zfs/module/icp/io/aes.c

1405 lines
39 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
*/
/*
* AES provider for the Kernel Cryptographic Framework (KCF)
*/
#include <sys/zfs_context.h>
#include <sys/crypto/common.h>
#include <sys/crypto/impl.h>
#include <sys/crypto/spi.h>
#include <sys/crypto/icp.h>
#include <modes/modes.h>
#define _AES_IMPL
#include <aes/aes_impl.h>
#include <modes/gcm_impl.h>
/*
* Mechanism info structure passed to KCF during registration.
*/
static const crypto_mech_info_t aes_mech_info_tab[] = {
/* AES_ECB */
{SUN_CKM_AES_ECB, AES_ECB_MECH_INFO_TYPE,
CRYPTO_FG_ENCRYPT | CRYPTO_FG_ENCRYPT_ATOMIC |
CRYPTO_FG_DECRYPT | CRYPTO_FG_DECRYPT_ATOMIC,
AES_MIN_KEY_BYTES, AES_MAX_KEY_BYTES, CRYPTO_KEYSIZE_UNIT_IN_BYTES},
/* AES_CBC */
{SUN_CKM_AES_CBC, AES_CBC_MECH_INFO_TYPE,
CRYPTO_FG_ENCRYPT | CRYPTO_FG_ENCRYPT_ATOMIC |
CRYPTO_FG_DECRYPT | CRYPTO_FG_DECRYPT_ATOMIC,
AES_MIN_KEY_BYTES, AES_MAX_KEY_BYTES, CRYPTO_KEYSIZE_UNIT_IN_BYTES},
/* AES_CTR */
{SUN_CKM_AES_CTR, AES_CTR_MECH_INFO_TYPE,
CRYPTO_FG_ENCRYPT | CRYPTO_FG_ENCRYPT_ATOMIC |
CRYPTO_FG_DECRYPT | CRYPTO_FG_DECRYPT_ATOMIC,
AES_MIN_KEY_BYTES, AES_MAX_KEY_BYTES, CRYPTO_KEYSIZE_UNIT_IN_BYTES},
/* AES_CCM */
{SUN_CKM_AES_CCM, AES_CCM_MECH_INFO_TYPE,
CRYPTO_FG_ENCRYPT | CRYPTO_FG_ENCRYPT_ATOMIC |
CRYPTO_FG_DECRYPT | CRYPTO_FG_DECRYPT_ATOMIC,
AES_MIN_KEY_BYTES, AES_MAX_KEY_BYTES, CRYPTO_KEYSIZE_UNIT_IN_BYTES},
/* AES_GCM */
{SUN_CKM_AES_GCM, AES_GCM_MECH_INFO_TYPE,
CRYPTO_FG_ENCRYPT | CRYPTO_FG_ENCRYPT_ATOMIC |
CRYPTO_FG_DECRYPT | CRYPTO_FG_DECRYPT_ATOMIC,
AES_MIN_KEY_BYTES, AES_MAX_KEY_BYTES, CRYPTO_KEYSIZE_UNIT_IN_BYTES},
/* AES_GMAC */
{SUN_CKM_AES_GMAC, AES_GMAC_MECH_INFO_TYPE,
CRYPTO_FG_ENCRYPT | CRYPTO_FG_ENCRYPT_ATOMIC |
CRYPTO_FG_DECRYPT | CRYPTO_FG_DECRYPT_ATOMIC |
CRYPTO_FG_MAC | CRYPTO_FG_MAC_ATOMIC,
AES_MIN_KEY_BYTES, AES_MAX_KEY_BYTES, CRYPTO_KEYSIZE_UNIT_IN_BYTES}
};
static int aes_encrypt_init(crypto_ctx_t *, crypto_mechanism_t *,
crypto_key_t *, crypto_spi_ctx_template_t, crypto_req_handle_t);
static int aes_decrypt_init(crypto_ctx_t *, crypto_mechanism_t *,
crypto_key_t *, crypto_spi_ctx_template_t, crypto_req_handle_t);
static int aes_common_init(crypto_ctx_t *, crypto_mechanism_t *,
crypto_key_t *, crypto_spi_ctx_template_t, crypto_req_handle_t, boolean_t);
static int aes_common_init_ctx(aes_ctx_t *, crypto_spi_ctx_template_t *,
crypto_mechanism_t *, crypto_key_t *, int, boolean_t);
static int aes_encrypt_final(crypto_ctx_t *, crypto_data_t *,
crypto_req_handle_t);
static int aes_decrypt_final(crypto_ctx_t *, crypto_data_t *,
crypto_req_handle_t);
static int aes_encrypt(crypto_ctx_t *, crypto_data_t *, crypto_data_t *,
crypto_req_handle_t);
static int aes_encrypt_update(crypto_ctx_t *, crypto_data_t *,
crypto_data_t *, crypto_req_handle_t);
static int aes_encrypt_atomic(crypto_provider_handle_t, crypto_session_id_t,
crypto_mechanism_t *, crypto_key_t *, crypto_data_t *,
crypto_data_t *, crypto_spi_ctx_template_t, crypto_req_handle_t);
static int aes_decrypt(crypto_ctx_t *, crypto_data_t *, crypto_data_t *,
crypto_req_handle_t);
static int aes_decrypt_update(crypto_ctx_t *, crypto_data_t *,
crypto_data_t *, crypto_req_handle_t);
static int aes_decrypt_atomic(crypto_provider_handle_t, crypto_session_id_t,
crypto_mechanism_t *, crypto_key_t *, crypto_data_t *,
crypto_data_t *, crypto_spi_ctx_template_t, crypto_req_handle_t);
static const crypto_cipher_ops_t aes_cipher_ops = {
.encrypt_init = aes_encrypt_init,
.encrypt = aes_encrypt,
.encrypt_update = aes_encrypt_update,
.encrypt_final = aes_encrypt_final,
.encrypt_atomic = aes_encrypt_atomic,
.decrypt_init = aes_decrypt_init,
.decrypt = aes_decrypt,
.decrypt_update = aes_decrypt_update,
.decrypt_final = aes_decrypt_final,
.decrypt_atomic = aes_decrypt_atomic
};
static int aes_mac_atomic(crypto_provider_handle_t, crypto_session_id_t,
crypto_mechanism_t *, crypto_key_t *, crypto_data_t *, crypto_data_t *,
crypto_spi_ctx_template_t, crypto_req_handle_t);
static int aes_mac_verify_atomic(crypto_provider_handle_t, crypto_session_id_t,
crypto_mechanism_t *, crypto_key_t *, crypto_data_t *, crypto_data_t *,
crypto_spi_ctx_template_t, crypto_req_handle_t);
static const crypto_mac_ops_t aes_mac_ops = {
.mac_init = NULL,
.mac = NULL,
.mac_update = NULL,
.mac_final = NULL,
.mac_atomic = aes_mac_atomic,
.mac_verify_atomic = aes_mac_verify_atomic
};
static int aes_create_ctx_template(crypto_provider_handle_t,
crypto_mechanism_t *, crypto_key_t *, crypto_spi_ctx_template_t *,
size_t *, crypto_req_handle_t);
static int aes_free_context(crypto_ctx_t *);
