zfs/module/zfs/dbuf.c

4706 lines
134 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright 2011 Nexenta Systems, Inc. All rights reserved.
* Copyright (c) 2012, 2018 by Delphix. All rights reserved.
* Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
* Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
*/
#include <sys/zfs_context.h>
#include <sys/arc.h>
#include <sys/dmu.h>
#include <sys/dmu_send.h>
#include <sys/dmu_impl.h>
#include <sys/dbuf.h>
#include <sys/dmu_objset.h>
#include <sys/dsl_dataset.h>
#include <sys/dsl_dir.h>
#include <sys/dmu_tx.h>
#include <sys/spa.h>
#include <sys/zio.h>
#include <sys/dmu_zfetch.h>
#include <sys/sa.h>
#include <sys/sa_impl.h>
#include <sys/zfeature.h>
#include <sys/blkptr.h>
#include <sys/range_tree.h>
#include <sys/trace_dbuf.h>
#include <sys/callb.h>
#include <sys/abd.h>
#include <sys/vdev.h>
#include <sys/cityhash.h>
#include <sys/spa_impl.h>
kstat_t *dbuf_ksp;
typedef struct dbuf_stats {
/*
* Various statistics about the size of the dbuf cache.
*/
kstat_named_t cache_count;
kstat_named_t cache_size_bytes;
kstat_named_t cache_size_bytes_max;
/*
* Statistics regarding the bounds on the dbuf cache size.
*/
kstat_named_t cache_target_bytes;
kstat_named_t cache_lowater_bytes;
kstat_named_t cache_hiwater_bytes;
/*
* Total number of dbuf cache evictions that have occurred.
*/
kstat_named_t cache_total_evicts;
/*
* The distribution of dbuf levels in the dbuf cache and
* the total size of all dbufs at each level.
*/
kstat_named_t cache_levels[DN_MAX_LEVELS];
kstat_named_t cache_levels_bytes[DN_MAX_LEVELS];
/*
* Statistics about the dbuf hash table.
*/
kstat_named_t hash_hits;
kstat_named_t hash_misses;
kstat_named_t hash_collisions;
kstat_named_t hash_elements;
kstat_named_t hash_elements_max;
/*
* Number of sublists containing more than one dbuf in the dbuf
* hash table. Keep track of the longest hash chain.
*/
kstat_named_t hash_chains;
kstat_named_t hash_chain_max;
/*
* Number of times a dbuf_create() discovers that a dbuf was
* already created and in the dbuf hash table.
*/
kstat_named_t hash_insert_race;
/*
* Statistics about the size of the metadata dbuf cache.
*/
kstat_named_t metadata_cache_count;
kstat_named_t metadata_cache_size_bytes;
kstat_named_t metadata_cache_size_bytes_max;
/*
* For diagnostic purposes, this is incremented whenever we can't add
* something to the metadata cache because it's full, and instead put
* the data in the regular dbuf cache.
*/
kstat_named_t metadata_cache_overflow;
} dbuf_stats_t;
dbuf_stats_t dbuf_stats = {
{ "cache_count", KSTAT_DATA_UINT64 },
{ "cache_size_bytes", KSTAT_DATA_UINT64 },
{ "cache_size_bytes_max", KSTAT_DATA_UINT64 },
{ "cache_target_bytes", KSTAT_DATA_UINT64 },
{ "cache_lowater_bytes", KSTAT_DATA_UINT64 },
{ "cache_hiwater_bytes", KSTAT_DATA_UINT64 },
{ "cache_total_evicts", KSTAT_DATA_UINT64 },
{ { "cache_levels_N", KSTAT_DATA_UINT64 } },
{ { "cache_levels_bytes_N", KSTAT_DATA_UINT64 } },
{ "hash_hits", KSTAT_DATA_UINT64 },
{ "hash_misses", KSTAT_DATA_UINT64 },
{ "hash_collisions", KSTAT_DATA_UINT64 },
{ "hash_elements", KSTAT_DATA_UINT64 },
{ "hash_elements_max", KSTAT_DATA_UINT64 },
{ "hash_chains", KSTAT_DATA_UINT64 },
{ "hash_chain_max", KSTAT_DATA_UINT64 },
{ "hash_insert_race", KSTAT_DATA_UINT64 },
{ "metadata_cache_count", KSTAT_DATA_UINT64 },
{ "metadata_cache_size_bytes", KSTAT_DATA_UINT64 },
{ "metadata_cache_size_bytes_max", KSTAT_DATA_UINT64 },
{ "metadata_cache_overflow", KSTAT_DATA_UINT64 }
};
#define DBUF_STAT_INCR(stat, val) \
atomic_add_64(&dbuf_stats.stat.value.ui64, (val));
#define DBUF_STAT_DECR(stat, val) \
DBUF_STAT_INCR(stat, -(val));
#define DBUF_STAT_BUMP(stat) \
DBUF_STAT_INCR(stat, 1);
#define DBUF_STAT_BUMPDOWN(stat) \
DBUF_STAT_INCR(stat, -1);
#define DBUF_STAT_MAX(stat, v) { \
uint64_t _m; \
while ((v) > (_m = dbuf_stats.stat.value.ui64) && \
(_m != atomic_cas_64(&dbuf_stats.stat.value.ui64, _m, (v))))\
continue; \
}
typedef struct dbuf_hold_arg {
/* Function arguments */
dnode_t *dh_dn;
uint8_t dh_level;
uint64_t dh_blkid;
boolean_t dh_fail_sparse;
boolean_t dh_fail_uncached;
void *dh_tag;
dmu_buf_impl_t **dh_dbp;
/* Local variables */
dmu_buf_impl_t *dh_db;
dmu_buf_impl_t *dh_parent;
blkptr_t *dh_bp;
int dh_err;
dbuf_dirty_record_t *dh_dr;
} dbuf_hold_arg_t;
static dbuf_hold_arg_t *dbuf_hold_arg_create(dnode_t *dn, uint8_t level,
uint64_t blkid, boolean_t fail_sparse, boolean_t fail_uncached,
void *tag, dmu_buf_impl_t **dbp);
static int dbuf_hold_impl_arg(dbuf_hold_arg_t *dh);
static void dbuf_hold_arg_destroy(dbuf_hold_arg_t *dh);
static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx);
static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx);
extern inline void dmu_buf_init_user(dmu_buf_user_t *dbu,
dmu_buf_evict_func_t *evict_func_sync,
dmu_buf_evict_func_t *evict_func_async,
dmu_buf_t **clear_on_evict_dbufp);
/*
* Global data structures and functions for the dbuf cache.
*/
static kmem_cache_t *dbuf_kmem_cache;
static taskq_t *dbu_evict_taskq;
static kthread_t *dbuf_cache_evict_thread;
static kmutex_t dbuf_evict_lock;
static kcondvar_t dbuf_evict_cv;
static boolean_t dbuf_evict_thread_exit;
/*
* There are two dbuf caches; each dbuf can only be in one of them at a time.
*
* 1. Cache of metadata dbufs, to help make read-heavy administrative commands
* from /sbin/zfs run faster. The "metadata cache" specifically stores dbufs
* that represent the metadata that describes filesystems/snapshots/
* bookmarks/properties/etc. We only evict from this cache when we export a
* pool, to short-circuit as much I/O as possible for all administrative
* commands that need the metadata. There is no eviction policy for this
* cache, because we try to only include types in it which would occupy a
* very small amount of space per object but create a large impact on the
* performance of these commands. Instead, after it reaches a maximum size
* (which should only happen on very small memory systems with a very large
* number of filesystem objects), we stop taking new dbufs into the
* metadata cache, instead putting them in the normal dbuf cache.
*
* 2. LRU cache of dbufs. The dbuf cache maintains a list of dbufs that
* are not currently held but have been recently released. These dbufs
* are not eligible for arc eviction until they are aged out of the cache.
* Dbufs that are aged out of the cache will be immediately destroyed and
* become eligible for arc eviction.
*
* Dbufs are added to these caches once the last hold is released. If a dbuf is
* later accessed and still exists in the dbuf cache, then it will be removed
* from the cache and later re-added to the head of the cache.
*
* If a given dbuf meets the requirements for the metadata cache, it will go
* there, otherwise it will be considered for the generic LRU dbuf cache. The
* caches and the refcounts tracking their sizes are stored in an array indexed
* by those caches' matching enum values (from dbuf_cached_state_t).
*/
typedef struct dbuf_cache {
multilist_t *cache;
zfs_refcount_t size;
} dbuf_cache_t;
dbuf_cache_t dbuf_caches[DB_CACHE_MAX];
/* Size limits for the caches */
unsigned long dbuf_cache_max_bytes = 0;
unsigned long dbuf_metadata_cache_max_bytes = 0;
/* Set the default sizes of the caches to log2 fraction of arc size */
int dbuf_cache_shift = 5;
int dbuf_metadata_cache_shift = 6;
/*
* The LRU dbuf cache uses a three-stage eviction policy:
* - A low water marker designates when the dbuf eviction thread
* should stop evicting from the dbuf cache.
* - When we reach the maximum size (aka mid water mark), we
* signal the eviction thread to run.
* - The high water mark indicates when the eviction thread
* is unable to keep up with the incoming load and eviction must
* happen in the context of the calling thread.
*
* The dbuf cache:
* (max size)
* low water mid water hi water
* +----------------------------------------+----------+----------+
* | | | |
* | | | |
* | | | |
* | | | |
* +----------------------------------------+----------+----------+
* stop signal evict
* evicting eviction directly
* thread
*
* The high and low water marks indicate the operating range for the eviction
* thread. The low water mark is, by default, 90% of the total size of the
* cache and the high water mark is at 110% (both of these percentages can be
* changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct,
* respectively). The eviction thread will try to ensure that the cache remains
* within this range by waking up every second and checking if the cache is
* above the low water mark. The thread can also be woken up by callers adding
* elements into the cache if the cache is larger than the mid water (i.e max
* cache size). Once the eviction thread is woken up and eviction is required,
* it will continue evicting buffers until it's able to reduce the cache size
* to the low water mark. If the cache size continues to grow and hits the high
* water mark, then callers adding elements to the cache will begin to evict
* directly from the cache until the cache is no longer above the high water
* mark.
*/
/*
* The percentage above and below the maximum cache size.
*/
uint_t dbuf_cache_hiwater_pct = 10;
uint_t dbuf_cache_lowater_pct = 10;
/* ARGSUSED */
static int
dbuf_cons(void *vdb, void *unused, int kmflag)
{
dmu_buf_impl_t *db = vdb;
bzero(db, sizeof (dmu_buf_impl_t));
mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL);
cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL);
multilist_link_init(&db->db_cache_link);
zfs_refcount_create(&db->db_holds);
return (0);
}
/* ARGSUSED */
static void
dbuf_dest(void *vdb, void *unused)
{
dmu_buf_impl_t *db = vdb;
mutex_destroy(&db->db_mtx);
cv_destroy(&db->db_changed);
ASSERT(!multilist_link_active(&db->db_cache_link));
zfs_refcount_destroy(&db->db_holds);
}
/*
* dbuf hash table routines
*/
static dbuf_hash_table_t dbuf_hash_table;
static uint64_t dbuf_hash_count;
/*
* We use Cityhash for this. It's fast, and has good hash properties without
* requiring any large static buffers.
*/
static uint64_t
dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid)
{
return (cityhash4((uintptr_t)os, obj, (uint64_t)lvl, blkid));
}
#define DBUF_EQUAL(dbuf, os, obj, level, blkid) \
((dbuf)->db.db_object == (obj) && \
(dbuf)->db_objset == (os) && \
(dbuf)->db_level == (level) && \
(dbuf)->db_blkid == (blkid))
dmu_buf_impl_t *
dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid)
{
dbuf_hash_table_t *h = &dbuf_hash_table;
uint64_t hv;
uint64_t idx;
dmu_buf_impl_t *db;
hv = dbuf_hash(os, obj, level, blkid);
idx = hv & h->hash_table_mask;
mutex_enter(DBUF_HASH_MUTEX(h, idx));
for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) {
if (DBUF_EQUAL(db, os, obj, level, blkid)) {
mutex_enter(&db->db_mtx);
if (db->db_state != DB_EVICTING) {
mutex_exit(DBUF_HASH_MUTEX(h, idx));
return (db);
}
mutex_exit(&db->db_mtx);
}
}
mutex_exit(DBUF_HASH_MUTEX(h, idx));
return (NULL);
}
static dmu_buf_impl_t *
dbuf_find_bonus(objset_t *os, uint64_t object)
{
dnode_t *dn;
dmu_buf_impl_t *db = NULL;
if (dnode_hold(os, object, FTAG, &dn) == 0) {
rw_enter(&dn->dn_struct_rwlock, RW_READER);
if (dn->dn_bonus != NULL) {
db = dn->dn_bonus;
mutex_enter(&db->db_mtx);
}
rw_exit(&dn->dn_struct_rwlock);
dnode_rele(dn, FTAG);
}
return (db);
}
/*
* Insert an entry into the hash table. If there is already an element
* equal to elem in the hash table, then the already existing element
* will be returned and the new element will not be inserted.
* Otherwise returns NULL.
*/
static dmu_buf_impl_t *
dbuf_hash_insert(dmu_buf_impl_t *db)
{
dbuf_hash_table_t *h = &dbuf_hash_table;
objset_t *os = db->db_objset;
uint64_t obj = db->db.db_object;
int level = db->db_level;
uint64_t blkid, hv, idx;
dmu_buf_impl_t *dbf;
uint32_t i;
blkid = db->db_blkid;
hv = dbuf_hash(os, obj, level, blkid);
idx = hv & h->hash_table_mask;
mutex_enter(DBUF_HASH_MUTEX(h, idx));
for (dbf = h->hash_table[idx], i = 0; dbf != NULL;
dbf = dbf->db_hash_next, i++) {
if (DBUF_EQUAL(dbf, os, obj, level, blkid)) {
mutex_enter(&dbf->db_mtx);
if (dbf->db_state != DB_EVICTING) {
mutex_exit(DBUF_HASH_MUTEX(h, idx));
return (dbf);
}
mutex_exit(&dbf->db_mtx);
}
}
if (i > 0) {
DBUF_STAT_BUMP(hash_collisions);
if (i == 1)
DBUF_STAT_BUMP(hash_chains);
DBUF_STAT_MAX(hash_chain_max, i);
}
mutex_enter(&db->db_mtx);
db->db_hash_next = h->hash_table[idx];
h->hash_table[idx] = db;
mutex_exit(DBUF_HASH_MUTEX(h, idx));
atomic_inc_64(&dbuf_hash_count);
DBUF_STAT_MAX(hash_elements_max, dbuf_hash_count);
return (NULL);
}
/*
* This returns whether this dbuf should be stored in the metadata cache, which
* is based on whether it's from one of the dnode types that store data related
* to traversing dataset hierarchies.
*/
static boolean_t
dbuf_include_in_metadata_cache(dmu_buf_impl_t *db)
{
DB_DNODE_ENTER(db);
dmu_object_type_t type = DB_DNODE(db)->dn_type;
DB_DNODE_EXIT(db);
/* Check if this dbuf is one of the types we care about */
if (DMU_OT_IS_METADATA_CACHED(type)) {
/* If we hit this, then we set something up wrong in dmu_ot */
ASSERT(DMU_OT_IS_METADATA(type));
/*
* Sanity check for small-memory systems: don't allocate too
* much memory for this purpose.
*/
if (zfs_refcount_count(
&dbuf_caches[DB_DBUF_METADATA_CACHE].size) >
dbuf_metadata_cache_max_bytes) {
DBUF_STAT_BUMP(metadata_cache_overflow);
return (B_FALSE);
}
return (B_TRUE);
}
return (B_FALSE);
}
/*
* Remove an entry from the hash table. It must be in the EVICTING state.
*/
static void
dbuf_hash_remove(dmu_buf_impl_t *db)
{
dbuf_hash_table_t *h = &dbuf_hash_table;
uint64_t hv, idx;
dmu_buf_impl_t *dbf, **dbp;
hv = dbuf_hash(db->db_objset, db->db.db_object,
db->db_level, db->db_blkid);
idx = hv & h->hash_table_mask;
/*
* We mustn't hold db_mtx to maintain lock ordering:
* DBUF_HASH_MUTEX > db_mtx.
*/
ASSERT(zfs_refcount_is_zero(&db->db_holds));
ASSERT(db->db_state == DB_EVICTING);
ASSERT(!MUTEX_HELD(&db->db_mtx));
mutex_enter(DBUF_HASH_MUTEX(h, idx));
dbp = &h->hash_table[idx];
while ((dbf = *dbp) != db) {
dbp = &dbf->db_hash_next;
ASSERT(dbf != NULL);
}
*dbp = db->db_hash_next;
db->db_hash_next = NULL;
if (h->hash_table[idx] &&
h->hash_table[idx]->db_hash_next == NULL)
DBUF_STAT_BUMPDOWN(hash_chains);
mutex_exit(DBUF_HASH_MUTEX(h, idx));
atomic_dec_64(&dbuf_hash_count);
}
typedef enum {
DBVU_EVICTING,
DBVU_NOT_EVICTING
} dbvu_verify_type_t;
static void
dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type)
{
#ifdef ZFS_DEBUG
int64_t holds;
if (db->db_user == NULL)
return;
/* Only data blocks support the attachment of user data. */
ASSERT(db->db_level == 0);
/* Clients must resolve a dbuf before attaching user data. */
ASSERT(db->db.db_data != NULL);
ASSERT3U(db->db_state, ==, DB_CACHED);
holds = zfs_refcount_count(&db->db_holds);
if (verify_type == DBVU_EVICTING) {
/*
* Immediate eviction occurs when holds == dirtycnt.
* For normal eviction buffers, holds is zero on
* eviction, except when dbuf_fix_old_data() calls
* dbuf_clear_data(). However, the hold count can grow
* during eviction even though db_mtx is held (see
* dmu_bonus_hold() for an example), so we can only
* test the generic invariant that holds >= dirtycnt.
*/
ASSERT3U(holds, >=, db->db_dirtycnt);
} else {
if (db->db_user_immediate_evict == TRUE)
ASSERT3U(holds, >=, db->db_dirtycnt);
else
ASSERT3U(holds, >, 0);
}
#endif
}
static void
dbuf_evict_user(dmu_buf_impl_t *db)
{
dmu_buf_user_t *dbu = db->db_user;
ASSERT(MUTEX_HELD(&db->db_mtx));
if (dbu == NULL)
return;
dbuf_verify_user(db, DBVU_EVICTING);
db->db_user = NULL;
#ifdef ZFS_DEBUG
if (dbu->dbu_clear_on_evict_dbufp != NULL)
*dbu->dbu_clear_on_evict_dbufp = NULL;
#endif
/*
* There are two eviction callbacks - one that we call synchronously
* and one that we invoke via a taskq. The async one is useful for
* avoiding lock order reversals and limiting stack depth.
