1799 lines
51 KiB
C
1799 lines
51 KiB
C
/*
|
|
* Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC.
|
|
* Copyright (C) 2007 The Regents of the University of California.
|
|
* Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
|
|
* Written by Brian Behlendorf <behlendorf1@llnl.gov>.
|
|
* UCRL-CODE-235197
|
|
*
|
|
* This file is part of the SPL, Solaris Porting Layer.
|
|
* For details, see <http://zfsonlinux.org/>.
|
|
*
|
|
* The SPL is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License as published by the
|
|
* Free Software Foundation; either version 2 of the License, or (at your
|
|
* option) any later version.
|
|
*
|
|
* The SPL is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with the SPL. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <sys/kmem.h>
|
|
#include <sys/kmem_cache.h>
|
|
#include <sys/shrinker.h>
|
|
#include <sys/taskq.h>
|
|
#include <sys/timer.h>
|
|
#include <sys/vmem.h>
|
|
#include <sys/wait.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/prefetch.h>
|
|
|
|
/*
|
|
* Within the scope of spl-kmem.c file the kmem_cache_* definitions
|
|
* are removed to allow access to the real Linux slab allocator.
|
|
*/
|
|
#undef kmem_cache_destroy
|
|
#undef kmem_cache_create
|
|
#undef kmem_cache_alloc
|
|
#undef kmem_cache_free
|
|
|
|
|
|
/*
|
|
* Linux 3.16 replaced smp_mb__{before,after}_{atomic,clear}_{dec,inc,bit}()
|
|
* with smp_mb__{before,after}_atomic() because they were redundant. This is
|
|
* only used inside our SLAB allocator, so we implement an internal wrapper
|
|
* here to give us smp_mb__{before,after}_atomic() on older kernels.
|
|
*/
|
|
#ifndef smp_mb__before_atomic
|
|
#define smp_mb__before_atomic(x) smp_mb__before_clear_bit(x)
|
|
#endif
|
|
|
|
#ifndef smp_mb__after_atomic
|
|
#define smp_mb__after_atomic(x) smp_mb__after_clear_bit(x)
|
|
#endif
|
|
|
|
/*
|
|
* Cache expiration was implemented because it was part of the default Solaris
|
|
* kmem_cache behavior. The idea is that per-cpu objects which haven't been
|
|
* accessed in several seconds should be returned to the cache. On the other
|
|
* hand Linux slabs never move objects back to the slabs unless there is
|
|
* memory pressure on the system. By default the Linux method is enabled
|
|
* because it has been shown to improve responsiveness on low memory systems.
|
|
* This policy may be changed by setting KMC_EXPIRE_AGE or KMC_EXPIRE_MEM.
|
|
*/
|
|
/* BEGIN CSTYLED */
|
|
unsigned int spl_kmem_cache_expire = KMC_EXPIRE_MEM;
|
|
EXPORT_SYMBOL(spl_kmem_cache_expire);
|
|
module_param(spl_kmem_cache_expire, uint, 0644);
|
|
MODULE_PARM_DESC(spl_kmem_cache_expire, "By age (0x1) or low memory (0x2)");
|
|
|
|
/*
|
|
* Cache magazines are an optimization designed to minimize the cost of
|
|
* allocating memory. They do this by keeping a per-cpu cache of recently
|
|
* freed objects, which can then be reallocated without taking a lock. This
|
|
* can improve performance on highly contended caches. However, because
|
|
* objects in magazines will prevent otherwise empty slabs from being
|
|
* immediately released this may not be ideal for low memory machines.
|
|
*
|
|
* For this reason spl_kmem_cache_magazine_size can be used to set a maximum
|
|
* magazine size. When this value is set to 0 the magazine size will be
|
|
* automatically determined based on the object size. Otherwise magazines
|
|
* will be limited to 2-256 objects per magazine (i.e per cpu). Magazines
|
|
* may never be entirely disabled in this implementation.
