1889 lines
46 KiB
C
1889 lines
46 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
|
|
* Copyright (c) 2013 by Delphix. All rights reserved.
|
|
*/
|
|
|
|
/* Portions Copyright 2010 Robert Milkowski */
|
|
|
|
#include <sys/types.h>
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/sysmacros.h>
|
|
#include <sys/kmem.h>
|
|
#include <sys/pathname.h>
|
|
#include <sys/vnode.h>
|
|
#include <sys/vfs.h>
|
|
#include <sys/vfs_opreg.h>
|
|
#include <sys/mntent.h>
|
|
#include <sys/mount.h>
|
|
#include <sys/cmn_err.h>
|
|
#include "fs/fs_subr.h"
|
|
#include <sys/zfs_znode.h>
|
|
#include <sys/zfs_vnops.h>
|
|
#include <sys/zfs_dir.h>
|
|
#include <sys/zil.h>
|
|
#include <sys/fs/zfs.h>
|
|
#include <sys/dmu.h>
|
|
#include <sys/dsl_prop.h>
|
|
#include <sys/dsl_dataset.h>
|
|
#include <sys/dsl_deleg.h>
|
|
#include <sys/spa.h>
|
|
#include <sys/zap.h>
|
|
#include <sys/sa.h>
|
|
#include <sys/sa_impl.h>
|
|
#include <sys/varargs.h>
|
|
#include <sys/policy.h>
|
|
#include <sys/atomic.h>
|
|
#include <sys/mkdev.h>
|
|
#include <sys/modctl.h>
|
|
#include <sys/refstr.h>
|
|
#include <sys/zfs_ioctl.h>
|
|
#include <sys/zfs_ctldir.h>
|
|
#include <sys/zfs_fuid.h>
|
|
#include <sys/bootconf.h>
|
|
#include <sys/sunddi.h>
|
|
#include <sys/dnlc.h>
|
|
#include <sys/dmu_objset.h>
|
|
#include <sys/spa_boot.h>
|
|
#include <sys/zpl.h>
|
|
#include "zfs_comutil.h"
|
|
|
|
/*ARGSUSED*/
|
|
int
|
|
zfs_sync(struct super_block *sb, int wait, cred_t *cr)
|
|
{
|
|
zfs_sb_t *zsb = sb->s_fs_info;
|
|
|
|
/*
|
|
* Data integrity is job one. We don't want a compromised kernel
|
|
* writing to the storage pool, so we never sync during panic.
|
|
*/
|
|
if (unlikely(oops_in_progress))
|
|
return (0);
|
|
|
|
/*
|
|
* Semantically, the only requirement is that the sync be initiated.
|
|
* The DMU syncs out txgs frequently, so there's nothing to do.
|
|
*/
|
|
if (!wait)
|
|
return (0);
|
|
|
|
if (zsb != NULL) {
|
|
/*
|
|
* Sync a specific filesystem.
|
|
*/
|
|
dsl_pool_t *dp;
|
|
|
|
ZFS_ENTER(zsb);
|
|
dp = dmu_objset_pool(zsb->z_os);
|
|
|
|
/*
|
|
* If the system is shutting down, then skip any
|
|
* filesystems which may exist on a suspended pool.
|
|
*/
|
|
if (spa_suspended(dp->dp_spa)) {
|
|
ZFS_EXIT(zsb);
|
|
return (0);
|
|
}
|
|
|
|
if (zsb->z_log != NULL)
|
|
zil_commit(zsb->z_log, 0);
|
|
|
|
ZFS_EXIT(zsb);
|
|
} else {
|
|
/*
|
|
* Sync all ZFS filesystems. This is what happens when you
|
|
* run sync(1M). Unlike other filesystems, ZFS honors the
|
|
* request by waiting for all pools to commit all dirty data.
|
|
*/
|
|
spa_sync_allpools();
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
EXPORT_SYMBOL(zfs_sync);
|
|
|
|
boolean_t
|
|
zfs_is_readonly(zfs_sb_t *zsb)
|
|
{
|
|
return (!!(zsb->z_sb->s_flags & MS_RDONLY));
|
|
}
|
|
EXPORT_SYMBOL(zfs_is_readonly);
|
|
|
|
static void
|
|
atime_changed_cb(void *arg, uint64_t newval)
|
|
{
|
|
((zfs_sb_t *)arg)->z_atime = newval;
|
|
}
|
|
|
|
static void
|
|
relatime_changed_cb(void *arg, uint64_t newval)
|
|
{
|
|
((zfs_sb_t *)arg)->z_relatime = newval;
|
|
}
|
|
|
|
static void
|
|
xattr_changed_cb(void *arg, uint64_t newval)
|
|
{
|
|
zfs_sb_t *zsb = arg;
|
|
|
|
if (newval == ZFS_XATTR_OFF) {
|
|
zsb->z_flags &= ~ZSB_XATTR;
|
|
} else {
|
|
zsb->z_flags |= ZSB_XATTR;
|
|
|
|
if (newval == ZFS_XATTR_SA)
|
|
zsb->z_xattr_sa = B_TRUE;
|
|
else
|
|
zsb->z_xattr_sa = B_FALSE;
|
|
}
|
|
}
|
|
|
|
static void
|
|
acltype_changed_cb(void *arg, uint64_t newval)
|
|
{
|
|
zfs_sb_t *zsb = arg;
|
|
|
|
switch (newval) {
|
|
case ZFS_ACLTYPE_OFF:
|
|
zsb->z_acl_type = ZFS_ACLTYPE_OFF;
|
|
zsb->z_sb->s_flags &= ~MS_POSIXACL;
|
|
break;
|
|
case ZFS_ACLTYPE_POSIXACL:
|
|
#ifdef CONFIG_FS_POSIX_ACL
|
|
zsb->z_acl_type = ZFS_ACLTYPE_POSIXACL;
|
|
zsb->z_sb->s_flags |= MS_POSIXACL;
|
|
#else
|
|
zsb->z_acl_type = ZFS_ACLTYPE_OFF;
|
|
zsb->z_sb->s_flags &= ~MS_POSIXACL;
|
|
#endif /* CONFIG_FS_POSIX_ACL */
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void
|
|
blksz_changed_cb(void *arg, uint64_t newval)
|
|
{
|
|
zfs_sb_t *zsb = arg;
|
|
ASSERT3U(newval, <=, spa_maxblocksize(dmu_objset_spa(zsb->z_os)));
|
|
ASSERT3U(newval, >=, SPA_MINBLOCKSIZE);
|
|
ASSERT(ISP2(newval));
|
|
|
|
zsb->z_max_blksz = newval;
|
|
}
|
|
|
|
static void
|
|
readonly_changed_cb(void *arg, uint64_t newval)
|
|
{
|
|
zfs_sb_t *zsb = arg;
|
|
struct super_block *sb = zsb->z_sb;
|
|
|
|
if (sb == NULL)
|
|
return;
|
|
|
|
if (newval)
|
|
sb->s_flags |= MS_RDONLY;
|
|
else
|
|
sb->s_flags &= ~MS_RDONLY;
|
|
}
|
|
|
|
static void
|
|
devices_changed_cb(void *arg, uint64_t newval)
|
|
{
|
|
}
|
|
|
|
static void
|
|
setuid_changed_cb(void *arg, uint64_t newval)
|
|
{
|
|
}
|
|
|
|
static void
|
|
exec_changed_cb(void *arg, uint64_t newval)
|
|
{
|
|
}
|
|
|
|
static void
|
|
nbmand_changed_cb(void *arg, uint64_t newval)
|
|
{
|
|
zfs_sb_t *zsb = arg;
|
|
struct super_block *sb = zsb->z_sb;
|
|
|
|
if (sb == NULL)
|
|
return;
|
|
|
|
if (newval == TRUE)
|
|
sb->s_flags |= MS_MANDLOCK;
|
|
else
|
|
sb->s_flags &= ~MS_MANDLOCK;
|
|
}
|
|
|
|
static void
|
|
snapdir_changed_cb(void *arg, uint64_t newval)
|
|
{
|
|
((zfs_sb_t *)arg)->z_show_ctldir = newval;
|
|
}
|
|
|
|
static void
|
|
vscan_changed_cb(void *arg, uint64_t newval)
|
|
{
|
|
((zfs_sb_t *)arg)->z_vscan = newval;
|
|
}
|
|
|
|
static void
|
|
acl_inherit_changed_cb(void *arg, uint64_t newval)
|
|
{
|
|
((zfs_sb_t *)arg)->z_acl_inherit = newval;
|
|
}
|
|
|
|
int
|
|
zfs_register_callbacks(zfs_sb_t *zsb)
|
|
{
|
|
struct dsl_dataset *ds = NULL;
|
|
objset_t *os = zsb->z_os;
|
|
zfs_mntopts_t *zmo = zsb->z_mntopts;
|
|
int error = 0;
|
|
|
|
ASSERT(zsb);
|
|
ASSERT(zmo);
|
|
|
|
/*
|
|
* The act of registering our callbacks will destroy any mount
|
|
* options we may have. In order to enable temporary overrides
|
|
* of mount options, we stash away the current values and
|
|
* restore them after we register the callbacks.
|
|
*/
|
|
if (zfs_is_readonly(zsb) || !spa_writeable(dmu_objset_spa(os))) {
|
|
zmo->z_do_readonly = B_TRUE;
|
|
zmo->z_readonly = B_TRUE;
|
|
}
|
|
|
|
/*
|
|
* Register property callbacks.
