy@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: loli10K <ezomori.nozomu@gmail.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Richard Lowe <richlowe@richlowe.net>
Signed-off-by: Tim Chase <tim@chase2k.com>
Ported-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/9102
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/c3963210eb
Closes #8230
2018-12-19 14:54:59 +00:00
|
|
|
|
2019-03-29 16:13:20 +00:00
|
|
|
/* TRIM related */
|
|
|
|
boolean_t vdev_trim_exit_wanted;
|
|
|
|
boolean_t vdev_autotrim_exit_wanted;
|
|
|
|
vdev_trim_state_t vdev_trim_state;
|
|
|
|
list_node_t vdev_trim_node;
|
|
|
|
kmutex_t vdev_autotrim_lock;
|
|
|
|
kcondvar_t vdev_autotrim_cv;
|
|
|
|
kthread_t *vdev_autotrim_thread;
|
|
|
|
/* Protects vdev_trim_thread and vdev_trim_state. */
|
|
|
|
kmutex_t vdev_trim_lock;
|
|
|
|
kcondvar_t vdev_trim_cv;
|
|
|
|
kthread_t *vdev_trim_thread;
|
|
|
|
uint64_t vdev_trim_offset[TXG_SIZE];
|
|
|
|
uint64_t vdev_trim_last_offset;
|
|
|
|
uint64_t vdev_trim_bytes_est;
|
|
|
|
uint64_t vdev_trim_bytes_done;
|
|
|
|
uint64_t vdev_trim_rate; /* requested rate (bytes/sec) */
|
|
|
|
uint64_t vdev_trim_partial; /* requested partial TRIM */
|
|
|
|
uint64_t vdev_trim_secure; /* requested secure TRIM */
|
2020-02-26 21:18:07 +00:00
|
|
|
uint64_t vdev_trim_action_time; /* start and end time */
|
2019-03-29 16:13:20 +00:00
|
|
|
|
2020-07-03 18:05:50 +00:00
|
|
|
/* Rebuild related */
|
|
|
|
boolean_t vdev_rebuilding;
|
|
|
|
boolean_t vdev_rebuild_exit_wanted;
|
|
|
|
boolean_t vdev_rebuild_cancel_wanted;
|
|
|
|
boolean_t vdev_rebuild_reset_wanted;
|
|
|
|
kmutex_t vdev_rebuild_lock;
|
|
|
|
kcondvar_t vdev_rebuild_cv;
|
|
|
|
kthread_t *vdev_rebuild_thread;
|
|
|
|
vdev_rebuild_t vdev_rebuild_config;
|
|
|
|
|
Distributed Spare (dRAID) Feature
This patch adds a new top-level vdev type called dRAID, which stands
for Distributed parity RAID. This pool configuration allows all dRAID
vdevs to participate when rebuilding to a distributed hot spare device.
This can substantially reduce the total time required to restore full
parity to pool with a failed device.
A dRAID pool can be created using the new top-level `draid` type.
Like `raidz`, the desired redundancy is specified after the type:
`draid[1,2,3]`. No additional information is required to create the
pool and reasonable default values will be chosen based on the number
of child vdevs in the dRAID vdev.
zpool create <pool> draid[1,2,3] <vdevs...>
Unlike raidz, additional optional dRAID configuration values can be
provided as part of the draid type as colon separated values. This
allows administrators to fully specify a layout for either performance
or capacity reasons. The supported options include:
zpool create <pool> \
draid[<parity>][:<data>d][:<children>c][:<spares>s] \
<vdevs...>
- draid[parity] - Parity level (default 1)
- draid[:<data>d] - Data devices per group (default 8)
- draid[:<children>c] - Expected number of child vdevs
- draid[:<spares>s] - Distributed hot spares (default 0)
Abbreviated example `zpool status` output for a 68 disk dRAID pool
with two distributed spares using special allocation classes.
```
pool: tank
state: ONLINE
config:
NAME STATE READ WRITE CKSUM
slag7 ONLINE 0 0 0
draid2:8d:68c:2s-0 ONLINE 0 0 0
L0 ONLINE 0 0 0
L1 ONLINE 0 0 0
...
U25 ONLINE 0 0 0
U26 ONLINE 0 0 0
spare-53 ONLINE 0 0 0
U27 ONLINE 0 0 0
draid2-0-0 ONLINE 0 0 0
U28 ONLINE 0 0 0
U29 ONLINE 0 0 0
...
U42 ONLINE 0 0 0
U43 ONLINE 0 0 0
special
mirror-1 ONLINE 0 0 0
L5 ONLINE 0 0 0
U5 ONLINE 0 0 0
mirror-2 ONLINE 0 0 0
L6 ONLINE 0 0 0
U6 ONLINE 0 0 0
spares
draid2-0-0 INUSE currently in use
draid2-0-1 AVAIL
```
When adding test coverage for the new dRAID vdev type the following
options were added to the ztest command. These options are leverages
by zloop.sh to test a wide range of dRAID configurations.
-K draid|raidz|random - kind of RAID to test
-D <value> - dRAID data drives per group
-S <value> - dRAID distributed hot spares
-R <value> - RAID parity (raidz or dRAID)
The zpool_create, zpool_import, redundancy, replacement and fault
test groups have all been updated provide test coverage for the
dRAID feature.
Co-authored-by: Isaac Huang <he.huang@intel.com>
Co-authored-by: Mark Maybee <mmaybee@cray.com>
Co-authored-by: Don Brady <don.brady@delphix.com>
Co-authored-by: Matthew Ahrens <mahrens@delphix.com>
Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Mark Maybee <mmaybee@cray.com>
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #10102
2020-11-13 21:51:51 +00:00
|
|
|
/* For limiting outstanding I/Os (initialize, TRIM) */
|
OpenZFS 9102 - zfs should be able to initialize storage devices
PROBLEM
========
The first access to a block incurs a performance penalty on some platforms
(e.g. AWS's EBS, VMware VMDKs). Therefore we recommend that volumes are
"thick provisioned", where supported by the platform (VMware). This can
create a large delay in getting a new virtual machines up and running (or
adding storage to an existing Engine). If the thick provision step is
omitted, write performance will be suboptimal until all blocks on the LUN
have been written.
SOLUTION
=========
This feature introduces a way to 'initialize' the disks at install or in the
background to make sure we don't incur this first read penalty.
When an entire LUN is added to ZFS, we make all space available immediately,
and allow ZFS to find unallocated space and zero it out. This works with
concurrent writes to arbitrary offsets, ensuring that we don't zero out
something that has been (or is in the middle of being) written. This scheme
can also be applied to existing pools (affecting only free regions on the
vdev). Detailed design:
- new subcommand:zpool initialize [-cs] <pool> [<vdev> ...]
- start, suspend, or cancel initialization
- Creates new open-context thread for each vdev
- Thread iterates through all metaslabs in this vdev
- Each metaslab:
- select a metaslab
- load the metaslab
- mark the metaslab as being zeroed
- walk all free ranges within that metaslab and translate
them to ranges on the leaf vdev
- issue a "zeroing" I/O on the leaf vdev that corresponds to
a free range on the metaslab we're working on
- continue until all free ranges for this metaslab have been
"zeroed"
- reset/unmark the metaslab being zeroed
- if more metaslabs exist, then repeat above tasks.
- if no more metaslabs, then we're done.
- progress for the initialization is stored on-disk in the vdev’s
leaf zap object. The following information is stored:
- the last offset that has been initialized
- the state of the initialization process (i.e. active,
suspended, or canceled)
- the start time for the initialization
- progress is reported via the zpool status command and shows
information for each of the vdevs that are initializing
Porting notes:
- Added zfs_initialize_value module parameter to set the pattern
written by "zpool initialize".
- Added zfs_vdev_{initializing,removal}_{min,max}_active module options.