|
|
*/
|
|
unsigned int spl_kmem_cache_magazine_size = 0;
|
|
module_param(spl_kmem_cache_magazine_size, uint, 0444);
|
|
MODULE_PARM_DESC(spl_kmem_cache_magazine_size,
|
|
"Default magazine size (2-256), set automatically (0)");
|
|
|
|
/*
|
|
* The default behavior is to report the number of objects remaining in the
|
|
* cache. This allows the Linux VM to repeatedly reclaim objects from the
|
|
* cache when memory is low satisfy other memory allocations. Alternately,
|
|
* setting this value to KMC_RECLAIM_ONCE limits how aggressively the cache
|
|
* is reclaimed. This may increase the likelihood of out of memory events.
|
|
*/
|
|
unsigned int spl_kmem_cache_reclaim = 0 /* KMC_RECLAIM_ONCE */;
|
|
module_param(spl_kmem_cache_reclaim, uint, 0644);
|
|
MODULE_PARM_DESC(spl_kmem_cache_reclaim, "Single reclaim pass (0x1)");
|
|
|
|
unsigned int spl_kmem_cache_obj_per_slab = SPL_KMEM_CACHE_OBJ_PER_SLAB;
|
|
module_param(spl_kmem_cache_obj_per_slab, uint, 0644);
|
|
MODULE_PARM_DESC(spl_kmem_cache_obj_per_slab, "Number of objects per slab");
|
|
|
|
unsigned int spl_kmem_cache_obj_per_slab_min = SPL_KMEM_CACHE_OBJ_PER_SLAB_MIN;
|
|
module_param(spl_kmem_cache_obj_per_slab_min, uint, 0644);
|
|
MODULE_PARM_DESC(spl_kmem_cache_obj_per_slab_min,
|
|
"Minimal number of objects per slab");
|
|
|
|
unsigned int spl_kmem_cache_max_size = SPL_KMEM_CACHE_MAX_SIZE;
|
|
module_param(spl_kmem_cache_max_size, uint, 0644);
|
|
MODULE_PARM_DESC(spl_kmem_cache_max_size, "Maximum size of slab in MB");
|
|
|
|
/*
|
|
* For small objects the Linux slab allocator should be used to make the most
|
|
* efficient use of the memory. However, large objects are not supported by
|
|
* the Linux slab and therefore the SPL implementation is preferred. A cutoff
|
|
* of 16K was determined to be optimal for architectures using 4K pages.
|
|
*/
|
|
#if PAGE_SIZE == 4096
|
|
unsigned int spl_kmem_cache_slab_limit = 16384;
|
|
#else
|
|
unsigned int spl_kmem_cache_slab_limit = 0;
|
|
#endif
|
|
module_param(spl_kmem_cache_slab_limit, uint, 0644);
|
|
MODULE_PARM_DESC(spl_kmem_cache_slab_limit,
|
|
"Objects less than N bytes use the Linux slab");
|
|
|
|
/*
|
|
* This value defaults to a threshold designed to avoid allocations which
|
|
* have been deemed costly by the kernel.
|
|
*/
|
|
unsigned int spl_kmem_cache_kmem_limit =
|
|
((1 << (PAGE_ALLOC_COSTLY_ORDER - 1)) * PAGE_SIZE) /
|
|
SPL_KMEM_CACHE_OBJ_PER_SLAB;
|
|
module_param(spl_kmem_cache_kmem_limit, uint, 0644);
|
|
MODULE_PARM_DESC(spl_kmem_cache_kmem_limit,
|
|
"Objects less than N bytes use the kmalloc");
|
|
|
|
/*
|
|
* The number of threads available to allocate new slabs for caches. This
|
|
* should not need to be tuned but it is available for performance analysis.
|
|
*/
|
|
unsigned int spl_kmem_cache_kmem_threads = 4;
|
|
module_param(spl_kmem_cache_kmem_threads, uint, 0444);
|
|
MODULE_PARM_DESC(spl_kmem_cache_kmem_threads,
|
|
"Number of spl_kmem_cache threads");
|
|
/* END CSTYLED */
|
|
|
|
/*
|
|
* Slab allocation interfaces
|
|
*
|
|
* While the Linux slab implementation was inspired by the Solaris
|
|
* implementation I cannot use it to emulate the Solaris APIs. I
|
|
* require two features which are not provided by the Linux slab.
