3113 lines
96 KiB
C
3113 lines
96 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
|
|
* Copyright 2011 Nexenta Systems, Inc. All rights reserved.
|
|
* Copyright (c) 2011, 2018 by Delphix. All rights reserved.
|
|
* Copyright (c) 2014, Joyent, Inc. All rights reserved.
|
|
* Copyright 2014 HybridCluster. All rights reserved.
|
|
* Copyright 2016 RackTop Systems.
|
|
* Copyright (c) 2016 Actifio, Inc. All rights reserved.
|
|
* Copyright (c) 2019, Klara Inc.
|
|
* Copyright (c) 2019, Allan Jude
|
|
*/
|
|
|
|
#include <sys/dmu.h>
|
|
#include <sys/dmu_impl.h>
|
|
#include <sys/dmu_tx.h>
|
|
#include <sys/dbuf.h>
|
|
#include <sys/dnode.h>
|
|
#include <sys/zfs_context.h>
|
|
#include <sys/dmu_objset.h>
|
|
#include <sys/dmu_traverse.h>
|
|
#include <sys/dsl_dataset.h>
|
|
#include <sys/dsl_dir.h>
|
|
#include <sys/dsl_prop.h>
|
|
#include <sys/dsl_pool.h>
|
|
#include <sys/dsl_synctask.h>
|
|
#include <sys/spa_impl.h>
|
|
#include <sys/zfs_ioctl.h>
|
|
#include <sys/zap.h>
|
|
#include <sys/zio_checksum.h>
|
|
#include <sys/zfs_znode.h>
|
|
#include <zfs_fletcher.h>
|
|
#include <sys/avl.h>
|
|
#include <sys/ddt.h>
|
|
#include <sys/zfs_onexit.h>
|
|
#include <sys/dmu_send.h>
|
|
#include <sys/dmu_recv.h>
|
|
#include <sys/dsl_destroy.h>
|
|
#include <sys/blkptr.h>
|
|
#include <sys/dsl_bookmark.h>
|
|
#include <sys/zfeature.h>
|
|
#include <sys/bqueue.h>
|
|
#include <sys/zvol.h>
|
|
#include <sys/policy.h>
|
|
#include <sys/objlist.h>
|
|
#ifdef _KERNEL
|
|
#include <sys/zfs_vfsops.h>
|
|
#endif
|
|
|
|
/* Set this tunable to TRUE to replace corrupt data with 0x2f5baddb10c */
|
|
static int zfs_send_corrupt_data = B_FALSE;
|
|
/*
|
|
* This tunable controls the amount of data (measured in bytes) that will be
|
|
* prefetched by zfs send. If the main thread is blocking on reads that haven't
|
|
* completed, this variable might need to be increased. If instead the main
|
|
* thread is issuing new reads because the prefetches have fallen out of the
|
|
* cache, this may need to be decreased.
|
|
*/
|
|
static int zfs_send_queue_length = SPA_MAXBLOCKSIZE;
|
|
/*
|
|
* This tunable controls the length of the queues that zfs send worker threads
|
|
* use to communicate. If the send_main_thread is blocking on these queues,
|
|
* this variable may need to be increased. If there is a significant slowdown
|
|
* at the start of a send as these threads consume all the available IO
|
|
* resources, this variable may need to be decreased.
|
|
*/
|
|
static int zfs_send_no_prefetch_queue_length = 1024 * 1024;
|
|
/*
|
|
* These tunables control the fill fraction of the queues by zfs send. The fill
|
|
* fraction controls the frequency with which threads have to be cv_signaled.
|
|
* If a lot of cpu time is being spent on cv_signal, then these should be tuned
|
|
* down. If the queues empty before the signalled thread can catch up, then
|
|
* these should be tuned up.
|
|
*/
|
|
static int zfs_send_queue_ff = 20;
|
|
static int zfs_send_no_prefetch_queue_ff = 20;
|
|
|
|
/*
|
|
* Use this to override the recordsize calculation for fast zfs send estimates.
|
|
*/
|
|
static int zfs_override_estimate_recordsize = 0;
|
|
|
|
/* Set this tunable to FALSE to disable setting of DRR_FLAG_FREERECORDS */
|
|
static const boolean_t zfs_send_set_freerecords_bit = B_TRUE;
|
|
|
|
/* Set this tunable to FALSE is disable sending unmodified spill blocks. */
|
|
static int zfs_send_unmodified_spill_blocks = B_TRUE;
|
|
|
|
static inline boolean_t
|
|
overflow_multiply(uint64_t a, uint64_t b, uint64_t *c)
|
|
{
|
|
uint64_t temp = a * b;
|
|
if (b != 0 && temp / b != a)
|
|
return (B_FALSE);
|
|
*c = temp;
|
|
return (B_TRUE);
|
|
}
|
|
|
|
struct send_thread_arg {
|
|
bqueue_t q;
|
|
objset_t *os; /* Objset to traverse */
|
|
uint64_t fromtxg; /* Traverse from this txg */
|
|
int flags; /* flags to pass to traverse_dataset */
|
|
int error_code;
|
|
boolean_t cancel;
|
|
zbookmark_phys_t resume;
|
|
uint64_t *num_blocks_visited;
|
|
};
|
|
|
|
struct redact_list_thread_arg {
|
|
boolean_t cancel;
|
|
bqueue_t q;
|
|
zbookmark_phys_t resume;
|
|
redaction_list_t *rl;
|
|
boolean_t mark_redact;
|
|
int error_code;
|
|
uint64_t *num_blocks_visited;
|
|
};
|
|
|
|
struct send_merge_thread_arg {
|
|
bqueue_t q;
|
|
objset_t *os;
|
|
struct redact_list_thread_arg *from_arg;
|
|
struct send_thread_arg *to_arg;
|
|
struct redact_list_thread_arg *redact_arg;
|
|
int error;
|
|
boolean_t cancel;
|
|
};
|
|
|
|
struct send_range {
|
|
boolean_t eos_marker; /* Marks the end of the stream */
|
|
uint64_t object;
|
|
uint64_t start_blkid;
|
|
uint64_t end_blkid;
|
|
bqueue_node_t ln;
|
|
enum type {DATA, HOLE, OBJECT, OBJECT_RANGE, REDACT,
|
|
PREVIOUSLY_REDACTED} type;
|
|
union {
|
|
struct srd {
|
|
dmu_object_type_t obj_type;
|
|
uint32_t datablksz; // logical size
|
|
uint32_t datasz; // payload size
|
|
blkptr_t bp;
|
|
arc_buf_t *abuf;
|
|
abd_t *abd;
|
|
kmutex_t lock;
|
|
kcondvar_t cv;
|
|
boolean_t io_outstanding;
|
|
boolean_t io_compressed;
|
|
int io_err;
|
|
} data;
|
|
struct srh {
|
|
uint32_t datablksz;
|
|
} hole;
|
|
struct sro {
|
|
/*
|
|
* This is a pointer because embedding it in the
|
|
* struct causes these structures to be massively larger
|
|
* for all range types; this makes the code much less
|
|
* memory efficient.
|
|
*/
|
|
dnode_phys_t *dnp;
|
|
blkptr_t bp;
|
|
} object;
|
|
struct srr {
|
|
uint32_t datablksz;
|
|
} redact;
|
|
struct sror {
|
|
blkptr_t bp;
|
|
} object_range;
|
|
} sru;
|
|
};
|
|
|
|
/*
|
|
* The list of data whose inclusion in a send stream can be pending from
|
|
* one call to backup_cb to another. Multiple calls to dump_free(),
|
|
* dump_freeobjects(), and dump_redact() can be aggregated into a single
|
|
* DRR_FREE, DRR_FREEOBJECTS, or DRR_REDACT replay record.
|
|
*/
|
|
typedef enum {
|
|
PENDING_NONE,
|
|
PENDING_FREE,
|
|
PENDING_FREEOBJECTS,
|
|
PENDING_REDACT
|
|
} dmu_pendop_t;
|
|
|
|
typedef struct dmu_send_cookie {
|
|
dmu_replay_record_t *dsc_drr;
|
|
dmu_send_outparams_t *dsc_dso;
|
|
offset_t *dsc_off;
|
|
objset_t *dsc_os;
|
|
zio_cksum_t dsc_zc;
|
|
uint64_t dsc_toguid;
|
|
uint64_t dsc_fromtxg;
|
|
int dsc_err;
|
|
dmu_pendop_t dsc_pending_op;
|
|
uint64_t dsc_featureflags;
|
|
uint64_t dsc_last_data_object;
|
|
uint64_t dsc_last_data_offset;
|
|
uint64_t dsc_resume_object;
|
|
uint64_t dsc_resume_offset;
|
|
boolean_t dsc_sent_begin;
|
|
boolean_t dsc_sent_end;
|
|
} dmu_send_cookie_t;
|
|
|
|
static int do_dump(dmu_send_cookie_t *dscp, struct send_range *range);
|
|
|
|
static void
|
|
range_free(struct send_range *range)
|
|
{
|
|
if (range->type == OBJECT) {
|
|
size_t size = sizeof (dnode_phys_t) *
|
|
(range->sru.object.dnp->dn_extra_slots + 1);
|
|
kmem_free(range->sru.object.dnp, size);
|
|
} else if (range->type == DATA) {
|
|
mutex_enter(&range->sru.data.lock);
|
|
while (range->sru.data.io_outstanding)
|
|
cv_wait(&range->sru.data.cv, &range->sru.data.lock);
|
|
if (range->sru.data.abd != NULL)
|
|
abd_free(range->sru.data.abd);
|
|
if (range->sru.data.abuf != NULL) {
|
|
arc_buf_destroy(range->sru.data.abuf,
|
|
&range->sru.data.abuf);
|
|
}
|
|
mutex_exit(&range->sru.data.lock);
|
|
|
|
cv_destroy(&range->sru.data.cv);
|
|
mutex_destroy(&range->sru.data.lock);
|
|
}
|
|
kmem_free(range, sizeof (*range));
|
|
}
|
|
|
|
/*
|
|
* For all record types except BEGIN, fill in the checksum (overlaid in
|
|
* drr_u.drr_checksum.drr_checksum). The checksum verifies everything
|
|
* up to the start of the checksum itself.
|
|
*/
|
|
static int
|
|
dump_record(dmu_send_cookie_t *dscp, void *payload, int payload_len)
|
|
{
|
|
dmu_send_outparams_t *dso = dscp->dsc_dso;
|
|
ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
|
|
==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t));
|
|
(void) fletcher_4_incremental_native(dscp->dsc_drr,
|
|
offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
|
|
&dscp->dsc_zc);
|
|
if (dscp->dsc_drr->drr_type == DRR_BEGIN) {
|
|
dscp->dsc_sent_begin = B_TRUE;
|
|
} else {
|
|
ASSERT(ZIO_CHECKSUM_IS_ZERO(&dscp->dsc_drr->drr_u.
|
|
drr_checksum.drr_checksum));
|
|
dscp->dsc_drr->drr_u.drr_checksum.drr_checksum = dscp->dsc_zc;
|
|
}
|
|
if (dscp->dsc_drr->drr_type == DRR_END) {
|
|
dscp->dsc_sent_end = B_TRUE;
|
|
}
|
|
(void) fletcher_4_incremental_native(&dscp->dsc_drr->
|
|
drr_u.drr_checksum.drr_checksum,
|
|
sizeof (zio_cksum_t), &dscp->dsc_zc);
|
|
*dscp->dsc_off += sizeof (dmu_replay_record_t);
|
|
dscp->dsc_err = dso->dso_outfunc(dscp->dsc_os, dscp->dsc_drr,
|
|
sizeof (dmu_replay_record_t), dso->dso_arg);
|
|
if (dscp->dsc_err != 0)
|
|
return (SET_ERROR(EINTR));
|
|
if (payload_len != 0) {
|
|
*dscp->dsc_off += payload_len;
|
|
/*
|
|
* payload is null when dso_dryrun == B_TRUE (i.e. when we're
|
|
* doing a send size calculation)
|
|
*/
|
|
if (payload != NULL) {
|
|
(void) fletcher_4_incremental_native(
|
|
payload, payload_len, &dscp->dsc_zc);
|
|
}
|
|
|
|
/*
|
|
* The code does not rely on this (len being a multiple of 8).
|
|
* We keep this assertion because of the corresponding assertion
|
|
* in receive_read(). Keeping this assertion ensures that we do
|
|
* not inadvertently break backwards compatibility (causing the
|
|
* assertion in receive_read() to trigger on old software).
|
|
*
|
|
* Raw sends cannot be received on old software, and so can
|
|
* bypass this assertion.
|
|
*/
|
|
|
|
ASSERT((payload_len % 8 == 0) ||
|
|
(dscp->dsc_featureflags & DMU_BACKUP_FEATURE_RAW));
|
|
|
|
dscp->dsc_err = dso->dso_outfunc(dscp->dsc_os, payload,
|
|
payload_len, dso->dso_arg);
|
|
if (dscp->dsc_err != 0)
|
|
return (SET_ERROR(EINTR));
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Fill in the drr_free struct, or perform aggregation if the previous record is
|
|
* also a free record, and the two are adjacent.
|
|
*
|
|
* Note that we send free records even for a full send, because we want to be
|
|
* able to receive a full send as a clone, which requires a list of all the free
|
|
* and freeobject records that were generated on the source.
|
|
*/
|
|
static int
|
|
dump_free(dmu_send_cookie_t *dscp, uint64_t object, uint64_t offset,
|
|
uint64_t length)
|
|
{
|
|
struct drr_free *drrf = &(dscp->dsc_drr->drr_u.drr_free);
|
|
|
|
/*
|
|
* When we receive a free record, dbuf_free_range() assumes
|
|
* that the receiving system doesn't have any dbufs in the range
|
|
* being freed. This is always true because there is a one-record
|
|
* constraint: we only send one WRITE record for any given
|
|
* object,offset. We know that the one-record constraint is
|
|
* true because we always send data in increasing order by
|
|
* object,offset.
|
|
*
|
|
* If the increasing-order constraint ever changes, we should find
|
|
* another way to assert that the one-record constraint is still
|
|
* satisfied.
|
|
*/
|
|
ASSERT(object > dscp->dsc_last_data_object ||
|
|
(object == dscp->dsc_last_data_object &&
|
|
offset > dscp->dsc_last_data_offset));
|
|
|
|
/*
|
|
* If there is a pending op, but it's not PENDING_FREE, push it out,
|
|
* since free block aggregation can only be done for blocks of the
|
|
* same type (i.e., DRR_FREE records can only be aggregated with
|
|
* other DRR_FREE records. DRR_FREEOBJECTS records can only be
|
|
* aggregated with other DRR_FREEOBJECTS records).
|
|
*/
|
|
if (dscp->dsc_pending_op != PENDING_NONE &&
|
|
dscp->dsc_pending_op != PENDING_FREE) {
|
|
if (dump_record(dscp, NULL, 0) != 0)
|
|
return (SET_ERROR(EINTR));
|
|
dscp->dsc_pending_op = PENDING_NONE;
|
|
}
|
|
|
|
if (dscp->dsc_pending_op == PENDING_FREE) {
|
|
/*
|
|
* Check to see whether this free block can be aggregated
|
|
* with pending one.
|
|
*/
|
|
if (drrf->drr_object == object && drrf->drr_offset +
|
|
drrf->drr_length == offset) {
|
|
if (offset + length < offset || length == UINT64_MAX)
|
|
drrf->drr_length = UINT64_MAX;
|
|
else
|
|
drrf->drr_length += length;
|
|
return (0);
|
|
} else {
|
|
/* not a continuation. Push out pending record */
|
|
if (dump_record(dscp, NULL, 0) != 0)
|
|
return (SET_ERROR(EINTR));
|
|
dscp->dsc_pending_op = PENDING_NONE;
|
|
}
|
|
}
|
|
/* create a FREE record and make it pending */
|
|
memset(dscp->dsc_drr, 0, sizeof (dmu_replay_record_t));
|
|
dscp->dsc_drr->drr_type = DRR_FREE;
|
|
drrf->drr_object = object;
|
|
drrf->drr_offset = offset;
|
|
if (offset + length < offset)
|
|
drrf->drr_length = DMU_OBJECT_END;
|
|
else
|
|
drrf->drr_length = length;
|
|
drrf->drr_toguid = dscp->dsc_toguid;
|
|
if (length == DMU_OBJECT_END) {
|
|
if (dump_record(dscp, NULL, 0) != 0)
|
|
return (SET_ERROR(EINTR));
|
|
} else {
|
|
dscp->dsc_pending_op = PENDING_FREE;
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Fill in the drr_redact struct, or perform aggregation if the previous record
|
|
* is also a redaction record, and the two are adjacent.
|
|
*/
|
|
static int
|
|
dump_redact(dmu_send_cookie_t *dscp, uint64_t object, uint64_t offset,
|
|
uint64_t length)
|
|
{
|
|
struct drr_redact *drrr = &dscp->dsc_drr->drr_u.drr_redact;
|
|
|
|
/*
|
|
* If there is a pending op, but it's not PENDING_REDACT, push it out,
|
|
* since free block aggregation can only be done for blocks of the
|
|
* same type (i.e., DRR_REDACT records can only be aggregated with
|
|
* other DRR_REDACT records).
|
|
*/
|
|
if (dscp->dsc_pending_op != PENDING_NONE &&
|
|
dscp->dsc_pending_op != PENDING_REDACT) {
|
|
if (dump_record(dscp, NULL, 0) != 0)
|
|
return (SET_ERROR(EINTR));
|
|
dscp->dsc_pending_op = PENDING_NONE;
|
|
}
|
|
|
|
if (dscp->dsc_pending_op == PENDING_REDACT) {
|
|
/*
|
|
* Check to see whether this redacted block can be aggregated
|
|
* with pending one.
