zfs/tests
Olaf Faaland 060f0226e6 MMP interval and fail_intervals in uberblock
When Multihost is enabled, and a pool is imported, uberblock writes
include ub_mmp_delay to allow an importing node to calculate the
duration of an activity test.  This value, is not enough information.

If zfs_multihost_fail_intervals > 0 on the node with the pool imported,
the safe minimum duration of the activity test is well defined, but does
not depend on ub_mmp_delay:

zfs_multihost_fail_intervals * zfs_multihost_interval

and if zfs_multihost_fail_intervals == 0 on that node, there is no such
well defined safe duration, but the importing host cannot tell whether
mmp_delay is high due to I/O delays, or due to a very large
zfs_multihost_interval setting on the host which last imported the pool.
As a result, it may use a far longer period for the activity test than
is necessary.

This patch renames ub_mmp_sequence to ub_mmp_config and uses it to
record the zfs_multihost_interval and zfs_multihost_fail_intervals
values, as well as the mmp sequence.  This allows a shorter activity
test duration to be calculated by the importing host in most situations.
These values are also added to the multihost_history kstat records.

It calculates the activity test duration differently depending on
whether the new fields are present or not; for importing pools with
only ub_mmp_delay, it uses

(zfs_multihost_interval + ub_mmp_delay) * zfs_multihost_import_intervals

Which results in an activity test duration less sensitive to the leaf
count.

In addition, it makes a few other improvements:
* It updates the "sequence" part of ub_mmp_config when MMP writes
  in between syncs occur.  This allows an importing host to detect MMP
  on the remote host sooner, when the pool is idle, as it is not limited
  to the granularity of ub_timestamp (1 second).
* It issues writes immediately when zfs_multihost_interval is changed
  so remote hosts see the updated value as soon as possible.
* It fixes a bug where setting zfs_multihost_fail_intervals = 1 results
  in immediate pool suspension.
* Update tests to verify activity check duration is based on recorded
  tunable values, not tunable values on importing host.
* Update tests to verify the expected number of uberblocks have valid
  MMP fields - fail_intervals, mmp_interval, mmp_seq (sequence number),
  that sequence number is incrementing, and that uberblock values match
  tunable settings.

Reviewed-by: Andreas Dilger <andreas.dilger@whamcloud.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: Olaf Faaland <faaland1@llnl.gov>
Closes #7842
2019-03-21 12:47:57 -07:00
..
runfiles Improve `zpool labelclear` 2019-03-21 10:13:01 -07:00
test-runner flake8 pass 2019-02-04 09:02:46 -08:00
zfs-tests MMP interval and fail_intervals in uberblock 2019-03-21 12:47:57 -07:00
Makefile.am Add the ZFS Test Suite 2016-03-16 13:46:16 -07:00
README.md Update `tests/README.md` and fix markdown 2018-05-15 09:01:28 -07:00

README.md

ZFS Test Suite README

  1. Building and installing the ZFS Test Suite

The ZFS Test Suite runs under the test-runner framework. This framework is built along side the standard ZFS utilities and is included as part of zfs-test package. The zfs-test package can be built from source as follows:

$ ./configure
$ make pkg-utils

The resulting packages can be installed using the rpm or dpkg command as appropriate for your distributions. Alternately, if you have installed ZFS from a distributions repository (not from source) the zfs-test package may be provided for your distribution.

- Installed from source
$ rpm -ivh ./zfs-test*.rpm, or
$ dpkg -i ./zfs-test*.deb,

- Installed from package repository
$ yum install zfs-test
$ apt-get install zfs-test
  1. Running the ZFS Test Suite

The pre-requisites for running the ZFS Test Suite are:

  • Three scratch disks
    • Specify the disks you wish to use in the $DISKS variable, as a space delimited list like this: DISKS='vdb vdc vdd'. By default the zfs-tests.sh sciprt will construct three loopback devices to be used for testing: DISKS='loop0 loop1 loop2'.
  • A non-root user with a full set of basic privileges and the ability to sudo(8) to root without a password to run the test.
  • Specify any pools you wish to preserve as a space delimited list in the $KEEP variable. All pools detected at the start of testing are added automatically.
  • The ZFS Test Suite will add users and groups to test machine to verify functionality. Therefore it is strongly advised that a dedicated test machine, which can be a VM, be used for testing.