Authored by: George Wilson <george.wilson@delphix.com>
Reviewed by: John Wren Kennedy <john.kennedy@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: loli10K <ezomori.nozomu@gmail.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Richard Lowe <richlowe@richlowe.net>
Signed-off-by: Tim Chase <tim@chase2k.com>
Ported-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/9102
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/c3963210eb
Closes #8230
2018-12-19 14:54:59 +00:00
|
|
|
kmutex_t vdev_initialize_io_lock;
|
|
|
|
kcondvar_t vdev_initialize_io_cv;
|
|
|
|
uint64_t vdev_initialize_inflight;
|
2019-03-29 16:13:20 +00:00
|
|
|
kmutex_t vdev_trim_io_lock;
|
|
|
|
kcondvar_t vdev_trim_io_cv;
|
2020-06-09 17:15:08 +00:00
|
|
|
uint64_t vdev_trim_inflight[3];
|
OpenZFS 9102 - zfs should be able to initialize storage devices
PROBLEM
========
The first access to a block incurs a performance penalty on some platforms
(e.g. AWS's EBS, VMware VMDKs). Therefore we recommend that volumes are
"thick provisioned", where supported by the platform (VMware). This can
create a large delay in getting a new virtual machines up and running (or
adding storage to an existing Engine). If the thick provision step is
omitted, write performance will be suboptimal until all blocks on the LUN
have been written.
SOLUTION
=========
This feature introduces a way to 'initialize' the disks at install or in the
background to make sure we don't incur this first read penalty.
When an entire LUN is added to ZFS, we make all space available immediately,
and allow ZFS to find unallocated space and zero it out. This works with
concurrent writes to arbitrary offsets, ensuring that we don't zero out
something that has been (or is in the middle of being) written. This scheme
can also be applied to existing pools (affecting only free regions on the
vdev). Detailed design:
- new subcommand:zpool initialize [-cs] <pool> [<vdev> ...]
- start, suspend, or cancel initialization
- Creates new open-context thread for each vdev
- Thread iterates through all metaslabs in this vdev
- Each metaslab:
- select a metaslab
- load the metaslab
- mark the metaslab as being zeroed
- walk all free ranges within that metaslab and translate
them to ranges on the leaf vdev
- issue a "zeroing" I/O on the leaf vdev that corresponds to
a free range on the metaslab we're working on
- continue until all free ranges for this metaslab have been
"zeroed"
- reset/unmark the metaslab being zeroed
- if more metaslabs exist, then repeat above tasks.
- if no more metaslabs, then we're done.
- progress for the initialization is stored on-disk in the vdev’s
leaf zap object. The following information is stored:
- the last offset that has been initialized
- the state of the initialization process (i.e. active,
suspended, or canceled)
- the start time for the initialization
- progress is reported via the zpool status command and shows
information for each of the vdevs that are initializing
Porting notes:
- Added zfs_initialize_value module parameter to set the pattern
written by "zpool initialize".
- Added zfs_vdev_{initializing,removal}_{min,max}_active module options.
Authored by: George Wilson <george.wilson@delphix.com>
Reviewed by: John Wren Kennedy <john.kennedy@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: loli10K <ezomori.nozomu@gmail.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Richard Lowe <richlowe@richlowe.net>
Signed-off-by: Tim Chase <tim@chase2k.com>
Ported-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/9102
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/c3963210eb
Closes #8230
2018-12-19 14:54:59 +00:00
|
|
|
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 16:30:13 +00:00
|
|
|
/*
|
|
|
|
* Values stored in the config for an indirect or removing vdev.
|
|
|
|
*/
|
|
|
|
vdev_indirect_config_t vdev_indirect_config;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The vdev_indirect_rwlock protects the vdev_indirect_mapping
|
|
|
|
* pointer from changing on indirect vdevs (when it is condensed).
|
|
|
|
* Note that removing (not yet indirect) vdevs have different
|
|
|
|
* access patterns (the mapping is not accessed from open context,
|
|
|
|
* e.g. from zio_read) and locking strategy (e.g. svr_lock).
|
|
|
|
*/
|
|
|
|
krwlock_t vdev_indirect_rwlock;
|
|
|
|
vdev_indirect_mapping_t *vdev_indirect_mapping;
|
|
|
|
vdev_indirect_births_t *vdev_indirect_births;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* In memory data structures used to manage the obsolete sm, for
|
|
|
|
* indirect or removing vdevs.
|
|
|
|
*
|
|
|
|
* The vdev_obsolete_segments is the in-core record of the segments
|
|
|
|
* that are no longer referenced anywhere in the pool (due to
|
|
|
|
* being freed or remapped and not referenced by any snapshots).
|
|
|
|
* During a sync, segments are added to vdev_obsolete_segments
|
|
|
|
* via vdev_indirect_mark_obsolete(); at the end of each sync
|
|
|
|
* pass, this is appended to vdev_obsolete_sm via
|
|
|
|
* vdev_indirect_sync_obsolete(). The vdev_obsolete_lock
|
|
|
|
* protects against concurrent modifications of vdev_obsolete_segments
|
|
|
|
* from multiple zio threads.
|
|
|
|
*/
|
|
|
|
kmutex_t vdev_obsolete_lock;
|
|
|
|
range_tree_t *vdev_obsolete_segments;
|
|
|
|
space_map_t *vdev_obsolete_sm;
|
|
|
|
|
2017-11-16 01:27:01 +00:00
|
|
|
/*
|
|
|
|
* Protects the vdev_scan_io_queue field itself as well as the
|
|
|
|
* structure's contents (when present).
|
|
|
|
*/
|
|
|
|
kmutex_t vdev_scan_io_queue_lock;
|
|
|
|
struct dsl_scan_io_queue *vdev_scan_io_queue;
|
|
|
|
|
2008-11-20 20:01:55 +00:00
|
|
|
/*
|
|
|
|
* Leaf vdev state.