|
|
*/
|
|
if (drrr->drr_object == object && drrr->drr_offset +
|
|
drrr->drr_length == offset) {
|
|
drrr->drr_length += length;
|
|
return (0);
|
|
} else {
|
|
/* not a continuation. Push out pending record */
|
|
if (dump_record(dscp, NULL, 0) != 0)
|
|
return (SET_ERROR(EINTR));
|
|
dscp->dsc_pending_op = PENDING_NONE;
|
|
}
|
|
}
|
|
/* create a REDACT record and make it pending */
|
|
memset(dscp->dsc_drr, 0, sizeof (dmu_replay_record_t));
|
|
dscp->dsc_drr->drr_type = DRR_REDACT;
|
|
drrr->drr_object = object;
|
|
drrr->drr_offset = offset;
|
|
drrr->drr_length = length;
|
|
drrr->drr_toguid = dscp->dsc_toguid;
|
|
dscp->dsc_pending_op = PENDING_REDACT;
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
dmu_dump_write(dmu_send_cookie_t *dscp, dmu_object_type_t type, uint64_t object,
|
|
uint64_t offset, int lsize, int psize, const blkptr_t *bp,
|
|
boolean_t io_compressed, void *data)
|
|
{
|
|
uint64_t payload_size;
|
|
boolean_t raw = (dscp->dsc_featureflags & DMU_BACKUP_FEATURE_RAW);
|
|
struct drr_write *drrw = &(dscp->dsc_drr->drr_u.drr_write);
|
|
|
|
/*
|
|
* We send data in increasing object, offset order.
|
|
* See comment in dump_free() for details.
|
|
*/
|
|
ASSERT(object > dscp->dsc_last_data_object ||
|
|
(object == dscp->dsc_last_data_object &&
|
|
offset > dscp->dsc_last_data_offset));
|
|
dscp->dsc_last_data_object = object;
|
|
dscp->dsc_last_data_offset = offset + lsize - 1;
|
|
|
|
/*
|
|
* If there is any kind of pending aggregation (currently either
|
|
* a grouping of free objects or free blocks), push it out to
|
|
* the stream, since aggregation can't be done across operations
|
|
* of different types.
|
|
*/
|
|
if (dscp->dsc_pending_op != PENDING_NONE) {
|
|
if (dump_record(dscp, NULL, 0) != 0)
|
|
return (SET_ERROR(EINTR));
|
|
dscp->dsc_pending_op = PENDING_NONE;
|
|
}
|
|
/* write a WRITE record */
|
|
memset(dscp->dsc_drr, 0, sizeof (dmu_replay_record_t));
|
|
dscp->dsc_drr->drr_type = DRR_WRITE;
|
|
drrw->drr_object = object;
|
|
drrw->drr_type = type;
|
|
drrw->drr_offset = offset;
|
|
drrw->drr_toguid = dscp->dsc_toguid;
|
|
drrw->drr_logical_size = lsize;
|
|
|
|
/* only set the compression fields if the buf is compressed or raw */
|
|
boolean_t compressed =
|
|
(bp != NULL ? BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
|
|
io_compressed : lsize != psize);
|
|
if (raw || compressed) {
|
|
ASSERT(bp != NULL);
|
|
ASSERT(raw || dscp->dsc_featureflags &
|
|
DMU_BACKUP_FEATURE_COMPRESSED);
|
|
ASSERT(!BP_IS_EMBEDDED(bp));
|
|
ASSERT3S(psize, >, 0);
|
|
|
|
if (raw) {
|
|
ASSERT(BP_IS_PROTECTED(bp));
|
|
|
|
/*
|
|
* This is a raw protected block so we need to pass
|
|
* along everything the receiving side will need to
|
|
* interpret this block, including the byteswap, salt,
|
|
* IV, and MAC.
|
|
*/
|
|
if (BP_SHOULD_BYTESWAP(bp))
|
|
drrw->drr_flags |= DRR_RAW_BYTESWAP;
|
|
zio_crypt_decode_params_bp(bp, drrw->drr_salt,
|
|
drrw->drr_iv);
|
|
zio_crypt_decode_mac_bp(bp, drrw->drr_mac);
|
|
} else {
|
|
/* this is a compressed block */
|
|
ASSERT(dscp->dsc_featureflags &
|
|
DMU_BACKUP_FEATURE_COMPRESSED);
|
|
ASSERT(!BP_SHOULD_BYTESWAP(bp));
|
|
ASSERT(!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)));
|
|
ASSERT3U(BP_GET_COMPRESS(bp), !=, ZIO_COMPRESS_OFF);
|
|
ASSERT3S(lsize, >=, psize);
|
|
}
|
|
|
|
/* set fields common to compressed and raw sends */
|
|
drrw->drr_compressiontype = BP_GET_COMPRESS(bp);
|
|
drrw->drr_compressed_size = psize;
|
|
payload_size = drrw->drr_compressed_size;
|
|
} else {
|
|
payload_size = drrw->drr_logical_size;
|
|
}
|
|
|
|
if (bp == NULL || BP_IS_EMBEDDED(bp) || (BP_IS_PROTECTED(bp) && !raw)) {
|
|
/*
|
|
* There's no pre-computed checksum for partial-block writes,
|
|
* embedded BP's, or encrypted BP's that are being sent as
|
|
* plaintext, so (like fletcher4-checksummed blocks) userland
|
|
* will have to compute a dedup-capable checksum itself.
|
|
*/
|
|
drrw->drr_checksumtype = ZIO_CHECKSUM_OFF;
|
|
} else {
|
|
drrw->drr_checksumtype = BP_GET_CHECKSUM(bp);
|
|
if (zio_checksum_table[drrw->drr_checksumtype].ci_flags &
|
|
ZCHECKSUM_FLAG_DEDUP)
|
|
drrw->drr_flags |= DRR_CHECKSUM_DEDUP;
|
|
DDK_SET_LSIZE(&drrw->drr_key, BP_GET_LSIZE(bp));
|
|
DDK_SET_PSIZE(&drrw->drr_key, BP_GET_PSIZE(bp));
|
|
DDK_SET_COMPRESS(&drrw->drr_key, BP_GET_COMPRESS(bp));
|
|
DDK_SET_CRYPT(&drrw->drr_key, BP_IS_PROTECTED(bp));
|
|
drrw->drr_key.ddk_cksum = bp->blk_cksum;
|
|
}
|
|
|
|
if (dump_record(dscp, data, payload_size) != 0)
|
|
return (SET_ERROR(EINTR));
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
dump_write_embedded(dmu_send_cookie_t *dscp, uint64_t object, uint64_t offset,
|
|
int blksz, const blkptr_t *bp)
|
|
{
|
|
char buf[BPE_PAYLOAD_SIZE];
|
|
struct drr_write_embedded *drrw =
|
|
&(dscp->dsc_drr->drr_u.drr_write_embedded);
|
|
|
|
if (dscp->dsc_pending_op != PENDING_NONE) {
|
|
if (dump_record(dscp, NULL, 0) != 0)
|
|
return (SET_ERROR(EINTR));
|
|
dscp->dsc_pending_op = PENDING_NONE;
|
|
}
|
|
|
|
ASSERT(BP_IS_EMBEDDED(bp));
|
|
|
|
memset(dscp->dsc_drr, 0, sizeof (dmu_replay_record_t));
|
|
dscp->dsc_drr->drr_type = DRR_WRITE_EMBEDDED;
|
|
drrw->drr_object = object;
|
|
drrw->drr_offset = offset;
|
|
drrw->drr_length = blksz;
|
|
drrw->drr_toguid = dscp->dsc_toguid;
|
|
drrw->drr_compression = BP_GET_COMPRESS(bp);
|
|
drrw->drr_etype = BPE_GET_ETYPE(bp);
|
|
drrw->drr_lsize = BPE_GET_LSIZE(bp);
|
|
drrw->drr_psize = BPE_GET_PSIZE(bp);
|
|
|
|
decode_embedded_bp_compressed(bp, buf);
|
|
|
|
if (dump_record(dscp, buf, P2ROUNDUP(drrw->drr_psize, 8)) != 0)
|
|
return (SET_ERROR(EINTR));
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
dump_spill(dmu_send_cookie_t *dscp, const blkptr_t *bp, uint64_t object,
|
|
void *data)
|
|
{
|
|
struct drr_spill *drrs = &(dscp->dsc_drr->drr_u.drr_spill);
|
|
uint64_t blksz = BP_GET_LSIZE(bp);
|
|
uint64_t payload_size = blksz;
|
|
|
|
if (dscp->dsc_pending_op != PENDING_NONE) {
|
|
if (dump_record(dscp, NULL, 0) != 0)
|
|
return (SET_ERROR(EINTR));
|
|
dscp->dsc_pending_op = PENDING_NONE;
|
|
}
|
|
|
|
/* write a SPILL record */
|
|
memset(dscp->dsc_drr, 0, sizeof (dmu_replay_record_t));
|
|
dscp->dsc_drr->drr_type = DRR_SPILL;
|
|
drrs->drr_object = object;
|
|
drrs->drr_length = blksz;
|
|
drrs->drr_toguid = dscp->dsc_toguid;
|
|
|
|
/* See comment in dump_dnode() for full details */
|
|
if (zfs_send_unmodified_spill_blocks &&
|
|
(bp->blk_birth <= dscp->dsc_fromtxg)) {
|
|
drrs->drr_flags |= DRR_SPILL_UNMODIFIED;
|
|
}
|
|
|
|
/* handle raw send fields */
|
|
if (dscp->dsc_featureflags & DMU_BACKUP_FEATURE_RAW) {
|
|
ASSERT(BP_IS_PROTECTED(bp));
|
|
|
|
if (BP_SHOULD_BYTESWAP(bp))
|
|
drrs->drr_flags |= DRR_RAW_BYTESWAP;
|
|
drrs->drr_compressiontype = BP_GET_COMPRESS(bp);
|
|
drrs->drr_compressed_size = BP_GET_PSIZE(bp);
|
|
zio_crypt_decode_params_bp(bp, drrs->drr_salt, drrs->drr_iv);
|
|
zio_crypt_decode_mac_bp(bp, drrs->drr_mac);
|
|
payload_size = drrs->drr_compressed_size;
|
|
}
|
|
|
|
if (dump_record(dscp, data, payload_size) != 0)
|
|
return (SET_ERROR(EINTR));
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
dump_freeobjects(dmu_send_cookie_t *dscp, uint64_t firstobj, uint64_t numobjs)
|
|
{
|
|
struct drr_freeobjects *drrfo = &(dscp->dsc_drr->drr_u.drr_freeobjects);
|
|
uint64_t maxobj = DNODES_PER_BLOCK *
|
|
(DMU_META_DNODE(dscp->dsc_os)->dn_maxblkid + 1);
|
|
|
|
/*
|
|
* ZoL < 0.7 does not handle large FREEOBJECTS records correctly,
|
|
* leading to zfs recv never completing. to avoid this issue, don't
|
|
* send FREEOBJECTS records for object IDs which cannot exist on the
|
|
* receiving side.
|
|
*/
|
|
if (maxobj > 0) {
|
|
if (maxobj <= firstobj)
|
|
return (0);
|
|
|
|
if (maxobj < firstobj + numobjs)
|
|
numobjs = maxobj - firstobj;
|
|
}
|
|
|
|
/*
|
|
* If there is a pending op, but it's not PENDING_FREEOBJECTS,
|
|
* push it out, since free block aggregation can only be done for
|
|
* blocks of the same type (i.e., DRR_FREE records can only be
|
|
* aggregated with other DRR_FREE records. DRR_FREEOBJECTS records
|
|
* can only be aggregated with other DRR_FREEOBJECTS records).
|
|
*/
|
|
if (dscp->dsc_pending_op != PENDING_NONE &&
|
|
dscp->dsc_pending_op != PENDING_FREEOBJECTS) {
|
|
if (dump_record(dscp, NULL, 0) != 0)
|
|
return (SET_ERROR(EINTR));
|
|
dscp->dsc_pending_op = PENDING_NONE;
|
|
}
|
|
|
|
if (dscp->dsc_pending_op == PENDING_FREEOBJECTS) {
|
|
/*
|
|
* See whether this free object array can be aggregated
|
|
* with pending one
|
|
*/
|
|
if (drrfo->drr_firstobj + drrfo->drr_numobjs == firstobj) {
|
|
drrfo->drr_numobjs += numobjs;
|
|
return (0);
|
|
} else {
|
|
/* can't be aggregated. Push out pending record */
|
|
if (dump_record(dscp, NULL, 0) != 0)
|
|
return (SET_ERROR(EINTR));
|
|
dscp->dsc_pending_op = PENDING_NONE;
|
|
}
|
|
}
|
|
|
|
/* write a FREEOBJECTS record */
|
|
memset(dscp->dsc_drr, 0, sizeof (dmu_replay_record_t));
|
|
dscp->dsc_drr->drr_type = DRR_FREEOBJECTS;
|
|
drrfo->drr_firstobj = firstobj;
|
|
drrfo->drr_numobjs = numobjs;
|
|
drrfo->drr_toguid = dscp->dsc_toguid;
|
|
|
|
dscp->dsc_pending_op = PENDING_FREEOBJECTS;
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
dump_dnode(dmu_send_cookie_t *dscp, const blkptr_t *bp, uint64_t object,
|
|
dnode_phys_t *dnp)
|
|
{
|
|
struct drr_object *drro = &(dscp->dsc_drr->drr_u.drr_object);
|
|
int bonuslen;
|
|
|
|
if (object < dscp->dsc_resume_object) {
|
|
/*
|
|
* Note: when resuming, we will visit all the dnodes in
|
|
* the block of dnodes that we are resuming from. In
|
|
* this case it's unnecessary to send the dnodes prior to
|
|
* the one we are resuming from. We should be at most one
|
|
* block's worth of dnodes behind the resume point.
|
|
*/
|
|
ASSERT3U(dscp->dsc_resume_object - object, <,
|
|
1 << (DNODE_BLOCK_SHIFT - DNODE_SHIFT));
|
|
return (0);
|
|
}
|
|
|
|
if (dnp == NULL || dnp->dn_type == DMU_OT_NONE)
|
|
return (dump_freeobjects(dscp, object, 1));
|
|
|
|
if (dscp->dsc_pending_op != PENDING_NONE) {
|
|
if (dump_record(dscp, NULL, 0) != 0)
|
|
return (SET_ERROR(EINTR));
|
|
dscp->dsc_pending_op = PENDING_NONE;
|
|
}
|
|
|
|
/* write an OBJECT record */
|
|
memset(dscp->dsc_drr, 0, sizeof (dmu_replay_record_t));
|
|
dscp->dsc_drr->drr_type = DRR_OBJECT;
|
|
drro->drr_object = object;
|
|
drro->drr_type = dnp->dn_type;
|
|
drro->drr_bonustype = dnp->dn_bonustype;
|
|
drro->drr_blksz = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT;
|
|
drro->drr_bonuslen = dnp->dn_bonuslen;
|
|
drro->drr_dn_slots = dnp->dn_extra_slots + 1;
|
|
drro->drr_checksumtype = dnp->dn_checksum;
|
|
drro->drr_compress = dnp->dn_compress;
|
|
drro->drr_toguid = dscp->dsc_toguid;
|
|
|
|
if (!(dscp->dsc_featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
|
|
drro->drr_blksz > SPA_OLD_MAXBLOCKSIZE)
|
|
drro->drr_blksz = SPA_OLD_MAXBLOCKSIZE;
|
|
|
|
bonuslen = P2ROUNDUP(dnp->dn_bonuslen, 8);
|
|
|
|
if ((dscp->dsc_featureflags & DMU_BACKUP_FEATURE_RAW)) {
|
|
ASSERT(BP_IS_ENCRYPTED(bp));
|
|
|
|
if (BP_SHOULD_BYTESWAP(bp))
|
|
drro->drr_flags |= DRR_RAW_BYTESWAP;
|
|
|
|
/* needed for reconstructing dnp on recv side */
|
|
drro->drr_maxblkid = dnp->dn_maxblkid;
|
|
drro->drr_indblkshift = dnp->dn_indblkshift;
|
|
drro->drr_nlevels = dnp->dn_nlevels;
|
|
drro->drr_nblkptr = dnp->dn_nblkptr;
|
|
|
|
/*
|
|
* Since we encrypt the entire bonus area, the (raw) part
|
|
* beyond the bonuslen is actually nonzero, so we need
|
|
* to send it.
|
|
*/
|
|
if (bonuslen != 0) {
|
|
if (drro->drr_bonuslen > DN_MAX_BONUS_LEN(dnp))
|
|
return (SET_ERROR(EINVAL));
|
|
drro->drr_raw_bonuslen = DN_MAX_BONUS_LEN(dnp);
|
|
bonuslen = drro->drr_raw_bonuslen;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* DRR_OBJECT_SPILL is set for every dnode which references a
|
|
* spill block. This allows the receiving pool to definitively
|
|
* determine when a spill block should be kept or freed.
|
|
*/
|
|
if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR)
|
|
drro->drr_flags |= DRR_OBJECT_SPILL;
|
|
|
|
if (dump_record(dscp, DN_BONUS(dnp), bonuslen) != 0)
|
|
return (SET_ERROR(EINTR));
|
|
|
|
/* Free anything past the end of the file. */
|
|
if (dump_free(dscp, object, (dnp->dn_maxblkid + 1) *
|
|
(dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT), DMU_OBJECT_END) != 0)
|
|
return (SET_ERROR(EINTR));
|
|
|
|
/*
|
|
* Send DRR_SPILL records for unmodified spill blocks. This is useful
|
|
* because changing certain attributes of the object (e.g. blocksize)
|
|
* can cause old versions of ZFS to incorrectly remove a spill block.
