zfs/module/zfs/zfs_vfsops.c

1889 lines
46 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2013 by Delphix. All rights reserved.
*/
/* Portions Copyright 2010 Robert Milkowski */
#include <sys/types.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sysmacros.h>
#include <sys/kmem.h>
#include <sys/pathname.h>
#include <sys/vnode.h>
#include <sys/vfs.h>
#include <sys/vfs_opreg.h>
#include <sys/mntent.h>
#include <sys/mount.h>
#include <sys/cmn_err.h>
#include "fs/fs_subr.h"
#include <sys/zfs_znode.h>
#include <sys/zfs_vnops.h>
#include <sys/zfs_dir.h>
#include <sys/zil.h>
#include <sys/fs/zfs.h>
#include <sys/dmu.h>
#include <sys/dsl_prop.h>
#include <sys/dsl_dataset.h>
#include <sys/dsl_deleg.h>
#include <sys/spa.h>
#include <sys/zap.h>
#include <sys/sa.h>
#include <sys/sa_impl.h>
#include <sys/varargs.h>
#include <sys/policy.h>
#include <sys/atomic.h>
#include <sys/mkdev.h>
#include <sys/modctl.h>
#include <sys/refstr.h>
#include <sys/zfs_ioctl.h>
#include <sys/zfs_ctldir.h>
#include <sys/zfs_fuid.h>
#include <sys/bootconf.h>
#include <sys/sunddi.h>
#include <sys/dnlc.h>
#include <sys/dmu_objset.h>
#include <sys/spa_boot.h>
#include <sys/zpl.h>
#include "zfs_comutil.h"
/*ARGSUSED*/
int
zfs_sync(struct super_block *sb, int wait, cred_t *cr)
{
zfs_sb_t *zsb = sb->s_fs_info;
/*
* Data integrity is job one. We don't want a compromised kernel
* writing to the storage pool, so we never sync during panic.
*/
if (unlikely(oops_in_progress))
return (0);
/*
* Semantically, the only requirement is that the sync be initiated.
* The DMU syncs out txgs frequently, so there's nothing to do.
*/
if (!wait)
return (0);
if (zsb != NULL) {
/*
* Sync a specific filesystem.
*/
dsl_pool_t *dp;
ZFS_ENTER(zsb);
dp = dmu_objset_pool(zsb->z_os);
/*
* If the system is shutting down, then skip any
* filesystems which may exist on a suspended pool.
*/
if (spa_suspended(dp->dp_spa)) {
ZFS_EXIT(zsb);
return (0);
}
if (zsb->z_log != NULL)
zil_commit(zsb->z_log, 0);
ZFS_EXIT(zsb);
} else {
/*
* Sync all ZFS filesystems. This is what happens when you
* run sync(1M). Unlike other filesystems, ZFS honors the
* request by waiting for all pools to commit all dirty data.
*/
spa_sync_allpools();
}
return (0);
}
EXPORT_SYMBOL(zfs_sync);
boolean_t
zfs_is_readonly(zfs_sb_t *zsb)
{
return (!!(zsb->z_sb->s_flags & MS_RDONLY));
}
EXPORT_SYMBOL(zfs_is_readonly);
static void
atime_changed_cb(void *arg, uint64_t newval)
{
((zfs_sb_t *)arg)->z_atime = newval;
}
static void
relatime_changed_cb(void *arg, uint64_t newval)
{
((zfs_sb_t *)arg)->z_relatime = newval;
}
static void
xattr_changed_cb(void *arg, uint64_t newval)
{
zfs_sb_t *zsb = arg;
if (newval == ZFS_XATTR_OFF) {
zsb->z_flags &= ~ZSB_XATTR;
} else {
zsb->z_flags |= ZSB_XATTR;
if (newval == ZFS_XATTR_SA)
zsb->z_xattr_sa = B_TRUE;
else
zsb->z_xattr_sa = B_FALSE;
}
}
static void
acltype_changed_cb(void *arg, uint64_t newval)
{
zfs_sb_t *zsb = arg;
switch (newval) {
case ZFS_ACLTYPE_OFF:
zsb->z_acl_type = ZFS_ACLTYPE_OFF;
zsb->z_sb->s_flags &= ~MS_POSIXACL;
break;
case ZFS_ACLTYPE_POSIXACL:
#ifdef CONFIG_FS_POSIX_ACL
zsb->z_acl_type = ZFS_ACLTYPE_POSIXACL;
zsb->z_sb->s_flags |= MS_POSIXACL;
#else
zsb->z_acl_type = ZFS_ACLTYPE_OFF;
zsb->z_sb->s_flags &= ~MS_POSIXACL;
#endif /* CONFIG_FS_POSIX_ACL */
break;
default:
break;
}
}
static void
blksz_changed_cb(void *arg, uint64_t newval)
{
zfs_sb_t *zsb = arg;
ASSERT3U(newval, <=, spa_maxblocksize(dmu_objset_spa(zsb->z_os)));
ASSERT3U(newval, >=, SPA_MINBLOCKSIZE);
ASSERT(ISP2(newval));
zsb->z_max_blksz = newval;
}
static void
readonly_changed_cb(void *arg, uint64_t newval)
{
zfs_sb_t *zsb = arg;
struct super_block *sb = zsb->z_sb;
if (sb == NULL)
return;
if (newval)
sb->s_flags |= MS_RDONLY;
else
sb->s_flags &= ~MS_RDONLY;
}
static void
devices_changed_cb(void *arg, uint64_t newval)
{
}
static void
setuid_changed_cb(void *arg, uint64_t newval)
{
}
static void
exec_changed_cb(void *arg, uint64_t newval)
{
}
static void
nbmand_changed_cb(void *arg, uint64_t newval)
{
zfs_sb_t *zsb = arg;
struct super_block *sb = zsb->z_sb;
if (sb == NULL)
return;
if (newval == TRUE)
sb->s_flags |= MS_MANDLOCK;
else
sb->s_flags &= ~MS_MANDLOCK;
}
static void
snapdir_changed_cb(void *arg, uint64_t newval)
{
((zfs_sb_t *)arg)->z_show_ctldir = newval;
}
static void
vscan_changed_cb(void *arg, uint64_t newval)
{
((zfs_sb_t *)arg)->z_vscan = newval;
}
static void
acl_inherit_changed_cb(void *arg, uint64_t newval)
{
((zfs_sb_t *)arg)->z_acl_inherit = newval;
}
int
zfs_register_callbacks(zfs_sb_t *zsb)
{
struct dsl_dataset *ds = NULL;
objset_t *os = zsb->z_os;
zfs_mntopts_t *zmo = zsb->z_mntopts;
int error = 0;
ASSERT(zsb);
ASSERT(zmo);
/*
* The act of registering our callbacks will destroy any mount
* options we may have. In order to enable temporary overrides
* of mount options, we stash away the current values and
* restore them after we register the callbacks.
*/
if (zfs_is_readonly(zsb) || !spa_writeable(dmu_objset_spa(os))) {
zmo->z_do_readonly = B_TRUE;
zmo->z_readonly = B_TRUE;
}
/*
* Register property callbacks.
*
* It would probably be fine to just check for i/o error from
* the first prop_register(), but I guess I like to go
* overboard...
