1085 lines
31 KiB
C
1085 lines
31 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright 2008 Sun Microsystems, Inc. All rights reserved.
|
|
* Use is subject to license terms.
|
|
*/
|
|
|
|
/*
|
|
* Virtual Device Labels
|
|
* ---------------------
|
|
*
|
|
* The vdev label serves several distinct purposes:
|
|
*
|
|
* 1. Uniquely identify this device as part of a ZFS pool and confirm its
|
|
* identity within the pool.
|
|
*
|
|
* 2. Verify that all the devices given in a configuration are present
|
|
* within the pool.
|
|
*
|
|
* 3. Determine the uberblock for the pool.
|
|
*
|
|
* 4. In case of an import operation, determine the configuration of the
|
|
* toplevel vdev of which it is a part.
|
|
*
|
|
* 5. If an import operation cannot find all the devices in the pool,
|
|
* provide enough information to the administrator to determine which
|
|
* devices are missing.
|
|
*
|
|
* It is important to note that while the kernel is responsible for writing the
|
|
* label, it only consumes the information in the first three cases. The
|
|
* latter information is only consumed in userland when determining the
|
|
* configuration to import a pool.
|
|
*
|
|
*
|
|
* Label Organization
|
|
* ------------------
|
|
*
|
|
* Before describing the contents of the label, it's important to understand how
|
|
* the labels are written and updated with respect to the uberblock.
|
|
*
|
|
* When the pool configuration is altered, either because it was newly created
|
|
* or a device was added, we want to update all the labels such that we can deal
|
|
* with fatal failure at any point. To this end, each disk has two labels which
|
|
* are updated before and after the uberblock is synced. Assuming we have
|
|
* labels and an uberblock with the following transaction groups:
|
|
*
|
|
* L1 UB L2
|
|
* +------+ +------+ +------+
|
|
* | | | | | |
|
|
* | t10 | | t10 | | t10 |
|
|
* | | | | | |
|
|
* +------+ +------+ +------+
|
|
*
|
|
* In this stable state, the labels and the uberblock were all updated within
|
|
* the same transaction group (10). Each label is mirrored and checksummed, so
|
|
* that we can detect when we fail partway through writing the label.
|
|
*
|
|
* In order to identify which labels are valid, the labels are written in the
|
|
* following manner:
|
|
*
|
|
* 1. For each vdev, update 'L1' to the new label
|
|
* 2. Update the uberblock
|
|
* 3. For each vdev, update 'L2' to the new label
|
|
*
|
|
* Given arbitrary failure, we can determine the correct label to use based on
|
|
* the transaction group. If we fail after updating L1 but before updating the
|
|
* UB, we will notice that L1's transaction group is greater than the uberblock,
|
|
* so L2 must be valid. If we fail after writing the uberblock but before
|
|
* writing L2, we will notice that L2's transaction group is less than L1, and
|
|
* therefore L1 is valid.
|
|
*
|
|
* Another added complexity is that not every label is updated when the config
|
|
* is synced. If we add a single device, we do not want to have to re-write
|
|
* every label for every device in the pool. This means that both L1 and L2 may
|
|
* be older than the pool uberblock, because the necessary information is stored
|
|
* on another vdev.
|
|
*
|
|
*
|
|
* On-disk Format
|
|
* --------------
|
|
*
|
|
* The vdev label consists of two distinct parts, and is wrapped within the
|
|
* vdev_label_t structure. The label includes 8k of padding to permit legacy
|
|
* VTOC disk labels, but is otherwise ignored.
|
|
*
|
|
* The first half of the label is a packed nvlist which contains pool wide
|
|
* properties, per-vdev properties, and configuration information. It is
|
|
* described in more detail below.
|
|
*
|
|
* The latter half of the label consists of a redundant array of uberblocks.
|
|
* These uberblocks are updated whenever a transaction group is committed,
|
|
* or when the configuration is updated. When a pool is loaded, we scan each
|
|
* vdev for the 'best' uberblock.
|
|
*
|
|
*
|
|
* Configuration Information
|
|
* -------------------------
|
|
*
|
|
* The nvlist describing the pool and vdev contains the following elements:
|
|
*
|
|
* version ZFS on-disk version
|
|
* name Pool name
|
|
* state Pool state
|
|
* txg Transaction group in which this label was written
|
|
* pool_guid Unique identifier for this pool
|
|
* vdev_tree An nvlist describing vdev tree.
|
|
*
|
|
* Each leaf device label also contains the following:
|
|
*
|
|
* top_guid Unique ID for top-level vdev in which this is contained
|
|
* guid Unique ID for the leaf vdev
|
|
*
|
|
* The 'vs' configuration follows the format described in 'spa_config.c'.
|
|
*/
|
|
|
|
#include <sys/zfs_context.h>
|
|
#include <sys/spa.h>
|
|
#include <sys/spa_impl.h>
|
|
#include <sys/dmu.h>
|
|
#include <sys/zap.h>
|
|
#include <sys/vdev.h>
|
|
#include <sys/vdev_impl.h>
|
|
#include <sys/uberblock_impl.h>
|
|
#include <sys/metaslab.h>
|
|
#include <sys/zio.h>
|
|
#include <sys/fs/zfs.h>
|
|
|
|
/*
|
|
* Basic routines to read and write from a vdev label.