|
|
* Including these records in the stream forces an up to date version
|
|
* to always be written ensuring they're never lost. Current versions
|
|
* of the code which understand the DRR_FLAG_SPILL_BLOCK feature can
|
|
* ignore these unmodified spill blocks.
|
|
*/
|
|
if (zfs_send_unmodified_spill_blocks &&
|
|
(dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) &&
|
|
(DN_SPILL_BLKPTR(dnp)->blk_birth <= dscp->dsc_fromtxg)) {
|
|
struct send_range record;
|
|
blkptr_t *bp = DN_SPILL_BLKPTR(dnp);
|
|
|
|
memset(&record, 0, sizeof (struct send_range));
|
|
record.type = DATA;
|
|
record.object = object;
|
|
record.eos_marker = B_FALSE;
|
|
record.start_blkid = DMU_SPILL_BLKID;
|
|
record.end_blkid = record.start_blkid + 1;
|
|
record.sru.data.bp = *bp;
|
|
record.sru.data.obj_type = dnp->dn_type;
|
|
record.sru.data.datablksz = BP_GET_LSIZE(bp);
|
|
|
|
if (do_dump(dscp, &record) != 0)
|
|
return (SET_ERROR(EINTR));
|
|
}
|
|
|
|
if (dscp->dsc_err != 0)
|
|
return (SET_ERROR(EINTR));
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
dump_object_range(dmu_send_cookie_t *dscp, const blkptr_t *bp,
|
|
uint64_t firstobj, uint64_t numslots)
|
|
{
|
|
struct drr_object_range *drror =
|
|
&(dscp->dsc_drr->drr_u.drr_object_range);
|
|
|
|
/* we only use this record type for raw sends */
|
|
ASSERT(BP_IS_PROTECTED(bp));
|
|
ASSERT(dscp->dsc_featureflags & DMU_BACKUP_FEATURE_RAW);
|
|
ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
|
|
ASSERT3U(BP_GET_TYPE(bp), ==, DMU_OT_DNODE);
|
|
ASSERT0(BP_GET_LEVEL(bp));
|
|
|
|
if (dscp->dsc_pending_op != PENDING_NONE) {
|
|
if (dump_record(dscp, NULL, 0) != 0)
|
|
return (SET_ERROR(EINTR));
|
|
dscp->dsc_pending_op = PENDING_NONE;
|
|
}
|
|
|
|
memset(dscp->dsc_drr, 0, sizeof (dmu_replay_record_t));
|
|
dscp->dsc_drr->drr_type = DRR_OBJECT_RANGE;
|
|
drror->drr_firstobj = firstobj;
|
|
drror->drr_numslots = numslots;
|
|
drror->drr_toguid = dscp->dsc_toguid;
|
|
if (BP_SHOULD_BYTESWAP(bp))
|
|
drror->drr_flags |= DRR_RAW_BYTESWAP;
|
|
zio_crypt_decode_params_bp(bp, drror->drr_salt, drror->drr_iv);
|
|
zio_crypt_decode_mac_bp(bp, drror->drr_mac);
|
|
|
|
if (dump_record(dscp, NULL, 0) != 0)
|
|
return (SET_ERROR(EINTR));
|
|
return (0);
|
|
}
|
|
|
|
static boolean_t
|
|
send_do_embed(const blkptr_t *bp, uint64_t featureflags)
|
|
{
|
|
if (!BP_IS_EMBEDDED(bp))
|
|
return (B_FALSE);
|
|
|
|
/*
|
|
* Compression function must be legacy, or explicitly enabled.
|
|
*/
|
|
if ((BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_LEGACY_FUNCTIONS &&
|
|
!(featureflags & DMU_BACKUP_FEATURE_LZ4)))
|
|
return (B_FALSE);
|
|
|
|
/*
|
|
* If we have not set the ZSTD feature flag, we can't send ZSTD
|
|
* compressed embedded blocks, as the receiver may not support them.
|
|
*/
|
|
if ((BP_GET_COMPRESS(bp) == ZIO_COMPRESS_ZSTD &&
|
|
!(featureflags & DMU_BACKUP_FEATURE_ZSTD)))
|
|
return (B_FALSE);
|
|
|
|
/*
|
|
* Embed type must be explicitly enabled.
|
|
*/
|
|
switch (BPE_GET_ETYPE(bp)) {
|
|
case BP_EMBEDDED_TYPE_DATA:
|
|
if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)
|
|
return (B_TRUE);
|
|
break;
|
|
default:
|
|
return (B_FALSE);
|
|
}
|
|
return (B_FALSE);
|
|
}
|
|
|
|
/*
|
|
* This function actually handles figuring out what kind of record needs to be
|
|
* dumped, and calling the appropriate helper function. In most cases,
|
|
* the data has already been read by send_reader_thread().
|
|
*/
|
|
static int
|
|
do_dump(dmu_send_cookie_t *dscp, struct send_range *range)
|
|
{
|
|
int err = 0;
|
|
switch (range->type) {
|
|
case OBJECT:
|
|
err = dump_dnode(dscp, &range->sru.object.bp, range->object,
|
|
range->sru.object.dnp);
|
|
return (err);
|
|
case OBJECT_RANGE: {
|
|
ASSERT3U(range->start_blkid + 1, ==, range->end_blkid);
|
|
if (!(dscp->dsc_featureflags & DMU_BACKUP_FEATURE_RAW)) {
|
|
return (0);
|
|
}
|
|
uint64_t epb = BP_GET_LSIZE(&range->sru.object_range.bp) >>
|
|
DNODE_SHIFT;
|
|
uint64_t firstobj = range->start_blkid * epb;
|
|
err = dump_object_range(dscp, &range->sru.object_range.bp,
|
|
firstobj, epb);
|
|
break;
|
|
}
|
|
case REDACT: {
|
|
struct srr *srrp = &range->sru.redact;
|
|
err = dump_redact(dscp, range->object, range->start_blkid *
|
|
srrp->datablksz, (range->end_blkid - range->start_blkid) *
|
|
srrp->datablksz);
|
|
return (err);
|
|
}
|
|
case DATA: {
|
|
struct srd *srdp = &range->sru.data;
|
|
blkptr_t *bp = &srdp->bp;
|
|
spa_t *spa =
|
|
dmu_objset_spa(dscp->dsc_os);
|
|
|
|
ASSERT3U(srdp->datablksz, ==, BP_GET_LSIZE(bp));
|
|
ASSERT3U(range->start_blkid + 1, ==, range->end_blkid);
|
|
if (BP_GET_TYPE(bp) == DMU_OT_SA) {
|
|
arc_flags_t aflags = ARC_FLAG_WAIT;
|
|
enum zio_flag zioflags = ZIO_FLAG_CANFAIL;
|
|
|
|
if (dscp->dsc_featureflags & DMU_BACKUP_FEATURE_RAW) {
|
|
ASSERT(BP_IS_PROTECTED(bp));
|
|
zioflags |= ZIO_FLAG_RAW;
|
|
}
|
|
|
|
zbookmark_phys_t zb;
|
|
ASSERT3U(range->start_blkid, ==, DMU_SPILL_BLKID);
|
|
zb.zb_objset = dmu_objset_id(dscp->dsc_os);
|
|
zb.zb_object = range->object;
|
|
zb.zb_level = 0;
|
|
zb.zb_blkid = range->start_blkid;
|
|
|
|
arc_buf_t *abuf = NULL;
|
|
if (!dscp->dsc_dso->dso_dryrun && arc_read(NULL, spa,
|
|
bp, arc_getbuf_func, &abuf, ZIO_PRIORITY_ASYNC_READ,
|
|
zioflags, &aflags, &zb) != 0)
|
|
return (SET_ERROR(EIO));
|
|
|
|
err = dump_spill(dscp, bp, zb.zb_object,
|
|
(abuf == NULL ? NULL : abuf->b_data));
|
|
if (abuf != NULL)
|
|
arc_buf_destroy(abuf, &abuf);
|
|
return (err);
|
|
}
|
|
if (send_do_embed(bp, dscp->dsc_featureflags)) {
|
|
err = dump_write_embedded(dscp, range->object,
|
|
range->start_blkid * srdp->datablksz,
|
|
srdp->datablksz, bp);
|
|
return (err);
|
|
}
|
|
ASSERT(range->object > dscp->dsc_resume_object ||
|
|
(range->object == dscp->dsc_resume_object &&
|
|
range->start_blkid * srdp->datablksz >=
|
|
dscp->dsc_resume_offset));
|
|
/* it's a level-0 block of a regular object */
|
|
|
|
mutex_enter(&srdp->lock);
|
|
while (srdp->io_outstanding)
|
|
cv_wait(&srdp->cv, &srdp->lock);
|
|
err = srdp->io_err;
|
|
mutex_exit(&srdp->lock);
|
|
|
|
if (err != 0) {
|
|
if (zfs_send_corrupt_data &&
|
|
!dscp->dsc_dso->dso_dryrun) {
|
|
/*
|
|
* Send a block filled with 0x"zfs badd bloc"
|
|
*/
|
|
srdp->abuf = arc_alloc_buf(spa, &srdp->abuf,
|
|
ARC_BUFC_DATA, srdp->datablksz);
|
|
uint64_t *ptr;
|
|
for (ptr = srdp->abuf->b_data;
|
|
(char *)ptr < (char *)srdp->abuf->b_data +
|
|
srdp->datablksz; ptr++)
|
|
*ptr = 0x2f5baddb10cULL;
|
|
} else {
|
|
return (SET_ERROR(EIO));
|
|
}
|
|
}
|
|
|
|
ASSERT(dscp->dsc_dso->dso_dryrun ||
|
|
srdp->abuf != NULL || srdp->abd != NULL);
|
|
|
|
uint64_t offset = range->start_blkid * srdp->datablksz;
|
|
|
|
char *data = NULL;
|
|
if (srdp->abd != NULL) {
|
|
data = abd_to_buf(srdp->abd);
|
|
ASSERT3P(srdp->abuf, ==, NULL);
|
|
} else if (srdp->abuf != NULL) {
|
|
data = srdp->abuf->b_data;
|
|
}
|
|
|
|
/*
|
|
* If we have large blocks stored on disk but the send flags
|
|
* don't allow us to send large blocks, we split the data from
|
|
* the arc buf into chunks.
|
|
*/
|
|
if (srdp->datablksz > SPA_OLD_MAXBLOCKSIZE &&
|
|
!(dscp->dsc_featureflags &
|
|
DMU_BACKUP_FEATURE_LARGE_BLOCKS)) {
|
|
if (dscp->dsc_featureflags & DMU_BACKUP_FEATURE_RAW)
|
|
return (SET_ERROR(ENOTSUP));
|
|
|
|
while (srdp->datablksz > 0 && err == 0) {
|
|
int n = MIN(srdp->datablksz,
|
|
SPA_OLD_MAXBLOCKSIZE);
|
|
err = dmu_dump_write(dscp, srdp->obj_type,
|
|
range->object, offset, n, n, NULL, B_FALSE,
|
|
data);
|
|
offset += n;
|
|
/*
|
|
* When doing dry run, data==NULL is used as a
|
|
* sentinel value by
|
|
* dmu_dump_write()->dump_record().
|
|
*/
|
|
if (data != NULL)
|
|
data += n;
|
|
srdp->datablksz -= n;
|
|
}
|
|
} else {
|
|
err = dmu_dump_write(dscp, srdp->obj_type,
|
|
range->object, offset,
|
|
srdp->datablksz, srdp->datasz, bp,
|
|
srdp->io_compressed, data);
|
|
}
|
|
return (err);
|
|
}
|
|
case HOLE: {
|
|
struct srh *srhp = &range->sru.hole;
|
|
if (range->object == DMU_META_DNODE_OBJECT) {
|
|
uint32_t span = srhp->datablksz >> DNODE_SHIFT;
|
|
uint64_t first_obj = range->start_blkid * span;
|
|
uint64_t numobj = range->end_blkid * span - first_obj;
|
|
return (dump_freeobjects(dscp, first_obj, numobj));
|
|
}
|
|
uint64_t offset = 0;
|
|
|
|
/*
|
|
* If this multiply overflows, we don't need to send this block.
|
|
* Even if it has a birth time, it can never not be a hole, so
|
|
* we don't need to send records for it.
|
|
*/
|
|
if (!overflow_multiply(range->start_blkid, srhp->datablksz,
|
|
&offset)) {
|
|
return (0);
|
|
}
|
|
uint64_t len = 0;
|
|
|
|
if (!overflow_multiply(range->end_blkid, srhp->datablksz, &len))
|
|
len = UINT64_MAX;
|
|
len = len - offset;
|
|
return (dump_free(dscp, range->object, offset, len));
|
|
}
|
|
default:
|
|
panic("Invalid range type in do_dump: %d", range->type);
|
|
}
|
|
return (err);
|
|
}
|
|
|
|
static struct send_range *
|
|
range_alloc(enum type type, uint64_t object, uint64_t start_blkid,
|
|
uint64_t end_blkid, boolean_t eos)
|
|
{
|
|
struct send_range *range = kmem_alloc(sizeof (*range), KM_SLEEP);
|
|
range->type = type;
|
|
range->object = object;
|
|
range->start_blkid = start_blkid;
|
|
range->end_blkid = end_blkid;
|
|
range->eos_marker = eos;
|
|
if (type == DATA) {
|
|
range->sru.data.abd = NULL;
|
|
range->sru.data.abuf = NULL;
|
|
mutex_init(&range->sru.data.lock, NULL, MUTEX_DEFAULT, NULL);
|
|
cv_init(&range->sru.data.cv, NULL, CV_DEFAULT, NULL);
|
|
range->sru.data.io_outstanding = 0;
|
|
range->sru.data.io_err = 0;
|
|
range->sru.data.io_compressed = B_FALSE;
|
|
}
|
|
return (range);
|
|
}
|
|
|
|
/*
|
|
* This is the callback function to traverse_dataset that acts as a worker
|
|
* thread for dmu_send_impl.
|
|
*/
|
|
static int
|
|
send_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
|
|
const zbookmark_phys_t *zb, const struct dnode_phys *dnp, void *arg)
|
|
{
|
|
(void) zilog;
|
|
struct send_thread_arg *sta = arg;
|
|
struct send_range *record;
|
|
|
|
ASSERT(zb->zb_object == DMU_META_DNODE_OBJECT ||
|
|
zb->zb_object >= sta->resume.zb_object);
|
|
|
|
/*
|
|
* All bps of an encrypted os should have the encryption bit set.
|
|
* If this is not true it indicates tampering and we report an error.
|
|
*/
|
|
if (sta->os->os_encrypted &&
|
|
!BP_IS_HOLE(bp) && !BP_USES_CRYPT(bp)) {
|
|
spa_log_error(spa, zb);
|
|
zfs_panic_recover("unencrypted block in encrypted "
|
|
"object set %llu", dmu_objset_id(sta->os));
|
|
return (SET_ERROR(EIO));
|
|
}
|
|
|
|
if (sta->cancel)
|
|
return (SET_ERROR(EINTR));
|
|
if (zb->zb_object != DMU_META_DNODE_OBJECT &&
|
|
DMU_OBJECT_IS_SPECIAL(zb->zb_object))
|
|
return (0);
|
|
atomic_inc_64(sta->num_blocks_visited);
|
|
|
|
if (zb->zb_level == ZB_DNODE_LEVEL) {
|
|
if (zb->zb_object == DMU_META_DNODE_OBJECT)
|
|
return (0);
|
|
record = range_alloc(OBJECT, zb->zb_object, 0, 0, B_FALSE);
|
|
record->sru.object.bp = *bp;
|
|
size_t size = sizeof (*dnp) * (dnp->dn_extra_slots + 1);
|
|
record->sru.object.dnp = kmem_alloc(size, KM_SLEEP);
|
|
memcpy(record->sru.object.dnp, dnp, size);
|
|
bqueue_enqueue(&sta->q, record, sizeof (*record));
|
|
return (0);
|
|
}
|
|
if (zb->zb_level == 0 && zb->zb_object == DMU_META_DNODE_OBJECT &&
|
|
!BP_IS_HOLE(bp)) {
|
|
record = range_alloc(OBJECT_RANGE, 0, zb->zb_blkid,
|
|
zb->zb_blkid + 1, B_FALSE);
|
|
record->sru.object_range.bp = *bp;
|
|
bqueue_enqueue(&sta->q, record, sizeof (*record));
|
|
return (0);
|
|
}
|
|
if (zb->zb_level < 0 || (zb->zb_level > 0 && !BP_IS_HOLE(bp)))
|
|
return (0);
|
|
if (zb->zb_object == DMU_META_DNODE_OBJECT && !BP_IS_HOLE(bp))
|
|
return (0);
|
|
|
|
uint64_t span = bp_span_in_blocks(dnp->dn_indblkshift, zb->zb_level);
|
|
uint64_t start;
|
|
|
|
/*
|
|
* If this multiply overflows, we don't need to send this block.
|
|
* Even if it has a birth time, it can never not be a hole, so
|
|
* we don't need to send records for it.
|
|
*/
|
|
if (!overflow_multiply(span, zb->zb_blkid, &start) || (!(zb->zb_blkid ==
|
|
DMU_SPILL_BLKID || DMU_OT_IS_METADATA(dnp->dn_type)) &&
|
|
span * zb->zb_blkid > dnp->dn_maxblkid)) {
|
|
ASSERT(BP_IS_HOLE(bp));
|
|
return (0);
|
|
}
|
|
|
|
if (zb->zb_blkid == DMU_SPILL_BLKID)
|
|
ASSERT3U(BP_GET_TYPE(bp), ==, DMU_OT_SA);
|
|
|
|
enum type record_type = DATA;
|
|
if (BP_IS_HOLE(bp))
|
|
record_type = HOLE;
|
|
else if (BP_IS_REDACTED(bp))
|
|
record_type = REDACT;
|
|
else
|
|
record_type = DATA;
|
|
|
|
record = range_alloc(record_type, zb->zb_object, start,
|
|
(start + span < start ? 0 : start + span), B_FALSE);
|
|
|
|
uint64_t datablksz = (zb->zb_blkid == DMU_SPILL_BLKID ?