static const crypto_ctx_ops_t aes_ctx_ops = {
.create_ctx_template = aes_create_ctx_template,
.free_context = aes_free_context
};
static const crypto_ops_t aes_crypto_ops = {
NULL,
&aes_cipher_ops,
&aes_mac_ops,
&aes_ctx_ops,
};
static const crypto_provider_info_t aes_prov_info = {
"AES Software Provider",
CRYPTO_SW_PROVIDER,
NULL,
&aes_crypto_ops,
sizeof (aes_mech_info_tab) / sizeof (crypto_mech_info_t),
aes_mech_info_tab
};
static crypto_kcf_provider_handle_t aes_prov_handle = 0;
static crypto_data_t null_crypto_data = { CRYPTO_DATA_RAW };
int
aes_mod_init(void)
{
/* Determine the fastest available implementation. */
aes_impl_init();
gcm_impl_init();
/* Register with KCF. If the registration fails, remove the module. */
if (crypto_register_provider(&aes_prov_info, &aes_prov_handle))
return (EACCES);
return (0);
}
int
aes_mod_fini(void)
{
/* Unregister from KCF if module is registered */
if (aes_prov_handle != 0) {
if (crypto_unregister_provider(aes_prov_handle))
return (EBUSY);
aes_prov_handle = 0;
}
return (0);
}
static int
aes_check_mech_param(crypto_mechanism_t *mechanism, aes_ctx_t **ctx, int kmflag)
{
void *p = NULL;
boolean_t param_required = B_TRUE;
size_t param_len;
void *(*alloc_fun)(int);
int rv = CRYPTO_SUCCESS;
switch (mechanism->cm_type) {
case AES_ECB_MECH_INFO_TYPE:
param_required = B_FALSE;
alloc_fun = ecb_alloc_ctx;
break;
case AES_CBC_MECH_INFO_TYPE:
param_len = AES_BLOCK_LEN;
alloc_fun = cbc_alloc_ctx;
break;
case AES_CTR_MECH_INFO_TYPE:
param_len = sizeof (CK_AES_CTR_PARAMS);
alloc_fun = ctr_alloc_ctx;
break;
case AES_CCM_MECH_INFO_TYPE:
param_len = sizeof (CK_AES_CCM_PARAMS);
alloc_fun = ccm_alloc_ctx;
break;
case AES_GCM_MECH_INFO_TYPE:
param_len = sizeof (CK_AES_GCM_PARAMS);
alloc_fun = gcm_alloc_ctx;
break;
case AES_GMAC_MECH_INFO_TYPE:
param_len = sizeof (CK_AES_GMAC_PARAMS);
alloc_fun = gmac_alloc_ctx;
break;
default:
rv = CRYPTO_MECHANISM_INVALID;
return (rv);
}
if (param_required && mechanism->cm_param != NULL &&
mechanism->cm_param_len != param_len) {
rv = CRYPTO_MECHANISM_PARAM_INVALID;
}
if (ctx != NULL) {
p = (alloc_fun)(kmflag);
*ctx = p;
}
return (rv);
}
/*
* Initialize key schedules for AES
*/
static int
init_keysched(crypto_key_t *key, void *newbie)
{
/*
* Only keys by value are supported by this module.
*/
switch (key->ck_format) {
case CRYPTO_KEY_RAW:
if (key->ck_length < AES_MINBITS ||
key->ck_length > AES_MAXBITS) {
return (CRYPTO_KEY_SIZE_RANGE);
}
/* key length must be either 128, 192, or 256 */
if ((key->ck_length & 63) != 0)
return (CRYPTO_KEY_SIZE_RANGE);
break;
default:
return (CRYPTO_KEY_TYPE_INCONSISTENT);
}
aes_init_keysched(key->ck_data, key->ck_length, newbie);
return (CRYPTO_SUCCESS);
}
static int
aes_encrypt_init(crypto_ctx_t *ctx, crypto_mechanism_t *mechanism,
crypto_key_t *key, crypto_spi_ctx_template_t template,
crypto_req_handle_t req)
{
return (aes_common_init(ctx, mechanism, key, template, req, B_TRUE));
}
static int
aes_decrypt_init(crypto_ctx_t *ctx, crypto_mechanism_t *mechanism,
crypto_key_t *key, crypto_spi_ctx_template_t template,
crypto_req_handle_t req)
{
return (aes_common_init(ctx, mechanism, key, template, req, B_FALSE));
}
/*
* KCF software provider encrypt entry points.
*/
static int
aes_common_init(crypto_ctx_t *ctx, crypto_mechanism_t *mechanism,
crypto_key_t *key, crypto_spi_ctx_template_t template,
crypto_req_handle_t req, boolean_t is_encrypt_init)
{
aes_ctx_t *aes_ctx;
int rv;
int kmflag;
/*
* Only keys by value are supported by this module.
*/
if (key->ck_format != CRYPTO_KEY_RAW) {
return (CRYPTO_KEY_TYPE_INCONSISTENT);
}
kmflag = crypto_kmflag(req);
if ((rv = aes_check_mech_param(mechanism, &aes_ctx, kmflag))
!= CRYPTO_SUCCESS)
return (rv);
rv = aes_common_init_ctx(aes_ctx, template, mechanism, key, kmflag,
is_encrypt_init);
if (rv != CRYPTO_SUCCESS) {
crypto_free_mode_ctx(aes_ctx);
return (rv);
}
ctx->cc_provider_private = aes_ctx;
return (CRYPTO_SUCCESS);
}
static void
aes_copy_block64(uint8_t *in, uint64_t *out)
{
if (IS_P2ALIGNED(in, sizeof (uint64_t))) {
/* LINTED: pointer alignment */
out[0] = *(uint64_t *)&in[0];
/* LINTED: pointer alignment */
out[1] = *(uint64_t *)&in[8];
} else {
uint8_t *iv8 = (uint8_t *)&out[0];
AES_COPY_BLOCK(in, iv8);
}
}
static int
aes_encrypt(crypto_ctx_t *ctx, crypto_data_t *plaintext,
crypto_data_t *ciphertext, crypto_req_handle_t req)
{
int ret = CRYPTO_FAILED;
aes_ctx_t *aes_ctx;
size_t saved_length, saved_offset, length_needed;
ASSERT(ctx->cc_provider_private != NULL);
aes_ctx = ctx->cc_provider_private;
/*
* For block ciphers, plaintext must be a multiple of AES block size.