*/
ds = dmu_objset_ds(os);
dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
error = dsl_prop_register(ds,
zfs_prop_to_name(ZFS_PROP_ATIME), atime_changed_cb, zsb);
error = error ? error : dsl_prop_register(ds,
zfs_prop_to_name(ZFS_PROP_RELATIME), relatime_changed_cb, zsb);
error = error ? error : dsl_prop_register(ds,
zfs_prop_to_name(ZFS_PROP_XATTR), xattr_changed_cb, zsb);
error = error ? error : dsl_prop_register(ds,
zfs_prop_to_name(ZFS_PROP_RECORDSIZE), blksz_changed_cb, zsb);
error = error ? error : dsl_prop_register(ds,
zfs_prop_to_name(ZFS_PROP_READONLY), readonly_changed_cb, zsb);
error = error ? error : dsl_prop_register(ds,
zfs_prop_to_name(ZFS_PROP_DEVICES), devices_changed_cb, zsb);
error = error ? error : dsl_prop_register(ds,
zfs_prop_to_name(ZFS_PROP_SETUID), setuid_changed_cb, zsb);
error = error ? error : dsl_prop_register(ds,
zfs_prop_to_name(ZFS_PROP_EXEC), exec_changed_cb, zsb);
error = error ? error : dsl_prop_register(ds,
zfs_prop_to_name(ZFS_PROP_SNAPDIR), snapdir_changed_cb, zsb);
error = error ? error : dsl_prop_register(ds,
zfs_prop_to_name(ZFS_PROP_ACLTYPE), acltype_changed_cb, zsb);
error = error ? error : dsl_prop_register(ds,
zfs_prop_to_name(ZFS_PROP_ACLINHERIT), acl_inherit_changed_cb, zsb);
error = error ? error : dsl_prop_register(ds,
zfs_prop_to_name(ZFS_PROP_VSCAN), vscan_changed_cb, zsb);
error = error ? error : dsl_prop_register(ds,
zfs_prop_to_name(ZFS_PROP_NBMAND), nbmand_changed_cb, zsb);
dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
if (error)
goto unregister;
/*
* Invoke our callbacks to restore temporary mount options.
*/
if (zmo->z_do_readonly)
readonly_changed_cb(zsb, zmo->z_readonly);
if (zmo->z_do_setuid)
setuid_changed_cb(zsb, zmo->z_setuid);
if (zmo->z_do_exec)
exec_changed_cb(zsb, zmo->z_exec);
if (zmo->z_do_devices)
devices_changed_cb(zsb, zmo->z_devices);
if (zmo->z_do_xattr)
xattr_changed_cb(zsb, zmo->z_xattr);
if (zmo->z_do_atime)
atime_changed_cb(zsb, zmo->z_atime);
if (zmo->z_do_relatime)
relatime_changed_cb(zsb, zmo->z_relatime);
if (zmo->z_do_nbmand)
nbmand_changed_cb(zsb, zmo->z_nbmand);
return (0);
unregister:
/*
* We may attempt to unregister some callbacks that are not
* registered, but this is OK; it will simply return ENOMSG,
* which we will ignore.
*/
(void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_ATIME),
atime_changed_cb, zsb);
(void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_RELATIME),
relatime_changed_cb, zsb);
(void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_XATTR),
xattr_changed_cb, zsb);
(void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_RECORDSIZE),
blksz_changed_cb, zsb);
(void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_READONLY),
readonly_changed_cb, zsb);
(void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_DEVICES),
devices_changed_cb, zsb);
(void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_SETUID),
setuid_changed_cb, zsb);
(void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_EXEC),
exec_changed_cb, zsb);
(void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_SNAPDIR),
snapdir_changed_cb, zsb);
(void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_ACLTYPE),
acltype_changed_cb, zsb);
(void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_ACLINHERIT),
acl_inherit_changed_cb, zsb);
(void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_VSCAN),
vscan_changed_cb, zsb);
(void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_NBMAND),
nbmand_changed_cb, zsb);
return (error);
}
EXPORT_SYMBOL(zfs_register_callbacks);
static int
zfs_space_delta_cb(dmu_object_type_t bonustype, void *data,
uint64_t *userp, uint64_t *groupp)
{
/*
* Is it a valid type of object to track?
*/
if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA)
return (SET_ERROR(ENOENT));
/*
* If we have a NULL data pointer
* then assume the id's aren't changing and
* return EEXIST to the dmu to let it know to
* use the same ids
*/
if (data == NULL)
return (SET_ERROR(EEXIST));
if (bonustype == DMU_OT_ZNODE) {
znode_phys_t *znp = data;
*userp = znp->zp_uid;
*groupp = znp->zp_gid;
} else {
int hdrsize;
sa_hdr_phys_t *sap = data;
sa_hdr_phys_t sa = *sap;
boolean_t swap = B_FALSE;
ASSERT(bonustype == DMU_OT_SA);
if (sa.sa_magic == 0) {
/*
* This should only happen for newly created
* files that haven't had the znode data filled
* in yet.
*/
*userp = 0;
*groupp = 0;
return (0);
}
if (sa.sa_magic == BSWAP_32(SA_MAGIC)) {
sa.sa_magic = SA_MAGIC;
sa.sa_layout_info = BSWAP_16(sa.sa_layout_info);
swap = B_TRUE;
} else {
VERIFY3U(sa.sa_magic, ==, SA_MAGIC);
}
hdrsize = sa_hdrsize(&sa);
VERIFY3U(hdrsize, >=, sizeof (sa_hdr_phys_t));
*userp = *((uint64_t *)((uintptr_t)data + hdrsize +
SA_UID_OFFSET));
*groupp = *((uint64_t *)((uintptr_t)data + hdrsize +
SA_GID_OFFSET));
if (swap) {
*userp = BSWAP_64(*userp);
*groupp = BSWAP_64(*groupp);
}
}
return (0);
}
static void
fuidstr_to_sid(zfs_sb_t *zsb, const char *fuidstr,
char *domainbuf, int buflen, uid_t *ridp)
{
uint64_t fuid;
const char *domain;
fuid = strtonum(fuidstr, NULL);
domain = zfs_fuid_find_by_idx(zsb, FUID_INDEX(fuid));
if (domain)
(void) strlcpy(domainbuf, domain, buflen);
else
domainbuf[0] = '\0';
*ridp = FUID_RID(fuid);
}
static uint64_t
zfs_userquota_prop_to_obj(zfs_sb_t *zsb, zfs_userquota_prop_t type)
{
switch (type) {
case ZFS_PROP_USERUSED:
return (DMU_USERUSED_OBJECT);