|
|
BP_GET_LSIZE(bp) : dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT);
|
|
|
|
if (BP_IS_HOLE(bp)) {
|
|
record->sru.hole.datablksz = datablksz;
|
|
} else if (BP_IS_REDACTED(bp)) {
|
|
record->sru.redact.datablksz = datablksz;
|
|
} else {
|
|
record->sru.data.datablksz = datablksz;
|
|
record->sru.data.obj_type = dnp->dn_type;
|
|
record->sru.data.bp = *bp;
|
|
}
|
|
|
|
bqueue_enqueue(&sta->q, record, sizeof (*record));
|
|
return (0);
|
|
}
|
|
|
|
struct redact_list_cb_arg {
|
|
uint64_t *num_blocks_visited;
|
|
bqueue_t *q;
|
|
boolean_t *cancel;
|
|
boolean_t mark_redact;
|
|
};
|
|
|
|
static int
|
|
redact_list_cb(redact_block_phys_t *rb, void *arg)
|
|
{
|
|
struct redact_list_cb_arg *rlcap = arg;
|
|
|
|
atomic_inc_64(rlcap->num_blocks_visited);
|
|
if (*rlcap->cancel)
|
|
return (-1);
|
|
|
|
struct send_range *data = range_alloc(REDACT, rb->rbp_object,
|
|
rb->rbp_blkid, rb->rbp_blkid + redact_block_get_count(rb), B_FALSE);
|
|
ASSERT3U(data->end_blkid, >, rb->rbp_blkid);
|
|
if (rlcap->mark_redact) {
|
|
data->type = REDACT;
|
|
data->sru.redact.datablksz = redact_block_get_size(rb);
|
|
} else {
|
|
data->type = PREVIOUSLY_REDACTED;
|
|
}
|
|
bqueue_enqueue(rlcap->q, data, sizeof (*data));
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* This function kicks off the traverse_dataset. It also handles setting the
|
|
* error code of the thread in case something goes wrong, and pushes the End of
|
|
* Stream record when the traverse_dataset call has finished.
|
|
*/
|
|
static __attribute__((noreturn)) void
|
|
send_traverse_thread(void *arg)
|
|
{
|
|
struct send_thread_arg *st_arg = arg;
|
|
int err = 0;
|
|
struct send_range *data;
|
|
fstrans_cookie_t cookie = spl_fstrans_mark();
|
|
|
|
err = traverse_dataset_resume(st_arg->os->os_dsl_dataset,
|
|
st_arg->fromtxg, &st_arg->resume,
|
|
st_arg->flags, send_cb, st_arg);
|
|
|
|
if (err != EINTR)
|
|
st_arg->error_code = err;
|
|
data = range_alloc(DATA, 0, 0, 0, B_TRUE);
|
|
bqueue_enqueue_flush(&st_arg->q, data, sizeof (*data));
|
|
spl_fstrans_unmark(cookie);
|
|
thread_exit();
|
|
}
|
|
|
|
/*
|
|
* Utility function that causes End of Stream records to compare after of all
|
|
* others, so that other threads' comparison logic can stay simple.
|
|
*/
|
|
static int __attribute__((unused))
|
|
send_range_after(const struct send_range *from, const struct send_range *to)
|
|
{
|
|
if (from->eos_marker == B_TRUE)
|
|
return (1);
|
|
if (to->eos_marker == B_TRUE)
|
|
return (-1);
|
|
|
|
uint64_t from_obj = from->object;
|
|
uint64_t from_end_obj = from->object + 1;
|
|
uint64_t to_obj = to->object;
|
|
uint64_t to_end_obj = to->object + 1;
|
|
if (from_obj == 0) {
|
|
ASSERT(from->type == HOLE || from->type == OBJECT_RANGE);
|
|
from_obj = from->start_blkid << DNODES_PER_BLOCK_SHIFT;
|
|
from_end_obj = from->end_blkid << DNODES_PER_BLOCK_SHIFT;
|
|
}
|
|
if (to_obj == 0) {
|
|
ASSERT(to->type == HOLE || to->type == OBJECT_RANGE);
|
|
to_obj = to->start_blkid << DNODES_PER_BLOCK_SHIFT;
|
|
to_end_obj = to->end_blkid << DNODES_PER_BLOCK_SHIFT;
|
|
}
|
|
|
|
if (from_end_obj <= to_obj)
|
|
return (-1);
|
|
if (from_obj >= to_end_obj)
|
|
return (1);
|
|
int64_t cmp = TREE_CMP(to->type == OBJECT_RANGE, from->type ==
|
|
OBJECT_RANGE);
|
|
if (unlikely(cmp))
|
|
return (cmp);
|
|
cmp = TREE_CMP(to->type == OBJECT, from->type == OBJECT);
|
|
if (unlikely(cmp))
|
|
return (cmp);
|
|
if (from->end_blkid <= to->start_blkid)
|
|
return (-1);
|
|
if (from->start_blkid >= to->end_blkid)
|
|
return (1);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Pop the new data off the queue, check that the records we receive are in
|
|
* the right order, but do not free the old data. This is used so that the
|
|
* records can be sent on to the main thread without copying the data.
|
|
*/
|
|
static struct send_range *
|
|
get_next_range_nofree(bqueue_t *bq, struct send_range *prev)
|
|
{
|
|
struct send_range *next = bqueue_dequeue(bq);
|
|
ASSERT3S(send_range_after(prev, next), ==, -1);
|
|
return (next);
|
|
}
|
|
|
|
/*
|
|
* Pop the new data off the queue, check that the records we receive are in
|
|
* the right order, and free the old data.
|
|
*/
|
|
static struct send_range *
|
|
get_next_range(bqueue_t *bq, struct send_range *prev)
|
|
{
|
|
struct send_range *next = get_next_range_nofree(bq, prev);
|
|
range_free(prev);
|
|
return (next);
|
|
}
|
|
|
|
static __attribute__((noreturn)) void
|
|
redact_list_thread(void *arg)
|
|
{
|
|
struct redact_list_thread_arg *rlt_arg = arg;
|
|
struct send_range *record;
|
|
fstrans_cookie_t cookie = spl_fstrans_mark();
|
|
if (rlt_arg->rl != NULL) {
|
|
struct redact_list_cb_arg rlcba = {0};
|
|
rlcba.cancel = &rlt_arg->cancel;
|
|
rlcba.q = &rlt_arg->q;
|
|
rlcba.num_blocks_visited = rlt_arg->num_blocks_visited;
|
|
rlcba.mark_redact = rlt_arg->mark_redact;
|
|
int err = dsl_redaction_list_traverse(rlt_arg->rl,
|
|
&rlt_arg->resume, redact_list_cb, &rlcba);
|
|
if (err != EINTR)
|
|
rlt_arg->error_code = err;
|
|
}
|
|
record = range_alloc(DATA, 0, 0, 0, B_TRUE);
|
|
bqueue_enqueue_flush(&rlt_arg->q, record, sizeof (*record));
|
|
spl_fstrans_unmark(cookie);
|
|
|
|
thread_exit();
|
|
}
|
|
|
|
/*
|
|
* Compare the start point of the two provided ranges. End of stream ranges
|
|
* compare last, objects compare before any data or hole inside that object and
|
|
* multi-object holes that start at the same object.
|
|
*/
|
|
static int
|
|
send_range_start_compare(struct send_range *r1, struct send_range *r2)
|
|
{
|
|
uint64_t r1_objequiv = r1->object;
|
|
uint64_t r1_l0equiv = r1->start_blkid;
|
|
uint64_t r2_objequiv = r2->object;
|
|
uint64_t r2_l0equiv = r2->start_blkid;
|
|
int64_t cmp = TREE_CMP(r1->eos_marker, r2->eos_marker);
|
|
if (unlikely(cmp))
|
|
return (cmp);
|
|
if (r1->object == 0) {
|
|
r1_objequiv = r1->start_blkid * DNODES_PER_BLOCK;
|
|
r1_l0equiv = 0;
|
|
}
|
|
if (r2->object == 0) {
|
|
r2_objequiv = r2->start_blkid * DNODES_PER_BLOCK;
|
|
r2_l0equiv = 0;
|
|
}
|
|
|
|
cmp = TREE_CMP(r1_objequiv, r2_objequiv);
|
|
if (likely(cmp))
|
|
return (cmp);
|
|
cmp = TREE_CMP(r2->type == OBJECT_RANGE, r1->type == OBJECT_RANGE);
|
|
if (unlikely(cmp))
|
|
return (cmp);
|
|
cmp = TREE_CMP(r2->type == OBJECT, r1->type == OBJECT);
|
|
if (unlikely(cmp))
|
|
return (cmp);
|
|
|
|
return (TREE_CMP(r1_l0equiv, r2_l0equiv));
|
|
}
|
|
|
|
enum q_idx {
|
|
REDACT_IDX = 0,
|
|
TO_IDX,
|
|
FROM_IDX,
|
|
NUM_THREADS
|
|
};
|
|
|
|
/*
|
|
* This function returns the next range the send_merge_thread should operate on.
|
|
* The inputs are two arrays; the first one stores the range at the front of the
|
|
* queues stored in the second one. The ranges are sorted in descending
|
|
* priority order; the metadata from earlier ranges overrules metadata from
|
|
* later ranges. out_mask is used to return which threads the ranges came from;
|
|
* bit i is set if ranges[i] started at the same place as the returned range.
|
|
*
|
|
* This code is not hardcoded to compare a specific number of threads; it could
|
|
* be used with any number, just by changing the q_idx enum.
|
|
*
|
|
* The "next range" is the one with the earliest start; if two starts are equal,
|
|
* the highest-priority range is the next to operate on. If a higher-priority
|
|
* range starts in the middle of the first range, then the first range will be
|
|
* truncated to end where the higher-priority range starts, and we will operate
|
|
* on that one next time. In this way, we make sure that each block covered by
|
|
* some range gets covered by a returned range, and each block covered is
|
|
* returned using the metadata of the highest-priority range it appears in.
|
|
*
|
|
* For example, if the three ranges at the front of the queues were [2,4),
|
|
* [3,5), and [1,3), then the ranges returned would be [1,2) with the metadata
|
|
* from the third range, [2,4) with the metadata from the first range, and then
|
|
* [4,5) with the metadata from the second.
|
|
*/
|
|
static struct send_range *
|
|
find_next_range(struct send_range **ranges, bqueue_t **qs, uint64_t *out_mask)
|
|
{
|
|
int idx = 0; // index of the range with the earliest start
|
|
int i;
|
|
uint64_t bmask = 0;
|
|
for (i = 1; i < NUM_THREADS; i++) {
|
|
if (send_range_start_compare(ranges[i], ranges[idx]) < 0)
|
|
idx = i;
|
|
}
|
|
if (ranges[idx]->eos_marker) {
|
|
struct send_range *ret = range_alloc(DATA, 0, 0, 0, B_TRUE);
|
|
*out_mask = 0;
|
|
return (ret);
|
|
}
|
|
/*
|
|
* Find all the ranges that start at that same point.
|
|
*/
|
|
for (i = 0; i < NUM_THREADS; i++) {
|
|
if (send_range_start_compare(ranges[i], ranges[idx]) == 0)
|
|
bmask |= 1 << i;
|
|
}
|
|
*out_mask = bmask;
|
|
/*
|
|
* OBJECT_RANGE records only come from the TO thread, and should always
|
|
* be treated as overlapping with nothing and sent on immediately. They
|
|
* are only used in raw sends, and are never redacted.
|
|
*/
|
|
if (ranges[idx]->type == OBJECT_RANGE) {
|
|
ASSERT3U(idx, ==, TO_IDX);
|
|
ASSERT3U(*out_mask, ==, 1 << TO_IDX);
|
|
struct send_range *ret = ranges[idx];
|
|
ranges[idx] = get_next_range_nofree(qs[idx], ranges[idx]);
|
|
return (ret);
|
|
}
|
|
/*
|
|
* Find the first start or end point after the start of the first range.
|
|
*/
|
|
uint64_t first_change = ranges[idx]->end_blkid;
|
|
for (i = 0; i < NUM_THREADS; i++) {
|
|
if (i == idx || ranges[i]->eos_marker ||
|
|
ranges[i]->object > ranges[idx]->object ||
|
|
ranges[i]->object == DMU_META_DNODE_OBJECT)
|
|
continue;
|
|
ASSERT3U(ranges[i]->object, ==, ranges[idx]->object);
|
|
if (first_change > ranges[i]->start_blkid &&
|
|
(bmask & (1 << i)) == 0)
|
|
first_change = ranges[i]->start_blkid;
|
|
else if (first_change > ranges[i]->end_blkid)
|
|
first_change = ranges[i]->end_blkid;
|
|
}
|
|
/*
|
|
* Update all ranges to no longer overlap with the range we're
|
|
* returning. All such ranges must start at the same place as the range
|
|
* being returned, and end at or after first_change. Thus we update
|
|
* their start to first_change. If that makes them size 0, then free
|
|
* them and pull a new range from that thread.
|
|
*/
|
|
for (i = 0; i < NUM_THREADS; i++) {
|
|
if (i == idx || (bmask & (1 << i)) == 0)
|
|
continue;
|
|
ASSERT3U(first_change, >, ranges[i]->start_blkid);
|
|
ranges[i]->start_blkid = first_change;
|
|
ASSERT3U(ranges[i]->start_blkid, <=, ranges[i]->end_blkid);
|
|
if (ranges[i]->start_blkid == ranges[i]->end_blkid)
|
|
ranges[i] = get_next_range(qs[i], ranges[i]);
|
|
}
|
|
/*
|
|
* Short-circuit the simple case; if the range doesn't overlap with
|
|
* anything else, or it only overlaps with things that start at the same
|
|
* place and are longer, send it on.
|
|
*/
|
|
if (first_change == ranges[idx]->end_blkid) {
|
|
struct send_range *ret = ranges[idx];
|
|
ranges[idx] = get_next_range_nofree(qs[idx], ranges[idx]);
|
|
return (ret);
|
|
}
|
|
|
|
/*
|
|
* Otherwise, return a truncated copy of ranges[idx] and move the start
|
|
* of ranges[idx] back to first_change.
|
|
*/
|
|
struct send_range *ret = kmem_alloc(sizeof (*ret), KM_SLEEP);
|
|
*ret = *ranges[idx];
|
|
ret->end_blkid = first_change;
|
|
ranges[idx]->start_blkid = first_change;
|
|
return (ret);
|
|
}
|
|
|
|
#define FROM_AND_REDACT_BITS ((1 << REDACT_IDX) | (1 << FROM_IDX))
|
|
|
|
/*
|
|
* Merge the results from the from thread and the to thread, and then hand the
|
|
* records off to send_prefetch_thread to prefetch them. If this is not a
|
|
* send from a redaction bookmark, the from thread will push an end of stream
|
|
* record and stop, and we'll just send everything that was changed in the
|
|
* to_ds since the ancestor's creation txg. If it is, then since
|
|
* traverse_dataset has a canonical order, we can compare each change as
|
|
* they're pulled off the queues. That will give us a stream that is
|
|
* appropriately sorted, and covers all records. In addition, we pull the
|
|
* data from the redact_list_thread and use that to determine which blocks
|
|
* should be redacted.
|
|
*/
|
|
static __attribute__((noreturn)) void
|
|
send_merge_thread(void *arg)
|
|
{
|
|
struct send_merge_thread_arg *smt_arg = arg;
|
|
struct send_range *front_ranges[NUM_THREADS];
|
|
bqueue_t *queues[NUM_THREADS];
|
|
int err = 0;
|
|
fstrans_cookie_t cookie = spl_fstrans_mark();
|
|
|
|
if (smt_arg->redact_arg == NULL) {
|
|
front_ranges[REDACT_IDX] =
|
|
kmem_zalloc(sizeof (struct send_range), KM_SLEEP);
|
|
front_ranges[REDACT_IDX]->eos_marker = B_TRUE;
|
|
front_ranges[REDACT_IDX]->type = REDACT;
|
|
queues[REDACT_IDX] = NULL;
|
|
} else {
|
|
front_ranges[REDACT_IDX] =
|
|
bqueue_dequeue(&smt_arg->redact_arg->q);
|
|
queues[REDACT_IDX] = &smt_arg->redact_arg->q;
|
|
}
|
|
front_ranges[TO_IDX] = bqueue_dequeue(&smt_arg->to_arg->q);
|
|
queues[TO_IDX] = &smt_arg->to_arg->q;
|
|
front_ranges[FROM_IDX] = bqueue_dequeue(&smt_arg->from_arg->q);
|
|
queues[FROM_IDX] = &smt_arg->from_arg->q;
|
|
uint64_t mask = 0;
|
|
struct send_range *range;
|
|
for (range = find_next_range(front_ranges, queues, &mask);
|
|
!range->eos_marker && err == 0 && !smt_arg->cancel;
|
|
range = find_next_range(front_ranges, queues, &mask)) {
|
|
/*
|
|
* If the range in question was in both the from redact bookmark
|
|
* and the bookmark we're using to redact, then don't send it.
|
|
* It's already redacted on the receiving system, so a redaction
|
|
* record would be redundant.