|
|
*
|
|
* 1) Constructors AND destructors. Recent versions of the Linux
|
|
* kernel have removed support for destructors. This is a deal
|
|
* breaker for the SPL which contains particularly expensive
|
|
* initializers for mutex's, condition variables, etc. We also
|
|
* require a minimal level of cleanup for these data types unlike
|
|
* many Linux data types which do need to be explicitly destroyed.
|
|
*
|
|
* 2) Virtual address space backed slab. Callers of the Solaris slab
|
|
* expect it to work well for both small are very large allocations.
|
|
* Because of memory fragmentation the Linux slab which is backed
|
|
* by kmalloc'ed memory performs very badly when confronted with
|
|
* large numbers of large allocations. Basing the slab on the
|
|
* virtual address space removes the need for contiguous pages
|
|
* and greatly improve performance for large allocations.
|
|
*
|
|
* For these reasons, the SPL has its own slab implementation with
|
|
* the needed features. It is not as highly optimized as either the
|
|
* Solaris or Linux slabs, but it should get me most of what is
|
|
* needed until it can be optimized or obsoleted by another approach.
|
|
*
|
|
* One serious concern I do have about this method is the relatively
|
|
* small virtual address space on 32bit arches. This will seriously
|
|
* constrain the size of the slab caches and their performance.
|
|
*/
|
|
|
|
struct list_head spl_kmem_cache_list; /* List of caches */
|
|
struct rw_semaphore spl_kmem_cache_sem; /* Cache list lock */
|
|
taskq_t *spl_kmem_cache_taskq; /* Task queue for aging / reclaim */
|
|
|
|
static void spl_cache_shrink(spl_kmem_cache_t *skc, void *obj);
|
|
|
|
SPL_SHRINKER_CALLBACK_FWD_DECLARE(spl_kmem_cache_generic_shrinker);
|
|
SPL_SHRINKER_DECLARE(spl_kmem_cache_shrinker,
|
|
spl_kmem_cache_generic_shrinker, KMC_DEFAULT_SEEKS);
|
|
|
|
static void *
|
|
kv_alloc(spl_kmem_cache_t *skc, int size, int flags)
|
|
{
|
|
gfp_t lflags = kmem_flags_convert(flags);
|
|
void *ptr;
|
|
|
|
if (skc->skc_flags & KMC_KMEM) {
|
|
ASSERT(ISP2(size));
|
|
ptr = (void *)__get_free_pages(lflags, get_order(size));
|
|
} else {
|
|
ptr = __vmalloc(size, lflags | __GFP_HIGHMEM, PAGE_KERNEL);
|
|
}
|
|
|
|
/* Resulting allocated memory will be page aligned */
|
|
ASSERT(IS_P2ALIGNED(ptr, PAGE_SIZE));
|
|
|
|
return (ptr);
|
|
}
|
|
|
|
static void
|
|
kv_free(spl_kmem_cache_t *skc, void *ptr, int size)
|
|
{
|
|
ASSERT(IS_P2ALIGNED(ptr, PAGE_SIZE));
|
|
|
|
/*
|
|
* The Linux direct reclaim path uses this out of band value to
|
|
* determine if forward progress is being made. Normally this is
|
|
* incremented by kmem_freepages() which is part of the various
|
|
* Linux slab implementations. However, since we are using none
|
|
* of that infrastructure we are responsible for incrementing it.
|
|
*/
|
|
if (current->reclaim_state)
|
|
current->reclaim_state->reclaimed_slab += size >> PAGE_SHIFT;
|
|
|
|
if (skc->skc_flags & KMC_KMEM) {
|
|
ASSERT(ISP2(size));
|
|
free_pages((unsigned long)ptr, get_order(size));
|
|
} else {
|
|
vfree(ptr);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Required space for each aligned sks.
|
|
*/
|
|
static inline uint32_t
|
|
spl_sks_size(spl_kmem_cache_t *skc)
|
|
{
|
|
return (P2ROUNDUP_TYPED(sizeof (spl_kmem_slab_t),
|
|
skc->skc_obj_align, uint32_t));
|
|
}
|
|
|
|
/*
|
|
* Required space for each aligned object.