*
* Note that if we have a sync callback but no async callback,
* it's likely that the sync callback will free the structure
* containing the dbu. In that case we need to take care to not
* dereference dbu after calling the sync evict func.
*/
boolean_t has_async = (dbu->dbu_evict_func_async != NULL);
if (dbu->dbu_evict_func_sync != NULL)
dbu->dbu_evict_func_sync(dbu);
if (has_async) {
taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async,
dbu, 0, &dbu->dbu_tqent);
}
}
boolean_t
dbuf_is_metadata(dmu_buf_impl_t *db)
{
/*
* Consider indirect blocks and spill blocks to be meta data.
*/
if (db->db_level > 0 || db->db_blkid == DMU_SPILL_BLKID) {
return (B_TRUE);
} else {
boolean_t is_metadata;
DB_DNODE_ENTER(db);
is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type);
DB_DNODE_EXIT(db);
return (is_metadata);
}
}
/*
* This function *must* return indices evenly distributed between all
* sublists of the multilist. This is needed due to how the dbuf eviction
* code is laid out; dbuf_evict_thread() assumes dbufs are evenly
* distributed between all sublists and uses this assumption when
* deciding which sublist to evict from and how much to evict from it.
*/
unsigned int
dbuf_cache_multilist_index_func(multilist_t *ml, void *obj)
{
dmu_buf_impl_t *db = obj;
/*
* The assumption here, is the hash value for a given
* dmu_buf_impl_t will remain constant throughout it's lifetime
* (i.e. it's objset, object, level and blkid fields don't change).
* Thus, we don't need to store the dbuf's sublist index
* on insertion, as this index can be recalculated on removal.
*
* Also, the low order bits of the hash value are thought to be
* distributed evenly. Otherwise, in the case that the multilist
* has a power of two number of sublists, each sublists' usage
* would not be evenly distributed.
*/
return (dbuf_hash(db->db_objset, db->db.db_object,
db->db_level, db->db_blkid) %
multilist_get_num_sublists(ml));
}
static inline unsigned long
dbuf_cache_target_bytes(void)
{
return MIN(dbuf_cache_max_bytes,
arc_target_bytes() >> dbuf_cache_shift);
}
static inline uint64_t
dbuf_cache_hiwater_bytes(void)
{
uint64_t dbuf_cache_target = dbuf_cache_target_bytes();
return (dbuf_cache_target +
(dbuf_cache_target * dbuf_cache_hiwater_pct) / 100);
}
static inline uint64_t
dbuf_cache_lowater_bytes(void)
{
uint64_t dbuf_cache_target = dbuf_cache_target_bytes();
return (dbuf_cache_target -
(dbuf_cache_target * dbuf_cache_lowater_pct) / 100);
}
static inline boolean_t
dbuf_cache_above_hiwater(void)
{
return (zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) >
dbuf_cache_hiwater_bytes());
}
static inline boolean_t
dbuf_cache_above_lowater(void)
{
return (zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) >
dbuf_cache_lowater_bytes());
}
/*
* Evict the oldest eligible dbuf from the dbuf cache.
*/
static void
dbuf_evict_one(void)
{
int idx = multilist_get_random_index(dbuf_caches[DB_DBUF_CACHE].cache);
multilist_sublist_t *mls = multilist_sublist_lock(
dbuf_caches[DB_DBUF_CACHE].cache, idx);
ASSERT(!MUTEX_HELD(&dbuf_evict_lock));
dmu_buf_impl_t *db = multilist_sublist_tail(mls);
while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) {
db = multilist_sublist_prev(mls, db);
}
DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db,
multilist_sublist_t *, mls);
if (db != NULL) {
multilist_sublist_remove(mls, db);
multilist_sublist_unlock(mls);
(void) zfs_refcount_remove_many(
&dbuf_caches[DB_DBUF_CACHE].size, db->db.db_size, db);
DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
DBUF_STAT_BUMPDOWN(cache_count);
DBUF_STAT_DECR(cache_levels_bytes[db->db_level],
db->db.db_size);
ASSERT3U(db->db_caching_status, ==, DB_DBUF_CACHE);
db->db_caching_status = DB_NO_CACHE;
dbuf_destroy(db);
DBUF_STAT_MAX(cache_size_bytes_max,
zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size));
DBUF_STAT_BUMP(cache_total_evicts);
} else {
multilist_sublist_unlock(mls);
}
}
/*
* The dbuf evict thread is responsible for aging out dbufs from the
* cache. Once the cache has reached it's maximum size, dbufs are removed
* and destroyed. The eviction thread will continue running until the size
* of the dbuf cache is at or below the maximum size. Once the dbuf is aged
* out of the cache it is destroyed and becomes eligible for arc eviction.
*/
/* ARGSUSED */
static void
dbuf_evict_thread(void *unused)
{
callb_cpr_t cpr;
CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG);
mutex_enter(&dbuf_evict_lock);
while (!dbuf_evict_thread_exit) {
while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
CALLB_CPR_SAFE_BEGIN(&cpr);
(void) cv_timedwait_sig_hires(&dbuf_evict_cv,
&dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock);
}
mutex_exit(&dbuf_evict_lock);
/*
* Keep evicting as long as we're above the low water mark
* for the cache. We do this without holding the locks to
* minimize lock contention.
*/
while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
dbuf_evict_one();
}
mutex_enter(&dbuf_evict_lock);
}
dbuf_evict_thread_exit = B_FALSE;
cv_broadcast(&dbuf_evict_cv);
CALLB_CPR_EXIT(&cpr); /* drops dbuf_evict_lock */
thread_exit();
}
/*
* Wake up the dbuf eviction thread if the dbuf cache is at its max size.
* If the dbuf cache is at its high water mark, then evict a dbuf from the
* dbuf cache using the callers context.
*/
static void
dbuf_evict_notify(void)
{
/*
* We check if we should evict without holding the dbuf_evict_lock,
* because it's OK to occasionally make the wrong decision here,
* and grabbing the lock results in massive lock contention.
*/
if (zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) >
dbuf_cache_target_bytes()) {
if (dbuf_cache_above_hiwater())
dbuf_evict_one();
cv_signal(&dbuf_evict_cv);
}
}
static int
dbuf_kstat_update(kstat_t *ksp, int rw)
{
dbuf_stats_t *ds = ksp->ks_data;
if (rw == KSTAT_WRITE) {
return (SET_ERROR(EACCES));
} else {
ds->metadata_cache_size_bytes.value.ui64 = zfs_refcount_count(
&dbuf_caches[DB_DBUF_METADATA_CACHE].size);
ds->cache_size_bytes.value.ui64 =
zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size);
ds->cache_target_bytes.value.ui64 = dbuf_cache_target_bytes();
ds->cache_hiwater_bytes.value.ui64 = dbuf_cache_hiwater_bytes();
ds->cache_lowater_bytes.value.ui64 = dbuf_cache_lowater_bytes();
ds->hash_elements.value.ui64 = dbuf_hash_count;
}
return (0);
}
void
dbuf_init(void)
{
uint64_t hsize = 1ULL << 16;
dbuf_hash_table_t *h = &dbuf_hash_table;
int i;
/*
* The hash table is big enough to fill all of physical memory
* with an average block size of zfs_arc_average_blocksize (default 8K).
* By default, the table will take up
* totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
*/
while (hsize * zfs_arc_average_blocksize < physmem * PAGESIZE)
hsize <<= 1;
retry:
h->hash_table_mask = hsize - 1;
#if defined(_KERNEL)
/*
* Large allocations which do not require contiguous pages
* should be using vmem_alloc() in the linux kernel
*/
h->hash_table = vmem_zalloc(hsize * sizeof (void *), KM_SLEEP);
#else
h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP);
#endif
if (h->hash_table == NULL) {
/* XXX - we should really return an error instead of assert */
ASSERT(hsize > (1ULL << 10));
hsize >>= 1;
goto retry;
}
dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t",
sizeof (dmu_buf_impl_t),
0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0);
for (i = 0; i < DBUF_MUTEXES; i++)
mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL);
dbuf_stats_init(h);
/*
* Setup the parameters for the dbuf caches. We set the sizes of the
* dbuf cache and the metadata cache to 1/32nd and 1/16th (default)
* of the target size of the ARC. If the values has been specified as
* a module option and they're not greater than the target size of the
* ARC, then we honor that value.
*/
if (dbuf_cache_max_bytes == 0 ||
dbuf_cache_max_bytes >= arc_target_bytes()) {
dbuf_cache_max_bytes = arc_target_bytes() >> dbuf_cache_shift;
}
if (dbuf_metadata_cache_max_bytes == 0 ||
dbuf_metadata_cache_max_bytes >= arc_target_bytes()) {
dbuf_metadata_cache_max_bytes =
arc_target_bytes() >> dbuf_metadata_cache_shift;
}
/*
* All entries are queued via taskq_dispatch_ent(), so min/maxalloc
* configuration is not required.
*/
dbu_evict_taskq = taskq_create("dbu_evict", 1, defclsyspri, 0, 0, 0);
for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) {
dbuf_caches[dcs].cache =
multilist_create(sizeof (dmu_buf_impl_t),
offsetof(dmu_buf_impl_t, db_cache_link),
dbuf_cache_multilist_index_func);
zfs_refcount_create(&dbuf_caches[dcs].size);
}
dbuf_evict_thread_exit = B_FALSE;
mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL);
cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL);
dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread,
NULL, 0, &p0, TS_RUN, minclsyspri);
dbuf_ksp = kstat_create("zfs", 0, "dbufstats", "misc",
KSTAT_TYPE_NAMED, sizeof (dbuf_stats) / sizeof (kstat_named_t),
KSTAT_FLAG_VIRTUAL);
if (dbuf_ksp != NULL) {
dbuf_ksp->ks_data = &dbuf_stats;
dbuf_ksp->ks_update = dbuf_kstat_update;
kstat_install(dbuf_ksp);
for (i = 0; i < DN_MAX_LEVELS; i++) {
snprintf(dbuf_stats.cache_levels[i].name,
KSTAT_STRLEN, "cache_level_%d", i);
dbuf_stats.cache_levels[i].data_type =
KSTAT_DATA_UINT64;
snprintf(dbuf_stats.cache_levels_bytes[i].name,
KSTAT_STRLEN, "cache_level_%d_bytes", i);
dbuf_stats.cache_levels_bytes[i].data_type =
KSTAT_DATA_UINT64;
}
}
}
void
dbuf_fini(void)
{
dbuf_hash_table_t *h = &dbuf_hash_table;
int i;
dbuf_stats_destroy();
for (i = 0; i < DBUF_MUTEXES; i++)
mutex_destroy(&h->hash_mutexes[i]);
#if defined(_KERNEL)
/*
* Large allocations which do not require contiguous pages
* should be using vmem_free() in the linux kernel
*/
vmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
#else
kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
#endif
kmem_cache_destroy(dbuf_kmem_cache);
taskq_destroy(dbu_evict_taskq);
mutex_enter(&dbuf_evict_lock);
dbuf_evict_thread_exit = B_TRUE;
while (dbuf_evict_thread_exit) {
cv_signal(&dbuf_evict_cv);
cv_wait(&dbuf_evict_cv, &dbuf_evict_lock);
}
mutex_exit(&dbuf_evict_lock);
mutex_destroy(&dbuf_evict_lock);
cv_destroy(&dbuf_evict_cv);
for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) {
zfs_refcount_destroy(&dbuf_caches[dcs].size);
multilist_destroy(dbuf_caches[dcs].cache);
}
if (dbuf_ksp != NULL) {
kstat_delete(dbuf_ksp);
dbuf_ksp = NULL;
}
}
/*
* Other stuff.
*/
#ifdef ZFS_DEBUG
static void
dbuf_verify(dmu_buf_impl_t *db)
{
dnode_t *dn;
dbuf_dirty_record_t *dr;
ASSERT(MUTEX_HELD(&db->db_mtx));
if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY))
return;
ASSERT(db->db_objset != NULL);
DB_DNODE_ENTER(db);
dn = DB_DNODE(db);
if (dn == NULL) {
ASSERT(db->db_parent == NULL);
ASSERT(db->db_blkptr == NULL);
} else {
ASSERT3U(db->db.db_object, ==, dn->dn_object);
ASSERT3P(db->db_objset, ==, dn->dn_objset);
ASSERT3U(db->db_level, <, dn->dn_nlevels);
ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
db->db_blkid == DMU_SPILL_BLKID ||
!avl_is_empty(&dn->dn_dbufs));
}
if (db->db_blkid == DMU_BONUS_BLKID) {
ASSERT(dn != NULL);
ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID);
} else if (db->db_blkid == DMU_SPILL_BLKID) {
ASSERT(dn != NULL);
ASSERT0(db->db.db_offset);
} else {
ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size);
}
for (dr = db->db_data_pending; dr != NULL; dr = dr->dr_next)
ASSERT(dr->dr_dbuf == db);
for (dr = db->db_last_dirty; dr != NULL; dr = dr->dr_next)
ASSERT(dr->dr_dbuf == db);
/*
* We can't assert that db_size matches dn_datablksz because it
* can be momentarily different when another thread is doing
* dnode_set_blksz().
*/
if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) {
dr = db->db_data_pending;
/*
* It should only be modified in syncing context, so
* make sure we only have one copy of the data.
*/
ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf);
}
/* verify db->db_blkptr */
if (db->db_blkptr) {
if (db->db_parent == dn->dn_dbuf) {
/* db is pointed to by the dnode */
/* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */
if (DMU_OBJECT_IS_SPECIAL(db->db.db_object))
ASSERT(db->db_parent == NULL);
else
ASSERT(db->db_parent != NULL);
if (db->db_blkid != DMU_SPILL_BLKID)
ASSERT3P(db->db_blkptr, ==,
&dn->dn_phys->dn_blkptr[db->db_blkid]);
} else {
/* db is pointed to by an indirect block */
ASSERTV(int epb = db->db_parent->db.db_size >>
SPA_BLKPTRSHIFT);
ASSERT3U(db->db_parent->db_level, ==, db->db_level+1);
ASSERT3U(db->db_parent->db.db_object, ==,
db->db.db_object);
/*
* dnode_grow_indblksz() can make this fail if we don't
* have the struct_rwlock. XXX indblksz no longer
* grows. safe to do this now?
*/
if (RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
ASSERT3P(db->db_blkptr, ==,
((blkptr_t *)db->db_parent->db.db_data +
db->db_blkid % epb));
}
}
}
if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) &&
(db->db_buf == NULL || db->db_buf->b_data) &&
db->db.db_data && db->db_blkid != DMU_BONUS_BLKID &&
db->db_state != DB_FILL && !dn->dn_free_txg) {
/*
* If the blkptr isn't set but they have nonzero data,
* it had better be dirty, otherwise we'll lose that
* data when we evict this buffer.
*
* There is an exception to this rule for indirect blocks; in
* this case, if the indirect block is a hole, we fill in a few
* fields on each of the child blocks (importantly, birth time)
* to prevent hole birth times from being lost when you
* partially fill in a hole.
*/
if (db->db_dirtycnt == 0) {
if (db->db_level == 0) {
uint64_t *buf = db->db.db_data;
int i;
for (i = 0; i < db->db.db_size >> 3; i++) {
ASSERT(buf[i] == 0);
}
} else {
blkptr_t *bps = db->db.db_data;
ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==,
db->db.db_size);
/*
* We want to verify that all the blkptrs in the
* indirect block are holes, but we may have
* automatically set up a few fields for them.
* We iterate through each blkptr and verify
* they only have those fields set.
*/
for (int i = 0;
i < db->db.db_size / sizeof (blkptr_t);
i++) {
blkptr_t *bp = &bps[i];
ASSERT(ZIO_CHECKSUM_IS_ZERO(
&bp->blk_cksum));
ASSERT(
DVA_IS_EMPTY(&bp->blk_dva[0]) &&
DVA_IS_EMPTY(&bp->blk_dva[1]) &&
DVA_IS_EMPTY(&bp->blk_dva[2]));
ASSERT0(bp->blk_fill);
ASSERT0(bp->blk_pad[0]);
ASSERT0(bp->blk_pad[1]);
ASSERT(!BP_IS_EMBEDDED(bp));
ASSERT(BP_IS_HOLE(bp));
ASSERT0(bp->blk_phys_birth);
}
}
}
}
DB_DNODE_EXIT(db);
}
#endif
static void
dbuf_clear_data(dmu_buf_impl_t *db)
{
ASSERT(MUTEX_HELD(&db->db_mtx));
dbuf_evict_user(db);
ASSERT3P(db->db_buf, ==, NULL);
db->db.db_data = NULL;
if (db->db_state != DB_NOFILL)
db->db_state = DB_UNCACHED;
}
static void
dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf)
{
ASSERT(MUTEX_HELD(&db->db_mtx));
ASSERT(buf != NULL);
db->db_buf = buf;
ASSERT(buf->b_data != NULL);
db->db.db_data = buf->b_data;
}
/*
* Loan out an arc_buf for read. Return the loaned arc_buf.
*/
arc_buf_t *
dbuf_loan_arcbuf(dmu_buf_impl_t *db)
{
arc_buf_t *abuf;
ASSERT(db->db_blkid != DMU_BONUS_BLKID);
mutex_enter(&db->db_mtx);
if (arc_released(db->db_buf) || zfs_refcount_count(&db->db_holds) > 1) {
int blksz = db->db.db_size;
spa_t *spa = db->db_objset->os_spa;
mutex_exit(&db->db_mtx);
abuf = arc_loan_buf(spa, B_FALSE, blksz);
bcopy(db->db.db_data, abuf->b_data, blksz);
} else {
abuf = db->db_buf;
arc_loan_inuse_buf(abuf, db);
db->db_buf = NULL;
dbuf_clear_data(db);
mutex_exit(&db->db_mtx);
}
return (abuf);
}
/*
* Calculate which level n block references the data at the level 0 offset
* provided.
*/
uint64_t
dbuf_whichblock(const dnode_t *dn, const int64_t level, const uint64_t offset)
{
if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) {
/*
* The level n blkid is equal to the level 0 blkid divided by
* the number of level 0s in a level n block.
*
* The level 0 blkid is offset >> datablkshift =
* offset / 2^datablkshift.
*
* The number of level 0s in a level n is the number of block
* pointers in an indirect block, raised to the power of level.
* This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level =
* 2^(level*(indblkshift - SPA_BLKPTRSHIFT)).