|
|
* Used throughout the rest of this file.
|
|
*/
|
|
uint64_t
|
|
vdev_label_offset(uint64_t psize, int l, uint64_t offset)
|
|
{
|
|
ASSERT(offset < sizeof (vdev_label_t));
|
|
ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0);
|
|
|
|
return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
|
|
0 : psize - VDEV_LABELS * sizeof (vdev_label_t)));
|
|
}
|
|
|
|
/*
|
|
* Returns back the vdev label associated with the passed in offset.
|
|
*/
|
|
int
|
|
vdev_label_number(uint64_t psize, uint64_t offset)
|
|
{
|
|
int l;
|
|
|
|
if (offset >= psize - VDEV_LABEL_END_SIZE) {
|
|
offset -= psize - VDEV_LABEL_END_SIZE;
|
|
offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t);
|
|
}
|
|
l = offset / sizeof (vdev_label_t);
|
|
return (l < VDEV_LABELS ? l : -1);
|
|
}
|
|
|
|
static void
|
|
vdev_label_read(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset,
|
|
uint64_t size, zio_done_func_t *done, void *private, int flags)
|
|
{
|
|
ASSERT(spa_config_held(zio->io_spa, SCL_STATE_ALL, RW_WRITER) ==
|
|
SCL_STATE_ALL);
|
|
ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
|
|
|
|
zio_nowait(zio_read_phys(zio, vd,
|
|
vdev_label_offset(vd->vdev_psize, l, offset),
|
|
size, buf, ZIO_CHECKSUM_LABEL, done, private,
|
|
ZIO_PRIORITY_SYNC_READ, flags, B_TRUE));
|
|
}
|
|
|
|
static void
|
|
vdev_label_write(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset,
|
|
uint64_t size, zio_done_func_t *done, void *private, int flags)
|
|
{
|
|
ASSERT(spa_config_held(zio->io_spa, SCL_ALL, RW_WRITER) == SCL_ALL ||
|
|
(spa_config_held(zio->io_spa, SCL_CONFIG | SCL_STATE, RW_READER) ==
|
|
(SCL_CONFIG | SCL_STATE) &&
|
|
dsl_pool_sync_context(spa_get_dsl(zio->io_spa))));
|
|
ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
|
|
|
|
zio_nowait(zio_write_phys(zio, vd,
|
|
vdev_label_offset(vd->vdev_psize, l, offset),
|
|
size, buf, ZIO_CHECKSUM_LABEL, done, private,
|
|
ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE));
|
|
}
|
|
|
|
/*
|
|
* Generate the nvlist representing this vdev's config.
|
|
*/
|
|
nvlist_t *
|
|
vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats,
|
|
boolean_t isspare, boolean_t isl2cache)
|
|
{
|
|
nvlist_t *nv = NULL;
|
|
|
|
VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
|
|
|
|
VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE,
|
|
vd->vdev_ops->vdev_op_type) == 0);
|
|
if (!isspare && !isl2cache)
|
|
VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id)
|
|
== 0);
|
|
VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid) == 0);
|
|
|
|
if (vd->vdev_path != NULL)
|
|
VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_PATH,
|
|
vd->vdev_path) == 0);
|
|
|
|
if (vd->vdev_devid != NULL)
|
|
VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_DEVID,
|
|
vd->vdev_devid) == 0);
|
|
|
|
if (vd->vdev_physpath != NULL)
|
|
VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH,
|
|
vd->vdev_physpath) == 0);
|
|
|
|
if (vd->vdev_nparity != 0) {
|
|
ASSERT(strcmp(vd->vdev_ops->vdev_op_type,
|
|
VDEV_TYPE_RAIDZ) == 0);
|
|
|
|
/*
|
|
* Make sure someone hasn't managed to sneak a fancy new vdev
|
|
* into a crufty old storage pool.
|
|
*/
|
|
ASSERT(vd->vdev_nparity == 1 ||
|
|
(vd->vdev_nparity == 2 &&
|
|
spa_version(spa) >= SPA_VERSION_RAID6));
|
|
|
|
/*
|
|
* Note that we'll add the nparity tag even on storage pools
|
|
* that only support a single parity device -- older software
|
|
* will just ignore it.