Once the pre-requisites are satisfied simply run the zfs-tests.sh script:

$ /usr/share/zfs/zfs-tests.sh

Alternately, the zfs-tests.sh script can be run from the source tree to allow developers to rapidly validate their work. In this mode the ZFS utilities and modules from the source tree will be used (rather than those installed on the system). In order to avoid certain types of failures you will need to ensure the ZFS udev rules are installed. This can be done manually or by ensuring some version of ZFS is installed on the system.

$ ./scripts/zfs-tests.sh

The following zfs-tests.sh options are supported:

-v          Verbose zfs-tests.sh output When specified additional
            information describing the test environment will be logged
            prior to invoking test-runner.  This includes the runfile
            being used, the DISKS targeted, pools to keep, etc.

-q          Quiet test-runner output.  When specified it is passed to
            test-runner(1) which causes output to be written to the
            console only for tests that do not pass and the results
            summary.

-x          Remove all testpools, dm, lo, and files (unsafe).  When
            specified the script will attempt to remove any leftover
            configuration from a previous test run.  This includes
            destroying any pools named testpool, unused DM devices,
            and loopback devices backed by file-vdevs.  This operation
            can be DANGEROUS because it is possible that the script
            will mistakenly remove a resource not related to the testing.

-k          Disable cleanup after test failure.  When specified the
            zfs-tests.sh script will not perform any additional cleanup
            when test-runner exists.  This is useful when the results of
            a specific test need to be preserved for further analysis.

-f          Use sparse files directly instread of loopback devices for
            the testing.  When running in this mode certain tests will
            be skipped which depend on real block devices.

-c          Only create and populate constrained path

-I NUM      Number of iterations

-d DIR      Create sparse files for vdevs in the DIR directory.  By
            default these files are created under /var/tmp/.

-s SIZE     Use vdevs of SIZE (default: 4G)

-r RUNFILE  Run tests in RUNFILE (default: linux.run)

-t PATH     Run single test at PATH relative to test suite

-T TAGS     Comma separated list of tags (default: 'functional')

-u USER     Run single test as USER (default: root)

The ZFS Test Suite allows the user to specify a subset of the tests via a runfile or list of tags.

The format of the runfile is explained in test-runner(1), and the files that zfs-tests.sh uses are available for reference under /usr/share/zfs/runfiles. To specify a custom runfile, use the -r option:

$ /usr/share/zfs/zfs-tests.sh -r my_tests.run

Otherwise user can set needed tags to run only specific tests.

  1. Test results

While the ZFS Test Suite is running, one informational line is printed at the end of each test, and a results summary is printed at the end of the run. The results summary includes the location of the complete logs, which is logged in the form /var/tmp/test_results/[ISO 8601 date]. A normal test run launched with the zfs-tests.sh wrapper script will look something like this:

$ /usr/share/zfs/zfs-tests.sh -v -d /tmp/test

--- Configuration ---
Runfile:         /usr/share/zfs/runfiles/linux.run
STF_TOOLS:       /usr/share/zfs/test-runner
STF_SUITE:       /usr/share/zfs/zfs-tests
STF_PATH:        /var/tmp/constrained_path.G0Sf
FILEDIR:         /tmp/test
FILES:           /tmp/test/file-vdev0 /tmp/test/file-vdev1 /tmp/test/file-vdev2
LOOPBACKS:       /dev/loop0 /dev/loop1 /dev/loop2 
DISKS:           loop0 loop1 loop2
NUM_DISKS:       3
FILESIZE:        4G
ITERATIONS:      1
TAGS:            functional
Keep pool(s):    rpool


/usr/share/zfs/test-runner/bin/test-runner.py  -c /usr/share/zfs/runfiles/linux.run \
    -T functional -i /usr/share/zfs/zfs-tests -I 1
Test: /usr/share/zfs/zfs-tests/tests/functional/arc/setup (run as root) [00:00] [PASS]
...more than 1100 additional tests...
Test: /usr/share/zfs/zfs-tests/tests/functional/zvol/zvol_swap/cleanup (run as root) [00:00] [PASS]

Results Summary
SKIP	  52
PASS	 1129

Running Time:	02:35:33
Percent passed:	95.6%
Log directory:	/var/tmp/test_results/20180515T054509