|
|
|
|
*/
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 21:25:53 +00:00
|
|
|
range_tree_t *vdev_dtl[DTL_TYPES]; /* dirty time logs */
|
|
|
|
space_map_t *vdev_dtl_sm; /* dirty time log space map */
|
2008-11-20 20:01:55 +00:00
|
|
|
txg_node_t vdev_dtl_node; /* per-txg dirty DTL linkage */
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 21:25:53 +00:00
|
|
|
uint64_t vdev_dtl_object; /* DTL object */
|
|
|
|
uint64_t vdev_psize; /* physical device capacity */
|
2008-11-20 20:01:55 +00:00
|
|
|
uint64_t vdev_wholedisk; /* true if this is a whole disk */
|
|
|
|
uint64_t vdev_offline; /* persistent offline state */
|
|
|
|
uint64_t vdev_faulted; /* persistent faulted state */
|
|
|
|
uint64_t vdev_degraded; /* persistent degraded state */
|
|
|
|
uint64_t vdev_removed; /* persistent removed state */
|
2013-08-07 20:16:22 +00:00
|
|
|
uint64_t vdev_resilver_txg; /* persistent resilvering state */
|
2020-07-03 18:05:50 +00:00
|
|
|
uint64_t vdev_rebuild_txg; /* persistent rebuilding state */
|
2008-11-20 20:01:55 +00:00
|
|
|
char *vdev_path; /* vdev path (if any) */
|
|
|
|
char *vdev_devid; /* vdev devid (if any) */
|
|
|
|
char *vdev_physpath; /* vdev device path (if any) */
|
2016-10-24 17:45:59 +00:00
|
|
|
char *vdev_enc_sysfs_path; /* enclosure sysfs path */
|
2009-07-02 22:44:48 +00:00
|
|
|
char *vdev_fru; /* physical FRU location */
|
2008-12-03 20:09:06 +00:00
|
|
|
uint64_t vdev_not_present; /* not present during import */
|
|
|
|
uint64_t vdev_unspare; /* unspare when resilvering done */
|
|
|
|
boolean_t vdev_nowritecache; /* true if flushwritecache failed */
|
2019-03-29 16:13:20 +00:00
|
|
|
boolean_t vdev_has_trim; /* TRIM is supported */
|
|
|
|
boolean_t vdev_has_securetrim; /* secure TRIM is supported */
|
2008-12-03 20:09:06 +00:00
|
|
|
boolean_t vdev_checkremove; /* temporary online test */
|
|
|
|
boolean_t vdev_forcefault; /* force online fault */
|
2010-05-28 20:45:14 +00:00
|
|
|
boolean_t vdev_splitting; /* split or repair in progress */
|
|
|
|
boolean_t vdev_delayed_close; /* delayed device close? */
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 21:25:53 +00:00
|
|
|
boolean_t vdev_tmpoffline; /* device taken offline temporarily? */
|
|
|
|
boolean_t vdev_detached; /* device detached? */
|
|
|
|
boolean_t vdev_cant_read; /* vdev is failing all reads */
|
|
|
|
boolean_t vdev_cant_write; /* vdev is failing all writes */
|
|
|
|
boolean_t vdev_isspare; /* was a hot spare */
|
|
|
|
boolean_t vdev_isl2cache; /* was a l2cache device */
|
2017-05-02 20:55:24 +00:00
|
|
|
boolean_t vdev_copy_uberblocks; /* post expand copy uberblocks */
|
2018-10-19 04:06:18 +00:00
|
|
|
boolean_t vdev_resilver_deferred; /* resilver deferred */
|
2008-11-20 20:01:55 +00:00
|
|
|
vdev_queue_t vdev_queue; /* I/O deadline schedule queue */
|
|
|
|
vdev_cache_t vdev_cache; /* physical block cache */
|
2015-05-20 04:14:01 +00:00
|
|
|
spa_aux_vdev_t *vdev_aux; /* for l2cache and spares vdevs */
|
2008-12-03 20:09:06 +00:00
|
|
|
zio_t *vdev_probe_zio; /* root of current probe */
|
2010-05-28 20:45:14 +00:00
|
|
|
vdev_aux_t vdev_label_aux; /* on-disk aux state */
|
2016-04-11 20:16:57 +00:00
|
|
|
uint64_t vdev_leaf_zap;
|
Multi-modifier protection (MMP)
Add multihost=on|off pool property to control MMP. When enabled
a new thread writes uberblocks to the last slot in each label, at a
set frequency, to indicate to other hosts the pool is actively imported.
These uberblocks are the last synced uberblock with an updated
timestamp. Property defaults to off.
During tryimport, find the "best" uberblock (newest txg and timestamp)
repeatedly, checking for change in the found uberblock. Include the
results of the activity test in the config returned by tryimport.
These results are reported to user in "zpool import".
Allow the user to control the period between MMP writes, and the
duration of the activity test on import, via a new module parameter
zfs_multihost_interval. The period is specified in milliseconds. The
activity test duration is calculated from this value, and from the
mmp_delay in the "best" uberblock found initially.
Add a kstat interface to export statistics about Multiple Modifier
Protection (MMP) updates. Include the last synced txg number, the
timestamp, the delay since the last MMP update, the VDEV GUID, the VDEV
label that received the last MMP update, and the VDEV path. Abbreviated
output below.
$ cat /proc/spl/kstat/zfs/mypool/multihost
31 0 0x01 10 880 105092382393521 105144180101111
txg timestamp mmp_delay vdev_guid vdev_label vdev_path
20468 261337 250274925 68396651780 3 /dev/sda
20468 261339 252023374 6267402363293 1 /dev/sdc
20468 261340 252000858 6698080955233 1 /dev/sdx
20468 261341 251980635 783892869810 2 /dev/sdy
20468 261342 253385953 8923255792467 3 /dev/sdd
20468 261344 253336622 042125143176 0 /dev/sdab
20468 261345 253310522 1200778101278 2 /dev/sde
20468 261346 253286429 0950576198362 2 /dev/sdt
20468 261347 253261545 96209817917 3 /dev/sds
20468 261349 253238188 8555725937673 3 /dev/sdb
Add a new tunable zfs_multihost_history to specify the number of MMP
updates to store history for. By default it is set to zero meaning that
no MMP statistics are stored.
When using ztest to generate activity, for automated tests of the MMP
function, some test functions interfere with the test. For example, the
pool is exported to run zdb and then imported again. Add a new ztest
function, "-M", to alter ztest behavior to prevent this.
Add new tests to verify the new functionality. Tests provided by
Giuseppe Di Natale.
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov>
Reviewed-by: Ned Bass <bass6@llnl.gov>
Reviewed-by: Andreas Dilger <andreas.dilger@intel.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Olaf Faaland <faaland1@llnl.gov>
Closes #745
Closes #6279
2017-07-08 03:20:35 +00:00
|
|
|
hrtime_t vdev_mmp_pending; /* 0 if write finished */
|
2018-02-22 23:34:34 +00:00
|
|
|
uint64_t vdev_mmp_kstat_id; /* to find kstat entry */
|
2018-09-18 21:45:52 +00:00
|
|
|
uint64_t vdev_expansion_time; /* vdev's last expansion time */
|
2019-03-12 17:37:06 +00:00
|
|
|
list_node_t vdev_leaf_node; /* leaf vdev list */
|
2008-11-20 20:01:55 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* For DTrace to work in userland (libzpool) context, these fields must
|
|
|
|
* remain at the end of the structure. DTrace will use the kernel's
|
|
|
|
* CTF definition for 'struct vdev', and since the size of a kmutex_t is
|
2012-12-13 23:24:15 +00:00
|
|
|
* larger in userland, the offsets for the rest of the fields would be
|
2008-11-20 20:01:55 +00:00
|
|
|
* incorrect.
|
|
|
|
*/
|
|
|
|
kmutex_t vdev_dtl_lock; /* vdev_dtl_{map,resilver} */
|
|
|
|
kmutex_t vdev_stat_lock; /* vdev_stat */
|
2008-12-03 20:09:06 +00:00
|
|
|
kmutex_t vdev_probe_lock; /* protects vdev_probe_zio */
|
2016-10-19 19:55:59 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* We rate limit ZIO delay and ZIO checksum events, since they
|
|
|
|
* can flood ZED with tons of events when a drive is acting up.
|
|
|
|
*/
|
|
|
|
zfs_ratelimit_t vdev_delay_rl;
|
|
|
|
zfs_ratelimit_t vdev_checksum_rl;
|
2008-11-20 20:01:55 +00:00
|
|
|
};
|
|
|
|
|
2009-07-02 22:44:48 +00:00
|
|
|
#define VDEV_PAD_SIZE (8 << 10)
|
2020-05-07 16:36:33 +00:00
|
|
|
/* 2 padding areas (vl_pad1 and vl_be) to skip */
|
2009-07-02 22:44:48 +00:00
|
|
|
#define VDEV_SKIP_SIZE VDEV_PAD_SIZE * 2
|
2008-11-20 20:01:55 +00:00
|
|
|
#define VDEV_PHYS_SIZE (112 << 10)
|
|
|
|
#define VDEV_UBERBLOCK_RING (128 << 10)
|
|
|
|
|
Multi-modifier protection (MMP)
Add multihost=on|off pool property to control MMP. When enabled
a new thread writes uberblocks to the last slot in each label, at a
set frequency, to indicate to other hosts the pool is actively imported.
These uberblocks are the last synced uberblock with an updated
timestamp. Property defaults to off.
During tryimport, find the "best" uberblock (newest txg and timestamp)
repeatedly, checking for change in the found uberblock. Include the
results of the activity test in the config returned by tryimport.
These results are reported to user in "zpool import".
Allow the user to control the period between MMP writes, and the
duration of the activity test on import, via a new module parameter
zfs_multihost_interval. The period is specified in milliseconds. The
activity test duration is calculated from this value, and from the
mmp_delay in the "best" uberblock found initially.