|
|
*/
|
|
if ((mask & FROM_AND_REDACT_BITS) == FROM_AND_REDACT_BITS) {
|
|
ASSERT3U(range->type, ==, REDACT);
|
|
range_free(range);
|
|
continue;
|
|
}
|
|
bqueue_enqueue(&smt_arg->q, range, sizeof (*range));
|
|
|
|
if (smt_arg->to_arg->error_code != 0) {
|
|
err = smt_arg->to_arg->error_code;
|
|
} else if (smt_arg->from_arg->error_code != 0) {
|
|
err = smt_arg->from_arg->error_code;
|
|
} else if (smt_arg->redact_arg != NULL &&
|
|
smt_arg->redact_arg->error_code != 0) {
|
|
err = smt_arg->redact_arg->error_code;
|
|
}
|
|
}
|
|
if (smt_arg->cancel && err == 0)
|
|
err = SET_ERROR(EINTR);
|
|
smt_arg->error = err;
|
|
if (smt_arg->error != 0) {
|
|
smt_arg->to_arg->cancel = B_TRUE;
|
|
smt_arg->from_arg->cancel = B_TRUE;
|
|
if (smt_arg->redact_arg != NULL)
|
|
smt_arg->redact_arg->cancel = B_TRUE;
|
|
}
|
|
for (int i = 0; i < NUM_THREADS; i++) {
|
|
while (!front_ranges[i]->eos_marker) {
|
|
front_ranges[i] = get_next_range(queues[i],
|
|
front_ranges[i]);
|
|
}
|
|
range_free(front_ranges[i]);
|
|
}
|
|
if (range == NULL)
|
|
range = kmem_zalloc(sizeof (*range), KM_SLEEP);
|
|
range->eos_marker = B_TRUE;
|
|
bqueue_enqueue_flush(&smt_arg->q, range, 1);
|
|
spl_fstrans_unmark(cookie);
|
|
thread_exit();
|
|
}
|
|
|
|
struct send_reader_thread_arg {
|
|
struct send_merge_thread_arg *smta;
|
|
bqueue_t q;
|
|
boolean_t cancel;
|
|
boolean_t issue_reads;
|
|
uint64_t featureflags;
|
|
int error;
|
|
};
|
|
|
|
static void
|
|
dmu_send_read_done(zio_t *zio)
|
|
{
|
|
struct send_range *range = zio->io_private;
|
|
|
|
mutex_enter(&range->sru.data.lock);
|
|
if (zio->io_error != 0) {
|
|
abd_free(range->sru.data.abd);
|
|
range->sru.data.abd = NULL;
|
|
range->sru.data.io_err = zio->io_error;
|
|
}
|
|
|
|
ASSERT(range->sru.data.io_outstanding);
|
|
range->sru.data.io_outstanding = B_FALSE;
|
|
cv_broadcast(&range->sru.data.cv);
|
|
mutex_exit(&range->sru.data.lock);
|
|
}
|
|
|
|
static void
|
|
issue_data_read(struct send_reader_thread_arg *srta, struct send_range *range)
|
|
{
|
|
struct srd *srdp = &range->sru.data;
|
|
blkptr_t *bp = &srdp->bp;
|
|
objset_t *os = srta->smta->os;
|
|
|
|
ASSERT3U(range->type, ==, DATA);
|
|
ASSERT3U(range->start_blkid + 1, ==, range->end_blkid);
|
|
/*
|
|
* If we have large blocks stored on disk but
|
|
* the send flags don't allow us to send large
|
|
* blocks, we split the data from the arc buf
|
|
* into chunks.
|
|
*/
|
|
boolean_t split_large_blocks =
|
|
srdp->datablksz > SPA_OLD_MAXBLOCKSIZE &&
|
|
!(srta->featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS);
|
|
/*
|
|
* We should only request compressed data from the ARC if all
|
|
* the following are true:
|
|
* - stream compression was requested
|
|
* - we aren't splitting large blocks into smaller chunks
|
|
* - the data won't need to be byteswapped before sending
|
|
* - this isn't an embedded block
|
|
* - this isn't metadata (if receiving on a different endian
|
|
* system it can be byteswapped more easily)
|
|
*/
|
|
boolean_t request_compressed =
|
|
(srta->featureflags & DMU_BACKUP_FEATURE_COMPRESSED) &&
|
|
!split_large_blocks && !BP_SHOULD_BYTESWAP(bp) &&
|
|
!BP_IS_EMBEDDED(bp) && !DMU_OT_IS_METADATA(BP_GET_TYPE(bp));
|
|
|
|
enum zio_flag zioflags = ZIO_FLAG_CANFAIL;
|
|
|
|
if (srta->featureflags & DMU_BACKUP_FEATURE_RAW) {
|
|
zioflags |= ZIO_FLAG_RAW;
|
|
srdp->io_compressed = B_TRUE;
|
|
} else if (request_compressed) {
|
|
zioflags |= ZIO_FLAG_RAW_COMPRESS;
|
|
srdp->io_compressed = B_TRUE;
|
|
}
|
|
|
|
srdp->datasz = (zioflags & ZIO_FLAG_RAW_COMPRESS) ?
|
|
BP_GET_PSIZE(bp) : BP_GET_LSIZE(bp);
|
|
|
|
if (!srta->issue_reads)
|
|
return;
|
|
if (BP_IS_REDACTED(bp))
|
|
return;
|
|
if (send_do_embed(bp, srta->featureflags))
|
|
return;
|
|
|
|
zbookmark_phys_t zb = {
|
|
.zb_objset = dmu_objset_id(os),
|
|
.zb_object = range->object,
|
|
.zb_level = 0,
|
|
.zb_blkid = range->start_blkid,
|
|
};
|
|
|
|
arc_flags_t aflags = ARC_FLAG_CACHED_ONLY;
|
|
|
|
int arc_err = arc_read(NULL, os->os_spa, bp,
|
|
arc_getbuf_func, &srdp->abuf, ZIO_PRIORITY_ASYNC_READ,
|
|
zioflags, &aflags, &zb);
|
|
/*
|
|
* If the data is not already cached in the ARC, we read directly
|
|
* from zio. This avoids the performance overhead of adding a new
|
|
* entry to the ARC, and we also avoid polluting the ARC cache with
|
|
* data that is not likely to be used in the future.
|
|
*/
|
|
if (arc_err != 0) {
|
|
srdp->abd = abd_alloc_linear(srdp->datasz, B_FALSE);
|
|
srdp->io_outstanding = B_TRUE;
|
|
zio_nowait(zio_read(NULL, os->os_spa, bp, srdp->abd,
|
|
srdp->datasz, dmu_send_read_done, range,
|
|
ZIO_PRIORITY_ASYNC_READ, zioflags, &zb));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Create a new record with the given values.
|
|
*/
|
|
static void
|
|
enqueue_range(struct send_reader_thread_arg *srta, bqueue_t *q, dnode_t *dn,
|
|
uint64_t blkid, uint64_t count, const blkptr_t *bp, uint32_t datablksz)
|
|
{
|
|
enum type range_type = (bp == NULL || BP_IS_HOLE(bp) ? HOLE :
|
|
(BP_IS_REDACTED(bp) ? REDACT : DATA));
|
|
|
|
struct send_range *range = range_alloc(range_type, dn->dn_object,
|
|
blkid, blkid + count, B_FALSE);
|
|
|
|
if (blkid == DMU_SPILL_BLKID)
|
|
ASSERT3U(BP_GET_TYPE(bp), ==, DMU_OT_SA);
|
|
|
|
switch (range_type) {
|
|
case HOLE:
|
|
range->sru.hole.datablksz = datablksz;
|
|
break;
|
|
case DATA:
|
|
ASSERT3U(count, ==, 1);
|
|
range->sru.data.datablksz = datablksz;
|
|
range->sru.data.obj_type = dn->dn_type;
|
|
range->sru.data.bp = *bp;
|
|
issue_data_read(srta, range);
|
|
break;
|
|
case REDACT:
|
|
range->sru.redact.datablksz = datablksz;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
bqueue_enqueue(q, range, datablksz);
|
|
}
|
|
|
|
/*
|
|
* This thread is responsible for two things: First, it retrieves the correct
|
|
* blkptr in the to ds if we need to send the data because of something from
|
|
* the from thread. As a result of this, we're the first ones to discover that
|
|
* some indirect blocks can be discarded because they're not holes. Second,
|
|
* it issues prefetches for the data we need to send.
|
|
*/
|
|
static __attribute__((noreturn)) void
|
|
send_reader_thread(void *arg)
|
|
{
|
|
struct send_reader_thread_arg *srta = arg;
|
|
struct send_merge_thread_arg *smta = srta->smta;
|
|
bqueue_t *inq = &smta->q;
|
|
bqueue_t *outq = &srta->q;
|
|
objset_t *os = smta->os;
|
|
fstrans_cookie_t cookie = spl_fstrans_mark();
|
|
struct send_range *range = bqueue_dequeue(inq);
|
|
int err = 0;
|
|
|
|
/*
|
|
* If the record we're analyzing is from a redaction bookmark from the
|
|
* fromds, then we need to know whether or not it exists in the tods so
|
|
* we know whether to create records for it or not. If it does, we need
|
|
* the datablksz so we can generate an appropriate record for it.
|
|
* Finally, if it isn't redacted, we need the blkptr so that we can send
|
|
* a WRITE record containing the actual data.
|
|
*/
|
|
uint64_t last_obj = UINT64_MAX;
|
|
uint64_t last_obj_exists = B_TRUE;
|
|
while (!range->eos_marker && !srta->cancel && smta->error == 0 &&
|
|
err == 0) {
|
|
switch (range->type) {
|
|
case DATA:
|
|
issue_data_read(srta, range);
|
|
bqueue_enqueue(outq, range, range->sru.data.datablksz);
|
|
range = get_next_range_nofree(inq, range);
|
|
break;
|
|
case HOLE:
|
|
case OBJECT:
|
|
case OBJECT_RANGE:
|
|
case REDACT: // Redacted blocks must exist
|
|
bqueue_enqueue(outq, range, sizeof (*range));
|
|
range = get_next_range_nofree(inq, range);
|
|
break;
|
|
case PREVIOUSLY_REDACTED: {
|
|
/*
|
|
* This entry came from the "from bookmark" when
|
|
* sending from a bookmark that has a redaction
|
|
* list. We need to check if this object/blkid
|
|
* exists in the target ("to") dataset, and if
|
|
* not then we drop this entry. We also need
|
|
* to fill in the block pointer so that we know
|
|
* what to prefetch.
|
|
*
|
|
* To accomplish the above, we first cache whether or
|
|
* not the last object we examined exists. If it
|
|
* doesn't, we can drop this record. If it does, we hold
|
|
* the dnode and use it to call dbuf_dnode_findbp. We do
|
|
* this instead of dbuf_bookmark_findbp because we will
|
|
* often operate on large ranges, and holding the dnode
|
|
* once is more efficient.
|
|
*/
|
|
boolean_t object_exists = B_TRUE;
|
|
/*
|
|
* If the data is redacted, we only care if it exists,
|
|
* so that we don't send records for objects that have
|
|
* been deleted.
|
|
*/
|
|
dnode_t *dn;
|
|
if (range->object == last_obj && !last_obj_exists) {
|
|
/*
|
|
* If we're still examining the same object as
|
|
* previously, and it doesn't exist, we don't
|
|
* need to call dbuf_bookmark_findbp.
|
|
*/
|
|
object_exists = B_FALSE;
|
|
} else {
|
|
err = dnode_hold(os, range->object, FTAG, &dn);
|
|
if (err == ENOENT) {
|
|
object_exists = B_FALSE;
|
|
err = 0;
|
|
}
|
|
last_obj = range->object;
|
|
last_obj_exists = object_exists;
|
|
}
|
|
|
|
if (err != 0) {
|
|
break;
|
|
} else if (!object_exists) {
|
|
/*
|
|
* The block was modified, but doesn't
|
|
* exist in the to dataset; if it was
|
|
* deleted in the to dataset, then we'll
|
|
* visit the hole bp for it at some point.
|
|
*/
|
|
range = get_next_range(inq, range);
|
|
continue;
|
|
}
|
|
uint64_t file_max =
|
|
(dn->dn_maxblkid < range->end_blkid ?
|
|
dn->dn_maxblkid : range->end_blkid);
|
|
/*
|
|
* The object exists, so we need to try to find the
|
|
* blkptr for each block in the range we're processing.
|
|
*/
|
|
rw_enter(&dn->dn_struct_rwlock, RW_READER);
|
|
for (uint64_t blkid = range->start_blkid;
|
|
blkid < file_max; blkid++) {
|
|
blkptr_t bp;
|
|
uint32_t datablksz =
|
|
dn->dn_phys->dn_datablkszsec <<
|
|
SPA_MINBLOCKSHIFT;
|
|
uint64_t offset = blkid * datablksz;
|
|
/*
|
|
* This call finds the next non-hole block in
|
|
* the object. This is to prevent a
|
|
* performance problem where we're unredacting
|
|
* a large hole. Using dnode_next_offset to
|
|
* skip over the large hole avoids iterating
|
|
* over every block in it.
|
|
*/
|
|
err = dnode_next_offset(dn, DNODE_FIND_HAVELOCK,
|
|
&offset, 1, 1, 0);
|
|
if (err == ESRCH) {
|
|
offset = UINT64_MAX;
|
|
err = 0;
|
|
} else if (err != 0) {
|
|
break;
|
|
}
|
|
if (offset != blkid * datablksz) {
|
|
/*
|
|
* if there is a hole from here
|
|
* (blkid) to offset
|
|
*/
|
|
offset = MIN(offset, file_max *
|
|
datablksz);
|
|
uint64_t nblks = (offset / datablksz) -
|
|
blkid;
|
|
enqueue_range(srta, outq, dn, blkid,
|
|
nblks, NULL, datablksz);
|
|
blkid += nblks;
|
|
}
|
|
if (blkid >= file_max)
|
|
break;
|
|
err = dbuf_dnode_findbp(dn, 0, blkid, &bp,
|
|
NULL, NULL);
|
|
if (err != 0)
|
|
break;
|
|
ASSERT(!BP_IS_HOLE(&bp));
|
|
enqueue_range(srta, outq, dn, blkid, 1, &bp,
|
|
datablksz);
|
|
}
|
|
rw_exit(&dn->dn_struct_rwlock);
|
|
dnode_rele(dn, FTAG);
|
|
range = get_next_range(inq, range);
|
|
}
|
|
}
|
|
}
|
|
if (srta->cancel || err != 0) {
|
|
smta->cancel = B_TRUE;
|
|
srta->error = err;
|
|
} else if (smta->error != 0) {
|
|
srta->error = smta->error;
|
|
}
|
|
while (!range->eos_marker)
|
|
range = get_next_range(inq, range);
|
|
|
|
bqueue_enqueue_flush(outq, range, 1);
|
|
spl_fstrans_unmark(cookie);
|
|
thread_exit();
|
|
}
|
|
|
|
#define NUM_SNAPS_NOT_REDACTED UINT64_MAX
|
|
|
|
struct dmu_send_params {
|
|
/* Pool args */
|
|
void *tag; // Tag that dp was held with, will be used to release dp.