|
|
*
|
|
* It would probably be fine to just check for i/o error from
|
|
* the first prop_register(), but I guess I like to go
|
|
* overboard...
|
|
*/
|
|
ds = dmu_objset_ds(os);
|
|
dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
|
|
error = dsl_prop_register(ds,
|
|
zfs_prop_to_name(ZFS_PROP_ATIME), atime_changed_cb, zsb);
|
|
error = error ? error : dsl_prop_register(ds,
|
|
zfs_prop_to_name(ZFS_PROP_RELATIME), relatime_changed_cb, zsb);
|
|
error = error ? error : dsl_prop_register(ds,
|
|
zfs_prop_to_name(ZFS_PROP_XATTR), xattr_changed_cb, zsb);
|
|
error = error ? error : dsl_prop_register(ds,
|
|
zfs_prop_to_name(ZFS_PROP_RECORDSIZE), blksz_changed_cb, zsb);
|
|
error = error ? error : dsl_prop_register(ds,
|
|
zfs_prop_to_name(ZFS_PROP_READONLY), readonly_changed_cb, zsb);
|
|
error = error ? error : dsl_prop_register(ds,
|
|
zfs_prop_to_name(ZFS_PROP_DEVICES), devices_changed_cb, zsb);
|
|
error = error ? error : dsl_prop_register(ds,
|
|
zfs_prop_to_name(ZFS_PROP_SETUID), setuid_changed_cb, zsb);
|
|
error = error ? error : dsl_prop_register(ds,
|
|
zfs_prop_to_name(ZFS_PROP_EXEC), exec_changed_cb, zsb);
|
|
error = error ? error : dsl_prop_register(ds,
|
|
zfs_prop_to_name(ZFS_PROP_SNAPDIR), snapdir_changed_cb, zsb);
|
|
error = error ? error : dsl_prop_register(ds,
|
|
zfs_prop_to_name(ZFS_PROP_ACLTYPE), acltype_changed_cb, zsb);
|
|
error = error ? error : dsl_prop_register(ds,
|
|
zfs_prop_to_name(ZFS_PROP_ACLINHERIT), acl_inherit_changed_cb, zsb);
|
|
error = error ? error : dsl_prop_register(ds,
|
|
zfs_prop_to_name(ZFS_PROP_VSCAN), vscan_changed_cb, zsb);
|
|
error = error ? error : dsl_prop_register(ds,
|
|
zfs_prop_to_name(ZFS_PROP_NBMAND), nbmand_changed_cb, zsb);
|
|
dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
|
|
if (error)
|
|
goto unregister;
|
|
|
|
/*
|
|
* Invoke our callbacks to restore temporary mount options.
|
|
*/
|
|
if (zmo->z_do_readonly)
|
|
readonly_changed_cb(zsb, zmo->z_readonly);
|
|
if (zmo->z_do_setuid)
|
|
setuid_changed_cb(zsb, zmo->z_setuid);
|
|
if (zmo->z_do_exec)
|
|
exec_changed_cb(zsb, zmo->z_exec);
|
|
if (zmo->z_do_devices)
|
|
devices_changed_cb(zsb, zmo->z_devices);
|
|
if (zmo->z_do_xattr)
|
|
xattr_changed_cb(zsb, zmo->z_xattr);
|
|
if (zmo->z_do_atime)
|
|
atime_changed_cb(zsb, zmo->z_atime);
|
|
if (zmo->z_do_relatime)
|
|
relatime_changed_cb(zsb, zmo->z_relatime);
|
|
if (zmo->z_do_nbmand)
|
|
nbmand_changed_cb(zsb, zmo->z_nbmand);
|
|
|
|
return (0);
|
|
|
|
unregister:
|
|
/*
|
|
* We may attempt to unregister some callbacks that are not
|
|
* registered, but this is OK; it will simply return ENOMSG,
|
|
* which we will ignore.
|
|
*/
|
|
(void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_ATIME),
|
|
atime_changed_cb, zsb);
|
|
(void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_RELATIME),
|
|
relatime_changed_cb, zsb);
|
|
(void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_XATTR),
|
|
xattr_changed_cb, zsb);
|
|
(void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_RECORDSIZE),
|
|
blksz_changed_cb, zsb);
|
|
(void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_READONLY),
|
|
readonly_changed_cb, zsb);
|
|
(void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_DEVICES),
|
|
devices_changed_cb, zsb);
|
|
(void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_SETUID),
|
|
setuid_changed_cb, zsb);
|
|
(void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_EXEC),
|
|
exec_changed_cb, zsb);
|
|
(void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_SNAPDIR),
|
|
snapdir_changed_cb, zsb);
|
|
(void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_ACLTYPE),
|
|
acltype_changed_cb, zsb);
|
|
(void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_ACLINHERIT),
|
|
acl_inherit_changed_cb, zsb);
|
|
(void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_VSCAN),
|
|
vscan_changed_cb, zsb);
|
|
(void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_NBMAND),
|
|
nbmand_changed_cb, zsb);
|
|
|
|
return (error);
|
|
}
|
|
EXPORT_SYMBOL(zfs_register_callbacks);
|
|
|
|
static int
|
|
zfs_space_delta_cb(dmu_object_type_t bonustype, void *data,
|
|
uint64_t *userp, uint64_t *groupp)
|
|
{
|
|
/*
|
|
* Is it a valid type of object to track?
|
|
*/
|
|
if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA)
|
|
return (SET_ERROR(ENOENT));
|
|
|
|
/*
|
|
* If we have a NULL data pointer
|
|
* then assume the id's aren't changing and
|
|
* return EEXIST to the dmu to let it know to
|
|
* use the same ids
|
|
*/
|
|
if (data == NULL)
|
|
return (SET_ERROR(EEXIST));
|
|
|
|
if (bonustype == DMU_OT_ZNODE) {
|
|
znode_phys_t *znp = data;
|
|
*userp = znp->zp_uid;
|
|
*groupp = znp->zp_gid;
|
|
} else {
|
|
int hdrsize;
|
|
sa_hdr_phys_t *sap = data;
|
|
sa_hdr_phys_t sa = *sap;
|
|
boolean_t swap = B_FALSE;
|
|
|
|
ASSERT(bonustype == DMU_OT_SA);
|
|
|
|
if (sa.sa_magic == 0) {
|
|
/*
|
|
* This should only happen for newly created
|
|
* files that haven't had the znode data filled
|
|
* in yet.
|
|
*/
|
|
*userp = 0;
|
|
*groupp = 0;
|
|
return (0);
|
|
}
|
|
if (sa.sa_magic == BSWAP_32(SA_MAGIC)) {
|
|
sa.sa_magic = SA_MAGIC;
|
|
sa.sa_layout_info = BSWAP_16(sa.sa_layout_info);
|
|
swap = B_TRUE;
|
|
} else {
|
|
VERIFY3U(sa.sa_magic, ==, SA_MAGIC);
|
|
}
|
|
|
|
hdrsize = sa_hdrsize(&sa);
|
|
VERIFY3U(hdrsize, >=, sizeof (sa_hdr_phys_t));
|
|
*userp = *((uint64_t *)((uintptr_t)data + hdrsize +
|
|
SA_UID_OFFSET));
|
|
*groupp = *((uint64_t *)((uintptr_t)data + hdrsize +
|
|
SA_GID_OFFSET));
|
|
if (swap) {
|
|
*userp = BSWAP_64(*userp);
|
|
*groupp = BSWAP_64(*groupp);
|
|
}
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
fuidstr_to_sid(zfs_sb_t *zsb, const char *fuidstr,
|
|
char *domainbuf, int buflen, uid_t *ridp)
|
|
{
|
|
uint64_t fuid;
|
|
const char *domain;
|
|
|
|
fuid = strtonum(fuidstr, NULL);
|
|
|
|
domain = zfs_fuid_find_by_idx(zsb, FUID_INDEX(fuid));
|
|
if (domain)
|
|
(void) strlcpy(domainbuf, domain, buflen);
|
|
else
|
|
domainbuf[0] = '\0';
|
|
*ridp = FUID_RID(fuid);
|
|
}
|
|
|
|
static uint64_t
|
|
zfs_userquota_prop_to_obj(zfs_sb_t *zsb, zfs_userquota_prop_t type)
|
|
{
|
|
switch (type) {
|
|
case ZFS_PROP_USERUSED:
|
|
return (DMU_USERUSED_OBJECT);
|
|
case ZFS_PROP_GROUPUSED:
|
|
return (DMU_GROUPUSED_OBJECT);
|
|
case ZFS_PROP_USERQUOTA:
|
|
return (zsb->z_userquota_obj);
