zfs/lib/libzpool/util.c

294 lines
7.7 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2016 by Delphix. All rights reserved.
* Copyright 2017 Jason King
*/
#include <assert.h>
#include <sys/zfs_context.h>
#include <sys/avl.h>
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/spa.h>
#include <sys/fs/zfs.h>
#include <sys/refcount.h>
#include <dlfcn.h>
/*
* Routines needed by more than one client of libzpool.
*/
/* The largest suffix that can fit, aka an exabyte (2^60 / 10^18) */
#define INDEX_MAX (6)
/* Verify INDEX_MAX fits */
CTASSERT_GLOBAL(INDEX_MAX * 10 < sizeof (uint64_t) * 8);
void
nicenum_scale(uint64_t n, size_t units, char *buf, size_t buflen,
uint32_t flags)
{
uint64_t divamt = 1024;
uint64_t divisor = 1;
int index = 0;
int rc = 0;
char u;
if (units == 0)
units = 1;
if (n > 0) {
n *= units;
if (n < units)
goto overflow;
}
if (flags & NN_DIVISOR_1000)
divamt = 1000;
/*
* This tries to find the suffix S(n) such that
* S(n) <= n < S(n+1), where S(n) = 2^(n*10) | 10^(3*n)
* (i.e. 1024/1000, 1,048,576/1,000,000, etc). Stop once S(n)
* is the largest prefix supported (i.e. don't bother computing
* and checking S(n+1). Since INDEX_MAX should be the largest
* suffix that fits (currently an exabyte), S(INDEX_MAX + 1) is
* never checked as it would overflow.
*/
while (index < INDEX_MAX) {
uint64_t newdiv = divisor * divamt;
/* CTASSERT() guarantee these never trip */
VERIFY3U(newdiv, >=, divamt);
VERIFY3U(newdiv, >=, divisor);
if (n < newdiv)
break;
divisor = newdiv;
index++;
}
u = " KMGTPE"[index];
if (index == 0) {
rc = snprintf(buf, buflen, "%llu", (u_longlong_t)n);
} else if (n % divisor == 0) {
/*
* If this is an even multiple of the base, always display
* without any decimal precision.
*/
rc = snprintf(buf, buflen, "%llu%c",
(u_longlong_t)(n / divisor), u);
} else {
/*
* We want to choose a precision that reflects the best choice
* for fitting in 5 characters. This can get rather tricky
* when we have numbers that are very close to an order of
* magnitude. For example, when displaying 10239 (which is
* really 9.999K), we want only a single place of precision
* for 10.0K. We could develop some complex heuristics for
* this, but it's much easier just to try each combination
* in turn.
*/
int i;
for (i = 2; i >= 0; i--) {
if ((rc = snprintf(buf, buflen, "%.*f%c", i,
(double)n / divisor, u)) <= 5)
break;
}
}
if (rc + 1 > buflen || rc < 0)
goto overflow;
return;
overflow:
/* prefer a more verbose message if possible */
if (buflen > 10)
(void) strlcpy(buf, "<overflow>", buflen);
else
(void) strlcpy(buf, "??", buflen);
}
void
nicenum(uint64_t num, char *buf, size_t buflen)
{
nicenum_scale(num, 1, buf, buflen, 0);
}
static void
show_vdev_stats(const char *desc, const char *ctype, nvlist_t *nv, int indent)
{
vdev_stat_t *vs;
vdev_stat_t *v0 = { 0 };
uint64_t sec;
uint64_t is_log = 0;
nvlist_t **child;
uint_t c, children;
char used[6], avail[6];
char rops[6], wops[6], rbytes[6], wbytes[6], rerr[6], werr[6], cerr[6];
char *prefix = "";
v0 = umem_zalloc(sizeof (*v0), UMEM_NOFAIL);
if (indent == 0 && desc != NULL) {
(void) printf(" "
" capacity operations bandwidth ---- errors ----\n");
(void) printf("description "
"used avail read write read write read write cksum\n");
}
if (desc != NULL) {