|
|
dsl_pool_t *dp;
|
|
/* To snapshot args */
|
|
const char *tosnap;
|
|
dsl_dataset_t *to_ds;
|
|
/* From snapshot args */
|
|
zfs_bookmark_phys_t ancestor_zb;
|
|
uint64_t *fromredactsnaps;
|
|
/* NUM_SNAPS_NOT_REDACTED if not sending from redaction bookmark */
|
|
uint64_t numfromredactsnaps;
|
|
/* Stream params */
|
|
boolean_t is_clone;
|
|
boolean_t embedok;
|
|
boolean_t large_block_ok;
|
|
boolean_t compressok;
|
|
boolean_t rawok;
|
|
boolean_t savedok;
|
|
uint64_t resumeobj;
|
|
uint64_t resumeoff;
|
|
uint64_t saved_guid;
|
|
zfs_bookmark_phys_t *redactbook;
|
|
/* Stream output params */
|
|
dmu_send_outparams_t *dso;
|
|
|
|
/* Stream progress params */
|
|
offset_t *off;
|
|
int outfd;
|
|
char saved_toname[MAXNAMELEN];
|
|
};
|
|
|
|
static int
|
|
setup_featureflags(struct dmu_send_params *dspp, objset_t *os,
|
|
uint64_t *featureflags)
|
|
{
|
|
dsl_dataset_t *to_ds = dspp->to_ds;
|
|
dsl_pool_t *dp = dspp->dp;
|
|
#ifdef _KERNEL
|
|
if (dmu_objset_type(os) == DMU_OST_ZFS) {
|
|
uint64_t version;
|
|
if (zfs_get_zplprop(os, ZFS_PROP_VERSION, &version) != 0)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
if (version >= ZPL_VERSION_SA)
|
|
*featureflags |= DMU_BACKUP_FEATURE_SA_SPILL;
|
|
}
|
|
#endif
|
|
|
|
/* raw sends imply large_block_ok */
|
|
if ((dspp->rawok || dspp->large_block_ok) &&
|
|
dsl_dataset_feature_is_active(to_ds, SPA_FEATURE_LARGE_BLOCKS)) {
|
|
*featureflags |= DMU_BACKUP_FEATURE_LARGE_BLOCKS;
|
|
}
|
|
|
|
/* encrypted datasets will not have embedded blocks */
|
|
if ((dspp->embedok || dspp->rawok) && !os->os_encrypted &&
|
|
spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA)) {
|
|
*featureflags |= DMU_BACKUP_FEATURE_EMBED_DATA;
|
|
}
|
|
|
|
/* raw send implies compressok */
|
|
if (dspp->compressok || dspp->rawok)
|
|
*featureflags |= DMU_BACKUP_FEATURE_COMPRESSED;
|
|
|
|
if (dspp->rawok && os->os_encrypted)
|
|
*featureflags |= DMU_BACKUP_FEATURE_RAW;
|
|
|
|
if ((*featureflags &
|
|
(DMU_BACKUP_FEATURE_EMBED_DATA | DMU_BACKUP_FEATURE_COMPRESSED |
|
|
DMU_BACKUP_FEATURE_RAW)) != 0 &&
|
|
spa_feature_is_active(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS)) {
|
|
*featureflags |= DMU_BACKUP_FEATURE_LZ4;
|
|
}
|
|
|
|
/*
|
|
* We specifically do not include DMU_BACKUP_FEATURE_EMBED_DATA here to
|
|
* allow sending ZSTD compressed datasets to a receiver that does not
|
|
* support ZSTD
|
|
*/
|
|
if ((*featureflags &
|
|
(DMU_BACKUP_FEATURE_COMPRESSED | DMU_BACKUP_FEATURE_RAW)) != 0 &&
|
|
dsl_dataset_feature_is_active(to_ds, SPA_FEATURE_ZSTD_COMPRESS)) {
|
|
*featureflags |= DMU_BACKUP_FEATURE_ZSTD;
|
|
}
|
|
|
|
if (dspp->resumeobj != 0 || dspp->resumeoff != 0) {
|
|
*featureflags |= DMU_BACKUP_FEATURE_RESUMING;
|
|
}
|
|
|
|
if (dspp->redactbook != NULL) {
|
|
*featureflags |= DMU_BACKUP_FEATURE_REDACTED;
|
|
}
|
|
|
|
if (dsl_dataset_feature_is_active(to_ds, SPA_FEATURE_LARGE_DNODE)) {
|
|
*featureflags |= DMU_BACKUP_FEATURE_LARGE_DNODE;
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static dmu_replay_record_t *
|
|
create_begin_record(struct dmu_send_params *dspp, objset_t *os,
|
|
uint64_t featureflags)
|
|
{
|
|
dmu_replay_record_t *drr = kmem_zalloc(sizeof (dmu_replay_record_t),
|
|
KM_SLEEP);
|
|
drr->drr_type = DRR_BEGIN;
|
|
|
|
struct drr_begin *drrb = &drr->drr_u.drr_begin;
|
|
dsl_dataset_t *to_ds = dspp->to_ds;
|
|
|
|
drrb->drr_magic = DMU_BACKUP_MAGIC;
|
|
drrb->drr_creation_time = dsl_dataset_phys(to_ds)->ds_creation_time;
|
|
drrb->drr_type = dmu_objset_type(os);
|
|
drrb->drr_toguid = dsl_dataset_phys(to_ds)->ds_guid;
|
|
drrb->drr_fromguid = dspp->ancestor_zb.zbm_guid;
|
|
|
|
DMU_SET_STREAM_HDRTYPE(drrb->drr_versioninfo, DMU_SUBSTREAM);
|
|
DMU_SET_FEATUREFLAGS(drrb->drr_versioninfo, featureflags);
|
|
|
|
if (dspp->is_clone)
|
|
drrb->drr_flags |= DRR_FLAG_CLONE;
|
|
if (dsl_dataset_phys(dspp->to_ds)->ds_flags & DS_FLAG_CI_DATASET)
|
|
drrb->drr_flags |= DRR_FLAG_CI_DATA;
|
|
if (zfs_send_set_freerecords_bit)
|
|
drrb->drr_flags |= DRR_FLAG_FREERECORDS;
|
|
drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_SPILL_BLOCK;
|
|
|
|
if (dspp->savedok) {
|
|
drrb->drr_toguid = dspp->saved_guid;
|
|
strlcpy(drrb->drr_toname, dspp->saved_toname,
|
|
sizeof (drrb->drr_toname));
|
|
} else {
|
|
dsl_dataset_name(to_ds, drrb->drr_toname);
|
|
if (!to_ds->ds_is_snapshot) {
|
|
(void) strlcat(drrb->drr_toname, "@--head--",
|
|
sizeof (drrb->drr_toname));
|
|
}
|
|
}
|
|
return (drr);
|
|
}
|
|
|
|
static void
|
|
setup_to_thread(struct send_thread_arg *to_arg, objset_t *to_os,
|
|
dmu_sendstatus_t *dssp, uint64_t fromtxg, boolean_t rawok)
|
|
{
|
|
VERIFY0(bqueue_init(&to_arg->q, zfs_send_no_prefetch_queue_ff,
|
|
MAX(zfs_send_no_prefetch_queue_length, 2 * zfs_max_recordsize),
|
|
offsetof(struct send_range, ln)));
|
|
to_arg->error_code = 0;
|
|
to_arg->cancel = B_FALSE;
|
|
to_arg->os = to_os;
|
|
to_arg->fromtxg = fromtxg;
|
|
to_arg->flags = TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA;
|
|
if (rawok)
|
|
to_arg->flags |= TRAVERSE_NO_DECRYPT;
|
|
if (zfs_send_corrupt_data)
|
|
to_arg->flags |= TRAVERSE_HARD;
|
|
to_arg->num_blocks_visited = &dssp->dss_blocks;
|
|
(void) thread_create(NULL, 0, send_traverse_thread, to_arg, 0,
|
|
curproc, TS_RUN, minclsyspri);
|
|
}
|
|
|
|
static void
|
|
setup_from_thread(struct redact_list_thread_arg *from_arg,
|
|
redaction_list_t *from_rl, dmu_sendstatus_t *dssp)
|
|
{
|
|
VERIFY0(bqueue_init(&from_arg->q, zfs_send_no_prefetch_queue_ff,
|
|
MAX(zfs_send_no_prefetch_queue_length, 2 * zfs_max_recordsize),
|
|
offsetof(struct send_range, ln)));
|
|
from_arg->error_code = 0;
|
|
from_arg->cancel = B_FALSE;
|
|
from_arg->rl = from_rl;
|
|
from_arg->mark_redact = B_FALSE;
|
|
from_arg->num_blocks_visited = &dssp->dss_blocks;
|
|
/*
|
|
* If from_ds is null, send_traverse_thread just returns success and
|
|
* enqueues an eos marker.
|
|
*/
|
|
(void) thread_create(NULL, 0, redact_list_thread, from_arg, 0,
|
|
curproc, TS_RUN, minclsyspri);
|
|
}
|
|
|
|
static void
|
|
setup_redact_list_thread(struct redact_list_thread_arg *rlt_arg,
|
|
struct dmu_send_params *dspp, redaction_list_t *rl, dmu_sendstatus_t *dssp)
|
|
{
|
|
if (dspp->redactbook == NULL)
|
|
return;
|
|
|
|
rlt_arg->cancel = B_FALSE;
|
|
VERIFY0(bqueue_init(&rlt_arg->q, zfs_send_no_prefetch_queue_ff,
|
|
MAX(zfs_send_no_prefetch_queue_length, 2 * zfs_max_recordsize),
|
|
offsetof(struct send_range, ln)));
|
|
rlt_arg->error_code = 0;
|
|
rlt_arg->mark_redact = B_TRUE;
|
|
rlt_arg->rl = rl;
|
|
rlt_arg->num_blocks_visited = &dssp->dss_blocks;
|
|
|
|
(void) thread_create(NULL, 0, redact_list_thread, rlt_arg, 0,
|
|
curproc, TS_RUN, minclsyspri);
|
|
}
|
|
|
|
static void
|
|
setup_merge_thread(struct send_merge_thread_arg *smt_arg,
|
|
struct dmu_send_params *dspp, struct redact_list_thread_arg *from_arg,
|
|
struct send_thread_arg *to_arg, struct redact_list_thread_arg *rlt_arg,
|
|
objset_t *os)
|
|
{
|
|
VERIFY0(bqueue_init(&smt_arg->q, zfs_send_no_prefetch_queue_ff,
|
|
MAX(zfs_send_no_prefetch_queue_length, 2 * zfs_max_recordsize),
|
|
offsetof(struct send_range, ln)));
|
|
smt_arg->cancel = B_FALSE;
|
|
smt_arg->error = 0;
|
|
smt_arg->from_arg = from_arg;
|
|
smt_arg->to_arg = to_arg;
|
|
if (dspp->redactbook != NULL)
|
|
smt_arg->redact_arg = rlt_arg;
|
|
|
|
smt_arg->os = os;
|
|
(void) thread_create(NULL, 0, send_merge_thread, smt_arg, 0, curproc,
|
|
TS_RUN, minclsyspri);
|
|
}
|
|
|
|
static void
|
|
setup_reader_thread(struct send_reader_thread_arg *srt_arg,
|
|
struct dmu_send_params *dspp, struct send_merge_thread_arg *smt_arg,
|
|
uint64_t featureflags)
|
|
{
|
|
VERIFY0(bqueue_init(&srt_arg->q, zfs_send_queue_ff,
|
|
MAX(zfs_send_queue_length, 2 * zfs_max_recordsize),
|
|
offsetof(struct send_range, ln)));
|
|
srt_arg->smta = smt_arg;
|
|
srt_arg->issue_reads = !dspp->dso->dso_dryrun;
|
|
srt_arg->featureflags = featureflags;
|
|
(void) thread_create(NULL, 0, send_reader_thread, srt_arg, 0,
|
|
curproc, TS_RUN, minclsyspri);
|
|
}
|
|
|
|
static int
|
|
setup_resume_points(struct dmu_send_params *dspp,
|
|
struct send_thread_arg *to_arg, struct redact_list_thread_arg *from_arg,
|
|
struct redact_list_thread_arg *rlt_arg,
|
|
struct send_merge_thread_arg *smt_arg, boolean_t resuming, objset_t *os,
|
|
redaction_list_t *redact_rl, nvlist_t *nvl)
|
|
{
|
|
(void) smt_arg;
|
|
dsl_dataset_t *to_ds = dspp->to_ds;
|
|
int err = 0;
|
|
|
|
uint64_t obj = 0;
|
|
uint64_t blkid = 0;
|
|
if (resuming) {
|
|
obj = dspp->resumeobj;
|
|
dmu_object_info_t to_doi;
|
|
err = dmu_object_info(os, obj, &to_doi);
|
|
if (err != 0)
|
|
return (err);
|
|
|
|
blkid = dspp->resumeoff / to_doi.doi_data_block_size;
|
|
}
|
|
/*
|
|
* If we're resuming a redacted send, we can skip to the appropriate
|
|
* point in the redaction bookmark by binary searching through it.
|
|
*/
|
|
if (redact_rl != NULL) {
|
|
SET_BOOKMARK(&rlt_arg->resume, to_ds->ds_object, obj, 0, blkid);
|
|
}
|
|
|
|
SET_BOOKMARK(&to_arg->resume, to_ds->ds_object, obj, 0, blkid);
|
|
if (nvlist_exists(nvl, BEGINNV_REDACT_FROM_SNAPS)) {
|
|
uint64_t objset = dspp->ancestor_zb.zbm_redaction_obj;
|
|
/*
|
|
* Note: If the resume point is in an object whose
|
|
* blocksize is different in the from vs to snapshots,
|
|
* we will have divided by the "wrong" blocksize.
|
|
* However, in this case fromsnap's send_cb() will
|
|
* detect that the blocksize has changed and therefore
|
|
* ignore this object.
|
|
*
|
|
* If we're resuming a send from a redaction bookmark,
|
|
* we still cannot accidentally suggest blocks behind
|
|
* the to_ds. In addition, we know that any blocks in
|
|
* the object in the to_ds will have to be sent, since
|
|
* the size changed. Therefore, we can't cause any harm
|
|
* this way either.
|
|
*/
|
|
SET_BOOKMARK(&from_arg->resume, objset, obj, 0, blkid);
|
|
}
|
|
if (resuming) {
|
|
fnvlist_add_uint64(nvl, BEGINNV_RESUME_OBJECT, dspp->resumeobj);
|
|
fnvlist_add_uint64(nvl, BEGINNV_RESUME_OFFSET, dspp->resumeoff);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static dmu_sendstatus_t *
|
|
setup_send_progress(struct dmu_send_params *dspp)
|
|
{
|
|
dmu_sendstatus_t *dssp = kmem_zalloc(sizeof (*dssp), KM_SLEEP);
|
|
dssp->dss_outfd = dspp->outfd;
|
|
dssp->dss_off = dspp->off;
|
|
dssp->dss_proc = curproc;
|
|
mutex_enter(&dspp->to_ds->ds_sendstream_lock);
|
|
list_insert_head(&dspp->to_ds->ds_sendstreams, dssp);
|
|
mutex_exit(&dspp->to_ds->ds_sendstream_lock);
|
|
return (dssp);
|
|
}
|
|
|
|
/*
|
|
* Actually do the bulk of the work in a zfs send.
|
|
*
|
|
* The idea is that we want to do a send from ancestor_zb to to_ds. We also
|
|
* want to not send any data that has been modified by all the datasets in
|
|
* redactsnaparr, and store the list of blocks that are redacted in this way in
|
|
* a bookmark named redactbook, created on the to_ds. We do this by creating
|
|
* several worker threads, whose function is described below.
|
|
*
|
|
* There are three cases.
|
|
* The first case is a redacted zfs send. In this case there are 5 threads.
|
|
* The first thread is the to_ds traversal thread: it calls dataset_traverse on
|
|
* the to_ds and finds all the blocks that have changed since ancestor_zb (if
|
|
* it's a full send, that's all blocks in the dataset). It then sends those
|
|
* blocks on to the send merge thread. The redact list thread takes the data
|
|
* from the redaction bookmark and sends those blocks on to the send merge
|
|
* thread. The send merge thread takes the data from the to_ds traversal
|
|
* thread, and combines it with the redaction records from the redact list
|
|
* thread. If a block appears in both the to_ds's data and the redaction data,
|
|
* the send merge thread will mark it as redacted and send it on to the prefetch
|
|
* thread. Otherwise, the send merge thread will send the block on to the
|
|
* prefetch thread unchanged. The prefetch thread will issue prefetch reads for
|
|
* any data that isn't redacted, and then send the data on to the main thread.
|
|
* The main thread behaves the same as in a normal send case, issuing demand
|
|
* reads for data blocks and sending out records over the network
|
|
*
|
|
* The graphic below diagrams the flow of data in the case of a redacted zfs
|
|
* send. Each box represents a thread, and each line represents the flow of
|
|
* data.
|
|
*
|
|
* Records from the |
|
|
* redaction bookmark |
|
|
* +--------------------+ | +---------------------------+
|
|
* | | v | Send Merge Thread |
|
|
* | Redact List Thread +----------> Apply redaction marks to |
|
|
* | | | records as specified by |
|
|
* +--------------------+ | redaction ranges |
|
|
* +----^---------------+------+
|
|
* | | Merged data
|
|
* | |
|
|
* | +------------v--------+
|
|
* | | Prefetch Thread |
|
|
* +--------------------+ | | Issues prefetch |
|
|
* | to_ds Traversal | | | reads of data blocks|
|
|
* | Thread (finds +---------------+ +------------+--------+
|
|
* | candidate blocks) | Blocks modified | Prefetched data
|
|
* +--------------------+ by to_ds since |
|
|
* ancestor_zb +------------v----+
|
|
* | Main Thread | File Descriptor
|
|
* | Sends data over +->(to zfs receive)
|
|
* | wire |
|
|
* +-----------------+
|
|
*
|
|
* The second case is an incremental send from a redaction bookmark. The to_ds
|
|
* traversal thread and the main thread behave the same as in the redacted
|
|
* send case. The new thread is the from bookmark traversal thread. It
|
|
* iterates over the redaction list in the redaction bookmark, and enqueues
|
|
* records for each block that was redacted in the original send. The send
|
|
* merge thread now has to merge the data from the two threads. For details
|
|
* about that process, see the header comment of send_merge_thread(). Any data
|
|
* it decides to send on will be prefetched by the prefetch thread. Note that
|
|
* you can perform a redacted send from a redaction bookmark; in that case,
|
|
* the data flow behaves very similarly to the flow in the redacted send case,
|
|
* except with the addition of the bookmark traversal thread iterating over the
|
|
* redaction bookmark. The send_merge_thread also has to take on the
|
|
* responsibility of merging the redact list thread's records, the bookmark
|
|
* traversal thread's records, and the to_ds records.
|
|
*
|
|
* +---------------------+
|
|
* | |
|
|
* | Redact List Thread +--------------+
|
|
* | | |
|
|
* +---------------------+ |
|
|
* Blocks in redaction list | Ranges modified by every secure snap
|
|
* of from bookmark | (or EOS if not readcted)
|
|
* |
|
|
* +---------------------+ | +----v----------------------+
|
|
* | bookmark Traversal | v | Send Merge Thread |
|
|
* | Thread (finds +---------> Merges bookmark, rlt, and |
|
|
* | candidate blocks) | | to_ds send records |
|
|
* +---------------------+ +----^---------------+------+
|
|
* | | Merged data
|
|
* | +------------v--------+
|
|
* | | Prefetch Thread |
|
|
* +--------------------+ | | Issues prefetch |
|
|
* | to_ds Traversal | | | reads of data blocks|
|
|
* | Thread (finds +---------------+ +------------+--------+
|
|
* | candidate blocks) | Blocks modified | Prefetched data
|
|
* +--------------------+ by to_ds since +------------v----+
|
|
* ancestor_zb | Main Thread | File Descriptor
|
|
* | Sends data over +->(to zfs receive)
|
|
* | wire |
|
|
* +-----------------+
|
|
*
|
|
* The final case is a simple zfs full or incremental send. The to_ds traversal
|
|
* thread behaves the same as always. The redact list thread is never started.
|
|
* The send merge thread takes all the blocks that the to_ds traversal thread
|
|
* sends it, prefetches the data, and sends the blocks on to the main thread.