|
|
*/
|
|
VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY,
|
|
vd->vdev_nparity) == 0);
|
|
}
|
|
|
|
if (vd->vdev_wholedisk != -1ULL)
|
|
VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
|
|
vd->vdev_wholedisk) == 0);
|
|
|
|
if (vd->vdev_not_present)
|
|
VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1) == 0);
|
|
|
|
if (vd->vdev_isspare)
|
|
VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1) == 0);
|
|
|
|
if (!isspare && !isl2cache && vd == vd->vdev_top) {
|
|
VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
|
|
vd->vdev_ms_array) == 0);
|
|
VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
|
|
vd->vdev_ms_shift) == 0);
|
|
VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT,
|
|
vd->vdev_ashift) == 0);
|
|
VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE,
|
|
vd->vdev_asize) == 0);
|
|
VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG,
|
|
vd->vdev_islog) == 0);
|
|
}
|
|
|
|
if (vd->vdev_dtl.smo_object != 0)
|
|
VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_DTL,
|
|
vd->vdev_dtl.smo_object) == 0);
|
|
|
|
if (getstats) {
|
|
vdev_stat_t vs;
|
|
vdev_get_stats(vd, &vs);
|
|
VERIFY(nvlist_add_uint64_array(nv, ZPOOL_CONFIG_STATS,
|
|
(uint64_t *)&vs, sizeof (vs) / sizeof (uint64_t)) == 0);
|
|
}
|
|
|
|
if (!vd->vdev_ops->vdev_op_leaf) {
|
|
nvlist_t **child;
|
|
int c;
|
|
|
|
child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *),
|
|
KM_SLEEP);
|
|
|
|
for (c = 0; c < vd->vdev_children; c++)
|
|
child[c] = vdev_config_generate(spa, vd->vdev_child[c],
|
|
getstats, isspare, isl2cache);
|
|
|
|
VERIFY(nvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
|
|
child, vd->vdev_children) == 0);
|
|
|
|
for (c = 0; c < vd->vdev_children; c++)
|
|
nvlist_free(child[c]);
|
|
|
|
kmem_free(child, vd->vdev_children * sizeof (nvlist_t *));
|
|
|
|
} else {
|
|
if (vd->vdev_offline && !vd->vdev_tmpoffline)
|
|
VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE,
|
|
B_TRUE) == 0);
|
|
if (vd->vdev_faulted)
|
|
VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED,
|
|
B_TRUE) == 0);
|
|
if (vd->vdev_degraded)
|
|
VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED,
|
|
B_TRUE) == 0);
|
|
if (vd->vdev_removed)
|
|
VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED,
|
|
B_TRUE) == 0);
|
|
if (vd->vdev_unspare)
|
|
VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE,
|
|
B_TRUE) == 0);
|
|
}
|
|
|
|
return (nv);
|
|
}
|
|
|
|
nvlist_t *
|
|
vdev_label_read_config(vdev_t *vd)
|
|
{
|
|
spa_t *spa = vd->vdev_spa;
|
|
nvlist_t *config = NULL;
|
|
vdev_phys_t *vp;
|
|
zio_t *zio;
|
|
int l, flags =
|
|
ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE;
|
|
|
|
ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
|
|
|
|
if (!vdev_readable(vd))
|
|
return (NULL);
|
|
|
|
vp = zio_buf_alloc(sizeof (vdev_phys_t));
|
|
|
|
for (l = 0; l < VDEV_LABELS; l++) {
|
|
|
|
zio = zio_root(spa, NULL, NULL, flags);
|
|
|
|
vdev_label_read(zio, vd, l, vp,
|
|
offsetof(vdev_label_t, vl_vdev_phys),
|
|
sizeof (vdev_phys_t), NULL, NULL, flags);
|
|
|
|
if (zio_wait(zio) == 0 &&
|
|
nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist),
|
|
&config, 0) == 0)
|
|
break;
|
|
|
|
if (config != NULL) {
|
|
nvlist_free(config);
|
|
config = NULL;
|
|
}
|
|
}
|
|
|
|
zio_buf_free(vp, sizeof (vdev_phys_t));
|
|
|
|
return (config);
|
|
}
|
|
|
|
/*
|
|
* Determine if a device is in use. The 'spare_guid' parameter will be filled
|
|
* in with the device guid if this spare is active elsewhere on the system.
|
|
*/
|
|
static boolean_t
|
|
vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason,
|
|
uint64_t *spare_guid, uint64_t *l2cache_guid)
|
|
{
|
|
spa_t *spa = vd->vdev_spa;
|
|
uint64_t state, pool_guid, device_guid, txg, spare_pool;
|
|
uint64_t vdtxg = 0;
|
|
nvlist_t *label;
|
|
|
|
if (spare_guid)
|
|
*spare_guid = 0ULL;
|
|
if (l2cache_guid)
|
|
*l2cache_guid = 0ULL;
|
|
|
|
/*
|
|
* Read the label, if any, and perform some basic sanity checks.
|
|
*/
|
|
if ((label = vdev_label_read_config(vd)) == NULL)
|
|
return (B_FALSE);
|
|
|
|
(void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
|
|
&vdtxg);
|
|
|
|
if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
|
|
&state) != 0 ||
|
|
nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
|
|
&device_guid) != 0) {
|
|
nvlist_free(label);
|
|
return (B_FALSE);
|
|
}
|
|
|
|
if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
|
|
(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
|
|
&pool_guid) != 0 ||
|
|
nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
|
|
&txg) != 0)) {
|
|
nvlist_free(label);
|
|
return (B_FALSE);
|
|
}
|
|
|
|
nvlist_free(label);
|
|
|
|
/*
|
|
* Check to see if this device indeed belongs to the pool it claims to
|
|
* be a part of. The only way this is allowed is if the device is a hot
|
|
* spare (which we check for later on).