case ZFS_PROP_GROUPUSED:
return (DMU_GROUPUSED_OBJECT);
case ZFS_PROP_USERQUOTA:
return (zsb->z_userquota_obj);
case ZFS_PROP_GROUPQUOTA:
return (zsb->z_groupquota_obj);
default:
return (SET_ERROR(ENOTSUP));
}
return (0);
}
int
zfs_userspace_many(zfs_sb_t *zsb, zfs_userquota_prop_t type,
uint64_t *cookiep, void *vbuf, uint64_t *bufsizep)
{
int error;
zap_cursor_t zc;
zap_attribute_t za;
zfs_useracct_t *buf = vbuf;
uint64_t obj;
if (!dmu_objset_userspace_present(zsb->z_os))
return (SET_ERROR(ENOTSUP));
obj = zfs_userquota_prop_to_obj(zsb, type);
if (obj == 0) {
*bufsizep = 0;
return (0);
}
for (zap_cursor_init_serialized(&zc, zsb->z_os, obj, *cookiep);
(error = zap_cursor_retrieve(&zc, &za)) == 0;
zap_cursor_advance(&zc)) {
if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) >
*bufsizep)
break;
fuidstr_to_sid(zsb, za.za_name,
buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid);
buf->zu_space = za.za_first_integer;
buf++;
}
if (error == ENOENT)
error = 0;
ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep);
*bufsizep = (uintptr_t)buf - (uintptr_t)vbuf;
*cookiep = zap_cursor_serialize(&zc);
zap_cursor_fini(&zc);
return (error);
}
EXPORT_SYMBOL(zfs_userspace_many);
/*
* buf must be big enough (eg, 32 bytes)
*/
static int
id_to_fuidstr(zfs_sb_t *zsb, const char *domain, uid_t rid,
char *buf, boolean_t addok)
{
uint64_t fuid;
int domainid = 0;
if (domain && domain[0]) {
domainid = zfs_fuid_find_by_domain(zsb, domain, NULL, addok);
if (domainid == -1)
return (SET_ERROR(ENOENT));
}
fuid = FUID_ENCODE(domainid, rid);
(void) sprintf(buf, "%llx", (longlong_t)fuid);
return (0);
}
int
zfs_userspace_one(zfs_sb_t *zsb, zfs_userquota_prop_t type,
const char *domain, uint64_t rid, uint64_t *valp)
{
char buf[32];
int err;
uint64_t obj;
*valp = 0;
if (!dmu_objset_userspace_present(zsb->z_os))
return (SET_ERROR(ENOTSUP));
obj = zfs_userquota_prop_to_obj(zsb, type);
if (obj == 0)
return (0);
err = id_to_fuidstr(zsb, domain, rid, buf, B_FALSE);
if (err)
return (err);
err = zap_lookup(zsb->z_os, obj, buf, 8, 1, valp);
if (err == ENOENT)
err = 0;
return (err);
}
EXPORT_SYMBOL(zfs_userspace_one);
int
zfs_set_userquota(zfs_sb_t *zsb, zfs_userquota_prop_t type,
const char *domain, uint64_t rid, uint64_t quota)
{
char buf[32];
int err;
dmu_tx_t *tx;
uint64_t *objp;
boolean_t fuid_dirtied;
if (type != ZFS_PROP_USERQUOTA && type != ZFS_PROP_GROUPQUOTA)
return (SET_ERROR(EINVAL));
if (zsb->z_version < ZPL_VERSION_USERSPACE)
return (SET_ERROR(ENOTSUP));
objp = (type == ZFS_PROP_USERQUOTA) ? &zsb->z_userquota_obj :
&zsb->z_groupquota_obj;
err = id_to_fuidstr(zsb, domain, rid, buf, B_TRUE);
if (err)
return (err);
fuid_dirtied = zsb->z_fuid_dirty;
tx = dmu_tx_create(zsb->z_os);
dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL);
if (*objp == 0) {
dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
zfs_userquota_prop_prefixes[type]);
}
if (fuid_dirtied)
zfs_fuid_txhold(zsb, tx);
err = dmu_tx_assign(tx, TXG_WAIT);
if (err) {
dmu_tx_abort(tx);
return (err);
}
mutex_enter(&zsb->z_lock);
if (*objp == 0) {
*objp = zap_create(zsb->z_os, DMU_OT_USERGROUP_QUOTA,
DMU_OT_NONE, 0, tx);
VERIFY(0 == zap_add(zsb->z_os, MASTER_NODE_OBJ,
zfs_userquota_prop_prefixes[type], 8, 1, objp, tx));
}
mutex_exit(&zsb->z_lock);
if (quota == 0) {
err = zap_remove(zsb->z_os, *objp, buf, tx);
if (err == ENOENT)
err = 0;
} else {
err = zap_update(zsb->z_os, *objp, buf, 8, 1, &quota, tx);
}
ASSERT(err == 0);
if (fuid_dirtied)
zfs_fuid_sync(zsb, tx);
dmu_tx_commit(tx);
return (err);
}
EXPORT_SYMBOL(zfs_set_userquota);
boolean_t
zfs_fuid_overquota(zfs_sb_t *zsb, boolean_t isgroup, uint64_t fuid)
{
char buf[32];
uint64_t used, quota, usedobj, quotaobj;
int err;
usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT;
quotaobj = isgroup ? zsb->z_groupquota_obj : zsb->z_userquota_obj;
if (quotaobj == 0 || zsb->z_replay)
return (B_FALSE);
(void) sprintf(buf, "%llx", (longlong_t)fuid);
err = zap_lookup(zsb->z_os, quotaobj, buf, 8, 1, &quota);
if (err != 0)
return (B_FALSE);
err = zap_lookup(zsb->z_os, usedobj, buf, 8, 1, &used);
if (err != 0)
return (B_FALSE);
return (used >= quota);
}
EXPORT_SYMBOL(zfs_fuid_overquota);
boolean_t
zfs_owner_overquota(zfs_sb_t *zsb, znode_t *zp, boolean_t isgroup)
{
uint64_t fuid;
uint64_t quotaobj;
quotaobj = isgroup ? zsb->z_groupquota_obj : zsb->z_userquota_obj;
fuid = isgroup ? zp->z_gid : zp->z_uid;
if (quotaobj == 0 || zsb->z_replay)
return (B_FALSE);
return (zfs_fuid_overquota(zsb, isgroup, fuid));
}
EXPORT_SYMBOL(zfs_owner_overquota);
zfs_mntopts_t *
zfs_mntopts_alloc(void)
{
return (kmem_zalloc(sizeof (zfs_mntopts_t), KM_SLEEP));
}
void
zfs_mntopts_free(zfs_mntopts_t *zmo)
{
if (zmo->z_osname)
strfree(zmo->z_osname);
if (zmo->z_mntpoint)
strfree(zmo->z_mntpoint);
kmem_free(zmo, sizeof (zfs_mntopts_t));
}
int
zfs_sb_create(const char *osname, zfs_mntopts_t *zmo, zfs_sb_t **zsbp)
{
objset_t *os;
zfs_sb_t *zsb;
uint64_t zval;
int i, size, error;
uint64_t sa_obj;
zsb = kmem_zalloc(sizeof (zfs_sb_t), KM_SLEEP);
/*
* Optional temporary mount options, free'd in zfs_sb_free().
*/
zsb->z_mntopts = (zmo ? zmo : zfs_mntopts_alloc());
/*
* We claim to always be readonly so we can open snapshots;
* other ZPL code will prevent us from writing to snapshots.
*/
error = dmu_objset_own(osname, DMU_OST_ZFS, B_TRUE, zsb, &os);
if (error)
goto out_zmo;
/*
* Initialize the zfs-specific filesystem structure.