|
|
* The main thread sends the data over the wire.
|
|
*
|
|
* To keep performance acceptable, we want to prefetch the data in the worker
|
|
* threads. While the to_ds thread could simply use the TRAVERSE_PREFETCH
|
|
* feature built into traverse_dataset, the combining and deletion of records
|
|
* due to redaction and sends from redaction bookmarks mean that we could
|
|
* issue many unnecessary prefetches. As a result, we only prefetch data
|
|
* after we've determined that the record is not going to be redacted. To
|
|
* prevent the prefetching from getting too far ahead of the main thread, the
|
|
* blocking queues that are used for communication are capped not by the
|
|
* number of entries in the queue, but by the sum of the size of the
|
|
* prefetches associated with them. The limit on the amount of data that the
|
|
* thread can prefetch beyond what the main thread has reached is controlled
|
|
* by the global variable zfs_send_queue_length. In addition, to prevent poor
|
|
* performance in the beginning of a send, we also limit the distance ahead
|
|
* that the traversal threads can be. That distance is controlled by the
|
|
* zfs_send_no_prefetch_queue_length tunable.
|
|
*
|
|
* Note: Releases dp using the specified tag.
|
|
*/
|
|
static int
|
|
dmu_send_impl(struct dmu_send_params *dspp)
|
|
{
|
|
objset_t *os;
|
|
dmu_replay_record_t *drr;
|
|
dmu_sendstatus_t *dssp;
|
|
dmu_send_cookie_t dsc = {0};
|
|
int err;
|
|
uint64_t fromtxg = dspp->ancestor_zb.zbm_creation_txg;
|
|
uint64_t featureflags = 0;
|
|
struct redact_list_thread_arg *from_arg;
|
|
struct send_thread_arg *to_arg;
|
|
struct redact_list_thread_arg *rlt_arg;
|
|
struct send_merge_thread_arg *smt_arg;
|
|
struct send_reader_thread_arg *srt_arg;
|
|
struct send_range *range;
|
|
redaction_list_t *from_rl = NULL;
|
|
redaction_list_t *redact_rl = NULL;
|
|
boolean_t resuming = (dspp->resumeobj != 0 || dspp->resumeoff != 0);
|
|
boolean_t book_resuming = resuming;
|
|
|
|
dsl_dataset_t *to_ds = dspp->to_ds;
|
|
zfs_bookmark_phys_t *ancestor_zb = &dspp->ancestor_zb;
|
|
dsl_pool_t *dp = dspp->dp;
|
|
void *tag = dspp->tag;
|
|
|
|
err = dmu_objset_from_ds(to_ds, &os);
|
|
if (err != 0) {
|
|
dsl_pool_rele(dp, tag);
|
|
return (err);
|
|
}
|
|
|
|
/*
|
|
* If this is a non-raw send of an encrypted ds, we can ensure that
|
|
* the objset_phys_t is authenticated. This is safe because this is
|
|
* either a snapshot or we have owned the dataset, ensuring that
|
|
* it can't be modified.
|
|
*/
|
|
if (!dspp->rawok && os->os_encrypted &&
|
|
arc_is_unauthenticated(os->os_phys_buf)) {
|
|
zbookmark_phys_t zb;
|
|
|
|
SET_BOOKMARK(&zb, to_ds->ds_object, ZB_ROOT_OBJECT,
|
|
ZB_ROOT_LEVEL, ZB_ROOT_BLKID);
|
|
err = arc_untransform(os->os_phys_buf, os->os_spa,
|
|
&zb, B_FALSE);
|
|
if (err != 0) {
|
|
dsl_pool_rele(dp, tag);
|
|
return (err);
|
|
}
|
|
|
|
ASSERT0(arc_is_unauthenticated(os->os_phys_buf));
|
|
}
|
|
|
|
if ((err = setup_featureflags(dspp, os, &featureflags)) != 0) {
|
|
dsl_pool_rele(dp, tag);
|
|
return (err);
|
|
}
|
|
|
|
/*
|
|
* If we're doing a redacted send, hold the bookmark's redaction list.
|
|
*/
|
|
if (dspp->redactbook != NULL) {
|
|
err = dsl_redaction_list_hold_obj(dp,
|
|
dspp->redactbook->zbm_redaction_obj, FTAG,
|
|
&redact_rl);
|
|
if (err != 0) {
|
|
dsl_pool_rele(dp, tag);
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
dsl_redaction_list_long_hold(dp, redact_rl, FTAG);
|
|
}
|
|
|
|
/*
|
|
* If we're sending from a redaction bookmark, hold the redaction list
|
|
* so that we can consider sending the redacted blocks.
|
|
*/
|
|
if (ancestor_zb->zbm_redaction_obj != 0) {
|
|
err = dsl_redaction_list_hold_obj(dp,
|
|
ancestor_zb->zbm_redaction_obj, FTAG, &from_rl);
|
|
if (err != 0) {
|
|
if (redact_rl != NULL) {
|
|
dsl_redaction_list_long_rele(redact_rl, FTAG);
|
|
dsl_redaction_list_rele(redact_rl, FTAG);
|
|
}
|
|
dsl_pool_rele(dp, tag);
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
dsl_redaction_list_long_hold(dp, from_rl, FTAG);
|
|
}
|
|
|
|
dsl_dataset_long_hold(to_ds, FTAG);
|
|
|
|
from_arg = kmem_zalloc(sizeof (*from_arg), KM_SLEEP);
|
|
to_arg = kmem_zalloc(sizeof (*to_arg), KM_SLEEP);
|
|
rlt_arg = kmem_zalloc(sizeof (*rlt_arg), KM_SLEEP);
|
|
smt_arg = kmem_zalloc(sizeof (*smt_arg), KM_SLEEP);
|
|
srt_arg = kmem_zalloc(sizeof (*srt_arg), KM_SLEEP);
|
|
|
|
drr = create_begin_record(dspp, os, featureflags);
|
|
dssp = setup_send_progress(dspp);
|
|
|
|
dsc.dsc_drr = drr;
|
|
dsc.dsc_dso = dspp->dso;
|
|
dsc.dsc_os = os;
|
|
dsc.dsc_off = dspp->off;
|
|
dsc.dsc_toguid = dsl_dataset_phys(to_ds)->ds_guid;
|
|
dsc.dsc_fromtxg = fromtxg;
|
|
dsc.dsc_pending_op = PENDING_NONE;
|
|
dsc.dsc_featureflags = featureflags;
|
|
dsc.dsc_resume_object = dspp->resumeobj;
|
|
dsc.dsc_resume_offset = dspp->resumeoff;
|
|
|
|
dsl_pool_rele(dp, tag);
|
|
|
|
void *payload = NULL;
|
|
size_t payload_len = 0;
|
|
nvlist_t *nvl = fnvlist_alloc();
|
|
|
|
/*
|
|
* If we're doing a redacted send, we include the snapshots we're
|
|
* redacted with respect to so that the target system knows what send
|
|
* streams can be correctly received on top of this dataset. If we're
|
|
* instead sending a redacted dataset, we include the snapshots that the
|
|
* dataset was created with respect to.
|
|
*/
|
|
if (dspp->redactbook != NULL) {
|
|
fnvlist_add_uint64_array(nvl, BEGINNV_REDACT_SNAPS,
|
|
redact_rl->rl_phys->rlp_snaps,
|
|
redact_rl->rl_phys->rlp_num_snaps);
|
|
} else if (dsl_dataset_feature_is_active(to_ds,
|
|
SPA_FEATURE_REDACTED_DATASETS)) {
|
|
uint64_t *tods_guids;
|
|
uint64_t length;
|
|
VERIFY(dsl_dataset_get_uint64_array_feature(to_ds,
|
|
SPA_FEATURE_REDACTED_DATASETS, &length, &tods_guids));
|
|
fnvlist_add_uint64_array(nvl, BEGINNV_REDACT_SNAPS, tods_guids,
|
|
length);
|
|
}
|
|
|
|
/*
|
|
* If we're sending from a redaction bookmark, then we should retrieve
|
|
* the guids of that bookmark so we can send them over the wire.
|
|
*/
|
|
if (from_rl != NULL) {
|
|
fnvlist_add_uint64_array(nvl, BEGINNV_REDACT_FROM_SNAPS,
|
|
from_rl->rl_phys->rlp_snaps,
|
|
from_rl->rl_phys->rlp_num_snaps);
|
|
}
|
|
|
|
/*
|
|
* If the snapshot we're sending from is redacted, include the redaction
|
|
* list in the stream.
|
|
*/
|
|
if (dspp->numfromredactsnaps != NUM_SNAPS_NOT_REDACTED) {
|
|
ASSERT3P(from_rl, ==, NULL);
|
|
fnvlist_add_uint64_array(nvl, BEGINNV_REDACT_FROM_SNAPS,
|
|
dspp->fromredactsnaps, (uint_t)dspp->numfromredactsnaps);
|
|
if (dspp->numfromredactsnaps > 0) {
|
|
kmem_free(dspp->fromredactsnaps,
|
|
dspp->numfromredactsnaps * sizeof (uint64_t));
|
|
dspp->fromredactsnaps = NULL;
|
|
}
|
|
}
|
|
|
|
if (resuming || book_resuming) {
|
|
err = setup_resume_points(dspp, to_arg, from_arg,
|
|
rlt_arg, smt_arg, resuming, os, redact_rl, nvl);
|
|
if (err != 0)
|
|
goto out;
|
|
}
|
|
|
|
if (featureflags & DMU_BACKUP_FEATURE_RAW) {
|
|
uint64_t ivset_guid = (ancestor_zb != NULL) ?
|
|
ancestor_zb->zbm_ivset_guid : 0;
|
|
nvlist_t *keynvl = NULL;
|
|
ASSERT(os->os_encrypted);
|
|
|
|
err = dsl_crypto_populate_key_nvlist(os, ivset_guid,
|
|
&keynvl);
|
|
if (err != 0) {
|
|
fnvlist_free(nvl);
|
|
goto out;
|
|
}
|
|
|
|
fnvlist_add_nvlist(nvl, "crypt_keydata", keynvl);
|
|
fnvlist_free(keynvl);
|
|
}
|
|
|
|
if (!nvlist_empty(nvl)) {
|
|
payload = fnvlist_pack(nvl, &payload_len);
|
|
drr->drr_payloadlen = payload_len;
|
|
}
|
|
|
|
fnvlist_free(nvl);
|
|
err = dump_record(&dsc, payload, payload_len);
|
|
fnvlist_pack_free(payload, payload_len);
|
|
if (err != 0) {
|
|
err = dsc.dsc_err;
|
|
goto out;
|
|
}
|
|
|
|
setup_to_thread(to_arg, os, dssp, fromtxg, dspp->rawok);
|
|
setup_from_thread(from_arg, from_rl, dssp);
|
|
setup_redact_list_thread(rlt_arg, dspp, redact_rl, dssp);
|
|
setup_merge_thread(smt_arg, dspp, from_arg, to_arg, rlt_arg, os);
|
|
setup_reader_thread(srt_arg, dspp, smt_arg, featureflags);
|
|
|
|
range = bqueue_dequeue(&srt_arg->q);
|
|
while (err == 0 && !range->eos_marker) {
|
|
err = do_dump(&dsc, range);
|
|
range = get_next_range(&srt_arg->q, range);
|
|
if (issig(JUSTLOOKING) && issig(FORREAL))
|
|
err = SET_ERROR(EINTR);
|
|
}
|
|
|
|
/*
|
|
* If we hit an error or are interrupted, cancel our worker threads and
|
|
* clear the queue of any pending records. The threads will pass the
|
|
* cancel up the tree of worker threads, and each one will clean up any
|
|
* pending records before exiting.
|
|
*/
|
|
if (err != 0) {
|
|
srt_arg->cancel = B_TRUE;
|
|
while (!range->eos_marker) {
|
|
range = get_next_range(&srt_arg->q, range);
|
|
}
|
|
}
|
|
range_free(range);
|
|
|
|
bqueue_destroy(&srt_arg->q);
|
|
bqueue_destroy(&smt_arg->q);
|
|
if (dspp->redactbook != NULL)
|
|
bqueue_destroy(&rlt_arg->q);
|
|
bqueue_destroy(&to_arg->q);
|
|
bqueue_destroy(&from_arg->q);
|
|
|
|
if (err == 0 && srt_arg->error != 0)
|
|
err = srt_arg->error;
|
|
|
|
if (err != 0)
|
|
goto out;
|
|
|
|
if (dsc.dsc_pending_op != PENDING_NONE)
|
|
if (dump_record(&dsc, NULL, 0) != 0)
|
|
err = SET_ERROR(EINTR);
|
|
|
|
if (err != 0) {
|
|
if (err == EINTR && dsc.dsc_err != 0)
|
|
err = dsc.dsc_err;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Send the DRR_END record if this is not a saved stream.
|
|
* Otherwise, the omitted DRR_END record will signal to
|
|
* the receive side that the stream is incomplete.
|
|
*/
|
|
if (!dspp->savedok) {
|
|
memset(drr, 0, sizeof (dmu_replay_record_t));
|
|
drr->drr_type = DRR_END;
|
|
drr->drr_u.drr_end.drr_checksum = dsc.dsc_zc;
|
|
drr->drr_u.drr_end.drr_toguid = dsc.dsc_toguid;
|
|
|
|
if (dump_record(&dsc, NULL, 0) != 0)
|
|
err = dsc.dsc_err;
|
|
}
|
|
out:
|
|
mutex_enter(&to_ds->ds_sendstream_lock);
|
|
list_remove(&to_ds->ds_sendstreams, dssp);
|
|
mutex_exit(&to_ds->ds_sendstream_lock);
|
|
|
|
VERIFY(err != 0 || (dsc.dsc_sent_begin &&
|
|
(dsc.dsc_sent_end || dspp->savedok)));
|
|
|
|
kmem_free(drr, sizeof (dmu_replay_record_t));
|
|
kmem_free(dssp, sizeof (dmu_sendstatus_t));
|
|
kmem_free(from_arg, sizeof (*from_arg));
|
|
kmem_free(to_arg, sizeof (*to_arg));
|
|
kmem_free(rlt_arg, sizeof (*rlt_arg));
|
|
kmem_free(smt_arg, sizeof (*smt_arg));
|
|
kmem_free(srt_arg, sizeof (*srt_arg));
|
|
|
|
dsl_dataset_long_rele(to_ds, FTAG);
|
|
if (from_rl != NULL) {
|
|
dsl_redaction_list_long_rele(from_rl, FTAG);
|
|
dsl_redaction_list_rele(from_rl, FTAG);
|
|
}
|
|
if (redact_rl != NULL) {
|
|
dsl_redaction_list_long_rele(redact_rl, FTAG);
|
|
dsl_redaction_list_rele(redact_rl, FTAG);
|
|
}
|
|
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
dmu_send_obj(const char *pool, uint64_t tosnap, uint64_t fromsnap,
|
|
boolean_t embedok, boolean_t large_block_ok, boolean_t compressok,
|
|
boolean_t rawok, boolean_t savedok, int outfd, offset_t *off,
|
|
dmu_send_outparams_t *dsop)
|
|
{
|
|
int err;
|
|
dsl_dataset_t *fromds;
|
|
ds_hold_flags_t dsflags;
|
|
struct dmu_send_params dspp = {0};
|
|
dspp.embedok = embedok;
|
|
dspp.large_block_ok = large_block_ok;
|
|
dspp.compressok = compressok;
|
|
dspp.outfd = outfd;
|
|
dspp.off = off;
|
|
dspp.dso = dsop;
|
|
dspp.tag = FTAG;
|
|
dspp.rawok = rawok;
|
|
dspp.savedok = savedok;
|
|
|
|
dsflags = (rawok) ? DS_HOLD_FLAG_NONE : DS_HOLD_FLAG_DECRYPT;
|
|
err = dsl_pool_hold(pool, FTAG, &dspp.dp);
|
|
if (err != 0)
|
|
return (err);
|
|
|
|
err = dsl_dataset_hold_obj_flags(dspp.dp, tosnap, dsflags, FTAG,
|
|
&dspp.to_ds);
|
|
if (err != 0) {
|
|
dsl_pool_rele(dspp.dp, FTAG);
|
|
return (err);
|
|
}
|
|
|
|
if (fromsnap != 0) {
|
|
err = dsl_dataset_hold_obj_flags(dspp.dp, fromsnap, dsflags,
|
|
FTAG, &fromds);
|
|
if (err != 0) {
|
|
dsl_dataset_rele_flags(dspp.to_ds, dsflags, FTAG);
|
|
dsl_pool_rele(dspp.dp, FTAG);
|
|
return (err);
|
|
}
|
|
dspp.ancestor_zb.zbm_guid = dsl_dataset_phys(fromds)->ds_guid;
|
|
dspp.ancestor_zb.zbm_creation_txg =
|
|
dsl_dataset_phys(fromds)->ds_creation_txg;
|
|
dspp.ancestor_zb.zbm_creation_time =
|
|
dsl_dataset_phys(fromds)->ds_creation_time;
|
|
|
|
if (dsl_dataset_is_zapified(fromds)) {
|
|
(void) zap_lookup(dspp.dp->dp_meta_objset,
|
|
fromds->ds_object, DS_FIELD_IVSET_GUID, 8, 1,
|
|
&dspp.ancestor_zb.zbm_ivset_guid);
|
|
}
|
|
|
|
/* See dmu_send for the reasons behind this. */
|
|
uint64_t *fromredact;
|
|
|
|
if (!dsl_dataset_get_uint64_array_feature(fromds,
|
|
SPA_FEATURE_REDACTED_DATASETS,
|
|
&dspp.numfromredactsnaps,
|
|
&fromredact)) {
|
|
dspp.numfromredactsnaps = NUM_SNAPS_NOT_REDACTED;
|
|
} else if (dspp.numfromredactsnaps > 0) {
|
|
uint64_t size = dspp.numfromredactsnaps *
|
|
sizeof (uint64_t);
|
|
dspp.fromredactsnaps = kmem_zalloc(size, KM_SLEEP);
|
|
memcpy(dspp.fromredactsnaps, fromredact, size);
|
|
}
|
|
|
|
boolean_t is_before =
|
|
dsl_dataset_is_before(dspp.to_ds, fromds, 0);
|
|
dspp.is_clone = (dspp.to_ds->ds_dir !=
|
|
fromds->ds_dir);
|
|
dsl_dataset_rele(fromds, FTAG);
|
|
if (!is_before) {
|
|
dsl_pool_rele(dspp.dp, FTAG);
|
|
err = SET_ERROR(EXDEV);
|
|
} else {
|
|
err = dmu_send_impl(&dspp);
|
|
}
|
|
} else {
|
|
dspp.numfromredactsnaps = NUM_SNAPS_NOT_REDACTED;
|
|
err = dmu_send_impl(&dspp);
|
|
}
|
|
dsl_dataset_rele(dspp.to_ds, FTAG);
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
dmu_send(const char *tosnap, const char *fromsnap, boolean_t embedok,
|
|
boolean_t large_block_ok, boolean_t compressok, boolean_t rawok,
|
|
boolean_t savedok, uint64_t resumeobj, uint64_t resumeoff,
|
|
const char *redactbook, int outfd, offset_t *off,
|
|
dmu_send_outparams_t *dsop)
|
|
{
|
|
int err = 0;
|
|
ds_hold_flags_t dsflags;
|
|
boolean_t owned = B_FALSE;
|
|
dsl_dataset_t *fromds = NULL;
|
|
zfs_bookmark_phys_t book = {0};
|
|
struct dmu_send_params dspp = {0};
|
|
|
|
dsflags = (rawok) ? DS_HOLD_FLAG_NONE : DS_HOLD_FLAG_DECRYPT;
|
|
dspp.tosnap = tosnap;
|
|
dspp.embedok = embedok;
|
|
dspp.large_block_ok = large_block_ok;
|
|
dspp.compressok = compressok;
|
|
dspp.outfd = outfd;
|
|
dspp.off = off;
|
|
dspp.dso = dsop;
|
|
dspp.tag = FTAG;
|
|
dspp.resumeobj = resumeobj;
|
|
dspp.resumeoff = resumeoff;
|
|
dspp.rawok = rawok;
|
|
dspp.savedok = savedok;
|
|
|
|
if (fromsnap != NULL && strpbrk(fromsnap, "@#") == NULL)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
err = dsl_pool_hold(tosnap, FTAG, &dspp.dp);
|
|
if (err != 0)
|
|
return (err);
|
|
|
|
if (strchr(tosnap, '@') == NULL && spa_writeable(dspp.dp->dp_spa)) {
|
|
/*
|
|
* We are sending a filesystem or volume. Ensure
|
|
* that it doesn't change by owning the dataset.