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &is_log);
if (is_log)
prefix = "log ";
if (nvlist_lookup_uint64_array(nv, ZPOOL_CONFIG_VDEV_STATS,
(uint64_t **)&vs, &c) != 0)
vs = v0;
sec = MAX(1, vs->vs_timestamp / NANOSEC);
nicenum(vs->vs_alloc, used, sizeof (used));
nicenum(vs->vs_space - vs->vs_alloc, avail, sizeof (avail));
nicenum(vs->vs_ops[ZIO_TYPE_READ] / sec, rops, sizeof (rops));
nicenum(vs->vs_ops[ZIO_TYPE_WRITE] / sec, wops, sizeof (wops));
nicenum(vs->vs_bytes[ZIO_TYPE_READ] / sec, rbytes,
sizeof (rbytes));
nicenum(vs->vs_bytes[ZIO_TYPE_WRITE] / sec, wbytes,
sizeof (wbytes));
nicenum(vs->vs_read_errors, rerr, sizeof (rerr));
nicenum(vs->vs_write_errors, werr, sizeof (werr));
nicenum(vs->vs_checksum_errors, cerr, sizeof (cerr));
(void) printf("%*s%s%*s%*s%*s %5s %5s %5s %5s %5s %5s %5s\n",
indent, "",
prefix,
(int)(indent+strlen(prefix)-25-(vs->vs_space ? 0 : 12)),
desc,
vs->vs_space ? 6 : 0, vs->vs_space ? used : "",
vs->vs_space ? 6 : 0, vs->vs_space ? avail : "",
rops, wops, rbytes, wbytes, rerr, werr, cerr);
}
free(v0);
if (nvlist_lookup_nvlist_array(nv, ctype, &child, &children) != 0)
return;
for (c = 0; c < children; c++) {
nvlist_t *cnv = child[c];
char *cname = NULL, *tname;
uint64_t np;
int len;
if (nvlist_lookup_string(cnv, ZPOOL_CONFIG_PATH, &cname) &&
nvlist_lookup_string(cnv, ZPOOL_CONFIG_TYPE, &cname))
cname = "<unknown>";
len = strlen(cname) + 2;
tname = umem_zalloc(len, UMEM_NOFAIL);
(void) strlcpy(tname, cname, len);
if (nvlist_lookup_uint64(cnv, ZPOOL_CONFIG_NPARITY, &np) == 0)
tname[strlen(tname)] = '0' + np;
show_vdev_stats(tname, ctype, cnv, indent + 2);
free(tname);
}
}
void
show_pool_stats(spa_t *spa)
{
nvlist_t *config, *nvroot;
char *name;
VERIFY(spa_get_stats(spa_name(spa), &config, NULL, 0) == 0);
VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
&nvroot) == 0);
VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
&name) == 0);
show_vdev_stats(name, ZPOOL_CONFIG_CHILDREN, nvroot, 0);
show_vdev_stats(NULL, ZPOOL_CONFIG_L2CACHE, nvroot, 0);
show_vdev_stats(NULL, ZPOOL_CONFIG_SPARES, nvroot, 0);
nvlist_free(config);
}
/*
* Sets given global variable in libzpool to given unsigned 32-bit value.
* arg: "<variable>=<value>"
*/
int
set_global_var(char *arg)
{
void *zpoolhdl;
char *varname = arg, *varval;
u_longlong_t val;
#ifndef _LITTLE_ENDIAN
/*
* On big endian systems changing a 64-bit variable would set the high
* 32 bits instead of the low 32 bits, which could cause unexpected
* results.
*/
fprintf(stderr, "Setting global variables is only supported on "
"little-endian systems\n");
return (ENOTSUP);
#endif
if (arg != NULL && (varval = strchr(arg, '=')) != NULL) {
*varval = '\0';
varval++;
val = strtoull(varval, NULL, 0);
if (val > UINT32_MAX) {
fprintf(stderr, "Value for global variable '%s' must "
"be a 32-bit unsigned integer\n", varname);
return (EOVERFLOW);
}
} else {
return (EINVAL);
}
zpoolhdl = dlopen("libzpool.so", RTLD_LAZY);
if (zpoolhdl != NULL) {
uint32_t *var;
var = dlsym(zpoolhdl, varname);
if (var == NULL) {
fprintf(stderr, "Global variable '%s' does not exist "
"in libzpool.so\n", varname);
return (EINVAL);
}
*var = (uint32_t)val;
dlclose(zpoolhdl);
} else {
fprintf(stderr, "Failed to open libzpool.so to set global "
"variable\n");
return (EIO);
}
return (0);
}