|
|
*/
|
|
if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
|
|
!spa_guid_exists(pool_guid, device_guid) &&
|
|
!spa_spare_exists(device_guid, NULL, NULL) &&
|
|
!spa_l2cache_exists(device_guid, NULL))
|
|
return (B_FALSE);
|
|
|
|
/*
|
|
* If the transaction group is zero, then this an initialized (but
|
|
* unused) label. This is only an error if the create transaction
|
|
* on-disk is the same as the one we're using now, in which case the
|
|
* user has attempted to add the same vdev multiple times in the same
|
|
* transaction.
|
|
*/
|
|
if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
|
|
txg == 0 && vdtxg == crtxg)
|
|
return (B_TRUE);
|
|
|
|
/*
|
|
* Check to see if this is a spare device. We do an explicit check for
|
|
* spa_has_spare() here because it may be on our pending list of spares
|
|
* to add. We also check if it is an l2cache device.
|
|
*/
|
|
if (spa_spare_exists(device_guid, &spare_pool, NULL) ||
|
|
spa_has_spare(spa, device_guid)) {
|
|
if (spare_guid)
|
|
*spare_guid = device_guid;
|
|
|
|
switch (reason) {
|
|
case VDEV_LABEL_CREATE:
|
|
case VDEV_LABEL_L2CACHE:
|
|
return (B_TRUE);
|
|
|
|
case VDEV_LABEL_REPLACE:
|
|
return (!spa_has_spare(spa, device_guid) ||
|
|
spare_pool != 0ULL);
|
|
|
|
case VDEV_LABEL_SPARE:
|
|
return (spa_has_spare(spa, device_guid));
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check to see if this is an l2cache device.
|
|
*/
|
|
if (spa_l2cache_exists(device_guid, NULL))
|
|
return (B_TRUE);
|
|
|
|
/*
|
|
* If the device is marked ACTIVE, then this device is in use by another
|
|
* pool on the system.
|
|
*/
|
|
return (state == POOL_STATE_ACTIVE);
|
|
}
|
|
|
|
/*
|
|
* Initialize a vdev label. We check to make sure each leaf device is not in
|
|
* use, and writable. We put down an initial label which we will later
|
|
* overwrite with a complete label. Note that it's important to do this
|
|
* sequentially, not in parallel, so that we catch cases of multiple use of the
|
|
* same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with
|
|
* itself.
|
|
*/
|
|
int
|
|
vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason)
|
|
{
|
|
spa_t *spa = vd->vdev_spa;
|
|
nvlist_t *label;
|
|
vdev_phys_t *vp;
|
|
vdev_boot_header_t *vb;
|
|
uberblock_t *ub;
|
|
zio_t *zio;
|
|
char *buf;
|
|
size_t buflen;
|
|
int error;
|
|
uint64_t spare_guid, l2cache_guid;
|
|
int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
|
|
int c, l, n;
|
|
|
|
ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
|
|
|
|
for (c = 0; c < vd->vdev_children; c++)
|
|
if ((error = vdev_label_init(vd->vdev_child[c],
|
|
crtxg, reason)) != 0)
|
|
return (error);
|
|
|
|
if (!vd->vdev_ops->vdev_op_leaf)
|
|
return (0);
|
|
|
|
/*
|
|
* Dead vdevs cannot be initialized.
|
|
*/
|
|
if (vdev_is_dead(vd))
|
|
return (EIO);
|
|
|
|
/*
|
|
* Determine if the vdev is in use.
|
|
*/
|
|
if (reason != VDEV_LABEL_REMOVE &&
|
|
vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid))
|
|
return (EBUSY);
|
|
|
|
ASSERT(reason != VDEV_LABEL_REMOVE ||
|
|
vdev_inuse(vd, crtxg, reason, NULL, NULL));
|
|
|
|
/*
|
|
* If this is a request to add or replace a spare or l2cache device
|
|
* that is in use elsewhere on the system, then we must update the
|
|
* guid (which was initialized to a random value) to reflect the
|
|
* actual GUID (which is shared between multiple pools).
|
|
*/
|
|
if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE &&
|
|
spare_guid != 0ULL) {
|
|
uint64_t guid_delta = spare_guid - vd->vdev_guid;
|
|
|
|
vd->vdev_guid += guid_delta;
|
|
|
|
for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
|
|
pvd->vdev_guid_sum += guid_delta;
|
|
|
|
/*
|
|
* If this is a replacement, then we want to fallthrough to the
|
|
* rest of the code. If we're adding a spare, then it's already
|
|
* labeled appropriately and we can just return.