|
|
case ZFS_PROP_GROUPQUOTA:
|
|
return (zsb->z_groupquota_obj);
|
|
default:
|
|
return (SET_ERROR(ENOTSUP));
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
zfs_userspace_many(zfs_sb_t *zsb, zfs_userquota_prop_t type,
|
|
uint64_t *cookiep, void *vbuf, uint64_t *bufsizep)
|
|
{
|
|
int error;
|
|
zap_cursor_t zc;
|
|
zap_attribute_t za;
|
|
zfs_useracct_t *buf = vbuf;
|
|
uint64_t obj;
|
|
|
|
if (!dmu_objset_userspace_present(zsb->z_os))
|
|
return (SET_ERROR(ENOTSUP));
|
|
|
|
obj = zfs_userquota_prop_to_obj(zsb, type);
|
|
if (obj == 0) {
|
|
*bufsizep = 0;
|
|
return (0);
|
|
}
|
|
|
|
for (zap_cursor_init_serialized(&zc, zsb->z_os, obj, *cookiep);
|
|
(error = zap_cursor_retrieve(&zc, &za)) == 0;
|
|
zap_cursor_advance(&zc)) {
|
|
if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) >
|
|
*bufsizep)
|
|
break;
|
|
|
|
fuidstr_to_sid(zsb, za.za_name,
|
|
buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid);
|
|
|
|
buf->zu_space = za.za_first_integer;
|
|
buf++;
|
|
}
|
|
if (error == ENOENT)
|
|
error = 0;
|
|
|
|
ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep);
|
|
*bufsizep = (uintptr_t)buf - (uintptr_t)vbuf;
|
|
*cookiep = zap_cursor_serialize(&zc);
|
|
zap_cursor_fini(&zc);
|
|
return (error);
|
|
}
|
|
EXPORT_SYMBOL(zfs_userspace_many);
|
|
|
|
/*
|
|
* buf must be big enough (eg, 32 bytes)
|
|
*/
|
|
static int
|
|
id_to_fuidstr(zfs_sb_t *zsb, const char *domain, uid_t rid,
|
|
char *buf, boolean_t addok)
|
|
{
|
|
uint64_t fuid;
|
|
int domainid = 0;
|
|
|
|
if (domain && domain[0]) {
|
|
domainid = zfs_fuid_find_by_domain(zsb, domain, NULL, addok);
|
|
if (domainid == -1)
|
|
return (SET_ERROR(ENOENT));
|
|
}
|
|
fuid = FUID_ENCODE(domainid, rid);
|
|
(void) sprintf(buf, "%llx", (longlong_t)fuid);
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
zfs_userspace_one(zfs_sb_t *zsb, zfs_userquota_prop_t type,
|
|
const char *domain, uint64_t rid, uint64_t *valp)
|
|
{
|
|
char buf[32];
|
|
int err;
|
|
uint64_t obj;
|
|
|
|
*valp = 0;
|
|
|
|
if (!dmu_objset_userspace_present(zsb->z_os))
|
|
return (SET_ERROR(ENOTSUP));
|
|
|
|
obj = zfs_userquota_prop_to_obj(zsb, type);
|
|
if (obj == 0)
|
|
return (0);
|
|
|
|
err = id_to_fuidstr(zsb, domain, rid, buf, B_FALSE);
|
|
if (err)
|
|
return (err);
|
|
|
|
err = zap_lookup(zsb->z_os, obj, buf, 8, 1, valp);
|
|
if (err == ENOENT)
|
|
err = 0;
|
|
return (err);
|
|
}
|
|
EXPORT_SYMBOL(zfs_userspace_one);
|
|
|
|
int
|
|
zfs_set_userquota(zfs_sb_t *zsb, zfs_userquota_prop_t type,
|
|
const char *domain, uint64_t rid, uint64_t quota)
|
|
{
|
|
char buf[32];
|
|
int err;
|
|
dmu_tx_t *tx;
|
|
uint64_t *objp;
|
|
boolean_t fuid_dirtied;
|
|
|
|
if (type != ZFS_PROP_USERQUOTA && type != ZFS_PROP_GROUPQUOTA)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
if (zsb->z_version < ZPL_VERSION_USERSPACE)
|
|
return (SET_ERROR(ENOTSUP));
|
|
|
|
objp = (type == ZFS_PROP_USERQUOTA) ? &zsb->z_userquota_obj :
|
|
&zsb->z_groupquota_obj;
|
|
|
|
err = id_to_fuidstr(zsb, domain, rid, buf, B_TRUE);
|
|
if (err)
|
|
return (err);
|
|
fuid_dirtied = zsb->z_fuid_dirty;
|
|
|
|
tx = dmu_tx_create(zsb->z_os);
|
|
dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL);
|
|
if (*objp == 0) {
|
|
dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
|
|
zfs_userquota_prop_prefixes[type]);
|
|
}
|
|
if (fuid_dirtied)
|
|
zfs_fuid_txhold(zsb, tx);
|
|
err = dmu_tx_assign(tx, TXG_WAIT);
|
|
if (err) {
|
|
dmu_tx_abort(tx);
|
|
return (err);
|
|
}
|
|
|
|
mutex_enter(&zsb->z_lock);
|
|
if (*objp == 0) {
|
|
*objp = zap_create(zsb->z_os, DMU_OT_USERGROUP_QUOTA,
|
|
DMU_OT_NONE, 0, tx);
|
|
VERIFY(0 == zap_add(zsb->z_os, MASTER_NODE_OBJ,
|
|
zfs_userquota_prop_prefixes[type], 8, 1, objp, tx));
|
|
}
|
|
mutex_exit(&zsb->z_lock);
|
|
|
|
if (quota == 0) {
|
|
err = zap_remove(zsb->z_os, *objp, buf, tx);
|
|
if (err == ENOENT)
|
|
err = 0;
|
|
} else {
|
|
err = zap_update(zsb->z_os, *objp, buf, 8, 1, "a, tx);
|
|
}
|
|
ASSERT(err == 0);
|
|
if (fuid_dirtied)
|
|
zfs_fuid_sync(zsb, tx);
|
|
dmu_tx_commit(tx);
|
|
return (err);
|
|
}
|
|
EXPORT_SYMBOL(zfs_set_userquota);
|
|
|
|
boolean_t
|
|
zfs_fuid_overquota(zfs_sb_t *zsb, boolean_t isgroup, uint64_t fuid)
|
|
{
|
|
char buf[32];
|
|
uint64_t used, quota, usedobj, quotaobj;
|
|
int err;
|
|
|
|
usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT;
|
|
quotaobj = isgroup ? zsb->z_groupquota_obj : zsb->z_userquota_obj;
|
|
|
|
if (quotaobj == 0 || zsb->z_replay)
|
|
return (B_FALSE);
|
|
|
|
(void) sprintf(buf, "%llx", (longlong_t)fuid);
|
|
err = zap_lookup(zsb->z_os, quotaobj, buf, 8, 1, "a);
|
|
if (err != 0)
|
|
return (B_FALSE);
|
|
|
|
err = zap_lookup(zsb->z_os, usedobj, buf, 8, 1, &used);
|
|
if (err != 0)
|
|
return (B_FALSE);
|
|
return (used >= quota);
|
|
}
|
|
EXPORT_SYMBOL(zfs_fuid_overquota);
|
|
|
|
boolean_t
|
|
zfs_owner_overquota(zfs_sb_t *zsb, znode_t *zp, boolean_t isgroup)
|
|
{
|
|
uint64_t fuid;
|
|
uint64_t quotaobj;
|
|
|
|
quotaobj = isgroup ? zsb->z_groupquota_obj : zsb->z_userquota_obj;
|
|
|
|
fuid = isgroup ? zp->z_gid : zp->z_uid;
|
|
|
|
if (quotaobj == 0 || zsb->z_replay)
|
|
return (B_FALSE);
|
|
|
|
return (zfs_fuid_overquota(zsb, isgroup, fuid));
|
|
}
|
|
EXPORT_SYMBOL(zfs_owner_overquota);
|
|
|
|
zfs_mntopts_t *
|
|
zfs_mntopts_alloc(void)
|
|
{
|
|
return (kmem_zalloc(sizeof (zfs_mntopts_t), KM_SLEEP));
|
|
}
|
|
|
|
void
|
|
zfs_mntopts_free(zfs_mntopts_t *zmo)
|
|
{
|
|
if (zmo->z_osname)
|
|
strfree(zmo->z_osname);
|
|
|
|
if (zmo->z_mntpoint)
|
|
strfree(zmo->z_mntpoint);
|
|
|
|
kmem_free(zmo, sizeof (zfs_mntopts_t));
|
|
}
|
|
|
|
int
|
|
zfs_sb_create(const char *osname, zfs_mntopts_t *zmo, zfs_sb_t **zsbp)
|
|
{
|
|
objset_t *os;
|
|
zfs_sb_t *zsb;
|
|
uint64_t zval;
|
|
int i, size, error;
|
|
uint64_t sa_obj;
|
|
|
|
zsb = kmem_zalloc(sizeof (zfs_sb_t), KM_SLEEP);
|
|
|
|
/*
|
|
* Optional temporary mount options, free'd in zfs_sb_free().
|
|
*/
|
|
zsb->z_mntopts = (zmo ? zmo : zfs_mntopts_alloc());
|
|
|
|
/*
|
|
* We claim to always be readonly so we can open snapshots;
|
|
* other ZPL code will prevent us from writing to snapshots.
|
|
*/
|
|
error = dmu_objset_own(osname, DMU_OST_ZFS, B_TRUE, zsb, &os);
|
|
if (error)
|
|
goto out_zmo;
|
|
|
|
/*
|
|
* Initialize the zfs-specific filesystem structure.
|
|
* Should probably make this a kmem cache, shuffle fields.