* This test is only valid for ciphers whose blocksize is a power of 2.
*/
if (((aes_ctx->ac_flags & (CTR_MODE|CCM_MODE|GCM_MODE|GMAC_MODE))
== 0) && (plaintext->cd_length & (AES_BLOCK_LEN - 1)) != 0)
return (CRYPTO_DATA_LEN_RANGE);
ASSERT(ciphertext != NULL);
/*
* We need to just return the length needed to store the output.
* We should not destroy the context for the following case.
*/
switch (aes_ctx->ac_flags & (CCM_MODE|GCM_MODE|GMAC_MODE)) {
case CCM_MODE:
length_needed = plaintext->cd_length + aes_ctx->ac_mac_len;
break;
case GCM_MODE:
length_needed = plaintext->cd_length + aes_ctx->ac_tag_len;
break;
case GMAC_MODE:
if (plaintext->cd_length != 0)
return (CRYPTO_ARGUMENTS_BAD);
length_needed = aes_ctx->ac_tag_len;
break;
default:
length_needed = plaintext->cd_length;
}
if (ciphertext->cd_length < length_needed) {
ciphertext->cd_length = length_needed;
return (CRYPTO_BUFFER_TOO_SMALL);
}
saved_length = ciphertext->cd_length;
saved_offset = ciphertext->cd_offset;
/*
* Do an update on the specified input data.
*/
ret = aes_encrypt_update(ctx, plaintext, ciphertext, req);
if (ret != CRYPTO_SUCCESS) {
return (ret);
}
/*
* For CCM mode, aes_ccm_encrypt_final() will take care of any
* left-over unprocessed data, and compute the MAC
*/
if (aes_ctx->ac_flags & CCM_MODE) {
/*
* ccm_encrypt_final() will compute the MAC and append
* it to existing ciphertext. So, need to adjust the left over
* length value accordingly
*/
/* order of following 2 lines MUST not be reversed */
ciphertext->cd_offset = ciphertext->cd_length;
ciphertext->cd_length = saved_length - ciphertext->cd_length;
ret = ccm_encrypt_final((ccm_ctx_t *)aes_ctx, ciphertext,
AES_BLOCK_LEN, aes_encrypt_block, aes_xor_block);
if (ret != CRYPTO_SUCCESS) {
return (ret);
}
if (plaintext != ciphertext) {
ciphertext->cd_length =
ciphertext->cd_offset - saved_offset;
}
ciphertext->cd_offset = saved_offset;
} else if (aes_ctx->ac_flags & (GCM_MODE|GMAC_MODE)) {
/*
* gcm_encrypt_final() will compute the MAC and append
* it to existing ciphertext. So, need to adjust the left over
* length value accordingly
*/
/* order of following 2 lines MUST not be reversed */
ciphertext->cd_offset = ciphertext->cd_length;
ciphertext->cd_length = saved_length - ciphertext->cd_length;
ret = gcm_encrypt_final((gcm_ctx_t *)aes_ctx, ciphertext,
AES_BLOCK_LEN, aes_encrypt_block, aes_copy_block,
aes_xor_block);
if (ret != CRYPTO_SUCCESS) {
return (ret);
}
if (plaintext != ciphertext) {
ciphertext->cd_length =
ciphertext->cd_offset - saved_offset;
}
ciphertext->cd_offset = saved_offset;
}
ASSERT(aes_ctx->ac_remainder_len == 0);
(void) aes_free_context(ctx);
return (ret);
}
static int
aes_decrypt(crypto_ctx_t *ctx, crypto_data_t *ciphertext,
crypto_data_t *plaintext, crypto_req_handle_t req)
{
int ret = CRYPTO_FAILED;
aes_ctx_t *aes_ctx;
off_t saved_offset;
size_t saved_length, length_needed;
ASSERT(ctx->cc_provider_private != NULL);
aes_ctx = ctx->cc_provider_private;
/*
* For block ciphers, plaintext must be a multiple of AES block size.
* This test is only valid for ciphers whose blocksize is a power of 2.
*/
if (((aes_ctx->ac_flags & (CTR_MODE|CCM_MODE|GCM_MODE|GMAC_MODE))
== 0) && (ciphertext->cd_length & (AES_BLOCK_LEN - 1)) != 0) {
return (CRYPTO_ENCRYPTED_DATA_LEN_RANGE);
}
ASSERT(plaintext != NULL);
/*
* Return length needed to store the output.
* Do not destroy context when plaintext buffer is too small.
*
* CCM: plaintext is MAC len smaller than cipher text
* GCM: plaintext is TAG len smaller than cipher text
* GMAC: plaintext length must be zero
*/
switch (aes_ctx->ac_flags & (CCM_MODE|GCM_MODE|GMAC_MODE)) {
case CCM_MODE:
length_needed = aes_ctx->ac_processed_data_len;
break;
case GCM_MODE:
length_needed = ciphertext->cd_length - aes_ctx->ac_tag_len;
break;
case GMAC_MODE:
if (plaintext->cd_length != 0)
return (CRYPTO_ARGUMENTS_BAD);
length_needed = 0;
break;
default:
length_needed = ciphertext->cd_length;
}
if (plaintext->cd_length < length_needed) {
plaintext->cd_length = length_needed;
return (CRYPTO_BUFFER_TOO_SMALL);
}
saved_offset = plaintext->cd_offset;
saved_length = plaintext->cd_length;
/*
* Do an update on the specified input data.