|
|
*/
|
|
if (reason == VDEV_LABEL_SPARE)
|
|
return (0);
|
|
ASSERT(reason == VDEV_LABEL_REPLACE);
|
|
}
|
|
|
|
if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE &&
|
|
l2cache_guid != 0ULL) {
|
|
uint64_t guid_delta = l2cache_guid - vd->vdev_guid;
|
|
|
|
vd->vdev_guid += guid_delta;
|
|
|
|
for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
|
|
pvd->vdev_guid_sum += guid_delta;
|
|
|
|
/*
|
|
* If this is a replacement, then we want to fallthrough to the
|
|
* rest of the code. If we're adding an l2cache, then it's
|
|
* already labeled appropriately and we can just return.
|
|
*/
|
|
if (reason == VDEV_LABEL_L2CACHE)
|
|
return (0);
|
|
ASSERT(reason == VDEV_LABEL_REPLACE);
|
|
}
|
|
|
|
/*
|
|
* Initialize its label.
|
|
*/
|
|
vp = zio_buf_alloc(sizeof (vdev_phys_t));
|
|
bzero(vp, sizeof (vdev_phys_t));
|
|
|
|
/*
|
|
* Generate a label describing the pool and our top-level vdev.
|
|
* We mark it as being from txg 0 to indicate that it's not
|
|
* really part of an active pool just yet. The labels will
|
|
* be written again with a meaningful txg by spa_sync().
|
|
*/
|
|
if (reason == VDEV_LABEL_SPARE ||
|
|
(reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) {
|
|
/*
|
|
* For inactive hot spares, we generate a special label that
|
|
* identifies as a mutually shared hot spare. We write the
|
|
* label if we are adding a hot spare, or if we are removing an
|
|
* active hot spare (in which case we want to revert the
|
|
* labels).
|
|
*/
|
|
VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
|
|
|
|
VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
|
|
spa_version(spa)) == 0);
|
|
VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
|
|
POOL_STATE_SPARE) == 0);
|
|
VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
|
|
vd->vdev_guid) == 0);
|
|
} else if (reason == VDEV_LABEL_L2CACHE ||
|
|
(reason == VDEV_LABEL_REMOVE && vd->vdev_isl2cache)) {
|
|
/*
|
|
* For level 2 ARC devices, add a special label.
|
|
*/
|
|
VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
|
|
|
|
VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
|
|
spa_version(spa)) == 0);
|
|
VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
|
|
POOL_STATE_L2CACHE) == 0);
|
|
VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
|
|
vd->vdev_guid) == 0);
|
|
} else {
|
|
label = spa_config_generate(spa, vd, 0ULL, B_FALSE);
|
|
|
|
/*
|
|
* Add our creation time. This allows us to detect multiple
|
|
* vdev uses as described above, and automatically expires if we
|
|
* fail.
|
|
*/
|
|
VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
|
|
crtxg) == 0);
|
|
}
|
|
|
|
buf = vp->vp_nvlist;
|
|
buflen = sizeof (vp->vp_nvlist);
|
|
|
|
error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP);
|
|
if (error != 0) {
|
|
nvlist_free(label);
|
|
zio_buf_free(vp, sizeof (vdev_phys_t));
|
|
/* EFAULT means nvlist_pack ran out of room */
|
|
return (error == EFAULT ? ENAMETOOLONG : EINVAL);
|
|
}
|
|
|
|
/*
|
|
* Initialize boot block header.
|
|
*/
|
|
vb = zio_buf_alloc(sizeof (vdev_boot_header_t));
|
|
bzero(vb, sizeof (vdev_boot_header_t));
|
|
vb->vb_magic = VDEV_BOOT_MAGIC;
|
|
vb->vb_version = VDEV_BOOT_VERSION;
|
|
vb->vb_offset = VDEV_BOOT_OFFSET;
|
|
vb->vb_size = VDEV_BOOT_SIZE;
|
|
|
|
/*
|
|
* Initialize uberblock template.
|
|
*/
|
|
ub = zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd));
|
|
bzero(ub, VDEV_UBERBLOCK_SIZE(vd));
|
|
*ub = spa->spa_uberblock;
|
|
ub->ub_txg = 0;
|
|
|
|
/*
|
|
* Write everything in parallel.
|
|
*/
|
|
zio = zio_root(spa, NULL, NULL, flags);
|
|
|
|
for (l = 0; l < VDEV_LABELS; l++) {
|
|
|
|
vdev_label_write(zio, vd, l, vp,
|
|
offsetof(vdev_label_t, vl_vdev_phys),
|
|
sizeof (vdev_phys_t), NULL, NULL, flags);
|
|
|
|
vdev_label_write(zio, vd, l, vb,
|
|
offsetof(vdev_label_t, vl_boot_header),
|
|
sizeof (vdev_boot_header_t), NULL, NULL, flags);
|
|
|
|
for (n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
|
|
vdev_label_write(zio, vd, l, ub,
|
|
VDEV_UBERBLOCK_OFFSET(vd, n),
|
|
VDEV_UBERBLOCK_SIZE(vd), NULL, NULL, flags);
|
|
}
|
|
}
|
|
|
|
error = zio_wait(zio);
|
|
|
|
nvlist_free(label);
|
|
zio_buf_free(ub, VDEV_UBERBLOCK_SIZE(vd));
|
|
zio_buf_free(vb, sizeof (vdev_boot_header_t));
|
|
zio_buf_free(vp, sizeof (vdev_phys_t));
|
|
|
|
/*
|
|
* If this vdev hasn't been previously identified as a spare, then we
|
|
* mark it as such only if a) we are labeling it as a spare, or b) it
|
|
* exists as a spare elsewhere in the system. Do the same for
|
|
* level 2 ARC devices.