Add a kstat interface to export statistics about Multiple Modifier
Protection (MMP) updates. Include the last synced txg number, the
timestamp, the delay since the last MMP update, the VDEV GUID, the VDEV
label that received the last MMP update, and the VDEV path. Abbreviated
output below.
$ cat /proc/spl/kstat/zfs/mypool/multihost
31 0 0x01 10 880 105092382393521 105144180101111
txg timestamp mmp_delay vdev_guid vdev_label vdev_path
20468 261337 250274925 68396651780 3 /dev/sda
20468 261339 252023374 6267402363293 1 /dev/sdc
20468 261340 252000858 6698080955233 1 /dev/sdx
20468 261341 251980635 783892869810 2 /dev/sdy
20468 261342 253385953 8923255792467 3 /dev/sdd
20468 261344 253336622 042125143176 0 /dev/sdab
20468 261345 253310522 1200778101278 2 /dev/sde
20468 261346 253286429 0950576198362 2 /dev/sdt
20468 261347 253261545 96209817917 3 /dev/sds
20468 261349 253238188 8555725937673 3 /dev/sdb
Add a new tunable zfs_multihost_history to specify the number of MMP
updates to store history for. By default it is set to zero meaning that
no MMP statistics are stored.
When using ztest to generate activity, for automated tests of the MMP
function, some test functions interfere with the test. For example, the
pool is exported to run zdb and then imported again. Add a new ztest
function, "-M", to alter ztest behavior to prevent this.
Add new tests to verify the new functionality. Tests provided by
Giuseppe Di Natale.
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov>
Reviewed-by: Ned Bass <bass6@llnl.gov>
Reviewed-by: Andreas Dilger <andreas.dilger@intel.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Olaf Faaland <faaland1@llnl.gov>
Closes #745
Closes #6279
2017-07-08 03:20:35 +00:00
|
|
|
/*
|
|
|
|
* MMP blocks occupy the last MMP_BLOCKS_PER_LABEL slots in the uberblock
|
|
|
|
* ring when MMP is enabled.
|
|
|
|
*/
|
|
|
|
#define MMP_BLOCKS_PER_LABEL 1
|
|
|
|
|
2014-09-22 23:42:03 +00:00
|
|
|
/* The largest uberblock we support is 8k. */
|
|
|
|
#define MAX_UBERBLOCK_SHIFT (13)
|
2008-11-20 20:01:55 +00:00
|
|
|
#define VDEV_UBERBLOCK_SHIFT(vd) \
|
2014-09-22 23:42:03 +00:00
|
|
|
MIN(MAX((vd)->vdev_top->vdev_ashift, UBERBLOCK_SHIFT), \
|
|
|
|
MAX_UBERBLOCK_SHIFT)
|
2008-11-20 20:01:55 +00:00
|
|
|
#define VDEV_UBERBLOCK_COUNT(vd) \
|
|
|
|
(VDEV_UBERBLOCK_RING >> VDEV_UBERBLOCK_SHIFT(vd))
|
|
|
|
#define VDEV_UBERBLOCK_OFFSET(vd, n) \
|
|
|
|
offsetof(vdev_label_t, vl_uberblock[(n) << VDEV_UBERBLOCK_SHIFT(vd)])
|
|
|
|
#define VDEV_UBERBLOCK_SIZE(vd) (1ULL << VDEV_UBERBLOCK_SHIFT(vd))
|
|
|
|
|
|
|
|
typedef struct vdev_phys {
|
2010-05-28 20:45:14 +00:00
|
|
|
char vp_nvlist[VDEV_PHYS_SIZE - sizeof (zio_eck_t)];
|
|
|
|
zio_eck_t vp_zbt;
|
2008-11-20 20:01:55 +00:00
|
|
|
} vdev_phys_t;
|
|
|
|
|
2020-05-07 16:36:33 +00:00
|
|
|
typedef enum vbe_vers {
|
2020-09-15 22:42:27 +00:00
|
|
|
/*
|
|
|
|
* The bootenv file is stored as ascii text in the envblock.
|
|
|
|
* It is used by the GRUB bootloader used on Linux to store the
|
|
|
|
* contents of the grubenv file. The file is stored as raw ASCII,
|
|
|
|
* and is protected by an embedded checksum. By default, GRUB will
|
|
|
|
* check if the boot filesystem supports storing the environment data
|
|
|
|
* in a special location, and if so, will invoke filesystem specific
|
|
|
|
* logic to retrieve it. This can be overriden by a variable, should
|
|
|
|
* the user so desire.
|
|
|
|
*/
|
2020-05-07 16:36:33 +00:00
|
|
|
VB_RAW = 0,
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The bootenv file is converted to an nvlist and then packed into the
|
|
|
|
* envblock.
|
|
|
|
*/
|
|
|
|
VB_NVLIST = 1
|
|
|
|
} vbe_vers_t;
|
|
|
|
|
|
|
|
typedef struct vdev_boot_envblock {
|
|
|
|
uint64_t vbe_version;
|
|
|
|
char vbe_bootenv[VDEV_PAD_SIZE - sizeof (uint64_t) -
|
|
|
|
sizeof (zio_eck_t)];
|
|
|
|
zio_eck_t vbe_zbt;
|
|
|
|
} vdev_boot_envblock_t;
|
|
|
|
|
|
|
|
CTASSERT_GLOBAL(sizeof (vdev_boot_envblock_t) == VDEV_PAD_SIZE);
|
|
|
|
|
2008-11-20 20:01:55 +00:00
|
|
|
typedef struct vdev_label {
|
2009-07-02 22:44:48 +00:00
|
|
|
char vl_pad1[VDEV_PAD_SIZE]; /* 8K */
|
2020-05-07 16:36:33 +00:00
|
|
|
vdev_boot_envblock_t vl_be; /* 8K */
|
2008-11-20 20:01:55 +00:00
|
|
|
vdev_phys_t vl_vdev_phys; /* 112K */
|
|
|
|
char vl_uberblock[VDEV_UBERBLOCK_RING]; /* 128K */
|
2020-05-07 16:36:33 +00:00
|
|
|
} vdev_label_t; /* 256K total */
|
2008-11-20 20:01:55 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* vdev_dirty() flags
|
|
|
|
*/
|
|
|
|
#define VDD_METASLAB 0x01
|
|
|
|
#define VDD_DTL 0x02
|
|
|
|
|
2013-06-11 17:12:34 +00:00
|
|
|
/* Offset of embedded boot loader region on each label */
|
|
|
|
#define VDEV_BOOT_OFFSET (2 * sizeof (vdev_label_t))
|
2008-11-20 20:01:55 +00:00
|
|
|
/*
|
2013-06-11 17:12:34 +00:00
|
|
|
* Size of embedded boot loader region on each label.
|
2008-11-20 20:01:55 +00:00
|
|
|
* The total size of the first two labels plus the boot area is 4MB.
|
|
|
|
*/
|
2013-06-11 17:12:34 +00:00
|
|
|
#define VDEV_BOOT_SIZE (7ULL << 19) /* 3.5M */
|
2008-11-20 20:01:55 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Size of label regions at the start and end of each leaf device.
|
|
|
|
*/
|
|
|
|
#define VDEV_LABEL_START_SIZE (2 * sizeof (vdev_label_t) + VDEV_BOOT_SIZE)
|
|
|
|
#define VDEV_LABEL_END_SIZE (2 * sizeof (vdev_label_t))
|
|
|
|
#define VDEV_LABELS 4
|
2012-12-13 23:24:15 +00:00
|
|
|
#define VDEV_BEST_LABEL VDEV_LABELS
|
Distributed Spare (dRAID) Feature
This patch adds a new top-level vdev type called dRAID, which stands
for Distributed parity RAID. This pool configuration allows all dRAID
vdevs to participate when rebuilding to a distributed hot spare device.
This can substantially reduce the total time required to restore full
parity to pool with a failed device.
A dRAID pool can be created using the new top-level `draid` type.