*
* Thus, the level n blkid is: offset /
* ((2^datablkshift)*(2^(level*(indblkshift-SPA_BLKPTRSHIFT))))
* = offset / 2^(datablkshift + level *
* (indblkshift - SPA_BLKPTRSHIFT))
* = offset >> (datablkshift + level *
* (indblkshift - SPA_BLKPTRSHIFT))
*/
const unsigned exp = dn->dn_datablkshift +
level * (dn->dn_indblkshift - SPA_BLKPTRSHIFT);
if (exp >= 8 * sizeof (offset)) {
/* This only happens on the highest indirection level */
ASSERT3U(level, ==, dn->dn_nlevels - 1);
return (0);
}
ASSERT3U(exp, <, 8 * sizeof (offset));
return (offset >> exp);
} else {
ASSERT3U(offset, <, dn->dn_datablksz);
return (0);
}
}
static void
dbuf_read_done(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
arc_buf_t *buf, void *vdb)
{
dmu_buf_impl_t *db = vdb;
mutex_enter(&db->db_mtx);
ASSERT3U(db->db_state, ==, DB_READ);
/*
* All reads are synchronous, so we must have a hold on the dbuf
*/
ASSERT(zfs_refcount_count(&db->db_holds) > 0);
ASSERT(db->db_buf == NULL);
ASSERT(db->db.db_data == NULL);
if (buf == NULL) {
/* i/o error */
ASSERT(zio == NULL || zio->io_error != 0);
ASSERT(db->db_blkid != DMU_BONUS_BLKID);
ASSERT3P(db->db_buf, ==, NULL);
db->db_state = DB_UNCACHED;
} else if (db->db_level == 0 && db->db_freed_in_flight) {
/* freed in flight */
ASSERT(zio == NULL || zio->io_error == 0);
arc_release(buf, db);
bzero(buf->b_data, db->db.db_size);
arc_buf_freeze(buf);
db->db_freed_in_flight = FALSE;
dbuf_set_data(db, buf);
db->db_state = DB_CACHED;
} else {
/* success */
ASSERT(zio == NULL || zio->io_error == 0);
dbuf_set_data(db, buf);
db->db_state = DB_CACHED;
}
cv_broadcast(&db->db_changed);
dbuf_rele_and_unlock(db, NULL, B_FALSE);
}
/*
* This function ensures that, when doing a decrypting read of a block,
* we make sure we have decrypted the dnode associated with it. We must do
* this so that we ensure we are fully authenticating the checksum-of-MACs
* tree from the root of the objset down to this block. Indirect blocks are
* always verified against their secure checksum-of-MACs assuming that the
* dnode containing them is correct. Now that we are doing a decrypting read,
* we can be sure that the key is loaded and verify that assumption. This is
* especially important considering that we always read encrypted dnode
* blocks as raw data (without verifying their MACs) to start, and
* decrypt / authenticate them when we need to read an encrypted bonus buffer.
*/
static int
dbuf_read_verify_dnode_crypt(dmu_buf_impl_t *db, uint32_t flags)
{
int err = 0;
objset_t *os = db->db_objset;
arc_buf_t *dnode_abuf;
dnode_t *dn;
zbookmark_phys_t zb;
ASSERT(MUTEX_HELD(&db->db_mtx));
if (!os->os_encrypted || os->os_raw_receive ||
(flags & DB_RF_NO_DECRYPT) != 0)
return (0);
DB_DNODE_ENTER(db);
dn = DB_DNODE(db);
dnode_abuf = (dn->dn_dbuf != NULL) ? dn->dn_dbuf->db_buf : NULL;
if (dnode_abuf == NULL || !arc_is_encrypted(dnode_abuf)) {
DB_DNODE_EXIT(db);
return (0);
}
SET_BOOKMARK(&zb, dmu_objset_id(os),
DMU_META_DNODE_OBJECT, 0, dn->dn_dbuf->db_blkid);
err = arc_untransform(dnode_abuf, os->os_spa, &zb, B_TRUE);
/*
* An error code of EACCES tells us that the key is still not
* available. This is ok if we are only reading authenticated
* (and therefore non-encrypted) blocks.
*/
if (err == EACCES && ((db->db_blkid != DMU_BONUS_BLKID &&
!DMU_OT_IS_ENCRYPTED(dn->dn_type)) ||
(db->db_blkid == DMU_BONUS_BLKID &&
!DMU_OT_IS_ENCRYPTED(dn->dn_bonustype))))
err = 0;
DB_DNODE_EXIT(db);
return (err);
}
static int
dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
{
dnode_t *dn;
zbookmark_phys_t zb;
uint32_t aflags = ARC_FLAG_NOWAIT;
int err, zio_flags = 0;
DB_DNODE_ENTER(db);
dn = DB_DNODE(db);
ASSERT(!zfs_refcount_is_zero(&db->db_holds));
/* We need the struct_rwlock to prevent db_blkptr from changing. */
ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
ASSERT(MUTEX_HELD(&db->db_mtx));
ASSERT(db->db_state == DB_UNCACHED);
ASSERT(db->db_buf == NULL);
if (db->db_blkid == DMU_BONUS_BLKID) {
/*
* The bonus length stored in the dnode may be less than
* the maximum available space in the bonus buffer.
*/
int bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen);
int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
/* if the underlying dnode block is encrypted, decrypt it */
err = dbuf_read_verify_dnode_crypt(db, flags);
if (err != 0) {
DB_DNODE_EXIT(db);
mutex_exit(&db->db_mtx);
return (err);
}
ASSERT3U(bonuslen, <=, db->db.db_size);
db->db.db_data = kmem_alloc(max_bonuslen, KM_SLEEP);
arc_space_consume(max_bonuslen, ARC_SPACE_BONUS);
if (bonuslen < max_bonuslen)
bzero(db->db.db_data, max_bonuslen);
if (bonuslen)
bcopy(DN_BONUS(dn->dn_phys), db->db.db_data, bonuslen);
DB_DNODE_EXIT(db);
db->db_state = DB_CACHED;
mutex_exit(&db->db_mtx);
return (0);
}
/*
* Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync()
* processes the delete record and clears the bp while we are waiting
* for the dn_mtx (resulting in a "no" from block_freed).
*/
if (db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr) ||
(db->db_level == 0 && (dnode_block_freed(dn, db->db_blkid) ||
BP_IS_HOLE(db->db_blkptr)))) {
arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
dbuf_set_data(db, arc_alloc_buf(db->db_objset->os_spa, db, type,
db->db.db_size));
bzero(db->db.db_data, db->db.db_size);
if (db->db_blkptr != NULL && db->db_level > 0 &&
BP_IS_HOLE(db->db_blkptr) &&
db->db_blkptr->blk_birth != 0) {
blkptr_t *bps = db->db.db_data;
for (int i = 0; i < ((1 <<
DB_DNODE(db)->dn_indblkshift) / sizeof (blkptr_t));
i++) {
blkptr_t *bp = &bps[i];
ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
1 << dn->dn_indblkshift);
BP_SET_LSIZE(bp,
BP_GET_LEVEL(db->db_blkptr) == 1 ?
dn->dn_datablksz :
BP_GET_LSIZE(db->db_blkptr));
BP_SET_TYPE(bp, BP_GET_TYPE(db->db_blkptr));
BP_SET_LEVEL(bp,
BP_GET_LEVEL(db->db_blkptr) - 1);
BP_SET_BIRTH(bp, db->db_blkptr->blk_birth, 0);
}
}
DB_DNODE_EXIT(db);
db->db_state = DB_CACHED;
mutex_exit(&db->db_mtx);
return (0);
}
SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
db->db.db_object, db->db_level, db->db_blkid);
/*
* All bps of an encrypted os should have the encryption bit set.
* If this is not true it indicates tampering and we report an error.
*/
if (db->db_objset->os_encrypted && !BP_USES_CRYPT(db->db_blkptr)) {
spa_log_error(db->db_objset->os_spa, &zb);
zfs_panic_recover("unencrypted block in encrypted "
"object set %llu", dmu_objset_id(db->db_objset));
DB_DNODE_EXIT(db);
mutex_exit(&db->db_mtx);
return (SET_ERROR(EIO));
}
err = dbuf_read_verify_dnode_crypt(db, flags);
if (err != 0) {
DB_DNODE_EXIT(db);
mutex_exit(&db->db_mtx);
return (err);
}
DB_DNODE_EXIT(db);
db->db_state = DB_READ;
mutex_exit(&db->db_mtx);
if (DBUF_IS_L2CACHEABLE(db))
aflags |= ARC_FLAG_L2CACHE;
dbuf_add_ref(db, NULL);
zio_flags = (flags & DB_RF_CANFAIL) ?
ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED;
if ((flags & DB_RF_NO_DECRYPT) && BP_IS_PROTECTED(db->db_blkptr))
zio_flags |= ZIO_FLAG_RAW;
err = arc_read(zio, db->db_objset->os_spa, db->db_blkptr,
dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, zio_flags,
&aflags, &zb);
return (err);
}
/*
* This is our just-in-time copy function. It makes a copy of buffers that
* have been modified in a previous transaction group before we access them in
* the current active group.
*
* This function is used in three places: when we are dirtying a buffer for the
* first time in a txg, when we are freeing a range in a dnode that includes
* this buffer, and when we are accessing a buffer which was received compressed
* and later referenced in a WRITE_BYREF record.
*
* Note that when we are called from dbuf_free_range() we do not put a hold on
* the buffer, we just traverse the active dbuf list for the dnode.
*/
static void
dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg)
{
dbuf_dirty_record_t *dr = db->db_last_dirty;
ASSERT(MUTEX_HELD(&db->db_mtx));
ASSERT(db->db.db_data != NULL);
ASSERT(db->db_level == 0);
ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
if (dr == NULL ||
(dr->dt.dl.dr_data !=
((db->db_blkid == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf)))
return;
/*
* If the last dirty record for this dbuf has not yet synced
* and its referencing the dbuf data, either:
* reset the reference to point to a new copy,
* or (if there a no active holders)
* just null out the current db_data pointer.
*/
ASSERT3U(dr->dr_txg, >=, txg - 2);
if (db->db_blkid == DMU_BONUS_BLKID) {
dnode_t *dn = DB_DNODE(db);
int bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
dr->dt.dl.dr_data = kmem_alloc(bonuslen, KM_SLEEP);
arc_space_consume(bonuslen, ARC_SPACE_BONUS);
bcopy(db->db.db_data, dr->dt.dl.dr_data, bonuslen);
} else if (zfs_refcount_count(&db->db_holds) > db->db_dirtycnt) {
dnode_t *dn = DB_DNODE(db);
int size = arc_buf_size(db->db_buf);
arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
spa_t *spa = db->db_objset->os_spa;
enum zio_compress compress_type =
arc_get_compression(db->db_buf);
if (arc_is_encrypted(db->db_buf)) {
boolean_t byteorder;
uint8_t salt[ZIO_DATA_SALT_LEN];
uint8_t iv[ZIO_DATA_IV_LEN];
uint8_t mac[ZIO_DATA_MAC_LEN];
arc_get_raw_params(db->db_buf, &byteorder, salt,
iv, mac);
dr->dt.dl.dr_data = arc_alloc_raw_buf(spa, db,
dmu_objset_id(dn->dn_objset), byteorder, salt, iv,
mac, dn->dn_type, size, arc_buf_lsize(db->db_buf),
compress_type);
} else if (compress_type != ZIO_COMPRESS_OFF) {
ASSERT3U(type, ==, ARC_BUFC_DATA);
dr->dt.dl.dr_data = arc_alloc_compressed_buf(spa, db,
size, arc_buf_lsize(db->db_buf), compress_type);
} else {
dr->dt.dl.dr_data = arc_alloc_buf(spa, db, type, size);
}
bcopy(db->db.db_data, dr->dt.dl.dr_data->b_data, size);
} else {
db->db_buf = NULL;
dbuf_clear_data(db);
}
}
int
dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
{
int err = 0;
boolean_t prefetch;
dnode_t *dn;
/*
* We don't have to hold the mutex to check db_state because it
* can't be freed while we have a hold on the buffer.
*/
ASSERT(!zfs_refcount_is_zero(&db->db_holds));
if (db->db_state == DB_NOFILL)
return (SET_ERROR(EIO));
DB_DNODE_ENTER(db);
dn = DB_DNODE(db);
if ((flags & DB_RF_HAVESTRUCT) == 0)
rw_enter(&dn->dn_struct_rwlock, RW_READER);
prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
(flags & DB_RF_NOPREFETCH) == 0 && dn != NULL &&
DBUF_IS_CACHEABLE(db);
mutex_enter(&db->db_mtx);
if (db->db_state == DB_CACHED) {
spa_t *spa = dn->dn_objset->os_spa;
/*
* Ensure that this block's dnode has been decrypted if
* the caller has requested decrypted data.
*/
err = dbuf_read_verify_dnode_crypt(db, flags);
/*
* If the arc buf is compressed or encrypted and the caller
* requested uncompressed data, we need to untransform it
* before returning. We also call arc_untransform() on any
* unauthenticated blocks, which will verify their MAC if
* the key is now available.
*/
if (err == 0 && db->db_buf != NULL &&
(flags & DB_RF_NO_DECRYPT) == 0 &&
(arc_is_encrypted(db->db_buf) ||
arc_is_unauthenticated(db->db_buf) ||
arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF)) {
zbookmark_phys_t zb;
SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
db->db.db_object, db->db_level, db->db_blkid);
dbuf_fix_old_data(db, spa_syncing_txg(spa));
err = arc_untransform(db->db_buf, spa, &zb, B_FALSE);
dbuf_set_data(db, db->db_buf);
}
mutex_exit(&db->db_mtx);
if (err == 0 && prefetch)
dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
if ((flags & DB_RF_HAVESTRUCT) == 0)
rw_exit(&dn->dn_struct_rwlock);
DB_DNODE_EXIT(db);
DBUF_STAT_BUMP(hash_hits);
} else if (db->db_state == DB_UNCACHED) {
spa_t *spa = dn->dn_objset->os_spa;
boolean_t need_wait = B_FALSE;
if (zio == NULL &&
db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)) {
zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
need_wait = B_TRUE;
}
err = dbuf_read_impl(db, zio, flags);
/* dbuf_read_impl has dropped db_mtx for us */
if (!err && prefetch)
dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
if ((flags & DB_RF_HAVESTRUCT) == 0)
rw_exit(&dn->dn_struct_rwlock);
DB_DNODE_EXIT(db);
DBUF_STAT_BUMP(hash_misses);
/*
* If we created a zio_root we must execute it to avoid
* leaking it, even if it isn't attached to any work due
* to an error in dbuf_read_impl().
*/
if (need_wait) {
if (err == 0)
err = zio_wait(zio);
else
VERIFY0(zio_wait(zio));
}
} else {
/*
* Another reader came in while the dbuf was in flight
* between UNCACHED and CACHED. Either a writer will finish
* writing the buffer (sending the dbuf to CACHED) or the
* first reader's request will reach the read_done callback
* and send the dbuf to CACHED. Otherwise, a failure
* occurred and the dbuf went to UNCACHED.
*/
mutex_exit(&db->db_mtx);
if (prefetch)
dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
if ((flags & DB_RF_HAVESTRUCT) == 0)
rw_exit(&dn->dn_struct_rwlock);
DB_DNODE_EXIT(db);
DBUF_STAT_BUMP(hash_misses);
/* Skip the wait per the caller's request. */
mutex_enter(&db->db_mtx);
if ((flags & DB_RF_NEVERWAIT) == 0) {
while (db->db_state == DB_READ ||
db->db_state == DB_FILL) {
ASSERT(db->db_state == DB_READ ||
(flags & DB_RF_HAVESTRUCT) == 0);
DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *,
db, zio_t *, zio);
cv_wait(&db->db_changed, &db->db_mtx);
}
if (db->db_state == DB_UNCACHED)
err = SET_ERROR(EIO);
}
mutex_exit(&db->db_mtx);
}
return (err);
}
static void
dbuf_noread(dmu_buf_impl_t *db)
{
ASSERT(!zfs_refcount_is_zero(&db->db_holds));
ASSERT(db->db_blkid != DMU_BONUS_BLKID);
mutex_enter(&db->db_mtx);
while (db->db_state == DB_READ || db->db_state == DB_FILL)
cv_wait(&db->db_changed, &db->db_mtx);
if (db->db_state == DB_UNCACHED) {
arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
spa_t *spa = db->db_objset->os_spa;
ASSERT(db->db_buf == NULL);
ASSERT(db->db.db_data == NULL);
dbuf_set_data(db, arc_alloc_buf(spa, db, type, db->db.db_size));
db->db_state = DB_FILL;
} else if (db->db_state == DB_NOFILL) {
dbuf_clear_data(db);
} else {
ASSERT3U(db->db_state, ==, DB_CACHED);
}
mutex_exit(&db->db_mtx);
}
void
dbuf_unoverride(dbuf_dirty_record_t *dr)
{
dmu_buf_impl_t *db = dr->dr_dbuf;
blkptr_t *bp = &dr->dt.dl.dr_overridden_by;
uint64_t txg = dr->dr_txg;
ASSERT(MUTEX_HELD(&db->db_mtx));
/*
* This assert is valid because dmu_sync() expects to be called by
* a zilog's get_data while holding a range lock. This call only
* comes from dbuf_dirty() callers who must also hold a range lock.
*/
ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC);
ASSERT(db->db_level == 0);
if (db->db_blkid == DMU_BONUS_BLKID ||
dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN)
return;
ASSERT(db->db_data_pending != dr);
/* free this block */
if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite)
zio_free(db->db_objset->os_spa, txg, bp);
dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
dr->dt.dl.dr_nopwrite = B_FALSE;
dr->dt.dl.dr_has_raw_params = B_FALSE;
/*
* Release the already-written buffer, so we leave it in
* a consistent dirty state. Note that all callers are
* modifying the buffer, so they will immediately do
* another (redundant) arc_release(). Therefore, leave
* the buf thawed to save the effort of freezing &
* immediately re-thawing it.
*/
arc_release(dr->dt.dl.dr_data, db);
}
/*
* Evict (if its unreferenced) or clear (if its referenced) any level-0
* data blocks in the free range, so that any future readers will find
* empty blocks.