* Should probably make this a kmem cache, shuffle fields.
*/
zsb->z_sb = NULL;
zsb->z_parent = zsb;
zsb->z_max_blksz = SPA_OLD_MAXBLOCKSIZE;
zsb->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
zsb->z_os = os;
error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zsb->z_version);
if (error) {
goto out;
} else if (zsb->z_version > ZPL_VERSION) {
error = SET_ERROR(ENOTSUP);
goto out;
}
if ((error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &zval)) != 0)
goto out;
zsb->z_norm = (int)zval;
if ((error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &zval)) != 0)
goto out;
zsb->z_utf8 = (zval != 0);
if ((error = zfs_get_zplprop(os, ZFS_PROP_CASE, &zval)) != 0)
goto out;
zsb->z_case = (uint_t)zval;
if ((error = zfs_get_zplprop(os, ZFS_PROP_ACLTYPE, &zval)) != 0)
goto out;
zsb->z_acl_type = (uint_t)zval;
/*
* Fold case on file systems that are always or sometimes case
* insensitive.
*/
if (zsb->z_case == ZFS_CASE_INSENSITIVE ||
zsb->z_case == ZFS_CASE_MIXED)
zsb->z_norm |= U8_TEXTPREP_TOUPPER;
zsb->z_use_fuids = USE_FUIDS(zsb->z_version, zsb->z_os);
zsb->z_use_sa = USE_SA(zsb->z_version, zsb->z_os);
if (zsb->z_use_sa) {
/* should either have both of these objects or none */
error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1,
&sa_obj);
if (error)
goto out;
error = zfs_get_zplprop(os, ZFS_PROP_XATTR, &zval);
if ((error == 0) && (zval == ZFS_XATTR_SA))
zsb->z_xattr_sa = B_TRUE;
} else {
/*
* Pre SA versions file systems should never touch
* either the attribute registration or layout objects.
*/
sa_obj = 0;
}
error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
&zsb->z_attr_table);
if (error)
goto out;
if (zsb->z_version >= ZPL_VERSION_SA)
sa_register_update_callback(os, zfs_sa_upgrade);
error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1,
&zsb->z_root);
if (error)
goto out;
ASSERT(zsb->z_root != 0);
error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
&zsb->z_unlinkedobj);
if (error)
goto out;
error = zap_lookup(os, MASTER_NODE_OBJ,
zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA],
8, 1, &zsb->z_userquota_obj);
if (error && error != ENOENT)
goto out;
error = zap_lookup(os, MASTER_NODE_OBJ,
zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA],
8, 1, &zsb->z_groupquota_obj);
if (error && error != ENOENT)
goto out;
error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1,
&zsb->z_fuid_obj);
if (error && error != ENOENT)
goto out;
error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1,
&zsb->z_shares_dir);
if (error && error != ENOENT)
goto out;
mutex_init(&zsb->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
mutex_init(&zsb->z_lock, NULL, MUTEX_DEFAULT, NULL);
list_create(&zsb->z_all_znodes, sizeof (znode_t),
offsetof(znode_t, z_link_node));
rrm_init(&zsb->z_teardown_lock, B_FALSE);
rw_init(&zsb->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL);
rw_init(&zsb->z_fuid_lock, NULL, RW_DEFAULT, NULL);
size = MIN(1 << (highbit64(zfs_object_mutex_size)-1), ZFS_OBJ_MTX_MAX);
zsb->z_hold_size = size;
zsb->z_hold_trees = vmem_zalloc(sizeof (avl_tree_t) * size, KM_SLEEP);
zsb->z_hold_locks = vmem_zalloc(sizeof (kmutex_t) * size, KM_SLEEP);
for (i = 0; i != size; i++) {
avl_create(&zsb->z_hold_trees[i], zfs_znode_hold_compare,
sizeof (znode_hold_t), offsetof(znode_hold_t, zh_node));
mutex_init(&zsb->z_hold_locks[i], NULL, MUTEX_DEFAULT, NULL);
}
*zsbp = zsb;
return (0);
out:
dmu_objset_disown(os, zsb);
out_zmo:
*zsbp = NULL;
zfs_mntopts_free(zsb->z_mntopts);
kmem_free(zsb, sizeof (zfs_sb_t));
return (error);
}
EXPORT_SYMBOL(zfs_sb_create);
int
zfs_sb_setup(zfs_sb_t *zsb, boolean_t mounting)
{
int error;
error = zfs_register_callbacks(zsb);
if (error)
return (error);
/*
* Set the objset user_ptr to track its zsb.
*/
mutex_enter(&zsb->z_os->os_user_ptr_lock);
dmu_objset_set_user(zsb->z_os, zsb);
mutex_exit(&zsb->z_os->os_user_ptr_lock);
zsb->z_log = zil_open(zsb->z_os, zfs_get_data);
/*
* If we are not mounting (ie: online recv), then we don't
* have to worry about replaying the log as we blocked all
* operations out since we closed the ZIL.
*/
if (mounting) {
boolean_t readonly;
/*
* During replay we remove the read only flag to
* allow replays to succeed.
*/
readonly = zfs_is_readonly(zsb);
if (readonly != 0)
readonly_changed_cb(zsb, B_FALSE);
else
zfs_unlinked_drain(zsb);
/*
* Parse and replay the intent log.
*
* Because of ziltest, this must be done after
* zfs_unlinked_drain(). (Further note: ziltest
* doesn't use readonly mounts, where
* zfs_unlinked_drain() isn't called.) This is because
* ziltest causes spa_sync() to think it's committed,
* but actually it is not, so the intent log contains
* many txg's worth of changes.
*
* In particular, if object N is in the unlinked set in
* the last txg to actually sync, then it could be
* actually freed in a later txg and then reallocated
* in a yet later txg. This would write a "create
* object N" record to the intent log. Normally, this
* would be fine because the spa_sync() would have
* written out the fact that object N is free, before
* we could write the "create object N" intent log
* record.
*
* But when we are in ziltest mode, we advance the "open
* txg" without actually spa_sync()-ing the changes to
* disk. So we would see that object N is still
* allocated and in the unlinked set, and there is an
* intent log record saying to allocate it.
*/
if (spa_writeable(dmu_objset_spa(zsb->z_os))) {
if (zil_replay_disable) {
zil_destroy(zsb->z_log, B_FALSE);
} else {
zsb->z_replay = B_TRUE;
zil_replay(zsb->z_os, zsb,
zfs_replay_vector);
zsb->z_replay = B_FALSE;
}
}
/* restore readonly bit */
if (readonly != 0)
readonly_changed_cb(zsb, B_TRUE);
}
return (0);
}
EXPORT_SYMBOL(zfs_sb_setup);
void
zfs_sb_free(zfs_sb_t *zsb)
{
int i, size = zsb->z_hold_size;
zfs_fuid_destroy(zsb);
mutex_destroy(&zsb->z_znodes_lock);
mutex_destroy(&zsb->z_lock);
list_destroy(&zsb->z_all_znodes);
rrm_destroy(&zsb->z_teardown_lock);
rw_destroy(&zsb->z_teardown_inactive_lock);
rw_destroy(&zsb->z_fuid_lock);
for (i = 0; i != size; i++) {
avl_destroy(&zsb->z_hold_trees[i]);
mutex_destroy(&zsb->z_hold_locks[i]);
}
vmem_free(zsb->z_hold_trees, sizeof (avl_tree_t) * size);
vmem_free(zsb->z_hold_locks, sizeof (kmutex_t) * size);
zfs_mntopts_free(zsb->z_mntopts);
kmem_free(zsb, sizeof (zfs_sb_t));
}
EXPORT_SYMBOL(zfs_sb_free);
static void
zfs_set_fuid_feature(zfs_sb_t *zsb)
{
zsb->z_use_fuids = USE_FUIDS(zsb->z_version, zsb->z_os);
zsb->z_use_sa = USE_SA(zsb->z_version, zsb->z_os);
}
void
zfs_unregister_callbacks(zfs_sb_t *zsb)
{
objset_t *os = zsb->z_os;
struct dsl_dataset *ds;
/*
* Unregister properties.