|
|
*/
|
|
|
|
if (savedok) {
|
|
/*
|
|
* We are looking for the dataset that represents the
|
|
* partially received send stream. If this stream was
|
|
* received as a new snapshot of an existing dataset,
|
|
* this will be saved in a hidden clone named
|
|
* "<pool>/<dataset>/%recv". Otherwise, the stream
|
|
* will be saved in the live dataset itself. In
|
|
* either case we need to use dsl_dataset_own_force()
|
|
* because the stream is marked as inconsistent,
|
|
* which would normally make it unavailable to be
|
|
* owned.
|
|
*/
|
|
char *name = kmem_asprintf("%s/%s", tosnap,
|
|
recv_clone_name);
|
|
err = dsl_dataset_own_force(dspp.dp, name, dsflags,
|
|
FTAG, &dspp.to_ds);
|
|
if (err == ENOENT) {
|
|
err = dsl_dataset_own_force(dspp.dp, tosnap,
|
|
dsflags, FTAG, &dspp.to_ds);
|
|
}
|
|
|
|
if (err == 0) {
|
|
err = zap_lookup(dspp.dp->dp_meta_objset,
|
|
dspp.to_ds->ds_object,
|
|
DS_FIELD_RESUME_TOGUID, 8, 1,
|
|
&dspp.saved_guid);
|
|
}
|
|
|
|
if (err == 0) {
|
|
err = zap_lookup(dspp.dp->dp_meta_objset,
|
|
dspp.to_ds->ds_object,
|
|
DS_FIELD_RESUME_TONAME, 1,
|
|
sizeof (dspp.saved_toname),
|
|
dspp.saved_toname);
|
|
}
|
|
if (err != 0)
|
|
dsl_dataset_disown(dspp.to_ds, dsflags, FTAG);
|
|
|
|
kmem_strfree(name);
|
|
} else {
|
|
err = dsl_dataset_own(dspp.dp, tosnap, dsflags,
|
|
FTAG, &dspp.to_ds);
|
|
}
|
|
owned = B_TRUE;
|
|
} else {
|
|
err = dsl_dataset_hold_flags(dspp.dp, tosnap, dsflags, FTAG,
|
|
&dspp.to_ds);
|
|
}
|
|
|
|
if (err != 0) {
|
|
dsl_pool_rele(dspp.dp, FTAG);
|
|
return (err);
|
|
}
|
|
|
|
if (redactbook != NULL) {
|
|
char path[ZFS_MAX_DATASET_NAME_LEN];
|
|
(void) strlcpy(path, tosnap, sizeof (path));
|
|
char *at = strchr(path, '@');
|
|
if (at == NULL) {
|
|
err = EINVAL;
|
|
} else {
|
|
(void) snprintf(at, sizeof (path) - (at - path), "#%s",
|
|
redactbook);
|
|
err = dsl_bookmark_lookup(dspp.dp, path,
|
|
NULL, &book);
|
|
dspp.redactbook = &book;
|
|
}
|
|
}
|
|
|
|
if (err != 0) {
|
|
dsl_pool_rele(dspp.dp, FTAG);
|
|
if (owned)
|
|
dsl_dataset_disown(dspp.to_ds, dsflags, FTAG);
|
|
else
|
|
dsl_dataset_rele_flags(dspp.to_ds, dsflags, FTAG);
|
|
return (err);
|
|
}
|
|
|
|
if (fromsnap != NULL) {
|
|
zfs_bookmark_phys_t *zb = &dspp.ancestor_zb;
|
|
int fsnamelen;
|
|
if (strpbrk(tosnap, "@#") != NULL)
|
|
fsnamelen = strpbrk(tosnap, "@#") - tosnap;
|
|
else
|
|
fsnamelen = strlen(tosnap);
|
|
|
|
/*
|
|
* If the fromsnap is in a different filesystem, then
|
|
* mark the send stream as a clone.
|
|
*/
|
|
if (strncmp(tosnap, fromsnap, fsnamelen) != 0 ||
|
|
(fromsnap[fsnamelen] != '@' &&
|
|
fromsnap[fsnamelen] != '#')) {
|
|
dspp.is_clone = B_TRUE;
|
|
}
|
|
|
|
if (strchr(fromsnap, '@') != NULL) {
|
|
err = dsl_dataset_hold(dspp.dp, fromsnap, FTAG,
|
|
&fromds);
|
|
|
|
if (err != 0) {
|
|
ASSERT3P(fromds, ==, NULL);
|
|
} else {
|
|
/*
|
|
* We need to make a deep copy of the redact
|
|
* snapshots of the from snapshot, because the
|
|
* array will be freed when we evict from_ds.
|
|
*/
|
|
uint64_t *fromredact;
|
|
if (!dsl_dataset_get_uint64_array_feature(
|
|
fromds, SPA_FEATURE_REDACTED_DATASETS,
|
|
&dspp.numfromredactsnaps,
|
|
&fromredact)) {
|
|
dspp.numfromredactsnaps =
|
|
NUM_SNAPS_NOT_REDACTED;
|
|
} else if (dspp.numfromredactsnaps > 0) {
|
|
uint64_t size =
|
|
dspp.numfromredactsnaps *
|
|
sizeof (uint64_t);
|
|
dspp.fromredactsnaps = kmem_zalloc(size,
|
|
KM_SLEEP);
|
|
memcpy(dspp.fromredactsnaps, fromredact,
|
|
size);
|
|
}
|
|
if (!dsl_dataset_is_before(dspp.to_ds, fromds,
|
|
0)) {
|
|
err = SET_ERROR(EXDEV);
|
|
} else {
|
|
zb->zbm_creation_txg =
|
|
dsl_dataset_phys(fromds)->
|
|
ds_creation_txg;
|
|
zb->zbm_creation_time =
|
|
dsl_dataset_phys(fromds)->
|
|
ds_creation_time;
|
|
zb->zbm_guid =
|
|
dsl_dataset_phys(fromds)->ds_guid;
|
|
zb->zbm_redaction_obj = 0;
|
|
|
|
if (dsl_dataset_is_zapified(fromds)) {
|
|
(void) zap_lookup(
|
|
dspp.dp->dp_meta_objset,
|
|
fromds->ds_object,
|
|
DS_FIELD_IVSET_GUID, 8, 1,
|
|
&zb->zbm_ivset_guid);
|
|
}
|
|
}
|
|
dsl_dataset_rele(fromds, FTAG);
|
|
}
|
|
} else {
|
|
dspp.numfromredactsnaps = NUM_SNAPS_NOT_REDACTED;
|
|
err = dsl_bookmark_lookup(dspp.dp, fromsnap, dspp.to_ds,
|
|
zb);
|
|
if (err == EXDEV && zb->zbm_redaction_obj != 0 &&
|
|
zb->zbm_guid ==
|
|
dsl_dataset_phys(dspp.to_ds)->ds_guid)
|
|
err = 0;
|
|
}
|
|
|
|
if (err == 0) {
|
|
/* dmu_send_impl will call dsl_pool_rele for us. */
|
|
err = dmu_send_impl(&dspp);
|
|
} else {
|
|
dsl_pool_rele(dspp.dp, FTAG);
|
|
}
|
|
} else {
|
|
dspp.numfromredactsnaps = NUM_SNAPS_NOT_REDACTED;
|
|
err = dmu_send_impl(&dspp);
|
|
}
|
|
if (owned)
|
|
dsl_dataset_disown(dspp.to_ds, dsflags, FTAG);
|
|
else
|
|
dsl_dataset_rele_flags(dspp.to_ds, dsflags, FTAG);
|
|
return (err);
|
|
}
|
|
|
|
static int
|
|
dmu_adjust_send_estimate_for_indirects(dsl_dataset_t *ds, uint64_t uncompressed,
|
|
uint64_t compressed, boolean_t stream_compressed, uint64_t *sizep)
|
|
{
|
|
int err = 0;
|
|
uint64_t size;
|
|
/*
|
|
* Assume that space (both on-disk and in-stream) is dominated by
|
|
* data. We will adjust for indirect blocks and the copies property,
|
|
* but ignore per-object space used (eg, dnodes and DRR_OBJECT records).
|
|
*/
|
|
|
|
uint64_t recordsize;
|
|
uint64_t record_count;
|
|
objset_t *os;
|
|
VERIFY0(dmu_objset_from_ds(ds, &os));
|
|
|
|
/* Assume all (uncompressed) blocks are recordsize. */
|
|
if (zfs_override_estimate_recordsize != 0) {
|
|
recordsize = zfs_override_estimate_recordsize;
|
|
} else if (os->os_phys->os_type == DMU_OST_ZVOL) {
|
|
err = dsl_prop_get_int_ds(ds,
|
|
zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &recordsize);
|
|
} else {
|
|
err = dsl_prop_get_int_ds(ds,
|
|
zfs_prop_to_name(ZFS_PROP_RECORDSIZE), &recordsize);
|
|
}
|
|
if (err != 0)
|
|
return (err);
|
|
record_count = uncompressed / recordsize;
|
|
|
|
/*
|
|
* If we're estimating a send size for a compressed stream, use the
|
|
* compressed data size to estimate the stream size. Otherwise, use the
|
|
* uncompressed data size.
|
|
*/
|
|
size = stream_compressed ? compressed : uncompressed;
|
|
|
|
/*
|
|
* Subtract out approximate space used by indirect blocks.
|
|
* Assume most space is used by data blocks (non-indirect, non-dnode).
|
|
* Assume no ditto blocks or internal fragmentation.
|
|
*
|
|
* Therefore, space used by indirect blocks is sizeof(blkptr_t) per
|
|
* block.
|
|
*/
|
|
size -= record_count * sizeof (blkptr_t);
|
|
|
|
/* Add in the space for the record associated with each block. */
|
|
size += record_count * sizeof (dmu_replay_record_t);
|
|
|
|
*sizep = size;
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
dmu_send_estimate_fast(dsl_dataset_t *origds, dsl_dataset_t *fromds,
|
|
zfs_bookmark_phys_t *frombook, boolean_t stream_compressed,
|
|
boolean_t saved, uint64_t *sizep)
|
|
{
|
|
int err;
|
|
dsl_dataset_t *ds = origds;
|
|
uint64_t uncomp, comp;
|
|
|
|
ASSERT(dsl_pool_config_held(origds->ds_dir->dd_pool));
|
|
ASSERT(fromds == NULL || frombook == NULL);
|
|
|
|
/*
|
|
* If this is a saved send we may actually be sending
|
|
* from the %recv clone used for resuming.
|
|
*/
|
|
if (saved) {
|
|
objset_t *mos = origds->ds_dir->dd_pool->dp_meta_objset;
|
|
uint64_t guid;
|
|
char dsname[ZFS_MAX_DATASET_NAME_LEN + 6];
|
|
|
|
dsl_dataset_name(origds, dsname);
|
|
(void) strcat(dsname, "/");
|
|
(void) strcat(dsname, recv_clone_name);
|
|
|
|
err = dsl_dataset_hold(origds->ds_dir->dd_pool,
|
|
dsname, FTAG, &ds);
|
|
if (err != ENOENT && err != 0) {
|
|
return (err);
|
|
} else if (err == ENOENT) {
|
|
ds = origds;
|
|
}
|
|
|
|
/* check that this dataset has partially received data */
|
|
err = zap_lookup(mos, ds->ds_object,
|
|
DS_FIELD_RESUME_TOGUID, 8, 1, &guid);
|
|
if (err != 0) {
|
|
err = SET_ERROR(err == ENOENT ? EINVAL : err);
|
|
goto out;
|
|
}
|
|
|
|
err = zap_lookup(mos, ds->ds_object,
|
|
DS_FIELD_RESUME_TONAME, 1, sizeof (dsname), dsname);
|
|
if (err != 0) {
|
|
err = SET_ERROR(err == ENOENT ? EINVAL : err);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
/* tosnap must be a snapshot or the target of a saved send */
|
|
if (!ds->ds_is_snapshot && ds == origds)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
if (fromds != NULL) {
|
|
uint64_t used;
|
|
if (!fromds->ds_is_snapshot) {
|
|
err = SET_ERROR(EINVAL);
|
|
goto out;
|
|
}
|
|
|
|
if (!dsl_dataset_is_before(ds, fromds, 0)) {
|
|
err = SET_ERROR(EXDEV);
|
|
goto out;
|
|
}
|
|
|
|
err = dsl_dataset_space_written(fromds, ds, &used, &comp,
|
|
&uncomp);
|
|
if (err != 0)
|
|
goto out;
|
|
} else if (frombook != NULL) {
|
|
uint64_t used;
|
|
err = dsl_dataset_space_written_bookmark(frombook, ds, &used,
|
|
&comp, &uncomp);
|
|
if (err != 0)
|
|
goto out;
|
|
} else {
|
|
uncomp = dsl_dataset_phys(ds)->ds_uncompressed_bytes;
|
|
comp = dsl_dataset_phys(ds)->ds_compressed_bytes;
|
|
}
|
|
|
|
err = dmu_adjust_send_estimate_for_indirects(ds, uncomp, comp,
|
|
stream_compressed, sizep);
|
|
/*
|
|
* Add the size of the BEGIN and END records to the estimate.
|
|
*/
|
|
*sizep += 2 * sizeof (dmu_replay_record_t);
|
|
|
|
out:
|
|
if (ds != origds)
|
|
dsl_dataset_rele(ds, FTAG);
|
|
return (err);
|
|
}
|
|
|
|
ZFS_MODULE_PARAM(zfs_send, zfs_send_, corrupt_data, INT, ZMOD_RW,
|
|
"Allow sending corrupt data");
|
|
|
|
ZFS_MODULE_PARAM(zfs_send, zfs_send_, queue_length, INT, ZMOD_RW,
|
|
"Maximum send queue length");
|
|
|
|
ZFS_MODULE_PARAM(zfs_send, zfs_send_, unmodified_spill_blocks, INT, ZMOD_RW,
|
|
"Send unmodified spill blocks");
|
|
|
|
ZFS_MODULE_PARAM(zfs_send, zfs_send_, no_prefetch_queue_length, INT, ZMOD_RW,
|
|
"Maximum send queue length for non-prefetch queues");
|
|
|
|
ZFS_MODULE_PARAM(zfs_send, zfs_send_, queue_ff, INT, ZMOD_RW,
|
|
"Send queue fill fraction");
|
|
|
|
ZFS_MODULE_PARAM(zfs_send, zfs_send_, no_prefetch_queue_ff, INT, ZMOD_RW,
|
|
"Send queue fill fraction for non-prefetch queues");
|
|
|
|
ZFS_MODULE_PARAM(zfs_send, zfs_, override_estimate_recordsize, INT, ZMOD_RW,
|
|
"Override block size estimate with fixed size");
|