|
|
*/
|
|
zsb->z_sb = NULL;
|
|
zsb->z_parent = zsb;
|
|
zsb->z_max_blksz = SPA_OLD_MAXBLOCKSIZE;
|
|
zsb->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
|
|
zsb->z_os = os;
|
|
|
|
error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zsb->z_version);
|
|
if (error) {
|
|
goto out;
|
|
} else if (zsb->z_version > ZPL_VERSION) {
|
|
error = SET_ERROR(ENOTSUP);
|
|
goto out;
|
|
}
|
|
if ((error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &zval)) != 0)
|
|
goto out;
|
|
zsb->z_norm = (int)zval;
|
|
|
|
if ((error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &zval)) != 0)
|
|
goto out;
|
|
zsb->z_utf8 = (zval != 0);
|
|
|
|
if ((error = zfs_get_zplprop(os, ZFS_PROP_CASE, &zval)) != 0)
|
|
goto out;
|
|
zsb->z_case = (uint_t)zval;
|
|
|
|
if ((error = zfs_get_zplprop(os, ZFS_PROP_ACLTYPE, &zval)) != 0)
|
|
goto out;
|
|
zsb->z_acl_type = (uint_t)zval;
|
|
|
|
/*
|
|
* Fold case on file systems that are always or sometimes case
|
|
* insensitive.
|
|
*/
|
|
if (zsb->z_case == ZFS_CASE_INSENSITIVE ||
|
|
zsb->z_case == ZFS_CASE_MIXED)
|
|
zsb->z_norm |= U8_TEXTPREP_TOUPPER;
|
|
|
|
zsb->z_use_fuids = USE_FUIDS(zsb->z_version, zsb->z_os);
|
|
zsb->z_use_sa = USE_SA(zsb->z_version, zsb->z_os);
|
|
|
|
if (zsb->z_use_sa) {
|
|
/* should either have both of these objects or none */
|
|
error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1,
|
|
&sa_obj);
|
|
if (error)
|
|
goto out;
|
|
|
|
error = zfs_get_zplprop(os, ZFS_PROP_XATTR, &zval);
|
|
if ((error == 0) && (zval == ZFS_XATTR_SA))
|
|
zsb->z_xattr_sa = B_TRUE;
|
|
} else {
|
|
/*
|
|
* Pre SA versions file systems should never touch
|
|
* either the attribute registration or layout objects.
|
|
*/
|
|
sa_obj = 0;
|
|
}
|
|
|
|
error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
|
|
&zsb->z_attr_table);
|
|
if (error)
|
|
goto out;
|
|
|
|
if (zsb->z_version >= ZPL_VERSION_SA)
|
|
sa_register_update_callback(os, zfs_sa_upgrade);
|
|
|
|
error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1,
|
|
&zsb->z_root);
|
|
if (error)
|
|
goto out;
|
|
ASSERT(zsb->z_root != 0);
|
|
|
|
error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
|
|
&zsb->z_unlinkedobj);
|
|
if (error)
|
|
goto out;
|
|
|
|
error = zap_lookup(os, MASTER_NODE_OBJ,
|
|
zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA],
|
|
8, 1, &zsb->z_userquota_obj);
|
|
if (error && error != ENOENT)
|
|
goto out;
|
|
|
|
error = zap_lookup(os, MASTER_NODE_OBJ,
|
|
zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA],
|
|
8, 1, &zsb->z_groupquota_obj);
|
|
if (error && error != ENOENT)
|
|
goto out;
|
|
|
|
error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1,
|
|
&zsb->z_fuid_obj);
|
|
if (error && error != ENOENT)
|
|
goto out;
|
|
|
|
error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1,
|
|
&zsb->z_shares_dir);
|
|
if (error && error != ENOENT)
|
|
goto out;
|
|
|
|
mutex_init(&zsb->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
mutex_init(&zsb->z_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
list_create(&zsb->z_all_znodes, sizeof (znode_t),
|
|
offsetof(znode_t, z_link_node));
|
|
rrm_init(&zsb->z_teardown_lock, B_FALSE);
|
|
rw_init(&zsb->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL);
|
|
rw_init(&zsb->z_fuid_lock, NULL, RW_DEFAULT, NULL);
|
|
|
|
size = MIN(1 << (highbit64(zfs_object_mutex_size)-1), ZFS_OBJ_MTX_MAX);
|
|
zsb->z_hold_size = size;
|
|
zsb->z_hold_trees = vmem_zalloc(sizeof (avl_tree_t) * size, KM_SLEEP);
|
|
zsb->z_hold_locks = vmem_zalloc(sizeof (kmutex_t) * size, KM_SLEEP);
|
|
for (i = 0; i != size; i++) {
|
|
avl_create(&zsb->z_hold_trees[i], zfs_znode_hold_compare,
|
|
sizeof (znode_hold_t), offsetof(znode_hold_t, zh_node));
|
|
mutex_init(&zsb->z_hold_locks[i], NULL, MUTEX_DEFAULT, NULL);
|
|
}
|
|
|
|
*zsbp = zsb;
|
|
return (0);
|
|
|
|
out:
|
|
dmu_objset_disown(os, zsb);
|
|
out_zmo:
|
|
*zsbp = NULL;
|
|
zfs_mntopts_free(zsb->z_mntopts);
|
|
kmem_free(zsb, sizeof (zfs_sb_t));
|
|
return (error);
|
|
}
|
|
EXPORT_SYMBOL(zfs_sb_create);
|
|
|
|
int
|
|
zfs_sb_setup(zfs_sb_t *zsb, boolean_t mounting)
|
|
{
|
|
int error;
|
|
|
|
error = zfs_register_callbacks(zsb);
|
|
if (error)
|
|
return (error);
|
|
|
|
/*
|
|
* Set the objset user_ptr to track its zsb.
|
|
*/
|
|
mutex_enter(&zsb->z_os->os_user_ptr_lock);
|
|
dmu_objset_set_user(zsb->z_os, zsb);
|
|
mutex_exit(&zsb->z_os->os_user_ptr_lock);
|
|
|
|
zsb->z_log = zil_open(zsb->z_os, zfs_get_data);
|
|
|
|
/*
|
|
* If we are not mounting (ie: online recv), then we don't
|
|
* have to worry about replaying the log as we blocked all
|
|
* operations out since we closed the ZIL.
|
|
*/
|
|
if (mounting) {
|
|
boolean_t readonly;
|
|
|
|
/*
|
|
* During replay we remove the read only flag to
|
|
* allow replays to succeed.
|
|
*/
|
|
readonly = zfs_is_readonly(zsb);
|
|
if (readonly != 0)
|
|
readonly_changed_cb(zsb, B_FALSE);
|
|
else
|
|
zfs_unlinked_drain(zsb);
|
|
|
|
/*
|
|
* Parse and replay the intent log.
|
|
*
|
|
* Because of ziltest, this must be done after
|
|
* zfs_unlinked_drain(). (Further note: ziltest
|
|
* doesn't use readonly mounts, where
|
|
* zfs_unlinked_drain() isn't called.) This is because
|
|
* ziltest causes spa_sync() to think it's committed,
|
|
* but actually it is not, so the intent log contains
|
|
* many txg's worth of changes.
|
|
*
|
|
* In particular, if object N is in the unlinked set in
|
|
* the last txg to actually sync, then it could be
|
|
* actually freed in a later txg and then reallocated
|
|
* in a yet later txg. This would write a "create
|
|
* object N" record to the intent log. Normally, this
|
|
* would be fine because the spa_sync() would have
|
|
* written out the fact that object N is free, before
|
|
* we could write the "create object N" intent log
|
|
* record.
|
|
*
|
|
* But when we are in ziltest mode, we advance the "open
|
|
* txg" without actually spa_sync()-ing the changes to
|
|
* disk. So we would see that object N is still
|
|
* allocated and in the unlinked set, and there is an
|
|
* intent log record saying to allocate it.
|
|
*/
|
|
if (spa_writeable(dmu_objset_spa(zsb->z_os))) {
|
|
if (zil_replay_disable) {
|
|
zil_destroy(zsb->z_log, B_FALSE);
|
|
} else {
|
|
zsb->z_replay = B_TRUE;
|
|
zil_replay(zsb->z_os, zsb,
|
|
zfs_replay_vector);
|
|
zsb->z_replay = B_FALSE;
|
|
}
|
|
}
|
|
|
|
/* restore readonly bit */
|
|
if (readonly != 0)
|
|
readonly_changed_cb(zsb, B_TRUE);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
EXPORT_SYMBOL(zfs_sb_setup);
|
|
|
|
void
|
|
zfs_sb_free(zfs_sb_t *zsb)
|
|
{
|
|
int i, size = zsb->z_hold_size;
|
|
|
|
zfs_fuid_destroy(zsb);
|
|
|
|
mutex_destroy(&zsb->z_znodes_lock);
|
|
mutex_destroy(&zsb->z_lock);
|
|
list_destroy(&zsb->z_all_znodes);
|
|
rrm_destroy(&zsb->z_teardown_lock);
|
|
rw_destroy(&zsb->z_teardown_inactive_lock);
|
|
rw_destroy(&zsb->z_fuid_lock);
|
|
for (i = 0; i != size; i++) {
|
|
avl_destroy(&zsb->z_hold_trees[i]);
|
|
mutex_destroy(&zsb->z_hold_locks[i]);
|
|
}
|
|
vmem_free(zsb->z_hold_trees, sizeof (avl_tree_t) * size);
|
|
vmem_free(zsb->z_hold_locks, sizeof (kmutex_t) * size);
|
|
zfs_mntopts_free(zsb->z_mntopts);
|
|
kmem_free(zsb, sizeof (zfs_sb_t));
|
|
}
|
|
EXPORT_SYMBOL(zfs_sb_free);
|
|
|
|
static void
|
|
zfs_set_fuid_feature(zfs_sb_t *zsb)
|
|
{
|
|
zsb->z_use_fuids = USE_FUIDS(zsb->z_version, zsb->z_os);
|
|
zsb->z_use_sa = USE_SA(zsb->z_version, zsb->z_os);
|
|
}
|
|
|
|
void
|
|
zfs_unregister_callbacks(zfs_sb_t *zsb)
|
|
{
|
|
objset_t *os = zsb->z_os;
|
|
struct dsl_dataset *ds;
|
|
|
|
/*
|
|
* Unregister properties.