|
|
*/
|
|
if (error == 0 && !vd->vdev_isspare &&
|
|
(reason == VDEV_LABEL_SPARE ||
|
|
spa_spare_exists(vd->vdev_guid, NULL, NULL)))
|
|
spa_spare_add(vd);
|
|
|
|
if (error == 0 && !vd->vdev_isl2cache &&
|
|
(reason == VDEV_LABEL_L2CACHE ||
|
|
spa_l2cache_exists(vd->vdev_guid, NULL)))
|
|
spa_l2cache_add(vd);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* uberblock load/sync
|
|
* ==========================================================================
|
|
*/
|
|
|
|
/*
|
|
* Consider the following situation: txg is safely synced to disk. We've
|
|
* written the first uberblock for txg + 1, and then we lose power. When we
|
|
* come back up, we fail to see the uberblock for txg + 1 because, say,
|
|
* it was on a mirrored device and the replica to which we wrote txg + 1
|
|
* is now offline. If we then make some changes and sync txg + 1, and then
|
|
* the missing replica comes back, then for a new seconds we'll have two
|
|
* conflicting uberblocks on disk with the same txg. The solution is simple:
|
|
* among uberblocks with equal txg, choose the one with the latest timestamp.
|
|
*/
|
|
static int
|
|
vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2)
|
|
{
|
|
if (ub1->ub_txg < ub2->ub_txg)
|
|
return (-1);
|
|
if (ub1->ub_txg > ub2->ub_txg)
|
|
return (1);
|
|
|
|
if (ub1->ub_timestamp < ub2->ub_timestamp)
|
|
return (-1);
|
|
if (ub1->ub_timestamp > ub2->ub_timestamp)
|
|
return (1);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
vdev_uberblock_load_done(zio_t *zio)
|
|
{
|
|
zio_t *rio = zio->io_private;
|
|
uberblock_t *ub = zio->io_data;
|
|
uberblock_t *ubbest = rio->io_private;
|
|
|
|
ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(zio->io_vd));
|
|
|
|
if (zio->io_error == 0 && uberblock_verify(ub) == 0) {
|
|
mutex_enter(&rio->io_lock);
|
|
if (vdev_uberblock_compare(ub, ubbest) > 0)
|
|
*ubbest = *ub;
|
|
mutex_exit(&rio->io_lock);
|
|
}
|
|
|
|
zio_buf_free(zio->io_data, zio->io_size);
|
|
}
|
|
|
|
void
|
|
vdev_uberblock_load(zio_t *zio, vdev_t *vd, uberblock_t *ubbest)
|
|
{
|
|
spa_t *spa = vd->vdev_spa;
|
|
vdev_t *rvd = spa->spa_root_vdev;
|
|
int flags =
|
|
ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE;
|
|
int c, l, n;
|
|
|
|
if (vd == rvd) {
|
|
ASSERT(zio == NULL);
|
|
spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
|
|
zio = zio_root(spa, NULL, ubbest, flags);
|
|
bzero(ubbest, sizeof (uberblock_t));
|
|
}
|
|
|
|
ASSERT(zio != NULL);
|
|
|
|
for (c = 0; c < vd->vdev_children; c++)
|
|
vdev_uberblock_load(zio, vd->vdev_child[c], ubbest);
|
|
|
|
if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
|
|
for (l = 0; l < VDEV_LABELS; l++) {
|
|
for (n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
|
|
vdev_label_read(zio, vd, l,
|
|
zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd)),
|
|
VDEV_UBERBLOCK_OFFSET(vd, n),
|
|
VDEV_UBERBLOCK_SIZE(vd),
|
|
vdev_uberblock_load_done, zio, flags);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (vd == rvd) {
|
|
(void) zio_wait(zio);
|
|
spa_config_exit(spa, SCL_ALL, FTAG);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* On success, increment root zio's count of good writes.
|
|
* We only get credit for writes to known-visible vdevs; see spa_vdev_add().
|
|
*/
|
|
static void
|
|
vdev_uberblock_sync_done(zio_t *zio)
|
|
{
|
|
uint64_t *good_writes = zio->io_private;
|
|
|
|
if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0)
|
|
atomic_add_64(good_writes, 1);
|
|
}
|
|
|
|
/*
|
|
* Write the uberblock to all labels of all leaves of the specified vdev.