Like `raidz`, the desired redundancy is specified after the type:
`draid[1,2,3]`. No additional information is required to create the
pool and reasonable default values will be chosen based on the number
of child vdevs in the dRAID vdev.
zpool create <pool> draid[1,2,3] <vdevs...>
Unlike raidz, additional optional dRAID configuration values can be
provided as part of the draid type as colon separated values. This
allows administrators to fully specify a layout for either performance
or capacity reasons. The supported options include:
zpool create <pool> \
draid[<parity>][:<data>d][:<children>c][:<spares>s] \
<vdevs...>
- draid[parity] - Parity level (default 1)
- draid[:<data>d] - Data devices per group (default 8)
- draid[:<children>c] - Expected number of child vdevs
- draid[:<spares>s] - Distributed hot spares (default 0)
Abbreviated example `zpool status` output for a 68 disk dRAID pool
with two distributed spares using special allocation classes.
```
pool: tank
state: ONLINE
config:
NAME STATE READ WRITE CKSUM
slag7 ONLINE 0 0 0
draid2:8d:68c:2s-0 ONLINE 0 0 0
L0 ONLINE 0 0 0
L1 ONLINE 0 0 0
...
U25 ONLINE 0 0 0
U26 ONLINE 0 0 0
spare-53 ONLINE 0 0 0
U27 ONLINE 0 0 0
draid2-0-0 ONLINE 0 0 0
U28 ONLINE 0 0 0
U29 ONLINE 0 0 0
...
U42 ONLINE 0 0 0
U43 ONLINE 0 0 0
special
mirror-1 ONLINE 0 0 0
L5 ONLINE 0 0 0
U5 ONLINE 0 0 0
mirror-2 ONLINE 0 0 0
L6 ONLINE 0 0 0
U6 ONLINE 0 0 0
spares
draid2-0-0 INUSE currently in use
draid2-0-1 AVAIL
```
When adding test coverage for the new dRAID vdev type the following
options were added to the ztest command. These options are leverages
by zloop.sh to test a wide range of dRAID configurations.
-K draid|raidz|random - kind of RAID to test
-D <value> - dRAID data drives per group
-S <value> - dRAID distributed hot spares
-R <value> - RAID parity (raidz or dRAID)
The zpool_create, zpool_import, redundancy, replacement and fault
test groups have all been updated provide test coverage for the
dRAID feature.
Co-authored-by: Isaac Huang <he.huang@intel.com>
Co-authored-by: Mark Maybee <mmaybee@cray.com>
Co-authored-by: Don Brady <don.brady@delphix.com>
Co-authored-by: Matthew Ahrens <mahrens@delphix.com>
Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Mark Maybee <mmaybee@cray.com>
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #10102
2020-11-13 21:51:51 +00:00
|
|
|
#define VDEV_OFFSET_IS_LABEL(vd, off) \
|
|
|
|
(((off) < VDEV_LABEL_START_SIZE) || \
|
|
|
|
((off) >= ((vd)->vdev_psize - VDEV_LABEL_END_SIZE)))
|
2008-11-20 20:01:55 +00:00
|
|
|
|
|
|
|
#define VDEV_ALLOC_LOAD 0
|
|
|
|
#define VDEV_ALLOC_ADD 1
|
|
|
|
#define VDEV_ALLOC_SPARE 2
|
|
|
|
#define VDEV_ALLOC_L2CACHE 3
|
2009-07-02 22:44:48 +00:00
|
|
|
#define VDEV_ALLOC_ROOTPOOL 4
|
2010-05-28 20:45:14 +00:00
|
|
|
#define VDEV_ALLOC_SPLIT 5
|
2012-04-08 17:23:08 +00:00
|
|
|
#define VDEV_ALLOC_ATTACH 6
|
2008-11-20 20:01:55 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Allocate or free a vdev
|
|
|
|
*/
|
2010-05-28 20:45:14 +00:00
|
|
|
extern vdev_t *vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid,
|
|
|
|
vdev_ops_t *ops);
|
2008-11-20 20:01:55 +00:00
|
|
|
extern int vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *config,
|
|
|
|
vdev_t *parent, uint_t id, int alloctype);
|
|
|
|
extern void vdev_free(vdev_t *vd);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Add or remove children and parents
|
|
|
|
*/
|
|
|
|
extern void vdev_add_child(vdev_t *pvd, vdev_t *cvd);
|
|
|
|
extern void vdev_remove_child(vdev_t *pvd, vdev_t *cvd);
|
|
|
|
extern void vdev_compact_children(vdev_t *pvd);
|
|
|
|
extern vdev_t *vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops);
|
|
|
|
extern void vdev_remove_parent(vdev_t *cvd);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* vdev sync load and sync
|
|
|
|
*/
|
2010-08-26 21:24:34 +00:00
|
|
|
extern boolean_t vdev_log_state_valid(vdev_t *vd);
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 16:30:13 +00:00
|
|
|
extern int vdev_load(vdev_t *vd);
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 21:25:53 +00:00
|
|
|
extern int vdev_dtl_load(vdev_t *vd);
|
2008-11-20 20:01:55 +00:00
|
|
|
extern void vdev_sync(vdev_t *vd, uint64_t txg);
|
|
|
|
extern void vdev_sync_done(vdev_t *vd, uint64_t txg);
|
|
|
|
extern void vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg);
|
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2013-10-01 21:25:53 +00:00
|
|
|
extern void vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg);
|
2008-11-20 20:01:55 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Available vdev types.
|
|
|
|
*/
|
|
|
|
extern vdev_ops_t vdev_root_ops;
|
|
|
|
extern vdev_ops_t vdev_mirror_ops;
|
|
|
|
extern vdev_ops_t vdev_replacing_ops;
|
|
|
|
extern vdev_ops_t vdev_raidz_ops;
|
Distributed Spare (dRAID) Feature
This patch adds a new top-level vdev type called dRAID, which stands
for Distributed parity RAID. This pool configuration allows all dRAID
vdevs to participate when rebuilding to a distributed hot spare device.
This can substantially reduce the total time required to restore full
parity to pool with a failed device.
A dRAID pool can be created using the new top-level `draid` type.
Like `raidz`, the desired redundancy is specified after the type:
`draid[1,2,3]`. No additional information is required to create the
pool and reasonable default values will be chosen based on the number
of child vdevs in the dRAID vdev.
zpool create <pool> draid[1,2,3] <vdevs...>
Unlike raidz, additional optional dRAID configuration values can be
provided as part of the draid type as colon separated values. This
allows administrators to fully specify a layout for either performance
or capacity reasons. The supported options include:
zpool create <pool> \
draid[<parity>][:<data>d][:<children>c][:<spares>s] \
<vdevs...>
- draid[parity] - Parity level (default 1)
- draid[:<data>d] - Data devices per group (default 8)
- draid[:<children>c] - Expected number of child vdevs
- draid[:<spares>s] - Distributed hot spares (default 0)
Abbreviated example `zpool status` output for a 68 disk dRAID pool
with two distributed spares using special allocation classes.
```
pool: tank
state: ONLINE
config:
NAME STATE READ WRITE CKSUM
slag7 ONLINE 0 0 0
draid2:8d:68c:2s-0 ONLINE 0 0 0
L0 ONLINE 0 0 0
L1 ONLINE 0 0 0
...
U25 ONLINE 0 0 0
U26 ONLINE 0 0 0
spare-53 ONLINE 0 0 0
U27 ONLINE 0 0 0
draid2-0-0 ONLINE 0 0 0
U28 ONLINE 0 0 0
U29 ONLINE 0 0 0
...
U42 ONLINE 0 0 0
U43 ONLINE 0 0 0
special
mirror-1 ONLINE 0 0 0
L5 ONLINE 0 0 0
U5 ONLINE 0 0 0
mirror-2 ONLINE 0 0 0
L6 ONLINE 0 0 0
U6 ONLINE 0 0 0
spares
draid2-0-0 INUSE currently in use
draid2-0-1 AVAIL
```
When adding test coverage for the new dRAID vdev type the following
options were added to the ztest command. These options are leverages
by zloop.sh to test a wide range of dRAID configurations.