|
|
*/
|
|
if (!dmu_objset_is_snapshot(os)) {
|
|
ds = dmu_objset_ds(os);
|
|
VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb,
|
|
zsb) == 0);
|
|
|
|
VERIFY(dsl_prop_unregister(ds, "relatime", relatime_changed_cb,
|
|
zsb) == 0);
|
|
|
|
VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb,
|
|
zsb) == 0);
|
|
|
|
VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb,
|
|
zsb) == 0);
|
|
|
|
VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb,
|
|
zsb) == 0);
|
|
|
|
VERIFY(dsl_prop_unregister(ds, "devices", devices_changed_cb,
|
|
zsb) == 0);
|
|
|
|
VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb,
|
|
zsb) == 0);
|
|
|
|
VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb,
|
|
zsb) == 0);
|
|
|
|
VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb,
|
|
zsb) == 0);
|
|
|
|
VERIFY(dsl_prop_unregister(ds, "acltype", acltype_changed_cb,
|
|
zsb) == 0);
|
|
|
|
VERIFY(dsl_prop_unregister(ds, "aclinherit",
|
|
acl_inherit_changed_cb, zsb) == 0);
|
|
|
|
VERIFY(dsl_prop_unregister(ds, "vscan",
|
|
vscan_changed_cb, zsb) == 0);
|
|
|
|
VERIFY(dsl_prop_unregister(ds, "nbmand",
|
|
nbmand_changed_cb, zsb) == 0);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(zfs_unregister_callbacks);
|
|
|
|
#ifdef HAVE_MLSLABEL
|
|
/*
|
|
* Check that the hex label string is appropriate for the dataset being
|
|
* mounted into the global_zone proper.
|
|
*
|
|
* Return an error if the hex label string is not default or
|
|
* admin_low/admin_high. For admin_low labels, the corresponding
|
|
* dataset must be readonly.
|
|
*/
|
|
int
|
|
zfs_check_global_label(const char *dsname, const char *hexsl)
|
|
{
|
|
if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
|
|
return (0);
|
|
if (strcasecmp(hexsl, ADMIN_HIGH) == 0)
|
|
return (0);
|
|
if (strcasecmp(hexsl, ADMIN_LOW) == 0) {
|
|
/* must be readonly */
|
|
uint64_t rdonly;
|
|
|
|
if (dsl_prop_get_integer(dsname,
|
|
zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL))
|
|
return (SET_ERROR(EACCES));
|
|
return (rdonly ? 0 : EACCES);
|
|
}
|
|
return (SET_ERROR(EACCES));
|
|
}
|
|
EXPORT_SYMBOL(zfs_check_global_label);
|
|
#endif /* HAVE_MLSLABEL */
|
|
|
|
int
|
|
zfs_statvfs(struct dentry *dentry, struct kstatfs *statp)
|
|
{
|
|
zfs_sb_t *zsb = dentry->d_sb->s_fs_info;
|
|
uint64_t refdbytes, availbytes, usedobjs, availobjs;
|
|
uint64_t fsid;
|
|
uint32_t bshift;
|
|
|
|
ZFS_ENTER(zsb);
|
|
|
|
dmu_objset_space(zsb->z_os,
|
|
&refdbytes, &availbytes, &usedobjs, &availobjs);
|
|
|
|
fsid = dmu_objset_fsid_guid(zsb->z_os);
|
|
/*
|
|
* The underlying storage pool actually uses multiple block
|
|
* size. Under Solaris frsize (fragment size) is reported as
|
|
* the smallest block size we support, and bsize (block size)
|
|
* as the filesystem's maximum block size. Unfortunately,
|
|
* under Linux the fragment size and block size are often used
|
|
* interchangeably. Thus we are forced to report both of them
|
|
* as the filesystem's maximum block size.
|
|
*/
|
|
statp->f_frsize = zsb->z_max_blksz;
|
|
statp->f_bsize = zsb->z_max_blksz;
|
|
bshift = fls(statp->f_bsize) - 1;
|
|
|
|
/*
|
|
* The following report "total" blocks of various kinds in
|
|
* the file system, but reported in terms of f_bsize - the
|
|
* "preferred" size.
|
|
*/
|
|
|
|
statp->f_blocks = (refdbytes + availbytes) >> bshift;
|
|
statp->f_bfree = availbytes >> bshift;
|
|
statp->f_bavail = statp->f_bfree; /* no root reservation */
|
|
|
|
/*
|
|
* statvfs() should really be called statufs(), because it assumes
|
|
* static metadata. ZFS doesn't preallocate files, so the best
|
|
* we can do is report the max that could possibly fit in f_files,
|
|
* and that minus the number actually used in f_ffree.
|
|
* For f_ffree, report the smaller of the number of object available
|
|
* and the number of blocks (each object will take at least a block).
|
|
*/
|
|
statp->f_ffree = MIN(availobjs, availbytes >> DNODE_SHIFT);
|
|
statp->f_files = statp->f_ffree + usedobjs;
|
|
statp->f_fsid.val[0] = (uint32_t)fsid;
|
|
statp->f_fsid.val[1] = (uint32_t)(fsid >> 32);
|
|
statp->f_type = ZFS_SUPER_MAGIC;
|
|
statp->f_namelen = ZFS_MAXNAMELEN;
|
|
|
|
/*
|
|
* We have all of 40 characters to stuff a string here.
|
|
* Is there anything useful we could/should provide?
|
|
*/
|
|
bzero(statp->f_spare, sizeof (statp->f_spare));
|
|
|
|
ZFS_EXIT(zsb);
|
|
return (0);
|
|
}
|
|
EXPORT_SYMBOL(zfs_statvfs);
|
|
|
|
int
|
|
zfs_root(zfs_sb_t *zsb, struct inode **ipp)
|
|
{
|
|
znode_t *rootzp;
|
|
int error;
|
|
|
|
ZFS_ENTER(zsb);
|
|
|
|
error = zfs_zget(zsb, zsb->z_root, &rootzp);
|
|
if (error == 0)
|
|
*ipp = ZTOI(rootzp);
|
|
|
|
ZFS_EXIT(zsb);
|
|
return (error);
|
|
}
|
|
EXPORT_SYMBOL(zfs_root);
|
|
|
|
#ifdef HAVE_D_PRUNE_ALIASES
|
|
/*
|
|
* Linux kernels older than 3.1 do not support a per-filesystem shrinker.
|
|
* To accommodate this we must improvise and manually walk the list of znodes
|
|
* attempting to prune dentries in order to be able to drop the inodes.
|
|
*
|
|
* To avoid scanning the same znodes multiple times they are always rotated
|
|
* to the end of the z_all_znodes list. New znodes are inserted at the
|
|
* end of the list so we're always scanning the oldest znodes first.
|
|
*/
|
|
static int
|
|
zfs_sb_prune_aliases(zfs_sb_t *zsb, unsigned long nr_to_scan)
|
|
{
|
|
znode_t **zp_array, *zp;
|
|
int max_array = MIN(nr_to_scan, PAGE_SIZE * 8 / sizeof (znode_t *));
|
|
int objects = 0;
|
|
int i = 0, j = 0;
|
|
|
|
zp_array = kmem_zalloc(max_array * sizeof (znode_t *), KM_SLEEP);
|
|
|
|
mutex_enter(&zsb->z_znodes_lock);
|
|
while ((zp = list_head(&zsb->z_all_znodes)) != NULL) {
|
|
|
|
if ((i++ > nr_to_scan) || (j >= max_array))
|
|
break;
|
|
|
|
ASSERT(list_link_active(&zp->z_link_node));
|
|
list_remove(&zsb->z_all_znodes, zp);
|
|
list_insert_tail(&zsb->z_all_znodes, zp);
|
|
|
|
/* Skip active znodes and .zfs entries */
|
|
if (MUTEX_HELD(&zp->z_lock) || zp->z_is_ctldir)
|
|
continue;
|
|
|
|
if (igrab(ZTOI(zp)) == NULL)
|
|
continue;
|
|
|
|
zp_array[j] = zp;
|
|
j++;
|
|
}
|
|
mutex_exit(&zsb->z_znodes_lock);
|
|
|
|
for (i = 0; i < j; i++) {
|
|
zp = zp_array[i];
|
|
|
|
ASSERT3P(zp, !=, NULL);
|
|
d_prune_aliases(ZTOI(zp));
|
|
|
|
if (atomic_read(&ZTOI(zp)->i_count) == 1)
|
|
objects++;
|
|
|
|
iput(ZTOI(zp));
|
|
}
|
|
|
|
kmem_free(zp_array, max_array * sizeof (znode_t *));
|
|
|
|
return (objects);
|
|
}
|
|
#endif /* HAVE_D_PRUNE_ALIASES */
|
|
|
|
/*
|
|
* The ARC has requested that the filesystem drop entries from the dentry
|
|
* and inode caches. This can occur when the ARC needs to free meta data
|
|
* blocks but can't because they are all pinned by entries in these caches.