*/
ret = aes_decrypt_update(ctx, ciphertext, plaintext, req);
if (ret != CRYPTO_SUCCESS) {
goto cleanup;
}
if (aes_ctx->ac_flags & CCM_MODE) {
ASSERT(aes_ctx->ac_processed_data_len == aes_ctx->ac_data_len);
ASSERT(aes_ctx->ac_processed_mac_len == aes_ctx->ac_mac_len);
/* order of following 2 lines MUST not be reversed */
plaintext->cd_offset = plaintext->cd_length;
plaintext->cd_length = saved_length - plaintext->cd_length;
ret = ccm_decrypt_final((ccm_ctx_t *)aes_ctx, plaintext,
AES_BLOCK_LEN, aes_encrypt_block, aes_copy_block,
aes_xor_block);
if (ret == CRYPTO_SUCCESS) {
if (plaintext != ciphertext) {
plaintext->cd_length =
plaintext->cd_offset - saved_offset;
}
} else {
plaintext->cd_length = saved_length;
}
plaintext->cd_offset = saved_offset;
} else if (aes_ctx->ac_flags & (GCM_MODE|GMAC_MODE)) {
/* order of following 2 lines MUST not be reversed */
plaintext->cd_offset = plaintext->cd_length;
plaintext->cd_length = saved_length - plaintext->cd_length;
ret = gcm_decrypt_final((gcm_ctx_t *)aes_ctx, plaintext,
AES_BLOCK_LEN, aes_encrypt_block, aes_xor_block);
if (ret == CRYPTO_SUCCESS) {
if (plaintext != ciphertext) {
plaintext->cd_length =
plaintext->cd_offset - saved_offset;
}
} else {
plaintext->cd_length = saved_length;
}
plaintext->cd_offset = saved_offset;
}
ASSERT(aes_ctx->ac_remainder_len == 0);
cleanup:
(void) aes_free_context(ctx);
return (ret);
}
static int
aes_encrypt_update(crypto_ctx_t *ctx, crypto_data_t *plaintext,
crypto_data_t *ciphertext, crypto_req_handle_t req)
{
(void) req;
off_t saved_offset;
size_t saved_length, out_len;
int ret = CRYPTO_SUCCESS;
aes_ctx_t *aes_ctx;
ASSERT(ctx->cc_provider_private != NULL);
aes_ctx = ctx->cc_provider_private;
ASSERT(ciphertext != NULL);
/* compute number of bytes that will hold the ciphertext */
out_len = aes_ctx->ac_remainder_len;
out_len += plaintext->cd_length;
out_len &= ~(AES_BLOCK_LEN - 1);
/* return length needed to store the output */
if (ciphertext->cd_length < out_len) {
ciphertext->cd_length = out_len;
return (CRYPTO_BUFFER_TOO_SMALL);
}
saved_offset = ciphertext->cd_offset;
saved_length = ciphertext->cd_length;
/*
* Do the AES update on the specified input data.
*/
switch (plaintext->cd_format) {
case CRYPTO_DATA_RAW:
ret = crypto_update_iov(ctx->cc_provider_private,
plaintext, ciphertext, aes_encrypt_contiguous_blocks,
aes_copy_block64);
break;
case CRYPTO_DATA_UIO:
ret = crypto_update_uio(ctx->cc_provider_private,
plaintext, ciphertext, aes_encrypt_contiguous_blocks,
aes_copy_block64);
break;
default:
ret = CRYPTO_ARGUMENTS_BAD;
}
/*
* Since AES counter mode is a stream cipher, we call
* ctr_mode_final() to pick up any remaining bytes.
* It is an internal function that does not destroy
* the context like *normal* final routines.
*/
if ((aes_ctx->ac_flags & CTR_MODE) && (aes_ctx->ac_remainder_len > 0)) {
ret = ctr_mode_final((ctr_ctx_t *)aes_ctx,
ciphertext, aes_encrypt_block);
}
if (ret == CRYPTO_SUCCESS) {
if (plaintext != ciphertext)
ciphertext->cd_length =
ciphertext->cd_offset - saved_offset;
} else {
ciphertext->cd_length = saved_length;
}
ciphertext->cd_offset = saved_offset;
return (ret);
}
static int
aes_decrypt_update(crypto_ctx_t *ctx, crypto_data_t *ciphertext,
crypto_data_t *plaintext, crypto_req_handle_t req)
{
off_t saved_offset;
size_t saved_length, out_len;
int ret = CRYPTO_SUCCESS;
aes_ctx_t *aes_ctx;
ASSERT(ctx->cc_provider_private != NULL);
aes_ctx = ctx->cc_provider_private;
ASSERT(plaintext != NULL);
/*
* Compute number of bytes that will hold the plaintext.
* This is not necessary for CCM, GCM, and GMAC since these
* mechanisms never return plaintext for update operations.
*/
if ((aes_ctx->ac_flags & (CCM_MODE|GCM_MODE|GMAC_MODE)) == 0) {
out_len = aes_ctx->ac_remainder_len;
out_len += ciphertext->cd_length;
out_len &= ~(AES_BLOCK_LEN - 1);
/* return length needed to store the output */
if (plaintext->cd_length < out_len) {
plaintext->cd_length = out_len;
return (CRYPTO_BUFFER_TOO_SMALL);
}
}
saved_offset = plaintext->cd_offset;
saved_length = plaintext->cd_length;
if (aes_ctx->ac_flags & (GCM_MODE|GMAC_MODE))
gcm_set_kmflag((gcm_ctx_t *)aes_ctx, crypto_kmflag(req));
/*
* Do the AES update on the specified input data.
*/
switch (ciphertext->cd_format) {
case CRYPTO_DATA_RAW:
ret = crypto_update_iov(ctx->cc_provider_private,
ciphertext, plaintext, aes_decrypt_contiguous_blocks,
aes_copy_block64);
break;
case CRYPTO_DATA_UIO:
ret = crypto_update_uio(ctx->cc_provider_private,
ciphertext, plaintext, aes_decrypt_contiguous_blocks,
aes_copy_block64);
break;
default:
ret = CRYPTO_ARGUMENTS_BAD;
}
/*
* Since AES counter mode is a stream cipher, we call
* ctr_mode_final() to pick up any remaining bytes.
* It is an internal function that does not destroy
* the context like *normal* final routines.