-K draid|raidz|random - kind of RAID to test
-D <value> - dRAID data drives per group
-S <value> - dRAID distributed hot spares
-R <value> - RAID parity (raidz or dRAID)
The zpool_create, zpool_import, redundancy, replacement and fault
test groups have all been updated provide test coverage for the
dRAID feature.
Co-authored-by: Isaac Huang <he.huang@intel.com>
Co-authored-by: Mark Maybee <mmaybee@cray.com>
Co-authored-by: Don Brady <don.brady@delphix.com>
Co-authored-by: Matthew Ahrens <mahrens@delphix.com>
Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Mark Maybee <mmaybee@cray.com>
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #10102
2020-11-13 21:51:51 +00:00
|
|
|
extern vdev_ops_t vdev_draid_ops;
|
|
|
|
extern vdev_ops_t vdev_draid_spare_ops;
|
2008-11-20 20:01:55 +00:00
|
|
|
extern vdev_ops_t vdev_disk_ops;
|
|
|
|
extern vdev_ops_t vdev_file_ops;
|
|
|
|
extern vdev_ops_t vdev_missing_ops;
|
2010-05-28 20:45:14 +00:00
|
|
|
extern vdev_ops_t vdev_hole_ops;
|
2008-11-20 20:01:55 +00:00
|
|
|
extern vdev_ops_t vdev_spare_ops;
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 16:30:13 +00:00
|
|
|
extern vdev_ops_t vdev_indirect_ops;
|
2008-11-20 20:01:55 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Common size functions
|
|
|
|
*/
|
Distributed Spare (dRAID) Feature
This patch adds a new top-level vdev type called dRAID, which stands
for Distributed parity RAID. This pool configuration allows all dRAID
vdevs to participate when rebuilding to a distributed hot spare device.
This can substantially reduce the total time required to restore full
parity to pool with a failed device.
A dRAID pool can be created using the new top-level `draid` type.
Like `raidz`, the desired redundancy is specified after the type:
`draid[1,2,3]`. No additional information is required to create the
pool and reasonable default values will be chosen based on the number
of child vdevs in the dRAID vdev.
zpool create <pool> draid[1,2,3] <vdevs...>
Unlike raidz, additional optional dRAID configuration values can be
provided as part of the draid type as colon separated values. This
allows administrators to fully specify a layout for either performance
or capacity reasons. The supported options include:
zpool create <pool> \
draid[<parity>][:<data>d][:<children>c][:<spares>s] \
<vdevs...>
- draid[parity] - Parity level (default 1)
- draid[:<data>d] - Data devices per group (default 8)
- draid[:<children>c] - Expected number of child vdevs
- draid[:<spares>s] - Distributed hot spares (default 0)
Abbreviated example `zpool status` output for a 68 disk dRAID pool
with two distributed spares using special allocation classes.
```
pool: tank
state: ONLINE
config:
NAME STATE READ WRITE CKSUM
slag7 ONLINE 0 0 0
draid2:8d:68c:2s-0 ONLINE 0 0 0
L0 ONLINE 0 0 0
L1 ONLINE 0 0 0
...
U25 ONLINE 0 0 0
U26 ONLINE 0 0 0
spare-53 ONLINE 0 0 0
U27 ONLINE 0 0 0
draid2-0-0 ONLINE 0 0 0
U28 ONLINE 0 0 0
U29 ONLINE 0 0 0
...
U42 ONLINE 0 0 0
U43 ONLINE 0 0 0
special
mirror-1 ONLINE 0 0 0
L5 ONLINE 0 0 0
U5 ONLINE 0 0 0
mirror-2 ONLINE 0 0 0
L6 ONLINE 0 0 0
U6 ONLINE 0 0 0
spares
draid2-0-0 INUSE currently in use
draid2-0-1 AVAIL
```
When adding test coverage for the new dRAID vdev type the following
options were added to the ztest command. These options are leverages
by zloop.sh to test a wide range of dRAID configurations.
-K draid|raidz|random - kind of RAID to test
-D <value> - dRAID data drives per group
-S <value> - dRAID distributed hot spares
-R <value> - RAID parity (raidz or dRAID)
The zpool_create, zpool_import, redundancy, replacement and fault
test groups have all been updated provide test coverage for the
dRAID feature.
Co-authored-by: Isaac Huang <he.huang@intel.com>
Co-authored-by: Mark Maybee <mmaybee@cray.com>
Co-authored-by: Don Brady <don.brady@delphix.com>
Co-authored-by: Matthew Ahrens <mahrens@delphix.com>
Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Mark Maybee <mmaybee@cray.com>
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #10102
2020-11-13 21:51:51 +00:00
|
|
|
extern void vdev_default_xlate(vdev_t *vd, const range_seg64_t *logical_rs,
|
|
|
|
range_seg64_t *physical_rs, range_seg64_t *remain_rs);
|
2008-11-20 20:01:55 +00:00
|
|
|
extern uint64_t vdev_default_asize(vdev_t *vd, uint64_t psize);
|
Distributed Spare (dRAID) Feature
This patch adds a new top-level vdev type called dRAID, which stands
for Distributed parity RAID. This pool configuration allows all dRAID
vdevs to participate when rebuilding to a distributed hot spare device.
This can substantially reduce the total time required to restore full
parity to pool with a failed device.
A dRAID pool can be created using the new top-level `draid` type.
Like `raidz`, the desired redundancy is specified after the type:
`draid[1,2,3]`. No additional information is required to create the
pool and reasonable default values will be chosen based on the number
of child vdevs in the dRAID vdev.
zpool create <pool> draid[1,2,3] <vdevs...>
Unlike raidz, additional optional dRAID configuration values can be
provided as part of the draid type as colon separated values. This
allows administrators to fully specify a layout for either performance
or capacity reasons. The supported options include:
zpool create <pool> \
draid[<parity>][:<data>d][:<children>c][:<spares>s] \
<vdevs...>
- draid[parity] - Parity level (default 1)
- draid[:<data>d] - Data devices per group (default 8)
- draid[:<children>c] - Expected number of child vdevs
- draid[:<spares>s] - Distributed hot spares (default 0)
Abbreviated example `zpool status` output for a 68 disk dRAID pool
with two distributed spares using special allocation classes.
```
pool: tank
state: ONLINE
config:
NAME STATE READ WRITE CKSUM
slag7 ONLINE 0 0 0
draid2:8d:68c:2s-0 ONLINE 0 0 0
L0 ONLINE 0 0 0
L1 ONLINE 0 0 0
...
U25 ONLINE 0 0 0
U26 ONLINE 0 0 0
spare-53 ONLINE 0 0 0
U27 ONLINE 0 0 0
draid2-0-0 ONLINE 0 0 0
U28 ONLINE 0 0 0
U29 ONLINE 0 0 0
...
U42 ONLINE 0 0 0
U43 ONLINE 0 0 0
special
mirror-1 ONLINE 0 0 0
L5 ONLINE 0 0 0
U5 ONLINE 0 0 0
mirror-2 ONLINE 0 0 0
L6 ONLINE 0 0 0
U6 ONLINE 0 0 0
spares
draid2-0-0 INUSE currently in use
draid2-0-1 AVAIL
```
When adding test coverage for the new dRAID vdev type the following
options were added to the ztest command. These options are leverages
by zloop.sh to test a wide range of dRAID configurations.
-K draid|raidz|random - kind of RAID to test
-D <value> - dRAID data drives per group
-S <value> - dRAID distributed hot spares
-R <value> - RAID parity (raidz or dRAID)
The zpool_create, zpool_import, redundancy, replacement and fault
test groups have all been updated provide test coverage for the
dRAID feature.