|
|
*/
|
|
static void
|
|
vdev_uberblock_sync(zio_t *zio, uberblock_t *ub, vdev_t *vd, int flags)
|
|
{
|
|
uberblock_t *ubbuf;
|
|
int c, l, n;
|
|
|
|
for (c = 0; c < vd->vdev_children; c++)
|
|
vdev_uberblock_sync(zio, ub, vd->vdev_child[c], flags);
|
|
|
|
if (!vd->vdev_ops->vdev_op_leaf)
|
|
return;
|
|
|
|
if (!vdev_writeable(vd))
|
|
return;
|
|
|
|
n = ub->ub_txg & (VDEV_UBERBLOCK_COUNT(vd) - 1);
|
|
|
|
ubbuf = zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd));
|
|
bzero(ubbuf, VDEV_UBERBLOCK_SIZE(vd));
|
|
*ubbuf = *ub;
|
|
|
|
for (l = 0; l < VDEV_LABELS; l++)
|
|
vdev_label_write(zio, vd, l, ubbuf,
|
|
VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd),
|
|
vdev_uberblock_sync_done, zio->io_private,
|
|
flags | ZIO_FLAG_DONT_PROPAGATE);
|
|
|
|
zio_buf_free(ubbuf, VDEV_UBERBLOCK_SIZE(vd));
|
|
}
|
|
|
|
int
|
|
vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags)
|
|
{
|
|
spa_t *spa = svd[0]->vdev_spa;
|
|
zio_t *zio;
|
|
uint64_t good_writes = 0;
|
|
int v;
|
|
|
|
zio = zio_root(spa, NULL, &good_writes, flags);
|
|
|
|
for (v = 0; v < svdcount; v++)
|
|
vdev_uberblock_sync(zio, ub, svd[v], flags);
|
|
|
|
(void) zio_wait(zio);
|
|
|
|
/*
|
|
* Flush the uberblocks to disk. This ensures that the odd labels
|
|
* are no longer needed (because the new uberblocks and the even
|
|
* labels are safely on disk), so it is safe to overwrite them.
|
|
*/
|
|
zio = zio_root(spa, NULL, NULL, flags);
|
|
|
|
for (v = 0; v < svdcount; v++)
|
|
zio_flush(zio, svd[v]);
|
|
|
|
(void) zio_wait(zio);
|
|
|
|
return (good_writes >= 1 ? 0 : EIO);
|
|
}
|
|
|
|
/*
|
|
* On success, increment the count of good writes for our top-level vdev.
|
|
*/
|
|
static void
|
|
vdev_label_sync_done(zio_t *zio)
|
|
{
|
|
uint64_t *good_writes = zio->io_private;
|
|
|
|
if (zio->io_error == 0)
|
|
atomic_add_64(good_writes, 1);
|
|
}
|
|
|
|
/*
|
|
* If there weren't enough good writes, indicate failure to the parent.
|
|
*/
|
|
static void
|
|
vdev_label_sync_top_done(zio_t *zio)
|
|
{
|
|
uint64_t *good_writes = zio->io_private;
|
|
|
|
if (*good_writes == 0)
|
|
zio->io_error = EIO;
|
|
|
|
kmem_free(good_writes, sizeof (uint64_t));
|
|
}
|
|
|
|
/*
|
|
* We ignore errors for log and cache devices, simply free the private data.
|
|
*/
|
|
static void
|
|
vdev_label_sync_ignore_done(zio_t *zio)
|
|
{
|
|
kmem_free(zio->io_private, sizeof (uint64_t));
|
|
}
|
|
|
|
/*
|
|
* Write all even or odd labels to all leaves of the specified vdev.
|
|
*/
|
|
static void
|
|
vdev_label_sync(zio_t *zio, vdev_t *vd, int l, uint64_t txg, int flags)
|
|
{
|
|
nvlist_t *label;
|
|
vdev_phys_t *vp;
|
|
char *buf;
|
|
size_t buflen;
|
|
int c;
|
|
|
|
for (c = 0; c < vd->vdev_children; c++)
|
|
vdev_label_sync(zio, vd->vdev_child[c], l, txg, flags);
|
|
|
|
if (!vd->vdev_ops->vdev_op_leaf)
|
|
return;
|
|
|
|
if (!vdev_writeable(vd))
|
|
return;
|
|
|
|
/*
|
|
* Generate a label describing the top-level config to which we belong.
|
|
*/
|
|
label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE);
|
|
|
|
vp = zio_buf_alloc(sizeof (vdev_phys_t));
|
|
bzero(vp, sizeof (vdev_phys_t));
|
|
|
|
buf = vp->vp_nvlist;
|
|
buflen = sizeof (vp->vp_nvlist);
|
|
|
|
if (nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP) == 0) {
|
|
for (; l < VDEV_LABELS; l += 2) {
|
|
vdev_label_write(zio, vd, l, vp,
|
|
offsetof(vdev_label_t, vl_vdev_phys),
|
|
sizeof (vdev_phys_t),
|
|
vdev_label_sync_done, zio->io_private,
|
|
flags | ZIO_FLAG_DONT_PROPAGATE);
|
|
}
|
|
}
|
|
|
|
zio_buf_free(vp, sizeof (vdev_phys_t));
|
|
nvlist_free(label);
|
|
}
|
|
|
|
int
|
|
vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags)
|
|
{
|
|
list_t *dl = &spa->spa_config_dirty_list;
|
|
vdev_t *vd;
|
|
zio_t *zio;
|
|
int error;
|
|
|
|
/*
|
|
* Write the new labels to disk.