*/
if ((aes_ctx->ac_flags & CTR_MODE) && (aes_ctx->ac_remainder_len > 0)) {
ret = ctr_mode_final((ctr_ctx_t *)aes_ctx, plaintext,
aes_encrypt_block);
if (ret == CRYPTO_DATA_LEN_RANGE)
ret = CRYPTO_ENCRYPTED_DATA_LEN_RANGE;
}
if (ret == CRYPTO_SUCCESS) {
if (ciphertext != plaintext)
plaintext->cd_length =
plaintext->cd_offset - saved_offset;
} else {
plaintext->cd_length = saved_length;
}
plaintext->cd_offset = saved_offset;
return (ret);
}
static int
aes_encrypt_final(crypto_ctx_t *ctx, crypto_data_t *data,
crypto_req_handle_t req)
{
(void) req;
aes_ctx_t *aes_ctx;
int ret;
ASSERT(ctx->cc_provider_private != NULL);
aes_ctx = ctx->cc_provider_private;
if (data->cd_format != CRYPTO_DATA_RAW &&
data->cd_format != CRYPTO_DATA_UIO) {
return (CRYPTO_ARGUMENTS_BAD);
}
if (aes_ctx->ac_flags & CTR_MODE) {
if (aes_ctx->ac_remainder_len > 0) {
ret = ctr_mode_final((ctr_ctx_t *)aes_ctx, data,
aes_encrypt_block);
if (ret != CRYPTO_SUCCESS)
return (ret);
}
} else if (aes_ctx->ac_flags & CCM_MODE) {
ret = ccm_encrypt_final((ccm_ctx_t *)aes_ctx, data,
AES_BLOCK_LEN, aes_encrypt_block, aes_xor_block);
if (ret != CRYPTO_SUCCESS) {
return (ret);
}
} else if (aes_ctx->ac_flags & (GCM_MODE|GMAC_MODE)) {
size_t saved_offset = data->cd_offset;
ret = gcm_encrypt_final((gcm_ctx_t *)aes_ctx, data,
AES_BLOCK_LEN, aes_encrypt_block, aes_copy_block,
aes_xor_block);
if (ret != CRYPTO_SUCCESS) {
return (ret);
}
data->cd_length = data->cd_offset - saved_offset;
data->cd_offset = saved_offset;
} else {
/*
* There must be no unprocessed plaintext.
* This happens if the length of the last data is
* not a multiple of the AES block length.
*/
if (aes_ctx->ac_remainder_len > 0) {
return (CRYPTO_DATA_LEN_RANGE);
}
data->cd_length = 0;
}
(void) aes_free_context(ctx);
return (CRYPTO_SUCCESS);
}
static int
aes_decrypt_final(crypto_ctx_t *ctx, crypto_data_t *data,
crypto_req_handle_t req)
{
(void) req;
aes_ctx_t *aes_ctx;
int ret;
off_t saved_offset;
size_t saved_length;
ASSERT(ctx->cc_provider_private != NULL);
aes_ctx = ctx->cc_provider_private;
if (data->cd_format != CRYPTO_DATA_RAW &&
data->cd_format != CRYPTO_DATA_UIO) {
return (CRYPTO_ARGUMENTS_BAD);
}
/*
* There must be no unprocessed ciphertext.
* This happens if the length of the last ciphertext is
* not a multiple of the AES block length.
*/
if (aes_ctx->ac_remainder_len > 0) {
if ((aes_ctx->ac_flags & CTR_MODE) == 0)
return (CRYPTO_ENCRYPTED_DATA_LEN_RANGE);
else {
ret = ctr_mode_final((ctr_ctx_t *)aes_ctx, data,
aes_encrypt_block);
if (ret == CRYPTO_DATA_LEN_RANGE)
ret = CRYPTO_ENCRYPTED_DATA_LEN_RANGE;
if (ret != CRYPTO_SUCCESS)
return (ret);
}
}
if (aes_ctx->ac_flags & CCM_MODE) {
/*
* This is where all the plaintext is returned, make sure
* the plaintext buffer is big enough
*/
size_t pt_len = aes_ctx->ac_data_len;
if (data->cd_length < pt_len) {
data->cd_length = pt_len;
return (CRYPTO_BUFFER_TOO_SMALL);
}
ASSERT(aes_ctx->ac_processed_data_len == pt_len);
ASSERT(aes_ctx->ac_processed_mac_len == aes_ctx->ac_mac_len);
saved_offset = data->cd_offset;
saved_length = data->cd_length;
ret = ccm_decrypt_final((ccm_ctx_t *)aes_ctx, data,
AES_BLOCK_LEN, aes_encrypt_block, aes_copy_block,
aes_xor_block);
if (ret == CRYPTO_SUCCESS) {
data->cd_length = data->cd_offset - saved_offset;
} else {
data->cd_length = saved_length;
}
data->cd_offset = saved_offset;
if (ret != CRYPTO_SUCCESS) {
return (ret);
}
} else if (aes_ctx->ac_flags & (GCM_MODE|GMAC_MODE)) {
/*
* This is where all the plaintext is returned, make sure
* the plaintext buffer is big enough
*/
gcm_ctx_t *ctx = (gcm_ctx_t *)aes_ctx;
size_t pt_len = ctx->gcm_processed_data_len - ctx->gcm_tag_len;
if (data->cd_length < pt_len) {
data->cd_length = pt_len;
return (CRYPTO_BUFFER_TOO_SMALL);
}
saved_offset = data->cd_offset;
saved_length = data->cd_length;
ret = gcm_decrypt_final((gcm_ctx_t *)aes_ctx, data,
AES_BLOCK_LEN, aes_encrypt_block, aes_xor_block);
if (ret == CRYPTO_SUCCESS) {
data->cd_length = data->cd_offset - saved_offset;
} else {
data->cd_length = saved_length;
}
data->cd_offset = saved_offset;
if (ret != CRYPTO_SUCCESS) {
return (ret);
}
}
if ((aes_ctx->ac_flags & (CTR_MODE|CCM_MODE|GCM_MODE|GMAC_MODE)) == 0) {
data->cd_length = 0;
}
(void) aes_free_context(ctx);
return (CRYPTO_SUCCESS);
}
static int
aes_encrypt_atomic(crypto_provider_handle_t provider,
crypto_session_id_t session_id, crypto_mechanism_t *mechanism,
crypto_key_t *key, crypto_data_t *plaintext, crypto_data_t *ciphertext,
crypto_spi_ctx_template_t template, crypto_req_handle_t req)
{
(void) provider, (void) session_id;
aes_ctx_t aes_ctx; /* on the stack */
off_t saved_offset;
size_t saved_length;
size_t length_needed;
int ret;
ASSERT(ciphertext != NULL);
/*
* CTR, CCM, GCM, and GMAC modes do not require that plaintext
* be a multiple of AES block size.