*/
void
dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid,
dmu_tx_t *tx)
{
dmu_buf_impl_t *db_search;
dmu_buf_impl_t *db, *db_next;
uint64_t txg = tx->tx_txg;
avl_index_t where;
if (end_blkid > dn->dn_maxblkid &&
!(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID))
end_blkid = dn->dn_maxblkid;
dprintf_dnode(dn, "start=%llu end=%llu\n", start_blkid, end_blkid);
db_search = kmem_alloc(sizeof (dmu_buf_impl_t), KM_SLEEP);
db_search->db_level = 0;
db_search->db_blkid = start_blkid;
db_search->db_state = DB_SEARCH;
mutex_enter(&dn->dn_dbufs_mtx);
db = avl_find(&dn->dn_dbufs, db_search, &where);
ASSERT3P(db, ==, NULL);
db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
for (; db != NULL; db = db_next) {
db_next = AVL_NEXT(&dn->dn_dbufs, db);
ASSERT(db->db_blkid != DMU_BONUS_BLKID);
if (db->db_level != 0 || db->db_blkid > end_blkid) {
break;
}
ASSERT3U(db->db_blkid, >=, start_blkid);
/* found a level 0 buffer in the range */
mutex_enter(&db->db_mtx);
if (dbuf_undirty(db, tx)) {
/* mutex has been dropped and dbuf destroyed */
continue;
}
if (db->db_state == DB_UNCACHED ||
db->db_state == DB_NOFILL ||
db->db_state == DB_EVICTING) {
ASSERT(db->db.db_data == NULL);
mutex_exit(&db->db_mtx);
continue;
}
if (db->db_state == DB_READ || db->db_state == DB_FILL) {
/* will be handled in dbuf_read_done or dbuf_rele */
db->db_freed_in_flight = TRUE;
mutex_exit(&db->db_mtx);
continue;
}
if (zfs_refcount_count(&db->db_holds) == 0) {
ASSERT(db->db_buf);
dbuf_destroy(db);
continue;
}
/* The dbuf is referenced */
if (db->db_last_dirty != NULL) {
dbuf_dirty_record_t *dr = db->db_last_dirty;
if (dr->dr_txg == txg) {
/*
* This buffer is "in-use", re-adjust the file
* size to reflect that this buffer may
* contain new data when we sync.
*/
if (db->db_blkid != DMU_SPILL_BLKID &&
db->db_blkid > dn->dn_maxblkid)
dn->dn_maxblkid = db->db_blkid;
dbuf_unoverride(dr);
} else {
/*
* This dbuf is not dirty in the open context.
* Either uncache it (if its not referenced in
* the open context) or reset its contents to
* empty.
*/
dbuf_fix_old_data(db, txg);
}
}
/* clear the contents if its cached */
if (db->db_state == DB_CACHED) {
ASSERT(db->db.db_data != NULL);
arc_release(db->db_buf, db);
bzero(db->db.db_data, db->db.db_size);
arc_buf_freeze(db->db_buf);
}
mutex_exit(&db->db_mtx);
}
kmem_free(db_search, sizeof (dmu_buf_impl_t));
mutex_exit(&dn->dn_dbufs_mtx);
}
void
dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx)
{
arc_buf_t *buf, *obuf;
int osize = db->db.db_size;
arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
dnode_t *dn;
ASSERT(db->db_blkid != DMU_BONUS_BLKID);
DB_DNODE_ENTER(db);
dn = DB_DNODE(db);
/* XXX does *this* func really need the lock? */
ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
/*
* This call to dmu_buf_will_dirty() with the dn_struct_rwlock held
* is OK, because there can be no other references to the db
* when we are changing its size, so no concurrent DB_FILL can
* be happening.
*/
/*
* XXX we should be doing a dbuf_read, checking the return
* value and returning that up to our callers
*/
dmu_buf_will_dirty(&db->db, tx);
/* create the data buffer for the new block */
buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size);
/* copy old block data to the new block */
obuf = db->db_buf;
bcopy(obuf->b_data, buf->b_data, MIN(osize, size));
/* zero the remainder */
if (size > osize)
bzero((uint8_t *)buf->b_data + osize, size - osize);
mutex_enter(&db->db_mtx);
dbuf_set_data(db, buf);
arc_buf_destroy(obuf, db);
db->db.db_size = size;
if (db->db_level == 0) {
db->db_last_dirty->dt.dl.dr_data = buf;
}
ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
ASSERT3U(db->db_last_dirty->dr_accounted, ==, osize);
db->db_last_dirty->dr_accounted = size;
mutex_exit(&db->db_mtx);
dmu_objset_willuse_space(dn->dn_objset, size - osize, tx);
DB_DNODE_EXIT(db);
}
void
dbuf_release_bp(dmu_buf_impl_t *db)
{
ASSERTV(objset_t *os = db->db_objset);
ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
ASSERT(arc_released(os->os_phys_buf) ||
list_link_active(&os->os_dsl_dataset->ds_synced_link));
ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf));
(void) arc_release(db->db_buf, db);
}
/*
* We already have a dirty record for this TXG, and we are being
* dirtied again.
*/
static void
dbuf_redirty(dbuf_dirty_record_t *dr)
{
dmu_buf_impl_t *db = dr->dr_dbuf;
ASSERT(MUTEX_HELD(&db->db_mtx));
if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) {
/*
* If this buffer has already been written out,
* we now need to reset its state.
*/
dbuf_unoverride(dr);
if (db->db.db_object != DMU_META_DNODE_OBJECT &&
db->db_state != DB_NOFILL) {
/* Already released on initial dirty, so just thaw. */
ASSERT(arc_released(db->db_buf));
arc_buf_thaw(db->db_buf);
}
}
}
dbuf_dirty_record_t *
dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
{
dnode_t *dn;
objset_t *os;
dbuf_dirty_record_t **drp, *dr;
int drop_struct_lock = FALSE;
int txgoff = tx->tx_txg & TXG_MASK;
ASSERT(tx->tx_txg != 0);
ASSERT(!zfs_refcount_is_zero(&db->db_holds));
DMU_TX_DIRTY_BUF(tx, db);
DB_DNODE_ENTER(db);
dn = DB_DNODE(db);
/*
* Shouldn't dirty a regular buffer in syncing context. Private
* objects may be dirtied in syncing context, but only if they
* were already pre-dirtied in open context.
*/
#ifdef DEBUG
if (dn->dn_objset->os_dsl_dataset != NULL) {
rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
RW_READER, FTAG);
}
ASSERT(!dmu_tx_is_syncing(tx) ||
BP_IS_HOLE(dn->dn_objset->os_rootbp) ||
DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
dn->dn_objset->os_dsl_dataset == NULL);
if (dn->dn_objset->os_dsl_dataset != NULL)
rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG);
#endif
/*
* We make this assert for private objects as well, but after we
* check if we're already dirty. They are allowed to re-dirty
* in syncing context.
*/
ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
(dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
mutex_enter(&db->db_mtx);
/*
* XXX make this true for indirects too? The problem is that
* transactions created with dmu_tx_create_assigned() from
* syncing context don't bother holding ahead.
*/
ASSERT(db->db_level != 0 ||
db->db_state == DB_CACHED || db->db_state == DB_FILL ||
db->db_state == DB_NOFILL);
mutex_enter(&dn->dn_mtx);
/*
* Don't set dirtyctx to SYNC if we're just modifying this as we
* initialize the objset.
*/
if (dn->dn_dirtyctx == DN_UNDIRTIED) {
if (dn->dn_objset->os_dsl_dataset != NULL) {
rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
RW_READER, FTAG);
}
if (!BP_IS_HOLE(dn->dn_objset->os_rootbp)) {
dn->dn_dirtyctx = (dmu_tx_is_syncing(tx) ?
DN_DIRTY_SYNC : DN_DIRTY_OPEN);
ASSERT(dn->dn_dirtyctx_firstset == NULL);
dn->dn_dirtyctx_firstset = kmem_alloc(1, KM_SLEEP);
}
if (dn->dn_objset->os_dsl_dataset != NULL) {
rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
FTAG);
}
}
if (tx->tx_txg > dn->dn_dirty_txg)
dn->dn_dirty_txg = tx->tx_txg;
mutex_exit(&dn->dn_mtx);
if (db->db_blkid == DMU_SPILL_BLKID)
dn->dn_have_spill = B_TRUE;
/*
* If this buffer is already dirty, we're done.
*/
drp = &db->db_last_dirty;
ASSERT(*drp == NULL || (*drp)->dr_txg <= tx->tx_txg ||
db->db.db_object == DMU_META_DNODE_OBJECT);
while ((dr = *drp) != NULL && dr->dr_txg > tx->tx_txg)
drp = &dr->dr_next;
if (dr && dr->dr_txg == tx->tx_txg) {
DB_DNODE_EXIT(db);
dbuf_redirty(dr);
mutex_exit(&db->db_mtx);
return (dr);
}
/*
* Only valid if not already dirty.
*/
ASSERT(dn->dn_object == 0 ||
dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
(dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
ASSERT3U(dn->dn_nlevels, >, db->db_level);
/*
* We should only be dirtying in syncing context if it's the
* mos or we're initializing the os or it's a special object.
* However, we are allowed to dirty in syncing context provided
* we already dirtied it in open context. Hence we must make
* this assertion only if we're not already dirty.
*/
os = dn->dn_objset;
VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(os->os_spa));
#ifdef DEBUG
if (dn->dn_objset->os_dsl_dataset != NULL)
rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG);
ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp));
if (dn->dn_objset->os_dsl_dataset != NULL)
rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG);
#endif
ASSERT(db->db.db_size != 0);
dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
if (db->db_blkid != DMU_BONUS_BLKID) {
dmu_objset_willuse_space(os, db->db.db_size, tx);
}
/*
* If this buffer is dirty in an old transaction group we need
* to make a copy of it so that the changes we make in this
* transaction group won't leak out when we sync the older txg.
*/
dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP);
list_link_init(&dr->dr_dirty_node);
if (db->db_level == 0) {
void *data_old = db->db_buf;
if (db->db_state != DB_NOFILL) {
if (db->db_blkid == DMU_BONUS_BLKID) {
dbuf_fix_old_data(db, tx->tx_txg);
data_old = db->db.db_data;
} else if (db->db.db_object != DMU_META_DNODE_OBJECT) {
/*
* Release the data buffer from the cache so
* that we can modify it without impacting
* possible other users of this cached data
* block. Note that indirect blocks and
* private objects are not released until the
* syncing state (since they are only modified
* then).
*/
arc_release(db->db_buf, db);
dbuf_fix_old_data(db, tx->tx_txg);
data_old = db->db_buf;
}
ASSERT(data_old != NULL);
}
dr->dt.dl.dr_data = data_old;
} else {
mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_NOLOCKDEP, NULL);
list_create(&dr->dt.di.dr_children,
sizeof (dbuf_dirty_record_t),
offsetof(dbuf_dirty_record_t, dr_dirty_node));
}
if (db->db_blkid != DMU_BONUS_BLKID)
dr->dr_accounted = db->db.db_size;
dr->dr_dbuf = db;
dr->dr_txg = tx->tx_txg;
dr->dr_next = *drp;
*drp = dr;
/*
* We could have been freed_in_flight between the dbuf_noread
* and dbuf_dirty. We win, as though the dbuf_noread() had
* happened after the free.
*/
if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
db->db_blkid != DMU_SPILL_BLKID) {
mutex_enter(&dn->dn_mtx);
if (dn->dn_free_ranges[txgoff] != NULL) {
range_tree_clear(dn->dn_free_ranges[txgoff],
db->db_blkid, 1);
}
mutex_exit(&dn->dn_mtx);
db->db_freed_in_flight = FALSE;
}
/*
* This buffer is now part of this txg
*/
dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg);
db->db_dirtycnt += 1;
ASSERT3U(db->db_dirtycnt, <=, 3);
mutex_exit(&db->db_mtx);
if (db->db_blkid == DMU_BONUS_BLKID ||
db->db_blkid == DMU_SPILL_BLKID) {
mutex_enter(&dn->dn_mtx);
ASSERT(!list_link_active(&dr->dr_dirty_node));
list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
mutex_exit(&dn->dn_mtx);
dnode_setdirty(dn, tx);
DB_DNODE_EXIT(db);
return (dr);
}
/*
* The dn_struct_rwlock prevents db_blkptr from changing
* due to a write from syncing context completing
* while we are running, so we want to acquire it before
* looking at db_blkptr.
*/
if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
rw_enter(&dn->dn_struct_rwlock, RW_READER);
drop_struct_lock = TRUE;
}
/*
* We need to hold the dn_struct_rwlock to make this assertion,
* because it protects dn_phys / dn_next_nlevels from changing.
*/
ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) ||
dn->dn_phys->dn_nlevels > db->db_level ||
dn->dn_next_nlevels[txgoff] > db->db_level ||
dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level ||
dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level);
/*
* If we are overwriting a dedup BP, then unless it is snapshotted,
* when we get to syncing context we will need to decrement its
* refcount in the DDT. Prefetch the relevant DDT block so that
* syncing context won't have to wait for the i/o.
*/
ddt_prefetch(os->os_spa, db->db_blkptr);
if (db->db_level == 0) {
ASSERT(!db->db_objset->os_raw_receive ||
dn->dn_maxblkid >= db->db_blkid);
dnode_new_blkid(dn, db->db_blkid, tx,
drop_struct_lock, B_FALSE);
ASSERT(dn->dn_maxblkid >= db->db_blkid);
}
if (db->db_level+1 < dn->dn_nlevels) {
dmu_buf_impl_t *parent = db->db_parent;
dbuf_dirty_record_t *di;
int parent_held = FALSE;
if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) {
int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
parent = dbuf_hold_level(dn, db->db_level+1,
db->db_blkid >> epbs, FTAG);
ASSERT(parent != NULL);
parent_held = TRUE;
}
if (drop_struct_lock)
rw_exit(&dn->dn_struct_rwlock);
ASSERT3U(db->db_level+1, ==, parent->db_level);
di = dbuf_dirty(parent, tx);
if (parent_held)
dbuf_rele(parent, FTAG);
mutex_enter(&db->db_mtx);
/*
* Since we've dropped the mutex, it's possible that
* dbuf_undirty() might have changed this out from under us.
*/
if (db->db_last_dirty == dr ||
dn->dn_object == DMU_META_DNODE_OBJECT) {
mutex_enter(&di->dt.di.dr_mtx);
ASSERT3U(di->dr_txg, ==, tx->tx_txg);
ASSERT(!list_link_active(&dr->dr_dirty_node));
list_insert_tail(&di->dt.di.dr_children, dr);
mutex_exit(&di->dt.di.dr_mtx);
dr->dr_parent = di;
}
mutex_exit(&db->db_mtx);
} else {
ASSERT(db->db_level+1 == dn->dn_nlevels);
ASSERT(db->db_blkid < dn->dn_nblkptr);
ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf);
mutex_enter(&dn->dn_mtx);
ASSERT(!list_link_active(&dr->dr_dirty_node));
list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
mutex_exit(&dn->dn_mtx);
if (drop_struct_lock)
rw_exit(&dn->dn_struct_rwlock);
}
dnode_setdirty(dn, tx);
DB_DNODE_EXIT(db);
return (dr);
}
/*
* Undirty a buffer in the transaction group referenced by the given
* transaction. Return whether this evicted the dbuf.
*/
static boolean_t
dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
{
dnode_t *dn;
uint64_t txg = tx->tx_txg;
dbuf_dirty_record_t *dr, **drp;
ASSERT(txg != 0);
/*
* Due to our use of dn_nlevels below, this can only be called
* in open context, unless we are operating on the MOS.
* From syncing context, dn_nlevels may be different from the
* dn_nlevels used when dbuf was dirtied.
*/
ASSERT(db->db_objset ==
dmu_objset_pool(db->db_objset)->dp_meta_objset ||
txg != spa_syncing_txg(dmu_objset_spa(db->db_objset)));
ASSERT(db->db_blkid != DMU_BONUS_BLKID);
ASSERT0(db->db_level);
ASSERT(MUTEX_HELD(&db->db_mtx));
/*
* If this buffer is not dirty, we're done.
*/
for (drp = &db->db_last_dirty; (dr = *drp) != NULL; drp = &dr->dr_next)
if (dr->dr_txg <= txg)
break;
if (dr == NULL || dr->dr_txg < txg)
return (B_FALSE);
ASSERT(dr->dr_txg == txg);
ASSERT(dr->dr_dbuf == db);
DB_DNODE_ENTER(db);
dn = DB_DNODE(db);
dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
ASSERT(db->db.db_size != 0);
dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset),
dr->dr_accounted, txg);
*drp = dr->dr_next;
/*
* Note that there are three places in dbuf_dirty()
* where this dirty record may be put on a list.
* Make sure to do a list_remove corresponding to
* every one of those list_insert calls.
*/
if (dr->dr_parent) {
mutex_enter(&dr->dr_parent->dt.di.dr_mtx);
list_remove(&dr->dr_parent->dt.di.dr_children, dr);
mutex_exit(&dr->dr_parent->dt.di.dr_mtx);
} else if (db->db_blkid == DMU_SPILL_BLKID ||
db->db_level + 1 == dn->dn_nlevels) {
ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf);
mutex_enter(&dn->dn_mtx);
list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr);
mutex_exit(&dn->dn_mtx);
}
DB_DNODE_EXIT(db);
if (db->db_state != DB_NOFILL) {
dbuf_unoverride(dr);
ASSERT(db->db_buf != NULL);
ASSERT(dr->dt.dl.dr_data != NULL);
if (dr->dt.dl.dr_data != db->db_buf)
arc_buf_destroy(dr->dt.dl.dr_data, db);
}
kmem_free(dr, sizeof (dbuf_dirty_record_t));
ASSERT(db->db_dirtycnt > 0);
db->db_dirtycnt -= 1;
if (zfs_refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) {
ASSERT(db->db_state == DB_NOFILL || arc_released(db->db_buf));
dbuf_destroy(db);
return (B_TRUE);
}
return (B_FALSE);
}
static void
dmu_buf_will_dirty_impl(dmu_buf_t *db_fake, int flags, dmu_tx_t *tx)
{
dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
ASSERT(tx->tx_txg != 0);
ASSERT(!zfs_refcount_is_zero(&db->db_holds));
/*
* Quick check for dirtyness. For already dirty blocks, this
* reduces runtime of this function by >90%, and overall performance
* by 50% for some workloads (e.g. file deletion with indirect blocks
* cached).
*/
mutex_enter(&db->db_mtx);
dbuf_dirty_record_t *dr;
for (dr = db->db_last_dirty;
dr != NULL && dr->dr_txg >= tx->tx_txg; dr = dr->dr_next) {
/*
* It's possible that it is already dirty but not cached,
* because there are some calls to dbuf_dirty() that don't
* go through dmu_buf_will_dirty().