*/
if (!dmu_objset_is_snapshot(os)) {
ds = dmu_objset_ds(os);
VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb,
zsb) == 0);
VERIFY(dsl_prop_unregister(ds, "relatime", relatime_changed_cb,
zsb) == 0);
VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb,
zsb) == 0);
VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb,
zsb) == 0);
VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb,
zsb) == 0);
VERIFY(dsl_prop_unregister(ds, "devices", devices_changed_cb,
zsb) == 0);
VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb,
zsb) == 0);
VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb,
zsb) == 0);
VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb,
zsb) == 0);
VERIFY(dsl_prop_unregister(ds, "acltype", acltype_changed_cb,
zsb) == 0);
VERIFY(dsl_prop_unregister(ds, "aclinherit",
acl_inherit_changed_cb, zsb) == 0);
VERIFY(dsl_prop_unregister(ds, "vscan",
vscan_changed_cb, zsb) == 0);
VERIFY(dsl_prop_unregister(ds, "nbmand",
nbmand_changed_cb, zsb) == 0);
}
}
EXPORT_SYMBOL(zfs_unregister_callbacks);
#ifdef HAVE_MLSLABEL
/*
* Check that the hex label string is appropriate for the dataset being
* mounted into the global_zone proper.
*
* Return an error if the hex label string is not default or
* admin_low/admin_high. For admin_low labels, the corresponding
* dataset must be readonly.
*/
int
zfs_check_global_label(const char *dsname, const char *hexsl)
{
if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
return (0);
if (strcasecmp(hexsl, ADMIN_HIGH) == 0)
return (0);
if (strcasecmp(hexsl, ADMIN_LOW) == 0) {
/* must be readonly */
uint64_t rdonly;
if (dsl_prop_get_integer(dsname,
zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL))
return (SET_ERROR(EACCES));
return (rdonly ? 0 : EACCES);
}
return (SET_ERROR(EACCES));
}
EXPORT_SYMBOL(zfs_check_global_label);
#endif /* HAVE_MLSLABEL */
int
zfs_statvfs(struct dentry *dentry, struct kstatfs *statp)
{
zfs_sb_t *zsb = dentry->d_sb->s_fs_info;
uint64_t refdbytes, availbytes, usedobjs, availobjs;
uint64_t fsid;
uint32_t bshift;
ZFS_ENTER(zsb);
dmu_objset_space(zsb->z_os,
&refdbytes, &availbytes, &usedobjs, &availobjs);
fsid = dmu_objset_fsid_guid(zsb->z_os);
/*
* The underlying storage pool actually uses multiple block
* size. Under Solaris frsize (fragment size) is reported as
* the smallest block size we support, and bsize (block size)
* as the filesystem's maximum block size. Unfortunately,
* under Linux the fragment size and block size are often used
* interchangeably. Thus we are forced to report both of them
* as the filesystem's maximum block size.
*/
statp->f_frsize = zsb->z_max_blksz;
statp->f_bsize = zsb->z_max_blksz;
bshift = fls(statp->f_bsize) - 1;
/*
* The following report "total" blocks of various kinds in
* the file system, but reported in terms of f_bsize - the
* "preferred" size.
*/
statp->f_blocks = (refdbytes + availbytes) >> bshift;
statp->f_bfree = availbytes >> bshift;
statp->f_bavail = statp->f_bfree; /* no root reservation */
/*
* statvfs() should really be called statufs(), because it assumes
* static metadata. ZFS doesn't preallocate files, so the best
* we can do is report the max that could possibly fit in f_files,
* and that minus the number actually used in f_ffree.
* For f_ffree, report the smaller of the number of object available
* and the number of blocks (each object will take at least a block).
*/
statp->f_ffree = MIN(availobjs, availbytes >> DNODE_SHIFT);
statp->f_files = statp->f_ffree + usedobjs;
statp->f_fsid.val[0] = (uint32_t)fsid;
statp->f_fsid.val[1] = (uint32_t)(fsid >> 32);
statp->f_type = ZFS_SUPER_MAGIC;
statp->f_namelen = ZFS_MAXNAMELEN;
/*
* We have all of 40 characters to stuff a string here.
* Is there anything useful we could/should provide?
*/
bzero(statp->f_spare, sizeof (statp->f_spare));
ZFS_EXIT(zsb);
return (0);
}
EXPORT_SYMBOL(zfs_statvfs);
int
zfs_root(zfs_sb_t *zsb, struct inode **ipp)
{
znode_t *rootzp;
int error;
ZFS_ENTER(zsb);
error = zfs_zget(zsb, zsb->z_root, &rootzp);
if (error == 0)
*ipp = ZTOI(rootzp);
ZFS_EXIT(zsb);
return (error);
}
EXPORT_SYMBOL(zfs_root);
#ifdef HAVE_D_PRUNE_ALIASES
/*
* Linux kernels older than 3.1 do not support a per-filesystem shrinker.
* To accommodate this we must improvise and manually walk the list of znodes
* attempting to prune dentries in order to be able to drop the inodes.
*
* To avoid scanning the same znodes multiple times they are always rotated
* to the end of the z_all_znodes list. New znodes are inserted at the
* end of the list so we're always scanning the oldest znodes first.
*/
static int
zfs_sb_prune_aliases(zfs_sb_t *zsb, unsigned long nr_to_scan)
{
znode_t **zp_array, *zp;
int max_array = MIN(nr_to_scan, PAGE_SIZE * 8 / sizeof (znode_t *));
int objects = 0;
int i = 0, j = 0;
zp_array = kmem_zalloc(max_array * sizeof (znode_t *), KM_SLEEP);
mutex_enter(&zsb->z_znodes_lock);
while ((zp = list_head(&zsb->z_all_znodes)) != NULL) {
if ((i++ > nr_to_scan) || (j >= max_array))
break;
ASSERT(list_link_active(&zp->z_link_node));
list_remove(&zsb->z_all_znodes, zp);
list_insert_tail(&zsb->z_all_znodes, zp);
/* Skip active znodes and .zfs entries */
if (MUTEX_HELD(&zp->z_lock) || zp->z_is_ctldir)
continue;
if (igrab(ZTOI(zp)) == NULL)
continue;
zp_array[j] = zp;
j++;
}
mutex_exit(&zsb->z_znodes_lock);
for (i = 0; i < j; i++) {
zp = zp_array[i];
ASSERT3P(zp, !=, NULL);
d_prune_aliases(ZTOI(zp));
if (atomic_read(&ZTOI(zp)->i_count) == 1)
objects++;
iput(ZTOI(zp));
}
kmem_free(zp_array, max_array * sizeof (znode_t *));
return (objects);
}
#endif /* HAVE_D_PRUNE_ALIASES */
/*
* The ARC has requested that the filesystem drop entries from the dentry
* and inode caches. This can occur when the ARC needs to free meta data
* blocks but can't because they are all pinned by entries in these caches.