|
|
*/
|
|
int
|
|
zfs_sb_prune(struct super_block *sb, unsigned long nr_to_scan, int *objects)
|
|
{
|
|
zfs_sb_t *zsb = sb->s_fs_info;
|
|
int error = 0;
|
|
#if defined(HAVE_SHRINK) || defined(HAVE_SPLIT_SHRINKER_CALLBACK)
|
|
struct shrinker *shrinker = &sb->s_shrink;
|
|
struct shrink_control sc = {
|
|
.nr_to_scan = nr_to_scan,
|
|
.gfp_mask = GFP_KERNEL,
|
|
};
|
|
#endif
|
|
|
|
ZFS_ENTER(zsb);
|
|
|
|
#if defined(HAVE_SPLIT_SHRINKER_CALLBACK) && \
|
|
defined(SHRINK_CONTROL_HAS_NID) && \
|
|
defined(SHRINKER_NUMA_AWARE)
|
|
if (sb->s_shrink.flags & SHRINKER_NUMA_AWARE) {
|
|
*objects = 0;
|
|
for_each_online_node(sc.nid)
|
|
*objects += (*shrinker->scan_objects)(shrinker, &sc);
|
|
} else {
|
|
*objects = (*shrinker->scan_objects)(shrinker, &sc);
|
|
}
|
|
|
|
#elif defined(HAVE_SPLIT_SHRINKER_CALLBACK)
|
|
*objects = (*shrinker->scan_objects)(shrinker, &sc);
|
|
#elif defined(HAVE_SHRINK)
|
|
*objects = (*shrinker->shrink)(shrinker, &sc);
|
|
#elif defined(HAVE_D_PRUNE_ALIASES)
|
|
#define D_PRUNE_ALIASES_IS_DEFAULT
|
|
*objects = zfs_sb_prune_aliases(zsb, nr_to_scan);
|
|
#else
|
|
#error "No available dentry and inode cache pruning mechanism."
|
|
#endif
|
|
|
|
#if defined(HAVE_D_PRUNE_ALIASES) && !defined(D_PRUNE_ALIASES_IS_DEFAULT)
|
|
#undef D_PRUNE_ALIASES_IS_DEFAULT
|
|
/*
|
|
* Fall back to zfs_sb_prune_aliases if the kernel's per-superblock
|
|
* shrinker couldn't free anything, possibly due to the inodes being
|
|
* allocated in a different memcg.
|
|
*/
|
|
if (*objects == 0)
|
|
*objects = zfs_sb_prune_aliases(zsb, nr_to_scan);
|
|
#endif
|
|
|
|
ZFS_EXIT(zsb);
|
|
|
|
dprintf_ds(zsb->z_os->os_dsl_dataset,
|
|
"pruning, nr_to_scan=%lu objects=%d error=%d\n",
|
|
nr_to_scan, *objects, error);
|
|
|
|
return (error);
|
|
}
|
|
EXPORT_SYMBOL(zfs_sb_prune);
|
|
|
|
/*
|
|
* Teardown the zfs_sb_t.
|
|
*
|
|
* Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock'
|
|
* and 'z_teardown_inactive_lock' held.
|
|
*/
|
|
int
|
|
zfs_sb_teardown(zfs_sb_t *zsb, boolean_t unmounting)
|
|
{
|
|
znode_t *zp;
|
|
|
|
/*
|
|
* If someone has not already unmounted this file system,
|
|
* drain the iput_taskq to ensure all active references to the
|
|
* zfs_sb_t have been handled only then can it be safely destroyed.
|
|
*/
|
|
if (zsb->z_os) {
|
|
/*
|
|
* If we're unmounting we have to wait for the list to
|
|
* drain completely.
|
|
*
|
|
* If we're not unmounting there's no guarantee the list
|
|
* will drain completely, but iputs run from the taskq
|
|
* may add the parents of dir-based xattrs to the taskq
|
|
* so we want to wait for these.
|
|
*
|
|
* We can safely read z_nr_znodes without locking because the
|
|
* VFS has already blocked operations which add to the
|
|
* z_all_znodes list and thus increment z_nr_znodes.
|
|
*/
|
|
int round = 0;
|
|
while (zsb->z_nr_znodes > 0) {
|
|
taskq_wait_outstanding(dsl_pool_iput_taskq(
|
|
dmu_objset_pool(zsb->z_os)), 0);
|
|
if (++round > 1 && !unmounting)
|
|
break;
|
|
}
|
|
}
|
|
|
|
rrm_enter(&zsb->z_teardown_lock, RW_WRITER, FTAG);
|
|
|
|
if (!unmounting) {
|
|
/*
|
|
* We purge the parent filesystem's super block as the
|
|
* parent filesystem and all of its snapshots have their
|
|
* inode's super block set to the parent's filesystem's
|
|
* super block. Note, 'z_parent' is self referential
|
|
* for non-snapshots.
|
|
*/
|
|
shrink_dcache_sb(zsb->z_parent->z_sb);
|
|
}
|
|
|
|
/*
|
|
* Close the zil. NB: Can't close the zil while zfs_inactive
|
|
* threads are blocked as zil_close can call zfs_inactive.
|
|
*/
|
|
if (zsb->z_log) {
|
|
zil_close(zsb->z_log);
|
|
zsb->z_log = NULL;
|
|
}
|
|
|
|
rw_enter(&zsb->z_teardown_inactive_lock, RW_WRITER);
|
|
|
|
/*
|
|
* If we are not unmounting (ie: online recv) and someone already
|
|
* unmounted this file system while we were doing the switcheroo,
|
|
* or a reopen of z_os failed then just bail out now.
|
|
*/
|
|
if (!unmounting && (zsb->z_unmounted || zsb->z_os == NULL)) {
|
|
rw_exit(&zsb->z_teardown_inactive_lock);
|
|
rrm_exit(&zsb->z_teardown_lock, FTAG);
|
|
return (SET_ERROR(EIO));
|
|
}
|
|
|
|
/*
|
|
* At this point there are no VFS ops active, and any new VFS ops
|
|
* will fail with EIO since we have z_teardown_lock for writer (only
|
|
* relevant for forced unmount).
|
|
*
|
|
* Release all holds on dbufs.
|
|
*/
|
|
if (!unmounting) {
|
|
mutex_enter(&zsb->z_znodes_lock);
|
|
for (zp = list_head(&zsb->z_all_znodes); zp != NULL;
|
|
zp = list_next(&zsb->z_all_znodes, zp)) {
|
|
if (zp->z_sa_hdl)
|
|
zfs_znode_dmu_fini(zp);
|
|
}
|
|
mutex_exit(&zsb->z_znodes_lock);
|
|
}
|
|
|
|
/*
|
|
* If we are unmounting, set the unmounted flag and let new VFS ops
|
|
* unblock. zfs_inactive will have the unmounted behavior, and all
|
|
* other VFS ops will fail with EIO.
|
|
*/
|
|
if (unmounting) {
|
|
zsb->z_unmounted = B_TRUE;
|
|
rrm_exit(&zsb->z_teardown_lock, FTAG);
|
|
rw_exit(&zsb->z_teardown_inactive_lock);
|
|
}
|
|
|
|
/*
|
|
* z_os will be NULL if there was an error in attempting to reopen
|
|
* zsb, so just return as the properties had already been
|
|
*
|
|
* unregistered and cached data had been evicted before.
|
|
*/
|
|
if (zsb->z_os == NULL)
|
|
return (0);
|
|
|
|
/*
|
|
* Unregister properties.