*/
if (dr->dr_txg == tx->tx_txg && db->db_state == DB_CACHED) {
/* This dbuf is already dirty and cached. */
dbuf_redirty(dr);
mutex_exit(&db->db_mtx);
return;
}
}
mutex_exit(&db->db_mtx);
DB_DNODE_ENTER(db);
if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock))
flags |= DB_RF_HAVESTRUCT;
DB_DNODE_EXIT(db);
(void) dbuf_read(db, NULL, flags);
(void) dbuf_dirty(db, tx);
}
void
dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
{
dmu_buf_will_dirty_impl(db_fake,
DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH, tx);
}
boolean_t
dmu_buf_is_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
{
dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
mutex_enter(&db->db_mtx);
for (dbuf_dirty_record_t *dr = db->db_last_dirty;
dr != NULL && dr->dr_txg >= tx->tx_txg; dr = dr->dr_next) {
if (dr->dr_txg == tx->tx_txg) {
mutex_exit(&db->db_mtx);
return (B_TRUE);
}
}
mutex_exit(&db->db_mtx);
return (B_FALSE);
}
void
dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
{
dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
db->db_state = DB_NOFILL;
dmu_buf_will_fill(db_fake, tx);
}
void
dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
{
dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
ASSERT(db->db_blkid != DMU_BONUS_BLKID);
ASSERT(tx->tx_txg != 0);
ASSERT(db->db_level == 0);
ASSERT(!zfs_refcount_is_zero(&db->db_holds));
ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT ||
dmu_tx_private_ok(tx));
dbuf_noread(db);
(void) dbuf_dirty(db, tx);
}
/*
* This function is effectively the same as dmu_buf_will_dirty(), but
* indicates the caller expects raw encrypted data in the db, and provides
* the crypt params (byteorder, salt, iv, mac) which should be stored in the
* blkptr_t when this dbuf is written. This is only used for blocks of
* dnodes, during raw receive.
*/
void
dmu_buf_set_crypt_params(dmu_buf_t *db_fake, boolean_t byteorder,
const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, dmu_tx_t *tx)
{
dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
dbuf_dirty_record_t *dr;
/*
* dr_has_raw_params is only processed for blocks of dnodes
* (see dbuf_sync_dnode_leaf_crypt()).
*/
ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT);
ASSERT3U(db->db_level, ==, 0);
ASSERT(db->db_objset->os_raw_receive);
dmu_buf_will_dirty_impl(db_fake,
DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_NO_DECRYPT, tx);
dr = db->db_last_dirty;
while (dr != NULL && dr->dr_txg > tx->tx_txg)
dr = dr->dr_next;
ASSERT3P(dr, !=, NULL);
ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
dr->dt.dl.dr_has_raw_params = B_TRUE;
dr->dt.dl.dr_byteorder = byteorder;
bcopy(salt, dr->dt.dl.dr_salt, ZIO_DATA_SALT_LEN);
bcopy(iv, dr->dt.dl.dr_iv, ZIO_DATA_IV_LEN);
bcopy(mac, dr->dt.dl.dr_mac, ZIO_DATA_MAC_LEN);
}
#pragma weak dmu_buf_fill_done = dbuf_fill_done
/* ARGSUSED */
void
dbuf_fill_done(dmu_buf_impl_t *db, dmu_tx_t *tx)
{
mutex_enter(&db->db_mtx);
DBUF_VERIFY(db);
if (db->db_state == DB_FILL) {
if (db->db_level == 0 && db->db_freed_in_flight) {
ASSERT(db->db_blkid != DMU_BONUS_BLKID);
/* we were freed while filling */
/* XXX dbuf_undirty? */
bzero(db->db.db_data, db->db.db_size);
db->db_freed_in_flight = FALSE;
}
db->db_state = DB_CACHED;
cv_broadcast(&db->db_changed);
}
mutex_exit(&db->db_mtx);
}
void
dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data,
bp_embedded_type_t etype, enum zio_compress comp,
int uncompressed_size, int compressed_size, int byteorder,
dmu_tx_t *tx)
{
dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
struct dirty_leaf *dl;
dmu_object_type_t type;
if (etype == BP_EMBEDDED_TYPE_DATA) {
ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset),
SPA_FEATURE_EMBEDDED_DATA));
}
DB_DNODE_ENTER(db);
type = DB_DNODE(db)->dn_type;
DB_DNODE_EXIT(db);
ASSERT0(db->db_level);
ASSERT(db->db_blkid != DMU_BONUS_BLKID);
dmu_buf_will_not_fill(dbuf, tx);
ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
dl = &db->db_last_dirty->dt.dl;
encode_embedded_bp_compressed(&dl->dr_overridden_by,
data, comp, uncompressed_size, compressed_size);
BPE_SET_ETYPE(&dl->dr_overridden_by, etype);
BP_SET_TYPE(&dl->dr_overridden_by, type);
BP_SET_LEVEL(&dl->dr_overridden_by, 0);
BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder);
dl->dr_override_state = DR_OVERRIDDEN;
dl->dr_overridden_by.blk_birth = db->db_last_dirty->dr_txg;
}
/*
* Directly assign a provided arc buf to a given dbuf if it's not referenced
* by anybody except our caller. Otherwise copy arcbuf's contents to dbuf.
*/
void
dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx)
{
ASSERT(!zfs_refcount_is_zero(&db->db_holds));
ASSERT(db->db_blkid != DMU_BONUS_BLKID);
ASSERT(db->db_level == 0);
ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf));
ASSERT(buf != NULL);
ASSERT3U(arc_buf_lsize(buf), ==, db->db.db_size);
ASSERT(tx->tx_txg != 0);
arc_return_buf(buf, db);
ASSERT(arc_released(buf));
mutex_enter(&db->db_mtx);
while (db->db_state == DB_READ || db->db_state == DB_FILL)
cv_wait(&db->db_changed, &db->db_mtx);
ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED);
if (db->db_state == DB_CACHED &&
zfs_refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) {
/*
* In practice, we will never have a case where we have an
* encrypted arc buffer while additional holds exist on the
* dbuf. We don't handle this here so we simply assert that
* fact instead.
*/
ASSERT(!arc_is_encrypted(buf));
mutex_exit(&db->db_mtx);
(void) dbuf_dirty(db, tx);
bcopy(buf->b_data, db->db.db_data, db->db.db_size);
arc_buf_destroy(buf, db);
xuio_stat_wbuf_copied();
return;
}
xuio_stat_wbuf_nocopy();
if (db->db_state == DB_CACHED) {
dbuf_dirty_record_t *dr = db->db_last_dirty;
ASSERT(db->db_buf != NULL);
if (dr != NULL && dr->dr_txg == tx->tx_txg) {
ASSERT(dr->dt.dl.dr_data == db->db_buf);
if (!arc_released(db->db_buf)) {
ASSERT(dr->dt.dl.dr_override_state ==
DR_OVERRIDDEN);
arc_release(db->db_buf, db);
}
dr->dt.dl.dr_data = buf;
arc_buf_destroy(db->db_buf, db);
} else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) {
arc_release(db->db_buf, db);
arc_buf_destroy(db->db_buf, db);
}
db->db_buf = NULL;
}
ASSERT(db->db_buf == NULL);
dbuf_set_data(db, buf);
db->db_state = DB_FILL;
mutex_exit(&db->db_mtx);
(void) dbuf_dirty(db, tx);
dmu_buf_fill_done(&db->db, tx);
}
void
dbuf_destroy(dmu_buf_impl_t *db)
{
dnode_t *dn;
dmu_buf_impl_t *parent = db->db_parent;
dmu_buf_impl_t *dndb;
ASSERT(MUTEX_HELD(&db->db_mtx));
ASSERT(zfs_refcount_is_zero(&db->db_holds));
if (db->db_buf != NULL) {
arc_buf_destroy(db->db_buf, db);
db->db_buf = NULL;
}
if (db->db_blkid == DMU_BONUS_BLKID) {
int slots = DB_DNODE(db)->dn_num_slots;
int bonuslen = DN_SLOTS_TO_BONUSLEN(slots);
if (db->db.db_data != NULL) {
kmem_free(db->db.db_data, bonuslen);
arc_space_return(bonuslen, ARC_SPACE_BONUS);
db->db_state = DB_UNCACHED;
}
}
dbuf_clear_data(db);
if (multilist_link_active(&db->db_cache_link)) {
ASSERT(db->db_caching_status == DB_DBUF_CACHE ||
db->db_caching_status == DB_DBUF_METADATA_CACHE);
multilist_remove(dbuf_caches[db->db_caching_status].cache, db);
(void) zfs_refcount_remove_many(
&dbuf_caches[db->db_caching_status].size,
db->db.db_size, db);
if (db->db_caching_status == DB_DBUF_METADATA_CACHE) {
DBUF_STAT_BUMPDOWN(metadata_cache_count);
} else {
DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
DBUF_STAT_BUMPDOWN(cache_count);
DBUF_STAT_DECR(cache_levels_bytes[db->db_level],
db->db.db_size);
}
db->db_caching_status = DB_NO_CACHE;
}
ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
ASSERT(db->db_data_pending == NULL);
db->db_state = DB_EVICTING;
db->db_blkptr = NULL;
/*
* Now that db_state is DB_EVICTING, nobody else can find this via
* the hash table. We can now drop db_mtx, which allows us to
* acquire the dn_dbufs_mtx.
*/
mutex_exit(&db->db_mtx);
DB_DNODE_ENTER(db);
dn = DB_DNODE(db);
dndb = dn->dn_dbuf;
if (db->db_blkid != DMU_BONUS_BLKID) {
boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx);
if (needlock)
mutex_enter_nested(&dn->dn_dbufs_mtx,
NESTED_SINGLE);
avl_remove(&dn->dn_dbufs, db);
atomic_dec_32(&dn->dn_dbufs_count);
membar_producer();
DB_DNODE_EXIT(db);
if (needlock)
mutex_exit(&dn->dn_dbufs_mtx);
/*
* Decrementing the dbuf count means that the hold corresponding
* to the removed dbuf is no longer discounted in dnode_move(),
* so the dnode cannot be moved until after we release the hold.
* The membar_producer() ensures visibility of the decremented
* value in dnode_move(), since DB_DNODE_EXIT doesn't actually
* release any lock.
*/
mutex_enter(&dn->dn_mtx);
dnode_rele_and_unlock(dn, db, B_TRUE);
db->db_dnode_handle = NULL;
dbuf_hash_remove(db);
} else {
DB_DNODE_EXIT(db);
}
ASSERT(zfs_refcount_is_zero(&db->db_holds));
db->db_parent = NULL;
ASSERT(db->db_buf == NULL);
ASSERT(db->db.db_data == NULL);
ASSERT(db->db_hash_next == NULL);
ASSERT(db->db_blkptr == NULL);
ASSERT(db->db_data_pending == NULL);
ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE);
ASSERT(!multilist_link_active(&db->db_cache_link));
kmem_cache_free(dbuf_kmem_cache, db);
arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
/*
* If this dbuf is referenced from an indirect dbuf,
* decrement the ref count on the indirect dbuf.
*/
if (parent && parent != dndb) {
mutex_enter(&parent->db_mtx);
dbuf_rele_and_unlock(parent, db, B_TRUE);
}
}
/*
* Note: While bpp will always be updated if the function returns success,
* parentp will not be updated if the dnode does not have dn_dbuf filled in;
* this happens when the dnode is the meta-dnode, or {user|group|project}used
* object.
*/
__attribute__((always_inline))
static inline int
dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse,
dmu_buf_impl_t **parentp, blkptr_t **bpp)
{
*parentp = NULL;
*bpp = NULL;
ASSERT(blkid != DMU_BONUS_BLKID);
if (blkid == DMU_SPILL_BLKID) {
mutex_enter(&dn->dn_mtx);
if (dn->dn_have_spill &&
(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
*bpp = DN_SPILL_BLKPTR(dn->dn_phys);
else
*bpp = NULL;
dbuf_add_ref(dn->dn_dbuf, NULL);
*parentp = dn->dn_dbuf;
mutex_exit(&dn->dn_mtx);
return (0);
}
int nlevels =
(dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels;
int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
ASSERT3U(level * epbs, <, 64);
ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
/*
* This assertion shouldn't trip as long as the max indirect block size
* is less than 1M. The reason for this is that up to that point,
* the number of levels required to address an entire object with blocks
* of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64. In
* other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55
* (i.e. we can address the entire object), objects will all use at most
* N-1 levels and the assertion won't overflow. However, once epbs is
* 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66. Then, 4 levels will not be
* enough to address an entire object, so objects will have 5 levels,
* but then this assertion will overflow.
*
* All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we
* need to redo this logic to handle overflows.
*/
ASSERT(level >= nlevels ||
((nlevels - level - 1) * epbs) +
highbit64(dn->dn_phys->dn_nblkptr) <= 64);
if (level >= nlevels ||
blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr <<
((nlevels - level - 1) * epbs)) ||
(fail_sparse &&
blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) {
/* the buffer has no parent yet */
return (SET_ERROR(ENOENT));
} else if (level < nlevels-1) {
/* this block is referenced from an indirect block */
int err;
dbuf_hold_arg_t *dh = dbuf_hold_arg_create(dn, level + 1,
blkid >> epbs, fail_sparse, FALSE, NULL, parentp);
err = dbuf_hold_impl_arg(dh);
dbuf_hold_arg_destroy(dh);
if (err)
return (err);
err = dbuf_read(*parentp, NULL,
(DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL));
if (err) {
dbuf_rele(*parentp, NULL);
*parentp = NULL;
return (err);
}
*bpp = ((blkptr_t *)(*parentp)->db.db_data) +
(blkid & ((1ULL << epbs) - 1));
if (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))
ASSERT(BP_IS_HOLE(*bpp));
return (0);
} else {
/* the block is referenced from the dnode */
ASSERT3U(level, ==, nlevels-1);
ASSERT(dn->dn_phys->dn_nblkptr == 0 ||
blkid < dn->dn_phys->dn_nblkptr);
if (dn->dn_dbuf) {
dbuf_add_ref(dn->dn_dbuf, NULL);
*parentp = dn->dn_dbuf;
}
*bpp = &dn->dn_phys->dn_blkptr[blkid];
return (0);
}
}
static dmu_buf_impl_t *
dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid,
dmu_buf_impl_t *parent, blkptr_t *blkptr)
{
objset_t *os = dn->dn_objset;
dmu_buf_impl_t *db, *odb;
ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
ASSERT(dn->dn_type != DMU_OT_NONE);
db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP);
db->db_objset = os;
db->db.db_object = dn->dn_object;
db->db_level = level;
db->db_blkid = blkid;
db->db_last_dirty = NULL;
db->db_dirtycnt = 0;
db->db_dnode_handle = dn->dn_handle;
db->db_parent = parent;
db->db_blkptr = blkptr;
db->db_user = NULL;
db->db_user_immediate_evict = FALSE;
db->db_freed_in_flight = FALSE;
db->db_pending_evict = FALSE;
if (blkid == DMU_BONUS_BLKID) {
ASSERT3P(parent, ==, dn->dn_dbuf);
db->db.db_size = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) -
(dn->dn_nblkptr-1) * sizeof (blkptr_t);
ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
db->db.db_offset = DMU_BONUS_BLKID;
db->db_state = DB_UNCACHED;
db->db_caching_status = DB_NO_CACHE;
/* the bonus dbuf is not placed in the hash table */
arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
return (db);
} else if (blkid == DMU_SPILL_BLKID) {
db->db.db_size = (blkptr != NULL) ?
BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE;
db->db.db_offset = 0;
} else {
int blocksize =
db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz;
db->db.db_size = blocksize;
db->db.db_offset = db->db_blkid * blocksize;
}
/*
* Hold the dn_dbufs_mtx while we get the new dbuf
* in the hash table *and* added to the dbufs list.
* This prevents a possible deadlock with someone
* trying to look up this dbuf before its added to the
* dn_dbufs list.
*/
mutex_enter(&dn->dn_dbufs_mtx);
db->db_state = DB_EVICTING;
if ((odb = dbuf_hash_insert(db)) != NULL) {
/* someone else inserted it first */
kmem_cache_free(dbuf_kmem_cache, db);
mutex_exit(&dn->dn_dbufs_mtx);
DBUF_STAT_BUMP(hash_insert_race);
return (odb);
}
avl_add(&dn->dn_dbufs, db);
db->db_state = DB_UNCACHED;
db->db_caching_status = DB_NO_CACHE;
mutex_exit(&dn->dn_dbufs_mtx);
arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
if (parent && parent != dn->dn_dbuf)
dbuf_add_ref(parent, db);
ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
zfs_refcount_count(&dn->dn_holds) > 0);
(void) zfs_refcount_add(&dn->dn_holds, db);
atomic_inc_32(&dn->dn_dbufs_count);
dprintf_dbuf(db, "db=%p\n", db);
return (db);
}
typedef struct dbuf_prefetch_arg {
spa_t *dpa_spa; /* The spa to issue the prefetch in. */
zbookmark_phys_t dpa_zb; /* The target block to prefetch. */
int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */
int dpa_curlevel; /* The current level that we're reading */
dnode_t *dpa_dnode; /* The dnode associated with the prefetch */
zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */
zio_t *dpa_zio; /* The parent zio_t for all prefetches. */
arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */
} dbuf_prefetch_arg_t;
/*
* Actually issue the prefetch read for the block given.
*/
static void
dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp)
{
if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
return;
int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE;
arc_flags_t aflags =
dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH;
/* dnodes are always read as raw and then converted later */
if (BP_GET_TYPE(bp) == DMU_OT_DNODE && BP_IS_PROTECTED(bp) &&
dpa->dpa_curlevel == 0)
zio_flags |= ZIO_FLAG_RAW;
ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level);
ASSERT(dpa->dpa_zio != NULL);
(void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp, NULL, NULL,
dpa->dpa_prio, zio_flags, &aflags, &dpa->dpa_zb);
}
/*
* Called when an indirect block above our prefetch target is read in. This
* will either read in the next indirect block down the tree or issue the actual
* prefetch if the next block down is our target.
*/
static void
dbuf_prefetch_indirect_done(zio_t *zio, const zbookmark_phys_t *zb,
const blkptr_t *iobp, arc_buf_t *abuf, void *private)
{
dbuf_prefetch_arg_t *dpa = private;
ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel);
ASSERT3S(dpa->dpa_curlevel, >, 0);
if (abuf == NULL) {
ASSERT(zio == NULL || zio->io_error != 0);
kmem_free(dpa, sizeof (*dpa));
return;
}
ASSERT(zio == NULL || zio->io_error == 0);
/*
* The dpa_dnode is only valid if we are called with a NULL
* zio. This indicates that the arc_read() returned without
* first calling zio_read() to issue a physical read. Once
* a physical read is made the dpa_dnode must be invalidated
* as the locks guarding it may have been dropped. If the
* dpa_dnode is still valid, then we want to add it to the dbuf
* cache. To do so, we must hold the dbuf associated with the block
* we just prefetched, read its contents so that we associate it
* with an arc_buf_t, and then release it.