*/
int
zfs_sb_prune(struct super_block *sb, unsigned long nr_to_scan, int *objects)
{
zfs_sb_t *zsb = sb->s_fs_info;
int error = 0;
#if defined(HAVE_SHRINK) || defined(HAVE_SPLIT_SHRINKER_CALLBACK)
struct shrinker *shrinker = &sb->s_shrink;
struct shrink_control sc = {
.nr_to_scan = nr_to_scan,
.gfp_mask = GFP_KERNEL,
};
#endif
ZFS_ENTER(zsb);
#if defined(HAVE_SPLIT_SHRINKER_CALLBACK) && \
defined(SHRINK_CONTROL_HAS_NID) && \
defined(SHRINKER_NUMA_AWARE)
if (sb->s_shrink.flags & SHRINKER_NUMA_AWARE) {
*objects = 0;
for_each_online_node(sc.nid)
*objects += (*shrinker->scan_objects)(shrinker, &sc);
} else {
*objects = (*shrinker->scan_objects)(shrinker, &sc);
}
#elif defined(HAVE_SPLIT_SHRINKER_CALLBACK)
*objects = (*shrinker->scan_objects)(shrinker, &sc);
#elif defined(HAVE_SHRINK)
*objects = (*shrinker->shrink)(shrinker, &sc);
#elif defined(HAVE_D_PRUNE_ALIASES)
#define D_PRUNE_ALIASES_IS_DEFAULT
*objects = zfs_sb_prune_aliases(zsb, nr_to_scan);
#else
#error "No available dentry and inode cache pruning mechanism."
#endif
#if defined(HAVE_D_PRUNE_ALIASES) && !defined(D_PRUNE_ALIASES_IS_DEFAULT)
#undef D_PRUNE_ALIASES_IS_DEFAULT
/*
* Fall back to zfs_sb_prune_aliases if the kernel's per-superblock
* shrinker couldn't free anything, possibly due to the inodes being
* allocated in a different memcg.
*/
if (*objects == 0)
*objects = zfs_sb_prune_aliases(zsb, nr_to_scan);
#endif
ZFS_EXIT(zsb);
dprintf_ds(zsb->z_os->os_dsl_dataset,
"pruning, nr_to_scan=%lu objects=%d error=%d\n",
nr_to_scan, *objects, error);
return (error);
}
EXPORT_SYMBOL(zfs_sb_prune);
/*
* Teardown the zfs_sb_t.
*
* Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock'
* and 'z_teardown_inactive_lock' held.
*/
int
zfs_sb_teardown(zfs_sb_t *zsb, boolean_t unmounting)
{
znode_t *zp;
/*
* If someone has not already unmounted this file system,
* drain the iput_taskq to ensure all active references to the
* zfs_sb_t have been handled only then can it be safely destroyed.
*/
if (zsb->z_os) {
/*
* If we're unmounting we have to wait for the list to
* drain completely.
*
* If we're not unmounting there's no guarantee the list
* will drain completely, but iputs run from the taskq
* may add the parents of dir-based xattrs to the taskq
* so we want to wait for these.
*
* We can safely read z_nr_znodes without locking because the
* VFS has already blocked operations which add to the
* z_all_znodes list and thus increment z_nr_znodes.
*/
int round = 0;
while (zsb->z_nr_znodes > 0) {
taskq_wait_outstanding(dsl_pool_iput_taskq(
dmu_objset_pool(zsb->z_os)), 0);
if (++round > 1 && !unmounting)
break;
}
}
rrm_enter(&zsb->z_teardown_lock, RW_WRITER, FTAG);
if (!unmounting) {
/*
* We purge the parent filesystem's super block as the
* parent filesystem and all of its snapshots have their
* inode's super block set to the parent's filesystem's
* super block. Note, 'z_parent' is self referential
* for non-snapshots.
*/
shrink_dcache_sb(zsb->z_parent->z_sb);
}
/*
* Close the zil. NB: Can't close the zil while zfs_inactive
* threads are blocked as zil_close can call zfs_inactive.
*/
if (zsb->z_log) {
zil_close(zsb->z_log);
zsb->z_log = NULL;
}
rw_enter(&zsb->z_teardown_inactive_lock, RW_WRITER);
/*
* If we are not unmounting (ie: online recv) and someone already
* unmounted this file system while we were doing the switcheroo,
* or a reopen of z_os failed then just bail out now.
*/
if (!unmounting && (zsb->z_unmounted || zsb->z_os == NULL)) {
rw_exit(&zsb->z_teardown_inactive_lock);
rrm_exit(&zsb->z_teardown_lock, FTAG);
return (SET_ERROR(EIO));
}
/*
* At this point there are no VFS ops active, and any new VFS ops
* will fail with EIO since we have z_teardown_lock for writer (only
* relevant for forced unmount).
*
* Release all holds on dbufs.
*/
if (!unmounting) {
mutex_enter(&zsb->z_znodes_lock);
for (zp = list_head(&zsb->z_all_znodes); zp != NULL;
zp = list_next(&zsb->z_all_znodes, zp)) {
if (zp->z_sa_hdl)
zfs_znode_dmu_fini(zp);
}
mutex_exit(&zsb->z_znodes_lock);
}
/*
* If we are unmounting, set the unmounted flag and let new VFS ops
* unblock. zfs_inactive will have the unmounted behavior, and all
* other VFS ops will fail with EIO.
*/
if (unmounting) {
zsb->z_unmounted = B_TRUE;
rrm_exit(&zsb->z_teardown_lock, FTAG);
rw_exit(&zsb->z_teardown_inactive_lock);
}
/*
* z_os will be NULL if there was an error in attempting to reopen
* zsb, so just return as the properties had already been
*
* unregistered and cached data had been evicted before.
*/
if (zsb->z_os == NULL)
return (0);
/*
* Unregister properties.