|
|
*/
|
|
zfs_unregister_callbacks(zsb);
|
|
|
|
/*
|
|
* Evict cached data
|
|
*/
|
|
if (dsl_dataset_is_dirty(dmu_objset_ds(zsb->z_os)) &&
|
|
!zfs_is_readonly(zsb))
|
|
txg_wait_synced(dmu_objset_pool(zsb->z_os), 0);
|
|
dmu_objset_evict_dbufs(zsb->z_os);
|
|
|
|
return (0);
|
|
}
|
|
EXPORT_SYMBOL(zfs_sb_teardown);
|
|
|
|
#if !defined(HAVE_2ARGS_BDI_SETUP_AND_REGISTER) && \
|
|
!defined(HAVE_3ARGS_BDI_SETUP_AND_REGISTER)
|
|
atomic_long_t zfs_bdi_seq = ATOMIC_LONG_INIT(0);
|
|
#endif
|
|
|
|
int
|
|
zfs_domount(struct super_block *sb, zfs_mntopts_t *zmo, int silent)
|
|
{
|
|
const char *osname = zmo->z_osname;
|
|
zfs_sb_t *zsb;
|
|
struct inode *root_inode;
|
|
uint64_t recordsize;
|
|
int error;
|
|
|
|
error = zfs_sb_create(osname, zmo, &zsb);
|
|
if (error)
|
|
return (error);
|
|
|
|
if ((error = dsl_prop_get_integer(osname, "recordsize",
|
|
&recordsize, NULL)))
|
|
goto out;
|
|
|
|
zsb->z_sb = sb;
|
|
sb->s_fs_info = zsb;
|
|
sb->s_magic = ZFS_SUPER_MAGIC;
|
|
sb->s_maxbytes = MAX_LFS_FILESIZE;
|
|
sb->s_time_gran = 1;
|
|
sb->s_blocksize = recordsize;
|
|
sb->s_blocksize_bits = ilog2(recordsize);
|
|
zsb->z_bdi.ra_pages = 0;
|
|
sb->s_bdi = &zsb->z_bdi;
|
|
|
|
error = -zpl_bdi_setup_and_register(&zsb->z_bdi, "zfs");
|
|
if (error)
|
|
goto out;
|
|
|
|
/* Set callback operations for the file system. */
|
|
sb->s_op = &zpl_super_operations;
|
|
sb->s_xattr = zpl_xattr_handlers;
|
|
sb->s_export_op = &zpl_export_operations;
|
|
#ifdef HAVE_S_D_OP
|
|
sb->s_d_op = &zpl_dentry_operations;
|
|
#endif /* HAVE_S_D_OP */
|
|
|
|
/* Set features for file system. */
|
|
zfs_set_fuid_feature(zsb);
|
|
|
|
if (dmu_objset_is_snapshot(zsb->z_os)) {
|
|
uint64_t pval;
|
|
|
|
atime_changed_cb(zsb, B_FALSE);
|
|
readonly_changed_cb(zsb, B_TRUE);
|
|
if ((error = dsl_prop_get_integer(osname,
|
|
"xattr", &pval, NULL)))
|
|
goto out;
|
|
xattr_changed_cb(zsb, pval);
|
|
if ((error = dsl_prop_get_integer(osname,
|
|
"acltype", &pval, NULL)))
|
|
goto out;
|
|
acltype_changed_cb(zsb, pval);
|
|
zsb->z_issnap = B_TRUE;
|
|
zsb->z_os->os_sync = ZFS_SYNC_DISABLED;
|
|
zsb->z_snap_defer_time = jiffies;
|
|
|
|
mutex_enter(&zsb->z_os->os_user_ptr_lock);
|
|
dmu_objset_set_user(zsb->z_os, zsb);
|
|
mutex_exit(&zsb->z_os->os_user_ptr_lock);
|
|
} else {
|
|
error = zfs_sb_setup(zsb, B_TRUE);
|
|
}
|
|
|
|
/* Allocate a root inode for the filesystem. */
|
|
error = zfs_root(zsb, &root_inode);
|
|
if (error) {
|
|
(void) zfs_umount(sb);
|
|
goto out;
|
|
}
|
|
|
|
/* Allocate a root dentry for the filesystem */
|
|
sb->s_root = d_make_root(root_inode);
|
|
if (sb->s_root == NULL) {
|
|
(void) zfs_umount(sb);
|
|
error = SET_ERROR(ENOMEM);
|
|
goto out;
|
|
}
|
|
|
|
if (!zsb->z_issnap)
|
|
zfsctl_create(zsb);
|
|
|
|
zsb->z_arc_prune = arc_add_prune_callback(zpl_prune_sb, sb);
|
|
out:
|
|
if (error) {
|
|
dmu_objset_disown(zsb->z_os, zsb);
|
|
zfs_sb_free(zsb);
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
EXPORT_SYMBOL(zfs_domount);
|
|
|
|
/*
|
|
* Called when an unmount is requested and certain sanity checks have
|
|
* already passed. At this point no dentries or inodes have been reclaimed
|
|
* from their respective caches. We drop the extra reference on the .zfs
|
|
* control directory to allow everything to be reclaimed. All snapshots
|
|
* must already have been unmounted to reach this point.
|
|
*/
|
|
void
|
|
zfs_preumount(struct super_block *sb)
|
|
{
|
|
zfs_sb_t *zsb = sb->s_fs_info;
|
|
|
|
if (zsb)
|
|
zfsctl_destroy(sb->s_fs_info);
|
|
}
|
|
EXPORT_SYMBOL(zfs_preumount);
|
|
|
|
/*
|
|
* Called once all other unmount released tear down has occurred.
|
|
* It is our responsibility to release any remaining infrastructure.
|
|
*/
|
|
/*ARGSUSED*/
|
|
int
|
|
zfs_umount(struct super_block *sb)
|
|
{
|
|
zfs_sb_t *zsb = sb->s_fs_info;
|
|
objset_t *os;
|
|
|
|
arc_remove_prune_callback(zsb->z_arc_prune);
|
|
VERIFY(zfs_sb_teardown(zsb, B_TRUE) == 0);
|
|
os = zsb->z_os;
|
|
bdi_destroy(sb->s_bdi);
|
|
|
|
/*
|
|
* z_os will be NULL if there was an error in
|
|
* attempting to reopen zsb.
|
|
*/
|
|
if (os != NULL) {
|
|
/*
|
|
* Unset the objset user_ptr.
|
|
*/
|
|
mutex_enter(&os->os_user_ptr_lock);
|
|
dmu_objset_set_user(os, NULL);
|
|
mutex_exit(&os->os_user_ptr_lock);
|
|
|
|
/*
|
|
* Finally release the objset
|
|
*/
|
|
dmu_objset_disown(os, zsb);
|
|
}
|
|
|
|
zfs_sb_free(zsb);
|
|
return (0);
|
|
}
|
|
EXPORT_SYMBOL(zfs_umount);
|
|
|
|
int
|
|
zfs_remount(struct super_block *sb, int *flags, zfs_mntopts_t *zmo)
|
|
{
|
|
zfs_sb_t *zsb = sb->s_fs_info;
|
|
int error;
|
|
|
|
zfs_unregister_callbacks(zsb);
|
|
error = zfs_register_callbacks(zsb);
|
|
|
|
return (error);
|
|
}
|
|
EXPORT_SYMBOL(zfs_remount);
|
|
|
|
int
|
|
zfs_vget(struct super_block *sb, struct inode **ipp, fid_t *fidp)
|
|
{
|
|
zfs_sb_t *zsb = sb->s_fs_info;
|
|
znode_t *zp;
|
|
uint64_t object = 0;
|
|
uint64_t fid_gen = 0;
|
|
uint64_t gen_mask;
|
|
uint64_t zp_gen;
|
|
int i, err;
|
|
|
|
*ipp = NULL;
|
|
|
|
ZFS_ENTER(zsb);
|
|
|
|
if (fidp->fid_len == LONG_FID_LEN) {
|
|
zfid_long_t *zlfid = (zfid_long_t *)fidp;
|
|
uint64_t objsetid = 0;
|
|
uint64_t setgen = 0;
|
|
|
|
for (i = 0; i < sizeof (zlfid->zf_setid); i++)
|
|
objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
|
|
|
|
for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
|
|
setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
|
|
|
|
ZFS_EXIT(zsb);
|
|
|
|
err = zfsctl_lookup_objset(sb, objsetid, &zsb);
|
|
if (err)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
ZFS_ENTER(zsb);
|
|
}
|
|
|
|
if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
|
|
zfid_short_t *zfid = (zfid_short_t *)fidp;
|
|
|
|
for (i = 0; i < sizeof (zfid->zf_object); i++)
|
|
object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
|
|
|
|
for (i = 0; i < sizeof (zfid->zf_gen); i++)
|
|
fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
|
|
} else {
|
|
ZFS_EXIT(zsb);
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
|
|
/* A zero fid_gen means we are in the .zfs control directories */
|
|
if (fid_gen == 0 &&
|
|
(object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) {
|
|
*ipp = zsb->z_ctldir;
|
|
ASSERT(*ipp != NULL);
|
|
if (object == ZFSCTL_INO_SNAPDIR) {
|
|
VERIFY(zfsctl_root_lookup(*ipp, "snapshot", ipp,
|
|
0, kcred, NULL, NULL) == 0);
|
|
} else {
|
|
igrab(*ipp);
|
|
}
|
|
ZFS_EXIT(zsb);
|
|
return (0);
|
|
}
|
|
|
|
gen_mask = -1ULL >> (64 - 8 * i);
|
|
|
|
dprintf("getting %llu [%llu mask %llx]\n", object, fid_gen, gen_mask);
|
|
if ((err = zfs_zget(zsb, object, &zp))) {
|
|
ZFS_EXIT(zsb);
|
|
return (err);
|
|
}
|
|
|
|
/* Don't export xattr stuff */
|
|
if (zp->z_pflags & ZFS_XATTR) {
|
|
iput(ZTOI(zp));
|
|
ZFS_EXIT(zsb);
|
|
return (SET_ERROR(ENOENT));
|
|
}
|
|
|
|
(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zsb), &zp_gen,
|
|
sizeof (uint64_t));
|
|
zp_gen = zp_gen & gen_mask;
|
|
if (zp_gen == 0)
|
|
zp_gen = 1;
|
|
if ((fid_gen == 0) && (zsb->z_root == object))
|
|
fid_gen = zp_gen;
|
|
if (zp->z_unlinked || zp_gen != fid_gen) {
|
|
dprintf("znode gen (%llu) != fid gen (%llu)\n", zp_gen,
|
|
fid_gen);
|
|
iput(ZTOI(zp));
|
|
ZFS_EXIT(zsb);
|
|
return (SET_ERROR(ENOENT));
|
|
}
|
|
|
|
*ipp = ZTOI(zp);
|
|
if (*ipp)
|
|
zfs_inode_update(ITOZ(*ipp));
|
|
|
|
ZFS_EXIT(zsb);
|
|
return (0);
|
|
}
|
|
EXPORT_SYMBOL(zfs_vget);
|
|
|
|
/*
|
|
* Block out VFS ops and close zfs_sb_t
|
|
*
|
|
* Note, if successful, then we return with the 'z_teardown_lock' and
|
|
* 'z_teardown_inactive_lock' write held. We leave ownership of the underlying
|
|
* dataset and objset intact so that they can be atomically handed off during
|
|
* a subsequent rollback or recv operation and the resume thereafter.