*/
if (zio != NULL) {
ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel);
if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS) {
ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size);
} else {
ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size);
}
ASSERT3P(zio->io_spa, ==, dpa->dpa_spa);
dpa->dpa_dnode = NULL;
} else if (dpa->dpa_dnode != NULL) {
uint64_t curblkid = dpa->dpa_zb.zb_blkid >>
(dpa->dpa_epbs * (dpa->dpa_curlevel -
dpa->dpa_zb.zb_level));
dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode,
dpa->dpa_curlevel, curblkid, FTAG);
if (db == NULL) {
kmem_free(dpa, sizeof (*dpa));
arc_buf_destroy(abuf, private);
return;
}
(void) dbuf_read(db, NULL,
DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT);
dbuf_rele(db, FTAG);
}
dpa->dpa_curlevel--;
uint64_t nextblkid = dpa->dpa_zb.zb_blkid >>
(dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level));
blkptr_t *bp = ((blkptr_t *)abuf->b_data) +
P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs);
if (BP_IS_HOLE(bp)) {
kmem_free(dpa, sizeof (*dpa));
} else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) {
ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid);
dbuf_issue_final_prefetch(dpa, bp);
kmem_free(dpa, sizeof (*dpa));
} else {
arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
zbookmark_phys_t zb;
/* flag if L2ARC eligible, l2arc_noprefetch then decides */
if (dpa->dpa_aflags & ARC_FLAG_L2CACHE)
iter_aflags |= ARC_FLAG_L2CACHE;
ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset,
dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid);
(void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
bp, dbuf_prefetch_indirect_done, dpa, dpa->dpa_prio,
ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
&iter_aflags, &zb);
}
arc_buf_destroy(abuf, private);
}
/*
* Issue prefetch reads for the given block on the given level. If the indirect
* blocks above that block are not in memory, we will read them in
* asynchronously. As a result, this call never blocks waiting for a read to
* complete. Note that the prefetch might fail if the dataset is encrypted and
* the encryption key is unmapped before the IO completes.
*/
void
dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio,
arc_flags_t aflags)
{
blkptr_t bp;
int epbs, nlevels, curlevel;
uint64_t curblkid;
ASSERT(blkid != DMU_BONUS_BLKID);
ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
if (blkid > dn->dn_maxblkid)
return;
if (dnode_block_freed(dn, blkid))
return;
/*
* This dnode hasn't been written to disk yet, so there's nothing to
* prefetch.
*/
nlevels = dn->dn_phys->dn_nlevels;
if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0)
return;
epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level))
return;
dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object,
level, blkid);
if (db != NULL) {
mutex_exit(&db->db_mtx);
/*
* This dbuf already exists. It is either CACHED, or
* (we assume) about to be read or filled.
*/
return;
}
/*
* Find the closest ancestor (indirect block) of the target block
* that is present in the cache. In this indirect block, we will
* find the bp that is at curlevel, curblkid.
*/
curlevel = level;
curblkid = blkid;
while (curlevel < nlevels - 1) {
int parent_level = curlevel + 1;
uint64_t parent_blkid = curblkid >> epbs;
dmu_buf_impl_t *db;
if (dbuf_hold_impl(dn, parent_level, parent_blkid,
FALSE, TRUE, FTAG, &db) == 0) {
blkptr_t *bpp = db->db_buf->b_data;
bp = bpp[P2PHASE(curblkid, 1 << epbs)];
dbuf_rele(db, FTAG);
break;
}
curlevel = parent_level;
curblkid = parent_blkid;
}
if (curlevel == nlevels - 1) {
/* No cached indirect blocks found. */
ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr);
bp = dn->dn_phys->dn_blkptr[curblkid];
}
if (BP_IS_HOLE(&bp))
return;
ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp));
zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL,
ZIO_FLAG_CANFAIL);
dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP);
dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
dn->dn_object, level, blkid);
dpa->dpa_curlevel = curlevel;
dpa->dpa_prio = prio;
dpa->dpa_aflags = aflags;
dpa->dpa_spa = dn->dn_objset->os_spa;
dpa->dpa_dnode = dn;
dpa->dpa_epbs = epbs;
dpa->dpa_zio = pio;
/* flag if L2ARC eligible, l2arc_noprefetch then decides */
if (DNODE_LEVEL_IS_L2CACHEABLE(dn, level))
dpa->dpa_aflags |= ARC_FLAG_L2CACHE;
/*
* If we have the indirect just above us, no need to do the asynchronous
* prefetch chain; we'll just run the last step ourselves. If we're at
* a higher level, though, we want to issue the prefetches for all the
* indirect blocks asynchronously, so we can go on with whatever we were
* doing.
*/
if (curlevel == level) {
ASSERT3U(curblkid, ==, blkid);
dbuf_issue_final_prefetch(dpa, &bp);
kmem_free(dpa, sizeof (*dpa));
} else {
arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
zbookmark_phys_t zb;
/* flag if L2ARC eligible, l2arc_noprefetch then decides */
if (DNODE_LEVEL_IS_L2CACHEABLE(dn, level))
iter_aflags |= ARC_FLAG_L2CACHE;
SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
dn->dn_object, curlevel, curblkid);
(void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
&bp, dbuf_prefetch_indirect_done, dpa, prio,
ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
&iter_aflags, &zb);
}
/*
* We use pio here instead of dpa_zio since it's possible that
* dpa may have already been freed.
*/
zio_nowait(pio);
}
#define DBUF_HOLD_IMPL_MAX_DEPTH 20
/*
* Helper function for dbuf_hold_impl_arg() to copy a buffer. Handles
* the case of encrypted, compressed and uncompressed buffers by
* allocating the new buffer, respectively, with arc_alloc_raw_buf(),
* arc_alloc_compressed_buf() or arc_alloc_buf().*
*
* NOTE: Declared noinline to avoid stack bloat in dbuf_hold_impl_arg().
*/
noinline static void
dbuf_hold_copy(struct dbuf_hold_arg *dh)
{
dnode_t *dn = dh->dh_dn;
dmu_buf_impl_t *db = dh->dh_db;
dbuf_dirty_record_t *dr = dh->dh_dr;
arc_buf_t *data = dr->dt.dl.dr_data;
enum zio_compress compress_type = arc_get_compression(data);
if (arc_is_encrypted(data)) {
boolean_t byteorder;
uint8_t salt[ZIO_DATA_SALT_LEN];
uint8_t iv[ZIO_DATA_IV_LEN];
uint8_t mac[ZIO_DATA_MAC_LEN];
arc_get_raw_params(data, &byteorder, salt, iv, mac);
dbuf_set_data(db, arc_alloc_raw_buf(dn->dn_objset->os_spa, db,
dmu_objset_id(dn->dn_objset), byteorder, salt, iv, mac,
dn->dn_type, arc_buf_size(data), arc_buf_lsize(data),
compress_type));
} else if (compress_type != ZIO_COMPRESS_OFF) {
dbuf_set_data(db, arc_alloc_compressed_buf(
dn->dn_objset->os_spa, db, arc_buf_size(data),
arc_buf_lsize(data), compress_type));
} else {
dbuf_set_data(db, arc_alloc_buf(dn->dn_objset->os_spa, db,
DBUF_GET_BUFC_TYPE(db), db->db.db_size));
}
bcopy(data->b_data, db->db.db_data, arc_buf_size(data));
}
/*
* Returns with db_holds incremented, and db_mtx not held.
* Note: dn_struct_rwlock must be held.
*/
static int
dbuf_hold_impl_arg(struct dbuf_hold_arg *dh)
{
dh->dh_parent = NULL;
ASSERT(dh->dh_blkid != DMU_BONUS_BLKID);
ASSERT(RW_LOCK_HELD(&dh->dh_dn->dn_struct_rwlock));
ASSERT3U(dh->dh_dn->dn_nlevels, >, dh->dh_level);
*(dh->dh_dbp) = NULL;
/* dbuf_find() returns with db_mtx held */
dh->dh_db = dbuf_find(dh->dh_dn->dn_objset, dh->dh_dn->dn_object,
dh->dh_level, dh->dh_blkid);
if (dh->dh_db == NULL) {
dh->dh_bp = NULL;
if (dh->dh_fail_uncached)
return (SET_ERROR(ENOENT));
ASSERT3P(dh->dh_parent, ==, NULL);
dh->dh_err = dbuf_findbp(dh->dh_dn, dh->dh_level, dh->dh_blkid,
dh->dh_fail_sparse, &dh->dh_parent, &dh->dh_bp);
if (dh->dh_fail_sparse) {
if (dh->dh_err == 0 &&
dh->dh_bp && BP_IS_HOLE(dh->dh_bp))
dh->dh_err = SET_ERROR(ENOENT);
if (dh->dh_err) {
if (dh->dh_parent)
dbuf_rele(dh->dh_parent, NULL);
return (dh->dh_err);
}
}
if (dh->dh_err && dh->dh_err != ENOENT)
return (dh->dh_err);
dh->dh_db = dbuf_create(dh->dh_dn, dh->dh_level, dh->dh_blkid,
dh->dh_parent, dh->dh_bp);
}
if (dh->dh_fail_uncached && dh->dh_db->db_state != DB_CACHED) {
mutex_exit(&dh->dh_db->db_mtx);
return (SET_ERROR(ENOENT));
}
if (dh->dh_db->db_buf != NULL) {
arc_buf_access(dh->dh_db->db_buf);
ASSERT3P(dh->dh_db->db.db_data, ==, dh->dh_db->db_buf->b_data);
}
ASSERT(dh->dh_db->db_buf == NULL || arc_referenced(dh->dh_db->db_buf));
/*
* If this buffer is currently syncing out, and we are are
* still referencing it from db_data, we need to make a copy
* of it in case we decide we want to dirty it again in this txg.
*/
if (dh->dh_db->db_level == 0 &&
dh->dh_db->db_blkid != DMU_BONUS_BLKID &&
dh->dh_dn->dn_object != DMU_META_DNODE_OBJECT &&
dh->dh_db->db_state == DB_CACHED && dh->dh_db->db_data_pending) {
dh->dh_dr = dh->dh_db->db_data_pending;
if (dh->dh_dr->dt.dl.dr_data == dh->dh_db->db_buf)
dbuf_hold_copy(dh);
}
if (multilist_link_active(&dh->dh_db->db_cache_link)) {
ASSERT(zfs_refcount_is_zero(&dh->dh_db->db_holds));
ASSERT(dh->dh_db->db_caching_status == DB_DBUF_CACHE ||
dh->dh_db->db_caching_status == DB_DBUF_METADATA_CACHE);
multilist_remove(
dbuf_caches[dh->dh_db->db_caching_status].cache,
dh->dh_db);
(void) zfs_refcount_remove_many(
&dbuf_caches[dh->dh_db->db_caching_status].size,
dh->dh_db->db.db_size, dh->dh_db);
if (dh->dh_db->db_caching_status == DB_DBUF_METADATA_CACHE) {
DBUF_STAT_BUMPDOWN(metadata_cache_count);
} else {
DBUF_STAT_BUMPDOWN(cache_levels[dh->dh_db->db_level]);
DBUF_STAT_BUMPDOWN(cache_count);
DBUF_STAT_DECR(cache_levels_bytes[dh->dh_db->db_level],
dh->dh_db->db.db_size);
}
dh->dh_db->db_caching_status = DB_NO_CACHE;
}
(void) zfs_refcount_add(&dh->dh_db->db_holds, dh->dh_tag);
DBUF_VERIFY(dh->dh_db);
mutex_exit(&dh->dh_db->db_mtx);
/* NOTE: we can't rele the parent until after we drop the db_mtx */
if (dh->dh_parent)
dbuf_rele(dh->dh_parent, NULL);
ASSERT3P(DB_DNODE(dh->dh_db), ==, dh->dh_dn);
ASSERT3U(dh->dh_db->db_blkid, ==, dh->dh_blkid);
ASSERT3U(dh->dh_db->db_level, ==, dh->dh_level);
*(dh->dh_dbp) = dh->dh_db;
return (0);
}
/*
* dbuf_hold_impl_arg() is called recursively, via dbuf_findbp(). There can
* be as many recursive calls as there are levels of on-disk indirect blocks,
* but typically only 0-2 recursive calls. To minimize the stack frame size,
* the recursive function's arguments and "local variables" are allocated on
* the heap as the dbuf_hold_arg_t.
*/
int
dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid,
boolean_t fail_sparse, boolean_t fail_uncached,
void *tag, dmu_buf_impl_t **dbp)
{
dbuf_hold_arg_t *dh = dbuf_hold_arg_create(dn, level, blkid,
fail_sparse, fail_uncached, tag, dbp);
int error = dbuf_hold_impl_arg(dh);
dbuf_hold_arg_destroy(dh);
return (error);
}
static dbuf_hold_arg_t *
dbuf_hold_arg_create(dnode_t *dn, uint8_t level, uint64_t blkid,
boolean_t fail_sparse, boolean_t fail_uncached,
void *tag, dmu_buf_impl_t **dbp)
{
dbuf_hold_arg_t *dh = kmem_alloc(sizeof (*dh), KM_SLEEP);
dh->dh_dn = dn;
dh->dh_level = level;
dh->dh_blkid = blkid;
dh->dh_fail_sparse = fail_sparse;
dh->dh_fail_uncached = fail_uncached;
dh->dh_tag = tag;
dh->dh_dbp = dbp;
dh->dh_db = NULL;
dh->dh_parent = NULL;
dh->dh_bp = NULL;
dh->dh_err = 0;
dh->dh_dr = NULL;
return (dh);
}
static void
dbuf_hold_arg_destroy(dbuf_hold_arg_t *dh)
{
kmem_free(dh, sizeof (*dh));
}
dmu_buf_impl_t *
dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag)
{
return (dbuf_hold_level(dn, 0, blkid, tag));
}
dmu_buf_impl_t *
dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag)
{
dmu_buf_impl_t *db;
int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db);
return (err ? NULL : db);
}
void
dbuf_create_bonus(dnode_t *dn)
{
ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
ASSERT(dn->dn_bonus == NULL);
dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL);
}
int
dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx)
{
dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
dnode_t *dn;
if (db->db_blkid != DMU_SPILL_BLKID)
return (SET_ERROR(ENOTSUP));
if (blksz == 0)
blksz = SPA_MINBLOCKSIZE;
ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset)));
blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE);
DB_DNODE_ENTER(db);
dn = DB_DNODE(db);
rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
dbuf_new_size(db, blksz, tx);
rw_exit(&dn->dn_struct_rwlock);
DB_DNODE_EXIT(db);
return (0);
}
void
dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx)
{
dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx);
}
#pragma weak dmu_buf_add_ref = dbuf_add_ref
void
dbuf_add_ref(dmu_buf_impl_t *db, void *tag)
{
int64_t holds = zfs_refcount_add(&db->db_holds, tag);
VERIFY3S(holds, >, 1);
}
#pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref
boolean_t
dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid,
void *tag)
{
dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
dmu_buf_impl_t *found_db;
boolean_t result = B_FALSE;
if (blkid == DMU_BONUS_BLKID)
found_db = dbuf_find_bonus(os, obj);
else
found_db = dbuf_find(os, obj, 0, blkid);
if (found_db != NULL) {
if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) {
(void) zfs_refcount_add(&db->db_holds, tag);
result = B_TRUE;
}
mutex_exit(&found_db->db_mtx);
}
return (result);
}
/*
* If you call dbuf_rele() you had better not be referencing the dnode handle
* unless you have some other direct or indirect hold on the dnode. (An indirect
* hold is a hold on one of the dnode's dbufs, including the bonus buffer.)
* Without that, the dbuf_rele() could lead to a dnode_rele() followed by the
* dnode's parent dbuf evicting its dnode handles.
*/
void
dbuf_rele(dmu_buf_impl_t *db, void *tag)
{
mutex_enter(&db->db_mtx);
dbuf_rele_and_unlock(db, tag, B_FALSE);
}
void
dmu_buf_rele(dmu_buf_t *db, void *tag)
{
dbuf_rele((dmu_buf_impl_t *)db, tag);
}
/*
* dbuf_rele() for an already-locked dbuf. This is necessary to allow
* db_dirtycnt and db_holds to be updated atomically. The 'evicting'
* argument should be set if we are already in the dbuf-evicting code
* path, in which case we don't want to recursively evict. This allows us to
* avoid deeply nested stacks that would have a call flow similar to this:
*
* dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify()
* ^ |
* | |
* +-----dbuf_destroy()<--dbuf_evict_one()<--------+
*
*/
void
dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag, boolean_t evicting)
{
int64_t holds;
ASSERT(MUTEX_HELD(&db->db_mtx));
DBUF_VERIFY(db);
/*
* Remove the reference to the dbuf before removing its hold on the
* dnode so we can guarantee in dnode_move() that a referenced bonus
* buffer has a corresponding dnode hold.
*/
holds = zfs_refcount_remove(&db->db_holds, tag);
ASSERT(holds >= 0);
/*
* We can't freeze indirects if there is a possibility that they
* may be modified in the current syncing context.
*/
if (db->db_buf != NULL &&
holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) {
arc_buf_freeze(db->db_buf);
}
if (holds == db->db_dirtycnt &&
db->db_level == 0 && db->db_user_immediate_evict)
dbuf_evict_user(db);
if (holds == 0) {
if (db->db_blkid == DMU_BONUS_BLKID) {
dnode_t *dn;
boolean_t evict_dbuf = db->db_pending_evict;
/*
* If the dnode moves here, we cannot cross this
* barrier until the move completes.
*/
DB_DNODE_ENTER(db);
dn = DB_DNODE(db);
atomic_dec_32(&dn->dn_dbufs_count);
/*
* Decrementing the dbuf count means that the bonus
* buffer's dnode hold is no longer discounted in
* dnode_move(). The dnode cannot move until after
* the dnode_rele() below.
*/
DB_DNODE_EXIT(db);
/*
* Do not reference db after its lock is dropped.
* Another thread may evict it.
*/
mutex_exit(&db->db_mtx);
if (evict_dbuf)
dnode_evict_bonus(dn);
dnode_rele(dn, db);
} else if (db->db_buf == NULL) {
/*
* This is a special case: we never associated this
* dbuf with any data allocated from the ARC.
*/
ASSERT(db->db_state == DB_UNCACHED ||
db->db_state == DB_NOFILL);
dbuf_destroy(db);
} else if (arc_released(db->db_buf)) {
/*
* This dbuf has anonymous data associated with it.
*/
dbuf_destroy(db);
} else {
boolean_t do_arc_evict = B_FALSE;
blkptr_t bp;
spa_t *spa = dmu_objset_spa(db->db_objset);
if (!DBUF_IS_CACHEABLE(db) &&
db->db_blkptr != NULL &&
!BP_IS_HOLE(db->db_blkptr) &&
!BP_IS_EMBEDDED(db->db_blkptr)) {
do_arc_evict = B_TRUE;
bp = *db->db_blkptr;
}
if (!DBUF_IS_CACHEABLE(db) ||
db->db_pending_evict) {
dbuf_destroy(db);
} else if (!multilist_link_active(&db->db_cache_link)) {
ASSERT3U(db->db_caching_status, ==,
DB_NO_CACHE);
dbuf_cached_state_t dcs =
dbuf_include_in_metadata_cache(db) ?