*/
zfs_unregister_callbacks(zsb);
/*
* Evict cached data
*/
if (dsl_dataset_is_dirty(dmu_objset_ds(zsb->z_os)) &&
!zfs_is_readonly(zsb))
txg_wait_synced(dmu_objset_pool(zsb->z_os), 0);
dmu_objset_evict_dbufs(zsb->z_os);
return (0);
}
EXPORT_SYMBOL(zfs_sb_teardown);
#if !defined(HAVE_2ARGS_BDI_SETUP_AND_REGISTER) && \
!defined(HAVE_3ARGS_BDI_SETUP_AND_REGISTER)
atomic_long_t zfs_bdi_seq = ATOMIC_LONG_INIT(0);
#endif
int
zfs_domount(struct super_block *sb, zfs_mntopts_t *zmo, int silent)
{
const char *osname = zmo->z_osname;
zfs_sb_t *zsb;
struct inode *root_inode;
uint64_t recordsize;
int error;
error = zfs_sb_create(osname, zmo, &zsb);
if (error)
return (error);
if ((error = dsl_prop_get_integer(osname, "recordsize",
&recordsize, NULL)))
goto out;
zsb->z_sb = sb;
sb->s_fs_info = zsb;
sb->s_magic = ZFS_SUPER_MAGIC;
sb->s_maxbytes = MAX_LFS_FILESIZE;
sb->s_time_gran = 1;
sb->s_blocksize = recordsize;
sb->s_blocksize_bits = ilog2(recordsize);
zsb->z_bdi.ra_pages = 0;
sb->s_bdi = &zsb->z_bdi;
error = -zpl_bdi_setup_and_register(&zsb->z_bdi, "zfs");
if (error)
goto out;
/* Set callback operations for the file system. */
sb->s_op = &zpl_super_operations;
sb->s_xattr = zpl_xattr_handlers;
sb->s_export_op = &zpl_export_operations;
#ifdef HAVE_S_D_OP
sb->s_d_op = &zpl_dentry_operations;
#endif /* HAVE_S_D_OP */
/* Set features for file system. */
zfs_set_fuid_feature(zsb);
if (dmu_objset_is_snapshot(zsb->z_os)) {
uint64_t pval;
atime_changed_cb(zsb, B_FALSE);
readonly_changed_cb(zsb, B_TRUE);
if ((error = dsl_prop_get_integer(osname,
"xattr", &pval, NULL)))
goto out;
xattr_changed_cb(zsb, pval);
if ((error = dsl_prop_get_integer(osname,
"acltype", &pval, NULL)))
goto out;
acltype_changed_cb(zsb, pval);
zsb->z_issnap = B_TRUE;
zsb->z_os->os_sync = ZFS_SYNC_DISABLED;
zsb->z_snap_defer_time = jiffies;
mutex_enter(&zsb->z_os->os_user_ptr_lock);
dmu_objset_set_user(zsb->z_os, zsb);
mutex_exit(&zsb->z_os->os_user_ptr_lock);
} else {
error = zfs_sb_setup(zsb, B_TRUE);
}
/* Allocate a root inode for the filesystem. */
error = zfs_root(zsb, &root_inode);
if (error) {
(void) zfs_umount(sb);
goto out;
}
/* Allocate a root dentry for the filesystem */
sb->s_root = d_make_root(root_inode);
if (sb->s_root == NULL) {
(void) zfs_umount(sb);
error = SET_ERROR(ENOMEM);
goto out;
}
if (!zsb->z_issnap)
zfsctl_create(zsb);
zsb->z_arc_prune = arc_add_prune_callback(zpl_prune_sb, sb);
out:
if (error) {
dmu_objset_disown(zsb->z_os, zsb);
zfs_sb_free(zsb);
}
return (error);
}
EXPORT_SYMBOL(zfs_domount);
/*
* Called when an unmount is requested and certain sanity checks have
* already passed. At this point no dentries or inodes have been reclaimed
* from their respective caches. We drop the extra reference on the .zfs
* control directory to allow everything to be reclaimed. All snapshots
* must already have been unmounted to reach this point.
*/
void
zfs_preumount(struct super_block *sb)
{
zfs_sb_t *zsb = sb->s_fs_info;
if (zsb)
zfsctl_destroy(sb->s_fs_info);
}
EXPORT_SYMBOL(zfs_preumount);
/*
* Called once all other unmount released tear down has occurred.
* It is our responsibility to release any remaining infrastructure.
*/
/*ARGSUSED*/
int
zfs_umount(struct super_block *sb)
{
zfs_sb_t *zsb = sb->s_fs_info;
objset_t *os;
arc_remove_prune_callback(zsb->z_arc_prune);
VERIFY(zfs_sb_teardown(zsb, B_TRUE) == 0);
os = zsb->z_os;
bdi_destroy(sb->s_bdi);
/*
* z_os will be NULL if there was an error in
* attempting to reopen zsb.
*/
if (os != NULL) {
/*
* Unset the objset user_ptr.
*/
mutex_enter(&os->os_user_ptr_lock);
dmu_objset_set_user(os, NULL);
mutex_exit(&os->os_user_ptr_lock);
/*
* Finally release the objset
*/
dmu_objset_disown(os, zsb);
}
zfs_sb_free(zsb);
return (0);
}
EXPORT_SYMBOL(zfs_umount);
int
zfs_remount(struct super_block *sb, int *flags, zfs_mntopts_t *zmo)
{
zfs_sb_t *zsb = sb->s_fs_info;
int error;
zfs_unregister_callbacks(zsb);
error = zfs_register_callbacks(zsb);
return (error);
}
EXPORT_SYMBOL(zfs_remount);
int
zfs_vget(struct super_block *sb, struct inode **ipp, fid_t *fidp)
{
zfs_sb_t *zsb = sb->s_fs_info;
znode_t *zp;
uint64_t object = 0;
uint64_t fid_gen = 0;
uint64_t gen_mask;
uint64_t zp_gen;
int i, err;
*ipp = NULL;
ZFS_ENTER(zsb);
if (fidp->fid_len == LONG_FID_LEN) {
zfid_long_t *zlfid = (zfid_long_t *)fidp;
uint64_t objsetid = 0;
uint64_t setgen = 0;
for (i = 0; i < sizeof (zlfid->zf_setid); i++)
objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
ZFS_EXIT(zsb);
err = zfsctl_lookup_objset(sb, objsetid, &zsb);
if (err)
return (SET_ERROR(EINVAL));
ZFS_ENTER(zsb);
}
if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
zfid_short_t *zfid = (zfid_short_t *)fidp;
for (i = 0; i < sizeof (zfid->zf_object); i++)
object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
for (i = 0; i < sizeof (zfid->zf_gen); i++)
fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
} else {
ZFS_EXIT(zsb);
return (SET_ERROR(EINVAL));
}
/* A zero fid_gen means we are in the .zfs control directories */
if (fid_gen == 0 &&
(object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) {
*ipp = zsb->z_ctldir;
ASSERT(*ipp != NULL);
if (object == ZFSCTL_INO_SNAPDIR) {
VERIFY(zfsctl_root_lookup(*ipp, "snapshot", ipp,
0, kcred, NULL, NULL) == 0);
} else {
igrab(*ipp);
}
ZFS_EXIT(zsb);
return (0);
}
gen_mask = -1ULL >> (64 - 8 * i);
dprintf("getting %llu [%llu mask %llx]\n", object, fid_gen, gen_mask);
if ((err = zfs_zget(zsb, object, &zp))) {
ZFS_EXIT(zsb);
return (err);
}
/* Don't export xattr stuff */
if (zp->z_pflags & ZFS_XATTR) {
iput(ZTOI(zp));
ZFS_EXIT(zsb);
return (SET_ERROR(ENOENT));
}
(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zsb), &zp_gen,
sizeof (uint64_t));
zp_gen = zp_gen & gen_mask;
if (zp_gen == 0)
zp_gen = 1;
if ((fid_gen == 0) && (zsb->z_root == object))
fid_gen = zp_gen;
if (zp->z_unlinked || zp_gen != fid_gen) {
dprintf("znode gen (%llu) != fid gen (%llu)\n", zp_gen,
fid_gen);
iput(ZTOI(zp));
ZFS_EXIT(zsb);
return (SET_ERROR(ENOENT));
}
*ipp = ZTOI(zp);
if (*ipp)
zfs_inode_update(ITOZ(*ipp));
ZFS_EXIT(zsb);
return (0);
}
EXPORT_SYMBOL(zfs_vget);
/*
* Block out VFS ops and close zfs_sb_t
*
* Note, if successful, then we return with the 'z_teardown_lock' and
* 'z_teardown_inactive_lock' write held. We leave ownership of the underlying
* dataset and objset intact so that they can be atomically handed off during
* a subsequent rollback or recv operation and the resume thereafter.