*/
switch (mechanism->cm_type) {
case AES_CTR_MECH_INFO_TYPE:
case AES_CCM_MECH_INFO_TYPE:
case AES_GCM_MECH_INFO_TYPE:
case AES_GMAC_MECH_INFO_TYPE:
break;
default:
if ((plaintext->cd_length & (AES_BLOCK_LEN - 1)) != 0)
return (CRYPTO_DATA_LEN_RANGE);
}
if ((ret = aes_check_mech_param(mechanism, NULL, 0)) != CRYPTO_SUCCESS)
return (ret);
bzero(&aes_ctx, sizeof (aes_ctx_t));
ret = aes_common_init_ctx(&aes_ctx, template, mechanism, key,
crypto_kmflag(req), B_TRUE);
if (ret != CRYPTO_SUCCESS)
return (ret);
switch (mechanism->cm_type) {
case AES_CCM_MECH_INFO_TYPE:
length_needed = plaintext->cd_length + aes_ctx.ac_mac_len;
break;
case AES_GMAC_MECH_INFO_TYPE:
if (plaintext->cd_length != 0)
return (CRYPTO_ARGUMENTS_BAD);
zfs_fallthrough;
case AES_GCM_MECH_INFO_TYPE:
length_needed = plaintext->cd_length + aes_ctx.ac_tag_len;
break;
default:
length_needed = plaintext->cd_length;
}
/* return size of buffer needed to store output */
if (ciphertext->cd_length < length_needed) {
ciphertext->cd_length = length_needed;
ret = CRYPTO_BUFFER_TOO_SMALL;
goto out;
}
saved_offset = ciphertext->cd_offset;
saved_length = ciphertext->cd_length;
/*
* Do an update on the specified input data.
*/
switch (plaintext->cd_format) {
case CRYPTO_DATA_RAW:
ret = crypto_update_iov(&aes_ctx, plaintext, ciphertext,
aes_encrypt_contiguous_blocks, aes_copy_block64);
break;
case CRYPTO_DATA_UIO:
ret = crypto_update_uio(&aes_ctx, plaintext, ciphertext,
aes_encrypt_contiguous_blocks, aes_copy_block64);
break;
default:
ret = CRYPTO_ARGUMENTS_BAD;
}
if (ret == CRYPTO_SUCCESS) {
if (mechanism->cm_type == AES_CCM_MECH_INFO_TYPE) {
ret = ccm_encrypt_final((ccm_ctx_t *)&aes_ctx,
ciphertext, AES_BLOCK_LEN, aes_encrypt_block,
aes_xor_block);
if (ret != CRYPTO_SUCCESS)
goto out;
ASSERT(aes_ctx.ac_remainder_len == 0);
} else if (mechanism->cm_type == AES_GCM_MECH_INFO_TYPE ||
mechanism->cm_type == AES_GMAC_MECH_INFO_TYPE) {
ret = gcm_encrypt_final((gcm_ctx_t *)&aes_ctx,
ciphertext, AES_BLOCK_LEN, aes_encrypt_block,
aes_copy_block, aes_xor_block);
if (ret != CRYPTO_SUCCESS)
goto out;
ASSERT(aes_ctx.ac_remainder_len == 0);
} else if (mechanism->cm_type == AES_CTR_MECH_INFO_TYPE) {
if (aes_ctx.ac_remainder_len > 0) {
ret = ctr_mode_final((ctr_ctx_t *)&aes_ctx,
ciphertext, aes_encrypt_block);
if (ret != CRYPTO_SUCCESS)
goto out;
}
} else {
ASSERT(aes_ctx.ac_remainder_len == 0);
}
if (plaintext != ciphertext) {
ciphertext->cd_length =
ciphertext->cd_offset - saved_offset;
}
} else {
ciphertext->cd_length = saved_length;
}
ciphertext->cd_offset = saved_offset;
out:
if (aes_ctx.ac_flags & PROVIDER_OWNS_KEY_SCHEDULE) {
bzero(aes_ctx.ac_keysched, aes_ctx.ac_keysched_len);
kmem_free(aes_ctx.ac_keysched, aes_ctx.ac_keysched_len);
}
#ifdef CAN_USE_GCM_ASM
if (aes_ctx.ac_flags & (GCM_MODE|GMAC_MODE) &&
((gcm_ctx_t *)&aes_ctx)->gcm_Htable != NULL) {
gcm_ctx_t *ctx = (gcm_ctx_t *)&aes_ctx;
bzero(ctx->gcm_Htable, ctx->gcm_htab_len);
kmem_free(ctx->gcm_Htable, ctx->gcm_htab_len);
}
#endif
return (ret);
}
static int
aes_decrypt_atomic(crypto_provider_handle_t provider,
crypto_session_id_t session_id, crypto_mechanism_t *mechanism,
crypto_key_t *key, crypto_data_t *ciphertext, crypto_data_t *plaintext,
crypto_spi_ctx_template_t template, crypto_req_handle_t req)
{
(void) provider, (void) session_id;
aes_ctx_t aes_ctx; /* on the stack */
off_t saved_offset;
size_t saved_length;
size_t length_needed;
int ret;
ASSERT(plaintext != NULL);
/*
* CCM, GCM, CTR, and GMAC modes do not require that ciphertext
* be a multiple of AES block size.
*/
switch (mechanism->cm_type) {
case AES_CTR_MECH_INFO_TYPE:
case AES_CCM_MECH_INFO_TYPE:
case AES_GCM_MECH_INFO_TYPE:
case AES_GMAC_MECH_INFO_TYPE:
break;
default:
if ((ciphertext->cd_length & (AES_BLOCK_LEN - 1)) != 0)
return (CRYPTO_ENCRYPTED_DATA_LEN_RANGE);
}
if ((ret = aes_check_mech_param(mechanism, NULL, 0)) != CRYPTO_SUCCESS)
return (ret);
bzero(&aes_ctx, sizeof (aes_ctx_t));
ret = aes_common_init_ctx(&aes_ctx, template, mechanism, key,
crypto_kmflag(req), B_FALSE);
if (ret != CRYPTO_SUCCESS)
return (ret);
switch (mechanism->cm_type) {
case AES_CCM_MECH_INFO_TYPE:
length_needed = aes_ctx.ac_data_len;
break;
case AES_GCM_MECH_INFO_TYPE:
length_needed = ciphertext->cd_length - aes_ctx.ac_tag_len;
break;
case AES_GMAC_MECH_INFO_TYPE:
if (plaintext->cd_length != 0)
return (CRYPTO_ARGUMENTS_BAD);
length_needed = 0;
break;
default:
length_needed = ciphertext->cd_length;
}
/* return size of buffer needed to store output */
if (plaintext->cd_length < length_needed) {
plaintext->cd_length = length_needed;
ret = CRYPTO_BUFFER_TOO_SMALL;
goto out;
}
saved_offset = plaintext->cd_offset;
saved_length = plaintext->cd_length;
if (mechanism->cm_type == AES_GCM_MECH_INFO_TYPE ||
mechanism->cm_type == AES_GMAC_MECH_INFO_TYPE)
gcm_set_kmflag((gcm_ctx_t *)&aes_ctx, crypto_kmflag(req));
/*
* Do an update on the specified input data.