Co-authored-by: Isaac Huang <he.huang@intel.com>
Co-authored-by: Mark Maybee <mmaybee@cray.com>
Co-authored-by: Don Brady <don.brady@delphix.com>
Co-authored-by: Matthew Ahrens <mahrens@delphix.com>
Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Mark Maybee <mmaybee@cray.com>
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #10102
2020-11-13 21:51:51 +00:00
|
|
|
extern uint64_t vdev_default_min_asize(vdev_t *vd);
|
2009-07-02 22:44:48 +00:00
|
|
|
extern uint64_t vdev_get_min_asize(vdev_t *vd);
|
|
|
|
extern void vdev_set_min_asize(vdev_t *vd);
|
Distributed Spare (dRAID) Feature
This patch adds a new top-level vdev type called dRAID, which stands
for Distributed parity RAID. This pool configuration allows all dRAID
vdevs to participate when rebuilding to a distributed hot spare device.
This can substantially reduce the total time required to restore full
parity to pool with a failed device.
A dRAID pool can be created using the new top-level `draid` type.
Like `raidz`, the desired redundancy is specified after the type:
`draid[1,2,3]`. No additional information is required to create the
pool and reasonable default values will be chosen based on the number
of child vdevs in the dRAID vdev.
zpool create <pool> draid[1,2,3] <vdevs...>
Unlike raidz, additional optional dRAID configuration values can be
provided as part of the draid type as colon separated values. This
allows administrators to fully specify a layout for either performance
or capacity reasons. The supported options include:
zpool create <pool> \
draid[<parity>][:<data>d][:<children>c][:<spares>s] \
<vdevs...>
- draid[parity] - Parity level (default 1)
- draid[:<data>d] - Data devices per group (default 8)
- draid[:<children>c] - Expected number of child vdevs
- draid[:<spares>s] - Distributed hot spares (default 0)
Abbreviated example `zpool status` output for a 68 disk dRAID pool
with two distributed spares using special allocation classes.
```
pool: tank
state: ONLINE
config:
NAME STATE READ WRITE CKSUM
slag7 ONLINE 0 0 0
draid2:8d:68c:2s-0 ONLINE 0 0 0
L0 ONLINE 0 0 0
L1 ONLINE 0 0 0
...
U25 ONLINE 0 0 0
U26 ONLINE 0 0 0
spare-53 ONLINE 0 0 0
U27 ONLINE 0 0 0
draid2-0-0 ONLINE 0 0 0
U28 ONLINE 0 0 0
U29 ONLINE 0 0 0
...
U42 ONLINE 0 0 0
U43 ONLINE 0 0 0
special
mirror-1 ONLINE 0 0 0
L5 ONLINE 0 0 0
U5 ONLINE 0 0 0
mirror-2 ONLINE 0 0 0
L6 ONLINE 0 0 0
U6 ONLINE 0 0 0
spares
draid2-0-0 INUSE currently in use
draid2-0-1 AVAIL
```
When adding test coverage for the new dRAID vdev type the following
options were added to the ztest command. These options are leverages
by zloop.sh to test a wide range of dRAID configurations.
-K draid|raidz|random - kind of RAID to test
-D <value> - dRAID data drives per group
-S <value> - dRAID distributed hot spares
-R <value> - RAID parity (raidz or dRAID)
The zpool_create, zpool_import, redundancy, replacement and fault
test groups have all been updated provide test coverage for the
dRAID feature.
Co-authored-by: Isaac Huang <he.huang@intel.com>
Co-authored-by: Mark Maybee <mmaybee@cray.com>
Co-authored-by: Don Brady <don.brady@delphix.com>
Co-authored-by: Matthew Ahrens <mahrens@delphix.com>
Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Mark Maybee <mmaybee@cray.com>
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #10102
2020-11-13 21:51:51 +00:00
|
|
|
extern uint64_t vdev_get_min_alloc(vdev_t *vd);
|
|
|
|
extern uint64_t vdev_get_nparity(vdev_t *vd);
|
|
|
|
extern uint64_t vdev_get_ndisks(vdev_t *vd);
|
2008-11-20 20:01:55 +00:00
|
|
|
|
|
|
|
/*
|
2013-06-11 17:12:34 +00:00
|
|
|
* Global variables
|
2008-11-20 20:01:55 +00:00
|
|
|
*/
|
Log Spacemap Project
= Motivation
At Delphix we've seen a lot of customer systems where fragmentation
is over 75% and random writes take a performance hit because a lot
of time is spend on I/Os that update on-disk space accounting metadata.
Specifically, we seen cases where 20% to 40% of sync time is spend
after sync pass 1 and ~30% of the I/Os on the system is spent updating
spacemaps.
The problem is that these pools have existed long enough that we've
touched almost every metaslab at least once, and random writes
scatter frees across all metaslabs every TXG, thus appending to
their spacemaps and resulting in many I/Os. To give an example,
assuming that every VDEV has 200 metaslabs and our writes fit within
a single spacemap block (generally 4K) we have 200 I/Os. Then if we
assume 2 levels of indirection, we need 400 additional I/Os and
since we are talking about metadata for which we keep 2 extra copies
for redundancy we need to triple that number, leading to a total of
1800 I/Os per VDEV every TXG.
We could try and decrease the number of metaslabs so we have less
I/Os per TXG but then each metaslab would cover a wider range on
disk and thus would take more time to be loaded in memory from disk.
In addition, after it's loaded, it's range tree would consume more
memory.
Another idea would be to just increase the spacemap block size
which would allow us to fit more entries within an I/O block
resulting in fewer I/Os per metaslab and a speedup in loading time.
The problem is still that we don't deal with the number of I/Os
going up as the number of metaslabs is increasing and the fact
is that we generally write a lot to a few metaslabs and a little
to the rest of them. Thus, just increasing the block size would
actually waste bandwidth because we won't be utilizing our bigger
block size.
= About this patch
This patch introduces the Log Spacemap project which provides the
solution to the above problem while taking into account all the
aforementioned tradeoffs. The details on how it achieves that can
be found in the references sections below and in the code (see
Big Theory Statement in spa_log_spacemap.c).
Even though the change is fairly constraint within the metaslab
and lower-level SPA codepaths, there is a side-change that is
user-facing. The change is that VDEV IDs from VDEV holes will no
longer be reused. To give some background and reasoning for this,
when a log device is removed and its VDEV structure was replaced
with a hole (or was compacted; if at the end of the vdev array),
its vdev_id could be reused by devices added after that. Now
with the pool-wide space maps recording the vdev ID, this behavior
can cause problems (e.g. is this entry referring to a segment in
the new vdev or the removed log?). Thus, to simplify things the
ID reuse behavior is gone and now vdev IDs for top-level vdevs
are truly unique within a pool.
= Testing
The illumos implementation of this feature has been used internally
for a year and has been in production for ~6 months. For this patch
specifically there don't seem to be any regressions introduced to
ZTS and I have been running zloop for a week without any related
problems.
= Performance Analysis (Linux Specific)
All performance results and analysis for illumos can be found in
the links of the references. Redoing the same experiments in Linux
gave similar results. Below are the specifics of the Linux run.
After the pool reached stable state the percentage of the time
spent in pass 1 per TXG was 64% on average for the stock bits
while the log spacemap bits stayed at 95% during the experiment
(graph: sdimitro.github.io/img/linux-lsm/PercOfSyncInPassOne.png).
Sync times per TXG were 37.6 seconds on average for the stock
bits and 22.7 seconds for the log spacemap bits (related graph:
sdimitro.github.io/img/linux-lsm/SyncTimePerTXG.png). As a result
the log spacemap bits were able to push more TXGs, which is also
the reason why all graphs quantified per TXG have more entries for
the log spacemap bits.