*/
int
zfs_suspend_fs(zfs_sb_t *zsb)
{
int error;
if ((error = zfs_sb_teardown(zsb, B_FALSE)) != 0)
return (error);
return (0);
}
EXPORT_SYMBOL(zfs_suspend_fs);
/*
* Reopen zfs_sb_t and release VFS ops.
*/
int
zfs_resume_fs(zfs_sb_t *zsb, const char *osname)
{
int err, err2;
znode_t *zp;
uint64_t sa_obj = 0;
ASSERT(RRM_WRITE_HELD(&zsb->z_teardown_lock));
ASSERT(RW_WRITE_HELD(&zsb->z_teardown_inactive_lock));
/*
* We already own this, so just hold and rele it to update the
* objset_t, as the one we had before may have been evicted.
*/
VERIFY0(dmu_objset_hold(osname, zsb, &zsb->z_os));
VERIFY3P(zsb->z_os->os_dsl_dataset->ds_owner, ==, zsb);
VERIFY(dsl_dataset_long_held(zsb->z_os->os_dsl_dataset));
dmu_objset_rele(zsb->z_os, zsb);
/*
* Make sure version hasn't changed
*/
err = zfs_get_zplprop(zsb->z_os, ZFS_PROP_VERSION,
&zsb->z_version);
if (err)
goto bail;
err = zap_lookup(zsb->z_os, MASTER_NODE_OBJ,
ZFS_SA_ATTRS, 8, 1, &sa_obj);
if (err && zsb->z_version >= ZPL_VERSION_SA)
goto bail;
if ((err = sa_setup(zsb->z_os, sa_obj,
zfs_attr_table, ZPL_END, &zsb->z_attr_table)) != 0)
goto bail;
if (zsb->z_version >= ZPL_VERSION_SA)
sa_register_update_callback(zsb->z_os,
zfs_sa_upgrade);
VERIFY(zfs_sb_setup(zsb, B_FALSE) == 0);
zfs_set_fuid_feature(zsb);
zsb->z_rollback_time = jiffies;
/*
* Attempt to re-establish all the active inodes with their
* dbufs. If a zfs_rezget() fails, then we unhash the inode
* and mark it stale. This prevents a collision if a new
* inode/object is created which must use the same inode
* number. The stale inode will be be released when the
* VFS prunes the dentry holding the remaining references
* on the stale inode.
*/
mutex_enter(&zsb->z_znodes_lock);
for (zp = list_head(&zsb->z_all_znodes); zp;
zp = list_next(&zsb->z_all_znodes, zp)) {
err2 = zfs_rezget(zp);
if (err2) {
remove_inode_hash(ZTOI(zp));
zp->z_is_stale = B_TRUE;
}
}
mutex_exit(&zsb->z_znodes_lock);
bail:
/* release the VFS ops */
rw_exit(&zsb->z_teardown_inactive_lock);
rrm_exit(&zsb->z_teardown_lock, FTAG);
if (err) {
/*
* Since we couldn't setup the sa framework, try to force
* unmount this file system.
*/
if (zsb->z_os)
(void) zfs_umount(zsb->z_sb);
}
return (err);
}
EXPORT_SYMBOL(zfs_resume_fs);
int
zfs_set_version(zfs_sb_t *zsb, uint64_t newvers)
{
int error;
objset_t *os = zsb->z_os;
dmu_tx_t *tx;
if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
return (SET_ERROR(EINVAL));
if (newvers < zsb->z_version)
return (SET_ERROR(EINVAL));
if (zfs_spa_version_map(newvers) >
spa_version(dmu_objset_spa(zsb->z_os)))
return (SET_ERROR(ENOTSUP));
tx = dmu_tx_create(os);
dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR);
if (newvers >= ZPL_VERSION_SA && !zsb->z_use_sa) {
dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
ZFS_SA_ATTRS);
dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
}
error = dmu_tx_assign(tx, TXG_WAIT);
if (error) {
dmu_tx_abort(tx);
return (error);
}
error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
8, 1, &newvers, tx);
if (error) {
dmu_tx_commit(tx);
return (error);
}
if (newvers >= ZPL_VERSION_SA && !zsb->z_use_sa) {
uint64_t sa_obj;
ASSERT3U(spa_version(dmu_objset_spa(zsb->z_os)), >=,
SPA_VERSION_SA);
sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
DMU_OT_NONE, 0, tx);
error = zap_add(os, MASTER_NODE_OBJ,
ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
ASSERT0(error);
VERIFY(0 == sa_set_sa_object(os, sa_obj));
sa_register_update_callback(os, zfs_sa_upgrade);
}
spa_history_log_internal_ds(dmu_objset_ds(os), "upgrade", tx,
"from %llu to %llu", zsb->z_version, newvers);
dmu_tx_commit(tx);
zsb->z_version = newvers;
zfs_set_fuid_feature(zsb);
return (0);
}
EXPORT_SYMBOL(zfs_set_version);
/*
* Read a property stored within the master node.
*/
int
zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value)
{
const char *pname;
int error = SET_ERROR(ENOENT);
/*
* Look up the file system's value for the property. For the
* version property, we look up a slightly different string.
*/
if (prop == ZFS_PROP_VERSION)
pname = ZPL_VERSION_STR;
else
pname = zfs_prop_to_name(prop);
if (os != NULL)
error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value);
if (error == ENOENT) {
/* No value set, use the default value */
switch (prop) {
case ZFS_PROP_VERSION:
*value = ZPL_VERSION;
break;
case ZFS_PROP_NORMALIZE:
case ZFS_PROP_UTF8ONLY:
*value = 0;
break;
case ZFS_PROP_CASE:
*value = ZFS_CASE_SENSITIVE;
break;
case ZFS_PROP_ACLTYPE:
*value = ZFS_ACLTYPE_OFF;
break;
default:
return (error);
}
error = 0;
}
return (error);
}
EXPORT_SYMBOL(zfs_get_zplprop);
void
zfs_init(void)
{
zfsctl_init();
zfs_znode_init();
dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb);
register_filesystem(&zpl_fs_type);
}
void
zfs_fini(void)
{
/*
* we don't use outstanding because zpl_posix_acl_free might add more.
*/
taskq_wait(system_taskq);
unregister_filesystem(&zpl_fs_type);
zfs_znode_fini();
zfsctl_fini();
}