*/
switch (ciphertext->cd_format) {
case CRYPTO_DATA_RAW:
ret = crypto_update_iov(&aes_ctx, ciphertext, plaintext,
aes_decrypt_contiguous_blocks, aes_copy_block64);
break;
case CRYPTO_DATA_UIO:
ret = crypto_update_uio(&aes_ctx, ciphertext, plaintext,
aes_decrypt_contiguous_blocks, aes_copy_block64);
break;
default:
ret = CRYPTO_ARGUMENTS_BAD;
}
if (ret == CRYPTO_SUCCESS) {
if (mechanism->cm_type == AES_CCM_MECH_INFO_TYPE) {
ASSERT(aes_ctx.ac_processed_data_len
== aes_ctx.ac_data_len);
ASSERT(aes_ctx.ac_processed_mac_len
== aes_ctx.ac_mac_len);
ret = ccm_decrypt_final((ccm_ctx_t *)&aes_ctx,
plaintext, AES_BLOCK_LEN, aes_encrypt_block,
aes_copy_block, aes_xor_block);
ASSERT(aes_ctx.ac_remainder_len == 0);
if ((ret == CRYPTO_SUCCESS) &&
(ciphertext != plaintext)) {
plaintext->cd_length =
plaintext->cd_offset - saved_offset;
} else {
plaintext->cd_length = saved_length;
}
} else if (mechanism->cm_type == AES_GCM_MECH_INFO_TYPE ||
mechanism->cm_type == AES_GMAC_MECH_INFO_TYPE) {
ret = gcm_decrypt_final((gcm_ctx_t *)&aes_ctx,
plaintext, AES_BLOCK_LEN, aes_encrypt_block,
aes_xor_block);
ASSERT(aes_ctx.ac_remainder_len == 0);
if ((ret == CRYPTO_SUCCESS) &&
(ciphertext != plaintext)) {
plaintext->cd_length =
plaintext->cd_offset - saved_offset;
} else {
plaintext->cd_length = saved_length;
}
} else if (mechanism->cm_type != AES_CTR_MECH_INFO_TYPE) {
ASSERT(aes_ctx.ac_remainder_len == 0);
if (ciphertext != plaintext)
plaintext->cd_length =
plaintext->cd_offset - saved_offset;
} else {
if (aes_ctx.ac_remainder_len > 0) {
ret = ctr_mode_final((ctr_ctx_t *)&aes_ctx,
plaintext, aes_encrypt_block);
if (ret == CRYPTO_DATA_LEN_RANGE)
ret = CRYPTO_ENCRYPTED_DATA_LEN_RANGE;
if (ret != CRYPTO_SUCCESS)
goto out;
}
if (ciphertext != plaintext)
plaintext->cd_length =
plaintext->cd_offset - saved_offset;
}
} else {
plaintext->cd_length = saved_length;
}
plaintext->cd_offset = saved_offset;
out:
if (aes_ctx.ac_flags & PROVIDER_OWNS_KEY_SCHEDULE) {
bzero(aes_ctx.ac_keysched, aes_ctx.ac_keysched_len);
kmem_free(aes_ctx.ac_keysched, aes_ctx.ac_keysched_len);
}
if (aes_ctx.ac_flags & CCM_MODE) {
if (aes_ctx.ac_pt_buf != NULL) {
vmem_free(aes_ctx.ac_pt_buf, aes_ctx.ac_data_len);
}
} else if (aes_ctx.ac_flags & (GCM_MODE|GMAC_MODE)) {
if (((gcm_ctx_t *)&aes_ctx)->gcm_pt_buf != NULL) {
vmem_free(((gcm_ctx_t *)&aes_ctx)->gcm_pt_buf,
((gcm_ctx_t *)&aes_ctx)->gcm_pt_buf_len);
}
#ifdef CAN_USE_GCM_ASM
if (((gcm_ctx_t *)&aes_ctx)->gcm_Htable != NULL) {
gcm_ctx_t *ctx = (gcm_ctx_t *)&aes_ctx;
bzero(ctx->gcm_Htable, ctx->gcm_htab_len);
kmem_free(ctx->gcm_Htable, ctx->gcm_htab_len);
}
#endif
}
return (ret);
}
/*
* KCF software provider context template entry points.
*/
static int
aes_create_ctx_template(crypto_provider_handle_t provider,
crypto_mechanism_t *mechanism, crypto_key_t *key,
crypto_spi_ctx_template_t *tmpl, size_t *tmpl_size, crypto_req_handle_t req)
{
(void) provider;
void *keysched;
size_t size;
int rv;
if (mechanism->cm_type != AES_ECB_MECH_INFO_TYPE &&
mechanism->cm_type != AES_CBC_MECH_INFO_TYPE &&
mechanism->cm_type != AES_CTR_MECH_INFO_TYPE &&
mechanism->cm_type != AES_CCM_MECH_INFO_TYPE &&
mechanism->cm_type != AES_GCM_MECH_INFO_TYPE &&
mechanism->cm_type != AES_GMAC_MECH_INFO_TYPE)
return (CRYPTO_MECHANISM_INVALID);
if ((keysched = aes_alloc_keysched(&size,
crypto_kmflag(req))) == NULL) {
return (CRYPTO_HOST_MEMORY);
}
/*
* Initialize key schedule. Key length information is stored
* in the key.
*/
if ((rv = init_keysched(key, keysched)) != CRYPTO_SUCCESS) {
bzero(keysched, size);
kmem_free(keysched, size);
return (rv);
}
*tmpl = keysched;
*tmpl_size = size;
return (CRYPTO_SUCCESS);
}
static int
aes_free_context(crypto_ctx_t *ctx)
{
aes_ctx_t *aes_ctx = ctx->cc_provider_private;
if (aes_ctx != NULL) {
if (aes_ctx->ac_flags & PROVIDER_OWNS_KEY_SCHEDULE) {
ASSERT(aes_ctx->ac_keysched_len != 0);
bzero(aes_ctx->ac_keysched, aes_ctx->ac_keysched_len);
kmem_free(aes_ctx->ac_keysched,
aes_ctx->ac_keysched_len);
}
crypto_free_mode_ctx(aes_ctx);
ctx->cc_provider_private = NULL;
}
return (CRYPTO_SUCCESS);
}
static int
aes_common_init_ctx(aes_ctx_t *aes_ctx, crypto_spi_ctx_template_t *template,
crypto_mechanism_t *mechanism, crypto_key_t *key, int kmflag,
boolean_t is_encrypt_init)
{
int rv = CRYPTO_SUCCESS;
void *keysched;
size_t size = 0;
if (template == NULL) {
if ((keysched = aes_alloc_keysched(&size, kmflag)) == NULL)
return (CRYPTO_HOST_MEMORY);
/*
* Initialize key schedule.