Another interesting aspect in terms of txg syncs is that the stock
bits had 22% of their TXGs reach sync pass 7, 55% reach sync pass 8,
and 20% reach 9. The log space map bits reached sync pass 4 in 79%
of their TXGs, sync pass 7 in 19%, and sync pass 8 at 1%. This
emphasizes the fact that not only we spend less time on metadata
but we also iterate less times to convergence in spa_sync() dirtying
objects.
[related graphs:
stock- sdimitro.github.io/img/linux-lsm/NumberOfPassesPerTXGStock.png
lsm- sdimitro.github.io/img/linux-lsm/NumberOfPassesPerTXGLSM.png]
Finally, the improvement in IOPs that the userland gains from the
change is approximately 40%. There is a consistent win in IOPS as
you can see from the graphs below but the absolute amount of
improvement that the log spacemap gives varies within each minute
interval.
sdimitro.github.io/img/linux-lsm/StockVsLog3Days.png
sdimitro.github.io/img/linux-lsm/StockVsLog10Hours.png
= Porting to Other Platforms
For people that want to port this commit to other platforms below
is a list of ZoL commits that this patch depends on:
Make zdb results for checkpoint tests consistent
db587941c5ff6dea01932bb78f70db63cf7f38ba
Update vdev_is_spacemap_addressable() for new spacemap encoding
419ba5914552c6185afbe1dd17b3ed4b0d526547
Simplify spa_sync by breaking it up to smaller functions
8dc2197b7b1e4d7ebc1420ea30e51c6541f1d834
Factor metaslab_load_wait() in metaslab_load()
b194fab0fb6caad18711abccaff3c69ad8b3f6d3
Rename range_tree_verify to range_tree_verify_not_present
df72b8bebe0ebac0b20e0750984bad182cb6564a
Change target size of metaslabs from 256GB to 16GB
c853f382db731e15a87512f4ef1101d14d778a55
zdb -L should skip leak detection altogether
21e7cf5da89f55ce98ec1115726b150e19eefe89
vs_alloc can underflow in L2ARC vdevs
7558997d2f808368867ca7e5234e5793446e8f3f
Simplify log vdev removal code
6c926f426a26ffb6d7d8e563e33fc176164175cb
Get rid of space_map_update() for ms_synced_length
425d3237ee88abc53d8522a7139c926d278b4b7f
Introduce auxiliary metaslab histograms
928e8ad47d3478a3d5d01f0dd6ae74a9371af65e
Error path in metaslab_load_impl() forgets to drop ms_sync_lock
8eef997679ba54547f7d361553d21b3291f41ae7
= References
Background, Motivation, and Internals of the Feature
- OpenZFS 2017 Presentation:
youtu.be/jj2IxRkl5bQ
- Slides:
slideshare.net/SerapheimNikolaosDim/zfs-log-spacemaps-project
Flushing Algorithm Internals & Performance Results
(Illumos Specific)
- Blogpost:
sdimitro.github.io/post/zfs-lsm-flushing/
- OpenZFS 2018 Presentation:
youtu.be/x6D2dHRjkxw
- Slides:
slideshare.net/SerapheimNikolaosDim/zfs-log-spacemap-flushing-algorithm
Upstream Delphix Issues:
DLPX-51539, DLPX-59659, DLPX-57783, DLPX-61438, DLPX-41227, DLPX-59320
DLPX-63385
Reviewed-by: Sean Eric Fagan <sef@ixsystems.com>
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed-by: George Wilson <gwilson@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Closes #8442
2019-07-16 17:11:49 +00:00
|
|
|
extern int zfs_vdev_standard_sm_blksz;
|
2013-06-11 17:12:34 +00:00
|
|
|
/* zdb uses this tunable, so it must be declared here to make lint happy. */
|
2008-11-20 20:01:55 +00:00
|
|
|
extern int zfs_vdev_cache_size;
|
|
|
|
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 16:30:13 +00:00
|
|
|
/*
|
|
|
|
* Functions from vdev_indirect.c
|
|
|
|
*/
|
|
|
|
extern void vdev_indirect_sync_obsolete(vdev_t *vd, dmu_tx_t *tx);
|
|
|
|
extern boolean_t vdev_indirect_should_condense(vdev_t *vd);
|
|
|
|
extern void spa_condense_indirect_start_sync(vdev_t *vd, dmu_tx_t *tx);
|
2018-10-09 22:42:42 +00:00
|
|
|
extern int vdev_obsolete_sm_object(vdev_t *vd, uint64_t *sm_obj);
|
|
|
|
extern int vdev_obsolete_counts_are_precise(vdev_t *vd, boolean_t *are_precise);
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 16:30:13 +00:00
|
|
|
|
2016-12-16 22:11:29 +00:00
|
|
|
/*
|
|
|
|
* Other miscellaneous functions
|
|
|
|
*/
|
2018-10-09 22:42:42 +00:00
|
|
|
int vdev_checkpoint_sm_object(vdev_t *vd, uint64_t *sm_obj);
|
Set aside a metaslab for ZIL blocks
Mixing ZIL and normal allocations has several problems:
1. The ZIL allocations are allocated, written to disk, and then a few
seconds later freed. This leaves behind holes (free segments) where the
ZIL blocks used to be, which increases fragmentation, which negatively
impacts performance.
2. When under moderate load, ZIL allocations are of 128KB. If the pool
is fairly fragmented, there may not be many free chunks of that size.
This causes ZFS to load more metaslabs to locate free segments of 128KB
or more. The loading happens synchronously (from zil_commit()), and can
take around a second even if the metaslab's spacemap is cached in the
ARC. All concurrent synchronous operations on this filesystem must wait
while the metaslab is loading. This can cause a significant performance
impact.
3. If the pool is very fragmented, there may be zero free chunks of
128KB or more. In this case, the ZIL falls back to txg_wait_synced(),
which has an enormous performance impact.
These problems can be eliminated by using a dedicated log device
("slog"), even one with the same performance characteristics as the
normal devices.
This change sets aside one metaslab from each top-level vdev that is
preferentially used for ZIL allocations (vdev_log_mg,
spa_embedded_log_class). From an allocation perspective, this is
similar to having a dedicated log device, and it eliminates the
above-mentioned performance problems.
Log (ZIL) blocks can be allocated from the following locations. Each
one is tried in order until the allocation succeeds:
1. dedicated log vdevs, aka "slog" (spa_log_class)
2. embedded slog metaslabs (spa_embedded_log_class)
3. other metaslabs in normal vdevs (spa_normal_class)
The space required for the embedded slog metaslabs is usually between
0.5% and 1.0% of the pool, and comes out of the existing 3.2% of "slop"
space that is not available for user data.
On an all-ssd system with 4TB storage, 87% fragmentation, 60% capacity,
and recordsize=8k, testing shows a ~50% performance increase on random
8k sync writes. On even more fragmented systems (which hit problem #3
above and call txg_wait_synced()), the performance improvement can be
arbitrarily large (>100x).
Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Reviewed-by: George Wilson <gwilson@delphix.com>
Reviewed-by: Don Brady <don.brady@delphix.com>
Reviewed-by: Mark Maybee <mark.maybee@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes #11389
2021-01-21 23:12:54 +00:00
|
|
|
void vdev_metaslab_group_create(vdev_t *vd);
|
2016-12-16 22:11:29 +00:00
|
|
|
|
2020-08-21 19:53:17 +00:00
|
|
|
/*
|
|
|
|
* Vdev ashift optimization tunables
|
|
|
|
*/
|
|
|
|
extern uint64_t zfs_vdev_min_auto_ashift;
|
|
|
|
extern uint64_t zfs_vdev_max_auto_ashift;
|
|
|
|
int param_set_min_auto_ashift(ZFS_MODULE_PARAM_ARGS);
|
|
|
|
int param_set_max_auto_ashift(ZFS_MODULE_PARAM_ARGS);
|
|
|
|
|
2008-11-20 20:01:55 +00:00
|
|
|
#ifdef __cplusplus
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#endif /* _SYS_VDEV_IMPL_H */
|