DB_DBUF_METADATA_CACHE : DB_DBUF_CACHE;
db->db_caching_status = dcs;
multilist_insert(dbuf_caches[dcs].cache, db);
(void) zfs_refcount_add_many(
&dbuf_caches[dcs].size,
db->db.db_size, db);
if (dcs == DB_DBUF_METADATA_CACHE) {
DBUF_STAT_BUMP(metadata_cache_count);
DBUF_STAT_MAX(
metadata_cache_size_bytes_max,
zfs_refcount_count(
&dbuf_caches[dcs].size));
} else {
DBUF_STAT_BUMP(
cache_levels[db->db_level]);
DBUF_STAT_BUMP(cache_count);
DBUF_STAT_INCR(
cache_levels_bytes[db->db_level],
db->db.db_size);
DBUF_STAT_MAX(cache_size_bytes_max,
zfs_refcount_count(
&dbuf_caches[dcs].size));
}
mutex_exit(&db->db_mtx);
if (db->db_caching_status == DB_DBUF_CACHE &&
!evicting) {
dbuf_evict_notify();
}
}
if (do_arc_evict)
arc_freed(spa, &bp);
}
} else {
mutex_exit(&db->db_mtx);
}
}
#pragma weak dmu_buf_refcount = dbuf_refcount
uint64_t
dbuf_refcount(dmu_buf_impl_t *db)
{
return (zfs_refcount_count(&db->db_holds));
}
uint64_t
dmu_buf_user_refcount(dmu_buf_t *db_fake)
{
uint64_t holds;
dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
mutex_enter(&db->db_mtx);
ASSERT3U(zfs_refcount_count(&db->db_holds), >=, db->db_dirtycnt);
holds = zfs_refcount_count(&db->db_holds) - db->db_dirtycnt;
mutex_exit(&db->db_mtx);
return (holds);
}
void *
dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user,
dmu_buf_user_t *new_user)
{
dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
mutex_enter(&db->db_mtx);
dbuf_verify_user(db, DBVU_NOT_EVICTING);
if (db->db_user == old_user)
db->db_user = new_user;
else
old_user = db->db_user;
dbuf_verify_user(db, DBVU_NOT_EVICTING);
mutex_exit(&db->db_mtx);
return (old_user);
}
void *
dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
{
return (dmu_buf_replace_user(db_fake, NULL, user));
}
void *
dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user)
{
dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
db->db_user_immediate_evict = TRUE;
return (dmu_buf_set_user(db_fake, user));
}
void *
dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
{
return (dmu_buf_replace_user(db_fake, user, NULL));
}
void *
dmu_buf_get_user(dmu_buf_t *db_fake)
{
dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
dbuf_verify_user(db, DBVU_NOT_EVICTING);
return (db->db_user);
}
void
dmu_buf_user_evict_wait()
{
taskq_wait(dbu_evict_taskq);
}
blkptr_t *
dmu_buf_get_blkptr(dmu_buf_t *db)
{
dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
return (dbi->db_blkptr);
}
objset_t *
dmu_buf_get_objset(dmu_buf_t *db)
{
dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
return (dbi->db_objset);
}
dnode_t *
dmu_buf_dnode_enter(dmu_buf_t *db)
{
dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
DB_DNODE_ENTER(dbi);
return (DB_DNODE(dbi));
}
void
dmu_buf_dnode_exit(dmu_buf_t *db)
{
dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
DB_DNODE_EXIT(dbi);
}
static void
dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db)
{
/* ASSERT(dmu_tx_is_syncing(tx) */
ASSERT(MUTEX_HELD(&db->db_mtx));
if (db->db_blkptr != NULL)
return;
if (db->db_blkid == DMU_SPILL_BLKID) {
db->db_blkptr = DN_SPILL_BLKPTR(dn->dn_phys);
BP_ZERO(db->db_blkptr);
return;
}
if (db->db_level == dn->dn_phys->dn_nlevels-1) {
/*
* This buffer was allocated at a time when there was
* no available blkptrs from the dnode, or it was
* inappropriate to hook it in (i.e., nlevels mis-match).
*/
ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr);
ASSERT(db->db_parent == NULL);
db->db_parent = dn->dn_dbuf;
db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid];
DBUF_VERIFY(db);
} else {
dmu_buf_impl_t *parent = db->db_parent;
int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
ASSERT(dn->dn_phys->dn_nlevels > 1);
if (parent == NULL) {
mutex_exit(&db->db_mtx);
rw_enter(&dn->dn_struct_rwlock, RW_READER);
parent = dbuf_hold_level(dn, db->db_level + 1,
db->db_blkid >> epbs, db);
rw_exit(&dn->dn_struct_rwlock);
mutex_enter(&db->db_mtx);
db->db_parent = parent;
}
db->db_blkptr = (blkptr_t *)parent->db.db_data +
(db->db_blkid & ((1ULL << epbs) - 1));
DBUF_VERIFY(db);
}
}
/*
* When syncing out a blocks of dnodes, adjust the block to deal with
* encryption. Normally, we make sure the block is decrypted before writing
* it. If we have crypt params, then we are writing a raw (encrypted) block,
* from a raw receive. In this case, set the ARC buf's crypt params so
* that the BP will be filled with the correct byteorder, salt, iv, and mac.
*/
static void
dbuf_prepare_encrypted_dnode_leaf(dbuf_dirty_record_t *dr)
{
int err;
dmu_buf_impl_t *db = dr->dr_dbuf;
ASSERT(MUTEX_HELD(&db->db_mtx));
ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT);
ASSERT3U(db->db_level, ==, 0);
if (!db->db_objset->os_raw_receive && arc_is_encrypted(db->db_buf)) {
zbookmark_phys_t zb;
/*
* Unfortunately, there is currently no mechanism for
* syncing context to handle decryption errors. An error
* here is only possible if an attacker maliciously
* changed a dnode block and updated the associated
* checksums going up the block tree.
*/
SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
db->db.db_object, db->db_level, db->db_blkid);
err = arc_untransform(db->db_buf, db->db_objset->os_spa,
&zb, B_TRUE);
if (err)
panic("Invalid dnode block MAC");
} else if (dr->dt.dl.dr_has_raw_params) {
(void) arc_release(dr->dt.dl.dr_data, db);
arc_convert_to_raw(dr->dt.dl.dr_data,
dmu_objset_id(db->db_objset),
dr->dt.dl.dr_byteorder, DMU_OT_DNODE,
dr->dt.dl.dr_salt, dr->dt.dl.dr_iv, dr->dt.dl.dr_mac);
}
}
/*
* dbuf_sync_indirect() is called recursively from dbuf_sync_list() so it
* is critical the we not allow the compiler to inline this function in to
* dbuf_sync_list() thereby drastically bloating the stack usage.
*/
noinline static void
dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
{
dmu_buf_impl_t *db = dr->dr_dbuf;
dnode_t *dn;
zio_t *zio;
ASSERT(dmu_tx_is_syncing(tx));
dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
mutex_enter(&db->db_mtx);
ASSERT(db->db_level > 0);
DBUF_VERIFY(db);
/* Read the block if it hasn't been read yet. */
if (db->db_buf == NULL) {
mutex_exit(&db->db_mtx);
(void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
mutex_enter(&db->db_mtx);
}
ASSERT3U(db->db_state, ==, DB_CACHED);
ASSERT(db->db_buf != NULL);
DB_DNODE_ENTER(db);
dn = DB_DNODE(db);
/* Indirect block size must match what the dnode thinks it is. */
ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
dbuf_check_blkptr(dn, db);
DB_DNODE_EXIT(db);
/* Provide the pending dirty record to child dbufs */
db->db_data_pending = dr;
mutex_exit(&db->db_mtx);
dbuf_write(dr, db->db_buf, tx);
zio = dr->dr_zio;
mutex_enter(&dr->dt.di.dr_mtx);
dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx);
ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
mutex_exit(&dr->dt.di.dr_mtx);
zio_nowait(zio);
}
#ifdef ZFS_DEBUG
/*
* Verify that the size of the data in our bonus buffer does not exceed
* its recorded size.
*
* The purpose of this verification is to catch any cases in development
* where the size of a phys structure (i.e space_map_phys_t) grows and,
* due to incorrect feature management, older pools expect to read more
* data even though they didn't actually write it to begin with.
*
* For a example, this would catch an error in the feature logic where we
* open an older pool and we expect to write the space map histogram of
* a space map with size SPACE_MAP_SIZE_V0.
*/
static void
dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr)
{
dnode_t *dn = DB_DNODE(dr->dr_dbuf);
/*
* Encrypted bonus buffers can have data past their bonuslen.
* Skip the verification of these blocks.
*/
if (DMU_OT_IS_ENCRYPTED(dn->dn_bonustype))
return;
uint16_t bonuslen = dn->dn_phys->dn_bonuslen;
uint16_t maxbonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
ASSERT3U(bonuslen, <=, maxbonuslen);
arc_buf_t *datap = dr->dt.dl.dr_data;
char *datap_end = ((char *)datap) + bonuslen;
char *datap_max = ((char *)datap) + maxbonuslen;
/* ensure that everything is zero after our data */
for (; datap_end < datap_max; datap_end++)
ASSERT(*datap_end == 0);
}
#endif
/*
* dbuf_sync_leaf() is called recursively from dbuf_sync_list() so it is
* critical the we not allow the compiler to inline this function in to
* dbuf_sync_list() thereby drastically bloating the stack usage.
*/
noinline static void
dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
{
arc_buf_t **datap = &dr->dt.dl.dr_data;
dmu_buf_impl_t *db = dr->dr_dbuf;
dnode_t *dn;
objset_t *os;
uint64_t txg = tx->tx_txg;
ASSERT(dmu_tx_is_syncing(tx));
dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
mutex_enter(&db->db_mtx);
/*
* To be synced, we must be dirtied. But we
* might have been freed after the dirty.
*/
if (db->db_state == DB_UNCACHED) {
/* This buffer has been freed since it was dirtied */
ASSERT(db->db.db_data == NULL);
} else if (db->db_state == DB_FILL) {
/* This buffer was freed and is now being re-filled */
ASSERT(db->db.db_data != dr->dt.dl.dr_data);
} else {
ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL);
}
DBUF_VERIFY(db);
DB_DNODE_ENTER(db);
dn = DB_DNODE(db);
if (db->db_blkid == DMU_SPILL_BLKID) {
mutex_enter(&dn->dn_mtx);
if (!(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) {
/*
* In the previous transaction group, the bonus buffer
* was entirely used to store the attributes for the
* dnode which overrode the dn_spill field. However,
* when adding more attributes to the file a spill
* block was required to hold the extra attributes.
*
* Make sure to clear the garbage left in the dn_spill
* field from the previous attributes in the bonus
* buffer. Otherwise, after writing out the spill
* block to the new allocated dva, it will free
* the old block pointed to by the invalid dn_spill.
*/
db->db_blkptr = NULL;
}
dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR;
mutex_exit(&dn->dn_mtx);
}
/*
* If this is a bonus buffer, simply copy the bonus data into the
* dnode. It will be written out when the dnode is synced (and it
* will be synced, since it must have been dirty for dbuf_sync to
* be called).
*/
if (db->db_blkid == DMU_BONUS_BLKID) {
dbuf_dirty_record_t **drp;
ASSERT(*datap != NULL);
ASSERT0(db->db_level);
ASSERT3U(DN_MAX_BONUS_LEN(dn->dn_phys), <=,
DN_SLOTS_TO_BONUSLEN(dn->dn_phys->dn_extra_slots + 1));
bcopy(*datap, DN_BONUS(dn->dn_phys),
DN_MAX_BONUS_LEN(dn->dn_phys));
DB_DNODE_EXIT(db);
#ifdef ZFS_DEBUG
dbuf_sync_leaf_verify_bonus_dnode(dr);
#endif
if (*datap != db->db.db_data) {
int slots = DB_DNODE(db)->dn_num_slots;
int bonuslen = DN_SLOTS_TO_BONUSLEN(slots);
kmem_free(*datap, bonuslen);
arc_space_return(bonuslen, ARC_SPACE_BONUS);
}
db->db_data_pending = NULL;
drp = &db->db_last_dirty;
while (*drp != dr)
drp = &(*drp)->dr_next;
ASSERT(dr->dr_next == NULL);
ASSERT(dr->dr_dbuf == db);
*drp = dr->dr_next;
if (dr->dr_dbuf->db_level != 0) {
mutex_destroy(&dr->dt.di.dr_mtx);
list_destroy(&dr->dt.di.dr_children);
}
kmem_free(dr, sizeof (dbuf_dirty_record_t));
ASSERT(db->db_dirtycnt > 0);
db->db_dirtycnt -= 1;
dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg, B_FALSE);
return;
}
os = dn->dn_objset;
/*
* This function may have dropped the db_mtx lock allowing a dmu_sync
* operation to sneak in. As a result, we need to ensure that we
* don't check the dr_override_state until we have returned from
* dbuf_check_blkptr.
*/
dbuf_check_blkptr(dn, db);
/*
* If this buffer is in the middle of an immediate write,
* wait for the synchronous IO to complete.
*/
while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) {
ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
cv_wait(&db->db_changed, &db->db_mtx);
ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN);
}
/*
* If this is a dnode block, ensure it is appropriately encrypted
* or decrypted, depending on what we are writing to it this txg.
*/
if (os->os_encrypted && dn->dn_object == DMU_META_DNODE_OBJECT)
dbuf_prepare_encrypted_dnode_leaf(dr);
if (db->db_state != DB_NOFILL &&
dn->dn_object != DMU_META_DNODE_OBJECT &&
zfs_refcount_count(&db->db_holds) > 1 &&
dr->dt.dl.dr_override_state != DR_OVERRIDDEN &&
*datap == db->db_buf) {
/*
* If this buffer is currently "in use" (i.e., there
* are active holds and db_data still references it),
* then make a copy before we start the write so that
* any modifications from the open txg will not leak
* into this write.
*
* NOTE: this copy does not need to be made for
* objects only modified in the syncing context (e.g.
* DNONE_DNODE blocks).
*/
int psize = arc_buf_size(*datap);
int lsize = arc_buf_lsize(*datap);
arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
enum zio_compress compress_type = arc_get_compression(*datap);
if (arc_is_encrypted(*datap)) {
boolean_t byteorder;
uint8_t salt[ZIO_DATA_SALT_LEN];
uint8_t iv[ZIO_DATA_IV_LEN];
uint8_t mac[ZIO_DATA_MAC_LEN];
arc_get_raw_params(*datap, &byteorder, salt, iv, mac);
*datap = arc_alloc_raw_buf(os->os_spa, db,
dmu_objset_id(os), byteorder, salt, iv, mac,
dn->dn_type, psize, lsize, compress_type);
} else if (compress_type != ZIO_COMPRESS_OFF) {
ASSERT3U(type, ==, ARC_BUFC_DATA);
*datap = arc_alloc_compressed_buf(os->os_spa, db,
psize, lsize, compress_type);
} else {
*datap = arc_alloc_buf(os->os_spa, db, type, psize);
}
bcopy(db->db.db_data, (*datap)->b_data, psize);
}
db->db_data_pending = dr;
mutex_exit(&db->db_mtx);
dbuf_write(dr, *datap, tx);
ASSERT(!list_link_active(&dr->dr_dirty_node));
if (dn->dn_object == DMU_META_DNODE_OBJECT) {
list_insert_tail(&dn->dn_dirty_records[txg & TXG_MASK], dr);
DB_DNODE_EXIT(db);
} else {
/*
* Although zio_nowait() does not "wait for an IO", it does
* initiate the IO. If this is an empty write it seems plausible
* that the IO could actually be completed before the nowait
* returns. We need to DB_DNODE_EXIT() first in case
* zio_nowait() invalidates the dbuf.
*/
DB_DNODE_EXIT(db);
zio_nowait(dr->dr_zio);
}
}
void
dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx)
{
dbuf_dirty_record_t *dr;
while ((dr = list_head(list))) {
if (dr->dr_zio != NULL) {
/*
* If we find an already initialized zio then we
* are processing the meta-dnode, and we have finished.
* The dbufs for all dnodes are put back on the list
* during processing, so that we can zio_wait()
* these IOs after initiating all child IOs.
*/
ASSERT3U(dr->dr_dbuf->db.db_object, ==,
DMU_META_DNODE_OBJECT);
break;
}
if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
VERIFY3U(dr->dr_dbuf->db_level, ==, level);
}
list_remove(list, dr);
if (dr->dr_dbuf->db_level > 0)
dbuf_sync_indirect(dr, tx);
else
dbuf_sync_leaf(dr, tx);
}
}
/* ARGSUSED */
static void
dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
{
dmu_buf_impl_t *db = vdb;
dnode_t *dn;
blkptr_t *bp = zio->io_bp;
blkptr_t *bp_orig = &zio->io_bp_orig;
spa_t *spa = zio->io_spa;
int64_t delta;
uint64_t fill = 0;
int i;
ASSERT3P(db->db_blkptr, !=, NULL);
ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp);
DB_DNODE_ENTER(db);
dn = DB_DNODE(db);
delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig);
dnode_diduse_space(dn, delta - zio->io_prev_space_delta);
zio->io_prev_space_delta = delta;
if (bp->blk_birth != 0) {
ASSERT((db->db_blkid != DMU_SPILL_BLKID &&
BP_GET_TYPE(bp) == dn->dn_type) ||
(db->db_blkid == DMU_SPILL_BLKID &&
BP_GET_TYPE(bp) == dn->dn_bonustype) ||
BP_IS_EMBEDDED(bp));
ASSERT(BP_GET_LEVEL(bp) == db->db_level);
}
mutex_enter(&db->db_mtx);
#ifdef ZFS_DEBUG
if (db->db_blkid == DMU_SPILL_BLKID) {
ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
ASSERT(!(BP_IS_HOLE(bp)) &&
db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
}
#endif
if (db->db_level == 0) {
mutex_enter(&dn->dn_mtx);
if (db->db_blkid > dn->dn_phys->dn_maxblkid &&
db->db_blkid != DMU_SPILL_BLKID) {
ASSERT0(db->db_objset->os_raw_receive);
dn->dn_phys->dn_maxblkid = db->db_blkid;
}
mutex_exit(&dn->dn_mtx);
if (dn->dn_type == DMU_OT_DNODE) {
i = 0;
while (i < db->db.db_size) {
dnode_phys_t *dnp =
(void *)(((char *)db->db.db_data) + i);
i += DNODE_MIN_SIZE;
if (dnp->dn_type != DMU_OT_NONE) {
fill++;
i += dnp->dn_extra_slots *
DNODE_MIN_SIZE;
}
}
} else {
if (BP_IS_HOLE(bp)) {
fill = 0;
} else {
fill = 1;
}
}
} else {
blkptr_t *ibp = db->db.db_data;
ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) {
if (BP_IS_HOLE(ibp))
continue;
fill += BP_GET_FILL(ibp);
}
}
DB_DNODE_EXIT(db);
if (!BP_IS_EMBEDDED(bp))
BP_SET_FILL(bp, fill);
mutex_exit(&db->db_mtx);
rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
*db->db_blkptr = *bp;
rw_exit(&dn->dn_struct_rwlock);
}
/* ARGSUSED */
/*
* This function gets called just prior to running through the compression
* stage of the zio pipeline. If we're an indirect block comprised of only
* holes, then we want this indirect to be compressed away to a hole. In
* order to do that we must zero out any information about the holes that
* this indirect points to prior to before we try to compress it.