|
|
*/
|
|
int
|
|
zfs_suspend_fs(zfs_sb_t *zsb)
|
|
{
|
|
int error;
|
|
|
|
if ((error = zfs_sb_teardown(zsb, B_FALSE)) != 0)
|
|
return (error);
|
|
|
|
return (0);
|
|
}
|
|
EXPORT_SYMBOL(zfs_suspend_fs);
|
|
|
|
/*
|
|
* Reopen zfs_sb_t and release VFS ops.
|
|
*/
|
|
int
|
|
zfs_resume_fs(zfs_sb_t *zsb, const char *osname)
|
|
{
|
|
int err, err2;
|
|
znode_t *zp;
|
|
uint64_t sa_obj = 0;
|
|
|
|
ASSERT(RRM_WRITE_HELD(&zsb->z_teardown_lock));
|
|
ASSERT(RW_WRITE_HELD(&zsb->z_teardown_inactive_lock));
|
|
|
|
/*
|
|
* We already own this, so just hold and rele it to update the
|
|
* objset_t, as the one we had before may have been evicted.
|
|
*/
|
|
VERIFY0(dmu_objset_hold(osname, zsb, &zsb->z_os));
|
|
VERIFY3P(zsb->z_os->os_dsl_dataset->ds_owner, ==, zsb);
|
|
VERIFY(dsl_dataset_long_held(zsb->z_os->os_dsl_dataset));
|
|
dmu_objset_rele(zsb->z_os, zsb);
|
|
|
|
/*
|
|
* Make sure version hasn't changed
|
|
*/
|
|
|
|
err = zfs_get_zplprop(zsb->z_os, ZFS_PROP_VERSION,
|
|
&zsb->z_version);
|
|
|
|
if (err)
|
|
goto bail;
|
|
|
|
err = zap_lookup(zsb->z_os, MASTER_NODE_OBJ,
|
|
ZFS_SA_ATTRS, 8, 1, &sa_obj);
|
|
|
|
if (err && zsb->z_version >= ZPL_VERSION_SA)
|
|
goto bail;
|
|
|
|
if ((err = sa_setup(zsb->z_os, sa_obj,
|
|
zfs_attr_table, ZPL_END, &zsb->z_attr_table)) != 0)
|
|
goto bail;
|
|
|
|
if (zsb->z_version >= ZPL_VERSION_SA)
|
|
sa_register_update_callback(zsb->z_os,
|
|
zfs_sa_upgrade);
|
|
|
|
VERIFY(zfs_sb_setup(zsb, B_FALSE) == 0);
|
|
|
|
zfs_set_fuid_feature(zsb);
|
|
zsb->z_rollback_time = jiffies;
|
|
|
|
/*
|
|
* Attempt to re-establish all the active inodes with their
|
|
* dbufs. If a zfs_rezget() fails, then we unhash the inode
|
|
* and mark it stale. This prevents a collision if a new
|
|
* inode/object is created which must use the same inode
|
|
* number. The stale inode will be be released when the
|
|
* VFS prunes the dentry holding the remaining references
|
|
* on the stale inode.
|
|
*/
|
|
mutex_enter(&zsb->z_znodes_lock);
|
|
for (zp = list_head(&zsb->z_all_znodes); zp;
|
|
zp = list_next(&zsb->z_all_znodes, zp)) {
|
|
err2 = zfs_rezget(zp);
|
|
if (err2) {
|
|
remove_inode_hash(ZTOI(zp));
|
|
zp->z_is_stale = B_TRUE;
|
|
}
|
|
}
|
|
mutex_exit(&zsb->z_znodes_lock);
|
|
|
|
bail:
|
|
/* release the VFS ops */
|
|
rw_exit(&zsb->z_teardown_inactive_lock);
|
|
rrm_exit(&zsb->z_teardown_lock, FTAG);
|
|
|
|
if (err) {
|
|
/*
|
|
* Since we couldn't setup the sa framework, try to force
|
|
* unmount this file system.
|
|
*/
|
|
if (zsb->z_os)
|
|
(void) zfs_umount(zsb->z_sb);
|
|
}
|
|
return (err);
|
|
}
|
|
EXPORT_SYMBOL(zfs_resume_fs);
|
|
|
|
int
|
|
zfs_set_version(zfs_sb_t *zsb, uint64_t newvers)
|
|
{
|
|
int error;
|
|
objset_t *os = zsb->z_os;
|
|
dmu_tx_t *tx;
|
|
|
|
if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
if (newvers < zsb->z_version)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
if (zfs_spa_version_map(newvers) >
|
|
spa_version(dmu_objset_spa(zsb->z_os)))
|
|
return (SET_ERROR(ENOTSUP));
|
|
|
|
tx = dmu_tx_create(os);
|
|
dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR);
|
|
if (newvers >= ZPL_VERSION_SA && !zsb->z_use_sa) {
|
|
dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
|
|
ZFS_SA_ATTRS);
|
|
dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
|
|
}
|
|
error = dmu_tx_assign(tx, TXG_WAIT);
|
|
if (error) {
|
|
dmu_tx_abort(tx);
|
|
return (error);
|
|
}
|
|
|
|
error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
|
|
8, 1, &newvers, tx);
|
|
|
|
if (error) {
|
|
dmu_tx_commit(tx);
|
|
return (error);
|
|
}
|
|
|
|
if (newvers >= ZPL_VERSION_SA && !zsb->z_use_sa) {
|
|
uint64_t sa_obj;
|
|
|
|
ASSERT3U(spa_version(dmu_objset_spa(zsb->z_os)), >=,
|
|
SPA_VERSION_SA);
|
|
sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
|
|
DMU_OT_NONE, 0, tx);
|
|
|
|
error = zap_add(os, MASTER_NODE_OBJ,
|
|
ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
|
|
ASSERT0(error);
|
|
|
|
VERIFY(0 == sa_set_sa_object(os, sa_obj));
|
|
sa_register_update_callback(os, zfs_sa_upgrade);
|
|
}
|
|
|
|
spa_history_log_internal_ds(dmu_objset_ds(os), "upgrade", tx,
|
|
"from %llu to %llu", zsb->z_version, newvers);
|
|
|
|
dmu_tx_commit(tx);
|
|
|
|
zsb->z_version = newvers;
|
|
|
|
zfs_set_fuid_feature(zsb);
|
|
|
|
return (0);
|
|
}
|
|
EXPORT_SYMBOL(zfs_set_version);
|
|
|
|
/*
|
|
* Read a property stored within the master node.
|
|
*/
|
|
int
|
|
zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value)
|
|
{
|
|
const char *pname;
|
|
int error = SET_ERROR(ENOENT);
|
|
|
|
/*
|
|
* Look up the file system's value for the property. For the
|
|
* version property, we look up a slightly different string.
|
|
*/
|
|
if (prop == ZFS_PROP_VERSION)
|
|
pname = ZPL_VERSION_STR;
|
|
else
|
|
pname = zfs_prop_to_name(prop);
|
|
|
|
if (os != NULL)
|
|
error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value);
|
|
|
|
if (error == ENOENT) {
|
|
/* No value set, use the default value */
|
|
switch (prop) {
|
|
case ZFS_PROP_VERSION:
|
|
*value = ZPL_VERSION;
|
|
break;
|
|
case ZFS_PROP_NORMALIZE:
|
|
case ZFS_PROP_UTF8ONLY:
|
|
*value = 0;
|
|
break;
|
|
case ZFS_PROP_CASE:
|
|
*value = ZFS_CASE_SENSITIVE;
|
|
break;
|
|
case ZFS_PROP_ACLTYPE:
|
|
*value = ZFS_ACLTYPE_OFF;
|
|
break;
|
|
default:
|
|
return (error);
|
|
}
|
|
error = 0;
|
|
}
|
|
return (error);
|
|
}
|
|
EXPORT_SYMBOL(zfs_get_zplprop);
|
|
|
|
void
|
|
zfs_init(void)
|
|
{
|
|
zfsctl_init();
|
|
zfs_znode_init();
|
|
dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb);
|
|
register_filesystem(&zpl_fs_type);
|
|
}
|
|
|
|
void
|
|
zfs_fini(void)
|
|
{
|
|
/*
|
|
* we don't use outstanding because zpl_posix_acl_free might add more.
|
|
*/
|
|
taskq_wait(system_taskq);
|
|
unregister_filesystem(&zpl_fs_type);
|
|
zfs_znode_fini();
|
|
zfsctl_fini();
|
|
}
|