|
|
*/
|
|
zio = zio_root(spa, NULL, NULL, flags);
|
|
|
|
for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) {
|
|
uint64_t *good_writes = kmem_zalloc(sizeof (uint64_t),
|
|
KM_SLEEP);
|
|
zio_t *vio = zio_null(zio, spa,
|
|
(vd->vdev_islog || vd->vdev_aux != NULL) ?
|
|
vdev_label_sync_ignore_done : vdev_label_sync_top_done,
|
|
good_writes, flags);
|
|
vdev_label_sync(vio, vd, l, txg, flags);
|
|
zio_nowait(vio);
|
|
}
|
|
|
|
error = zio_wait(zio);
|
|
|
|
/*
|
|
* Flush the new labels to disk.
|
|
*/
|
|
zio = zio_root(spa, NULL, NULL, flags);
|
|
|
|
for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd))
|
|
zio_flush(zio, vd);
|
|
|
|
(void) zio_wait(zio);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Sync the uberblock and any changes to the vdev configuration.
|
|
*
|
|
* The order of operations is carefully crafted to ensure that
|
|
* if the system panics or loses power at any time, the state on disk
|
|
* is still transactionally consistent. The in-line comments below
|
|
* describe the failure semantics at each stage.
|
|
*
|
|
* Moreover, vdev_config_sync() is designed to be idempotent: if it fails
|
|
* at any time, you can just call it again, and it will resume its work.
|
|
*/
|
|
int
|
|
vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg)
|
|
{
|
|
spa_t *spa = svd[0]->vdev_spa;
|
|
uberblock_t *ub = &spa->spa_uberblock;
|
|
vdev_t *vd;
|
|
zio_t *zio;
|
|
int error;
|
|
int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
|
|
|
|
ASSERT(ub->ub_txg <= txg);
|
|
|
|
/*
|
|
* If this isn't a resync due to I/O errors,
|
|
* and nothing changed in this transaction group,
|
|
* and the vdev configuration hasn't changed,
|
|
* then there's nothing to do.
|
|
*/
|
|
if (ub->ub_txg < txg &&
|
|
uberblock_update(ub, spa->spa_root_vdev, txg) == B_FALSE &&
|
|
list_is_empty(&spa->spa_config_dirty_list))
|
|
return (0);
|
|
|
|
if (txg > spa_freeze_txg(spa))
|
|
return (0);
|
|
|
|
ASSERT(txg <= spa->spa_final_txg);
|
|
|
|
/*
|
|
* Flush the write cache of every disk that's been written to
|
|
* in this transaction group. This ensures that all blocks
|
|
* written in this txg will be committed to stable storage
|
|
* before any uberblock that references them.
|
|
*/
|
|
zio = zio_root(spa, NULL, NULL, flags);
|
|
|
|
for (vd = txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd;
|
|
vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)))
|
|
zio_flush(zio, vd);
|
|
|
|
(void) zio_wait(zio);
|
|
|
|
/*
|
|
* Sync out the even labels (L0, L2) for every dirty vdev. If the
|
|
* system dies in the middle of this process, that's OK: all of the
|
|
* even labels that made it to disk will be newer than any uberblock,
|
|
* and will therefore be considered invalid. The odd labels (L1, L3),
|
|
* which have not yet been touched, will still be valid. We flush
|
|
* the new labels to disk to ensure that all even-label updates
|
|
* are committed to stable storage before the uberblock update.
|
|
*/
|
|
if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0)
|
|
return (error);
|
|
|
|
/*
|
|
* Sync the uberblocks to all vdevs in svd[].
|
|
* If the system dies in the middle of this step, there are two cases
|
|
* to consider, and the on-disk state is consistent either way:
|
|
*
|
|
* (1) If none of the new uberblocks made it to disk, then the
|
|
* previous uberblock will be the newest, and the odd labels
|
|
* (which had not yet been touched) will be valid with respect
|
|
* to that uberblock.
|
|
*
|
|
* (2) If one or more new uberblocks made it to disk, then they
|
|
* will be the newest, and the even labels (which had all
|
|
* been successfully committed) will be valid with respect
|
|
* to the new uberblocks.
|
|
*/
|
|
if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0)
|
|
return (error);
|
|
|
|
/*
|
|
* Sync out odd labels for every dirty vdev. If the system dies
|
|
* in the middle of this process, the even labels and the new
|
|
* uberblocks will suffice to open the pool. The next time
|
|
* the pool is opened, the first thing we'll do -- before any
|
|
* user data is modified -- is mark every vdev dirty so that
|
|
* all labels will be brought up to date. We flush the new labels
|
|
* to disk to ensure that all odd-label updates are committed to
|
|
* stable storage before the next transaction group begins.
|
|
*/
|
|
return (vdev_label_sync_list(spa, 1, txg, flags));
|
|
}
|