*/
static void
dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
{
dmu_buf_impl_t *db = vdb;
dnode_t *dn;
blkptr_t *bp;
unsigned int epbs, i;
ASSERT3U(db->db_level, >, 0);
DB_DNODE_ENTER(db);
dn = DB_DNODE(db);
epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
ASSERT3U(epbs, <, 31);
/* Determine if all our children are holes */
for (i = 0, bp = db->db.db_data; i < 1ULL << epbs; i++, bp++) {
if (!BP_IS_HOLE(bp))
break;
}
/*
* If all the children are holes, then zero them all out so that
* we may get compressed away.
*/
if (i == 1ULL << epbs) {
/*
* We only found holes. Grab the rwlock to prevent
* anybody from reading the blocks we're about to
* zero out.
*/
rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
bzero(db->db.db_data, db->db.db_size);
rw_exit(&dn->dn_struct_rwlock);
}
DB_DNODE_EXIT(db);
}
/*
* The SPA will call this callback several times for each zio - once
* for every physical child i/o (zio->io_phys_children times). This
* allows the DMU to monitor the progress of each logical i/o. For example,
* there may be 2 copies of an indirect block, or many fragments of a RAID-Z
* block. There may be a long delay before all copies/fragments are completed,
* so this callback allows us to retire dirty space gradually, as the physical
* i/os complete.
*/
/* ARGSUSED */
static void
dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg)
{
dmu_buf_impl_t *db = arg;
objset_t *os = db->db_objset;
dsl_pool_t *dp = dmu_objset_pool(os);
dbuf_dirty_record_t *dr;
int delta = 0;
dr = db->db_data_pending;
ASSERT3U(dr->dr_txg, ==, zio->io_txg);
/*
* The callback will be called io_phys_children times. Retire one
* portion of our dirty space each time we are called. Any rounding
* error will be cleaned up by dbuf_write_done().
*/
delta = dr->dr_accounted / zio->io_phys_children;
dsl_pool_undirty_space(dp, delta, zio->io_txg);
}
/* ARGSUSED */
static void
dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb)
{
dmu_buf_impl_t *db = vdb;
blkptr_t *bp_orig = &zio->io_bp_orig;
blkptr_t *bp = db->db_blkptr;
objset_t *os = db->db_objset;
dmu_tx_t *tx = os->os_synctx;
dbuf_dirty_record_t **drp, *dr;
ASSERT0(zio->io_error);
ASSERT(db->db_blkptr == bp);
/*
* For nopwrites and rewrites we ensure that the bp matches our
* original and bypass all the accounting.
*/
if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
ASSERT(BP_EQUAL(bp, bp_orig));
} else {
dsl_dataset_t *ds = os->os_dsl_dataset;
(void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE);
dsl_dataset_block_born(ds, bp, tx);
}
mutex_enter(&db->db_mtx);
DBUF_VERIFY(db);
drp = &db->db_last_dirty;
while ((dr = *drp) != db->db_data_pending)
drp = &dr->dr_next;
ASSERT(!list_link_active(&dr->dr_dirty_node));
ASSERT(dr->dr_dbuf == db);
ASSERT(dr->dr_next == NULL);
*drp = dr->dr_next;
#ifdef ZFS_DEBUG
if (db->db_blkid == DMU_SPILL_BLKID) {
dnode_t *dn;
DB_DNODE_ENTER(db);
dn = DB_DNODE(db);
ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
DB_DNODE_EXIT(db);
}
#endif
if (db->db_level == 0) {
ASSERT(db->db_blkid != DMU_BONUS_BLKID);
ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
if (db->db_state != DB_NOFILL) {
if (dr->dt.dl.dr_data != db->db_buf)
arc_buf_destroy(dr->dt.dl.dr_data, db);
}
} else {
dnode_t *dn;
DB_DNODE_ENTER(db);
dn = DB_DNODE(db);
ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
if (!BP_IS_HOLE(db->db_blkptr)) {
ASSERTV(int epbs = dn->dn_phys->dn_indblkshift -
SPA_BLKPTRSHIFT);
ASSERT3U(db->db_blkid, <=,
dn->dn_phys->dn_maxblkid >> (db->db_level * epbs));
ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
db->db.db_size);
}
DB_DNODE_EXIT(db);
mutex_destroy(&dr->dt.di.dr_mtx);
list_destroy(&dr->dt.di.dr_children);
}
cv_broadcast(&db->db_changed);
ASSERT(db->db_dirtycnt > 0);
db->db_dirtycnt -= 1;
db->db_data_pending = NULL;
dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE);
/*
* If we didn't do a physical write in this ZIO and we
* still ended up here, it means that the space of the
* dbuf that we just released (and undirtied) above hasn't
* been marked as undirtied in the pool's accounting.
*
* Thus, we undirty that space in the pool's view of the
* world here. For physical writes this type of update
* happens in dbuf_write_physdone().
*
* If we did a physical write, cleanup any rounding errors
* that came up due to writing multiple copies of a block
* on disk [see dbuf_write_physdone()].
*/
if (zio->io_phys_children == 0) {
dsl_pool_undirty_space(dmu_objset_pool(os),
dr->dr_accounted, zio->io_txg);
} else {
dsl_pool_undirty_space(dmu_objset_pool(os),
dr->dr_accounted % zio->io_phys_children, zio->io_txg);
}
kmem_free(dr, sizeof (dbuf_dirty_record_t));
}
static void
dbuf_write_nofill_ready(zio_t *zio)
{
dbuf_write_ready(zio, NULL, zio->io_private);
}
static void
dbuf_write_nofill_done(zio_t *zio)
{
dbuf_write_done(zio, NULL, zio->io_private);
}
static void
dbuf_write_override_ready(zio_t *zio)
{
dbuf_dirty_record_t *dr = zio->io_private;
dmu_buf_impl_t *db = dr->dr_dbuf;
dbuf_write_ready(zio, NULL, db);
}
static void
dbuf_write_override_done(zio_t *zio)
{
dbuf_dirty_record_t *dr = zio->io_private;
dmu_buf_impl_t *db = dr->dr_dbuf;
blkptr_t *obp = &dr->dt.dl.dr_overridden_by;
mutex_enter(&db->db_mtx);
if (!BP_EQUAL(zio->io_bp, obp)) {
if (!BP_IS_HOLE(obp))
dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp);
arc_release(dr->dt.dl.dr_data, db);
}
mutex_exit(&db->db_mtx);
dbuf_write_done(zio, NULL, db);
if (zio->io_abd != NULL)
abd_put(zio->io_abd);
}
typedef struct dbuf_remap_impl_callback_arg {
objset_t *drica_os;
uint64_t drica_blk_birth;
dmu_tx_t *drica_tx;
} dbuf_remap_impl_callback_arg_t;
static void
dbuf_remap_impl_callback(uint64_t vdev, uint64_t offset, uint64_t size,
void *arg)
{
dbuf_remap_impl_callback_arg_t *drica = arg;
objset_t *os = drica->drica_os;
spa_t *spa = dmu_objset_spa(os);
dmu_tx_t *tx = drica->drica_tx;
ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
if (os == spa_meta_objset(spa)) {
spa_vdev_indirect_mark_obsolete(spa, vdev, offset, size, tx);
} else {
dsl_dataset_block_remapped(dmu_objset_ds(os), vdev, offset,
size, drica->drica_blk_birth, tx);
}
}
static void
dbuf_remap_impl(dnode_t *dn, blkptr_t *bp, dmu_tx_t *tx)
{
blkptr_t bp_copy = *bp;
spa_t *spa = dmu_objset_spa(dn->dn_objset);
dbuf_remap_impl_callback_arg_t drica;
ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
drica.drica_os = dn->dn_objset;
drica.drica_blk_birth = bp->blk_birth;
drica.drica_tx = tx;
if (spa_remap_blkptr(spa, &bp_copy, dbuf_remap_impl_callback,
&drica)) {
/*
* The struct_rwlock prevents dbuf_read_impl() from
* dereferencing the BP while we are changing it. To
* avoid lock contention, only grab it when we are actually
* changing the BP.
*/
rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
*bp = bp_copy;
rw_exit(&dn->dn_struct_rwlock);
}
}
/*
* Returns true if a dbuf_remap would modify the dbuf. We do this by attempting
* to remap a copy of every bp in the dbuf.
*/
boolean_t
dbuf_can_remap(const dmu_buf_impl_t *db)
{
spa_t *spa = dmu_objset_spa(db->db_objset);
blkptr_t *bp = db->db.db_data;
boolean_t ret = B_FALSE;
ASSERT3U(db->db_level, >, 0);
ASSERT3S(db->db_state, ==, DB_CACHED);
ASSERT(spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL));
spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) {
blkptr_t bp_copy = bp[i];
if (spa_remap_blkptr(spa, &bp_copy, NULL, NULL)) {
ret = B_TRUE;
break;
}
}
spa_config_exit(spa, SCL_VDEV, FTAG);
return (ret);
}
boolean_t
dnode_needs_remap(const dnode_t *dn)
{
spa_t *spa = dmu_objset_spa(dn->dn_objset);
boolean_t ret = B_FALSE;
if (dn->dn_phys->dn_nlevels == 0) {
return (B_FALSE);
}
ASSERT(spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL));
spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
for (int j = 0; j < dn->dn_phys->dn_nblkptr; j++) {
blkptr_t bp_copy = dn->dn_phys->dn_blkptr[j];
if (spa_remap_blkptr(spa, &bp_copy, NULL, NULL)) {
ret = B_TRUE;
break;
}
}
spa_config_exit(spa, SCL_VDEV, FTAG);
return (ret);
}
/*
* Remap any existing BP's to concrete vdevs, if possible.
*/
static void
dbuf_remap(dnode_t *dn, dmu_buf_impl_t *db, dmu_tx_t *tx)
{
spa_t *spa = dmu_objset_spa(db->db_objset);
ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
if (!spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL))
return;
if (db->db_level > 0) {
blkptr_t *bp = db->db.db_data;
for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) {
dbuf_remap_impl(dn, &bp[i], tx);
}
} else if (db->db.db_object == DMU_META_DNODE_OBJECT) {
dnode_phys_t *dnp = db->db.db_data;
ASSERT3U(db->db_dnode_handle->dnh_dnode->dn_type, ==,
DMU_OT_DNODE);
for (int i = 0; i < db->db.db_size >> DNODE_SHIFT;
i += dnp[i].dn_extra_slots + 1) {
for (int j = 0; j < dnp[i].dn_nblkptr; j++) {
dbuf_remap_impl(dn, &dnp[i].dn_blkptr[j], tx);
}
}
}
}
/* Issue I/O to commit a dirty buffer to disk. */
static void
dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)
{
dmu_buf_impl_t *db = dr->dr_dbuf;
dnode_t *dn;
objset_t *os;
dmu_buf_impl_t *parent = db->db_parent;
uint64_t txg = tx->tx_txg;
zbookmark_phys_t zb;
zio_prop_t zp;
zio_t *zio;
int wp_flag = 0;
ASSERT(dmu_tx_is_syncing(tx));
DB_DNODE_ENTER(db);
dn = DB_DNODE(db);
os = dn->dn_objset;
if (db->db_state != DB_NOFILL) {
if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) {
/*
* Private object buffers are released here rather
* than in dbuf_dirty() since they are only modified
* in the syncing context and we don't want the
* overhead of making multiple copies of the data.
*/
if (BP_IS_HOLE(db->db_blkptr)) {
arc_buf_thaw(data);
} else {
dbuf_release_bp(db);
}
dbuf_remap(dn, db, tx);
}
}
if (parent != dn->dn_dbuf) {
/* Our parent is an indirect block. */
/* We have a dirty parent that has been scheduled for write. */
ASSERT(parent && parent->db_data_pending);
/* Our parent's buffer is one level closer to the dnode. */
ASSERT(db->db_level == parent->db_level-1);
/*
* We're about to modify our parent's db_data by modifying
* our block pointer, so the parent must be released.
*/
ASSERT(arc_released(parent->db_buf));
zio = parent->db_data_pending->dr_zio;
} else {
/* Our parent is the dnode itself. */
ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 &&
db->db_blkid != DMU_SPILL_BLKID) ||
(db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0));
if (db->db_blkid != DMU_SPILL_BLKID)
ASSERT3P(db->db_blkptr, ==,
&dn->dn_phys->dn_blkptr[db->db_blkid]);
zio = dn->dn_zio;
}
ASSERT(db->db_level == 0 || data == db->db_buf);
ASSERT3U(db->db_blkptr->blk_birth, <=, txg);
ASSERT(zio);
SET_BOOKMARK(&zb, os->os_dsl_dataset ?
os->os_dsl_dataset->ds_object : DMU_META_OBJSET,
db->db.db_object, db->db_level, db->db_blkid);
if (db->db_blkid == DMU_SPILL_BLKID)
wp_flag = WP_SPILL;
wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0;
dmu_write_policy(os, dn, db->db_level, wp_flag, &zp);
DB_DNODE_EXIT(db);
/*
* We copy the blkptr now (rather than when we instantiate the dirty
* record), because its value can change between open context and
* syncing context. We do not need to hold dn_struct_rwlock to read
* db_blkptr because we are in syncing context.
*/
dr->dr_bp_copy = *db->db_blkptr;
if (db->db_level == 0 &&
dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
/*
* The BP for this block has been provided by open context
* (by dmu_sync() or dmu_buf_write_embedded()).
*/
abd_t *contents = (data != NULL) ?
abd_get_from_buf(data->b_data, arc_buf_size(data)) : NULL;
dr->dr_zio = zio_write(zio, os->os_spa, txg,
&dr->dr_bp_copy, contents, db->db.db_size, db->db.db_size,
&zp, dbuf_write_override_ready, NULL, NULL,
dbuf_write_override_done,
dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
mutex_enter(&db->db_mtx);
dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by,
dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite);
mutex_exit(&db->db_mtx);
} else if (db->db_state == DB_NOFILL) {
ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF ||
zp.zp_checksum == ZIO_CHECKSUM_NOPARITY);
dr->dr_zio = zio_write(zio, os->os_spa, txg,
&dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp,
dbuf_write_nofill_ready, NULL, NULL,
dbuf_write_nofill_done, db,
ZIO_PRIORITY_ASYNC_WRITE,
ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb);
} else {
ASSERT(arc_released(data));
/*
* For indirect blocks, we want to setup the children
* ready callback so that we can properly handle an indirect
* block that only contains holes.
*/
arc_write_done_func_t *children_ready_cb = NULL;
if (db->db_level != 0)
children_ready_cb = dbuf_write_children_ready;
dr->dr_zio = arc_write(zio, os->os_spa, txg,
&dr->dr_bp_copy, data, DBUF_IS_L2CACHEABLE(db),
&zp, dbuf_write_ready,
children_ready_cb, dbuf_write_physdone,
dbuf_write_done, db, ZIO_PRIORITY_ASYNC_WRITE,
ZIO_FLAG_MUSTSUCCEED, &zb);
}
}
#if defined(_KERNEL)
EXPORT_SYMBOL(dbuf_find);
EXPORT_SYMBOL(dbuf_is_metadata);
EXPORT_SYMBOL(dbuf_destroy);
EXPORT_SYMBOL(dbuf_loan_arcbuf);
EXPORT_SYMBOL(dbuf_whichblock);
EXPORT_SYMBOL(dbuf_read);
EXPORT_SYMBOL(dbuf_unoverride);
EXPORT_SYMBOL(dbuf_free_range);
EXPORT_SYMBOL(dbuf_new_size);
EXPORT_SYMBOL(dbuf_release_bp);
EXPORT_SYMBOL(dbuf_dirty);
EXPORT_SYMBOL(dmu_buf_set_crypt_params);
EXPORT_SYMBOL(dmu_buf_will_dirty);
EXPORT_SYMBOL(dmu_buf_is_dirty);
EXPORT_SYMBOL(dmu_buf_will_not_fill);
EXPORT_SYMBOL(dmu_buf_will_fill);
EXPORT_SYMBOL(dmu_buf_fill_done);
EXPORT_SYMBOL(dmu_buf_rele);
EXPORT_SYMBOL(dbuf_assign_arcbuf);
EXPORT_SYMBOL(dbuf_prefetch);
EXPORT_SYMBOL(dbuf_hold_impl);
EXPORT_SYMBOL(dbuf_hold);
EXPORT_SYMBOL(dbuf_hold_level);
EXPORT_SYMBOL(dbuf_create_bonus);
EXPORT_SYMBOL(dbuf_spill_set_blksz);
EXPORT_SYMBOL(dbuf_rm_spill);
EXPORT_SYMBOL(dbuf_add_ref);
EXPORT_SYMBOL(dbuf_rele);
EXPORT_SYMBOL(dbuf_rele_and_unlock);
EXPORT_SYMBOL(dbuf_refcount);
EXPORT_SYMBOL(dbuf_sync_list);
EXPORT_SYMBOL(dmu_buf_set_user);
EXPORT_SYMBOL(dmu_buf_set_user_ie);
EXPORT_SYMBOL(dmu_buf_get_user);
EXPORT_SYMBOL(dmu_buf_get_blkptr);
/* BEGIN CSTYLED */
module_param(dbuf_cache_max_bytes, ulong, 0644);
MODULE_PARM_DESC(dbuf_cache_max_bytes,
"Maximum size in bytes of the dbuf cache.");
module_param(dbuf_cache_hiwater_pct, uint, 0644);
MODULE_PARM_DESC(dbuf_cache_hiwater_pct,
"Percentage over dbuf_cache_max_bytes when dbufs must be evicted "
"directly.");
module_param(dbuf_cache_lowater_pct, uint, 0644);
MODULE_PARM_DESC(dbuf_cache_lowater_pct,
"Percentage below dbuf_cache_max_bytes when the evict thread stops "
"evicting dbufs.");
module_param(dbuf_metadata_cache_max_bytes, ulong, 0644);
MODULE_PARM_DESC(dbuf_metadata_cache_max_bytes,
"Maximum size in bytes of the dbuf metadata cache.");
module_param(dbuf_cache_shift, int, 0644);
MODULE_PARM_DESC(dbuf_cache_shift,
"Set the size of the dbuf cache to a log2 fraction of arc size.");
module_param(dbuf_metadata_cache_shift, int, 0644);
MODULE_PARM_DESC(dbuf_cache_shift,
"Set the size of the dbuf metadata cache to a log2 fraction of "
"arc size.");
/* END CSTYLED */
#endif