* Key length is stored in the key.
*/
if ((rv = init_keysched(key, keysched)) != CRYPTO_SUCCESS) {
kmem_free(keysched, size);
return (rv);
}
aes_ctx->ac_flags |= PROVIDER_OWNS_KEY_SCHEDULE;
aes_ctx->ac_keysched_len = size;
} else {
keysched = template;
}
aes_ctx->ac_keysched = keysched;
switch (mechanism->cm_type) {
case AES_CBC_MECH_INFO_TYPE:
rv = cbc_init_ctx((cbc_ctx_t *)aes_ctx, mechanism->cm_param,
mechanism->cm_param_len, AES_BLOCK_LEN, aes_copy_block64);
break;
case AES_CTR_MECH_INFO_TYPE: {
CK_AES_CTR_PARAMS *pp;
if (mechanism->cm_param == NULL ||
mechanism->cm_param_len != sizeof (CK_AES_CTR_PARAMS)) {
return (CRYPTO_MECHANISM_PARAM_INVALID);
}
pp = (CK_AES_CTR_PARAMS *)(void *)mechanism->cm_param;
rv = ctr_init_ctx((ctr_ctx_t *)aes_ctx, pp->ulCounterBits,
pp->cb, aes_copy_block);
break;
}
case AES_CCM_MECH_INFO_TYPE:
if (mechanism->cm_param == NULL ||
mechanism->cm_param_len != sizeof (CK_AES_CCM_PARAMS)) {
return (CRYPTO_MECHANISM_PARAM_INVALID);
}
rv = ccm_init_ctx((ccm_ctx_t *)aes_ctx, mechanism->cm_param,
kmflag, is_encrypt_init, AES_BLOCK_LEN, aes_encrypt_block,
aes_xor_block);
break;
case AES_GCM_MECH_INFO_TYPE:
if (mechanism->cm_param == NULL ||
mechanism->cm_param_len != sizeof (CK_AES_GCM_PARAMS)) {
return (CRYPTO_MECHANISM_PARAM_INVALID);
}
rv = gcm_init_ctx((gcm_ctx_t *)aes_ctx, mechanism->cm_param,
AES_BLOCK_LEN, aes_encrypt_block, aes_copy_block,
aes_xor_block);
break;
case AES_GMAC_MECH_INFO_TYPE:
if (mechanism->cm_param == NULL ||
mechanism->cm_param_len != sizeof (CK_AES_GMAC_PARAMS)) {
return (CRYPTO_MECHANISM_PARAM_INVALID);
}
rv = gmac_init_ctx((gcm_ctx_t *)aes_ctx, mechanism->cm_param,
AES_BLOCK_LEN, aes_encrypt_block, aes_copy_block,
aes_xor_block);
break;
case AES_ECB_MECH_INFO_TYPE:
aes_ctx->ac_flags |= ECB_MODE;
}
if (rv != CRYPTO_SUCCESS) {
if (aes_ctx->ac_flags & PROVIDER_OWNS_KEY_SCHEDULE) {
bzero(keysched, size);
kmem_free(keysched, size);
}
}
return (rv);
}
static int
process_gmac_mech(crypto_mechanism_t *mech, crypto_data_t *data,
CK_AES_GCM_PARAMS *gcm_params)
{
/* LINTED: pointer alignment */
CK_AES_GMAC_PARAMS *params = (CK_AES_GMAC_PARAMS *)mech->cm_param;
if (mech->cm_type != AES_GMAC_MECH_INFO_TYPE)
return (CRYPTO_MECHANISM_INVALID);
if (mech->cm_param_len != sizeof (CK_AES_GMAC_PARAMS))
return (CRYPTO_MECHANISM_PARAM_INVALID);
if (params->pIv == NULL)
return (CRYPTO_MECHANISM_PARAM_INVALID);
gcm_params->pIv = params->pIv;
gcm_params->ulIvLen = AES_GMAC_IV_LEN;
gcm_params->ulTagBits = AES_GMAC_TAG_BITS;
if (data == NULL)
return (CRYPTO_SUCCESS);
if (data->cd_format != CRYPTO_DATA_RAW)
return (CRYPTO_ARGUMENTS_BAD);
gcm_params->pAAD = (uchar_t *)data->cd_raw.iov_base;
gcm_params->ulAADLen = data->cd_length;
return (CRYPTO_SUCCESS);
}
static int
aes_mac_atomic(crypto_provider_handle_t provider,
crypto_session_id_t session_id, crypto_mechanism_t *mechanism,
crypto_key_t *key, crypto_data_t *data, crypto_data_t *mac,
crypto_spi_ctx_template_t template, crypto_req_handle_t req)
{
CK_AES_GCM_PARAMS gcm_params;
crypto_mechanism_t gcm_mech;
int rv;
if ((rv = process_gmac_mech(mechanism, data, &gcm_params))
!= CRYPTO_SUCCESS)
return (rv);
gcm_mech.cm_type = AES_GCM_MECH_INFO_TYPE;
gcm_mech.cm_param_len = sizeof (CK_AES_GCM_PARAMS);
gcm_mech.cm_param = (char *)&gcm_params;
return (aes_encrypt_atomic(provider, session_id, &gcm_mech,
key, &null_crypto_data, mac, template, req));
}
static int
aes_mac_verify_atomic(crypto_provider_handle_t provider,
crypto_session_id_t session_id, crypto_mechanism_t *mechanism,
crypto_key_t *key, crypto_data_t *data, crypto_data_t *mac,
crypto_spi_ctx_template_t template, crypto_req_handle_t req)
{
CK_AES_GCM_PARAMS gcm_params;
crypto_mechanism_t gcm_mech;
int rv;
if ((rv = process_gmac_mech(mechanism, data, &gcm_params))
!= CRYPTO_SUCCESS)
return (rv);
gcm_mech.cm_type = AES_GCM_MECH_INFO_TYPE;
gcm_mech.cm_param_len = sizeof (CK_AES_GCM_PARAMS);
gcm_mech.cm_param = (char *)&gcm_params;
return (aes_decrypt_atomic(provider, session_id, &gcm_mech,
key, mac, &null_crypto_data, template, req));
}