|
|
*/
|
|
static inline uint32_t
|
|
spl_obj_size(spl_kmem_cache_t *skc)
|
|
{
|
|
uint32_t align = skc->skc_obj_align;
|
|
|
|
return (P2ROUNDUP_TYPED(skc->skc_obj_size, align, uint32_t) +
|
|
P2ROUNDUP_TYPED(sizeof (spl_kmem_obj_t), align, uint32_t));
|
|
}
|
|
|
|
/*
|
|
* Lookup the spl_kmem_object_t for an object given that object.
|
|
*/
|
|
static inline spl_kmem_obj_t *
|
|
spl_sko_from_obj(spl_kmem_cache_t *skc, void *obj)
|
|
{
|
|
return (obj + P2ROUNDUP_TYPED(skc->skc_obj_size,
|
|
skc->skc_obj_align, uint32_t));
|
|
}
|
|
|
|
/*
|
|
* Required space for each offslab object taking in to account alignment
|
|
* restrictions and the power-of-two requirement of kv_alloc().
|
|
*/
|
|
static inline uint32_t
|
|
spl_offslab_size(spl_kmem_cache_t *skc)
|
|
{
|
|
return (1UL << (fls64(spl_obj_size(skc)) + 1));
|
|
}
|
|
|
|
/*
|
|
* It's important that we pack the spl_kmem_obj_t structure and the
|
|
* actual objects in to one large address space to minimize the number
|
|
* of calls to the allocator. It is far better to do a few large
|
|
* allocations and then subdivide it ourselves. Now which allocator
|
|
* we use requires balancing a few trade offs.
|
|
*
|
|
* For small objects we use kmem_alloc() because as long as you are
|
|
* only requesting a small number of pages (ideally just one) its cheap.
|
|
* However, when you start requesting multiple pages with kmem_alloc()
|
|
* it gets increasingly expensive since it requires contiguous pages.
|
|
* For this reason we shift to vmem_alloc() for slabs of large objects
|
|
* which removes the need for contiguous pages. We do not use
|
|
* vmem_alloc() in all cases because there is significant locking
|
|
* overhead in __get_vm_area_node(). This function takes a single
|
|
* global lock when acquiring an available virtual address range which
|
|
* serializes all vmem_alloc()'s for all slab caches. Using slightly
|
|
* different allocation functions for small and large objects should
|
|
* give us the best of both worlds.
|
|
*
|
|
* KMC_ONSLAB KMC_OFFSLAB
|
|
*
|
|
* +------------------------+ +-----------------+
|
|
* | spl_kmem_slab_t --+-+ | | spl_kmem_slab_t |---+-+
|
|
* | skc_obj_size <-+ | | +-----------------+ | |
|
|
* | spl_kmem_obj_t | | | |
|
|
* | skc_obj_size <---+ | +-----------------+ | |
|
|
* | spl_kmem_obj_t | | | skc_obj_size | <-+ |
|
|
* | ... v | | spl_kmem_obj_t | |
|
|
* +------------------------+ +-----------------+ v
|
|
*/
|
|
static spl_kmem_slab_t *
|
|
spl_slab_alloc(spl_kmem_cache_t *skc, int flags)
|
|
{
|
|
spl_kmem_slab_t *sks;
|
|
spl_kmem_obj_t *sko;
|
|
void *base, *obj;
|
|
uint32_t obj_size, offslab_size = 0;
|
|
int i, rc = 0;
|
|
|
|
base = kv_alloc(skc, skc->skc_slab_size, flags);
|
|
if (base == NULL)
|
|
return (NULL);
|
|
|
|
sks = (spl_kmem_slab_t *)base;
|
|
sks->sks_magic = SKS_MAGIC;
|
|
sks->sks_objs = skc->skc_slab_objs;
|
|
sks->sks_age = jiffies;
|
|
sks->sks_cache = skc;
|
|
INIT_LIST_HEAD(&sks->sks_list);
|
|
INIT_LIST_HEAD(&sks->sks_free_list);
|
|
sks->sks_ref = 0;
|
|
obj_size = spl_obj_size(skc);
|
|
|
|
if (skc->skc_flags & KMC_OFFSLAB)
|
|
offslab_size = spl_offslab_size(skc);
|
|
|
|
for (i = 0; i < sks->sks_objs; i++) {
|
|
if (skc->skc_flags & KMC_OFFSLAB) {
|
|
obj = kv_alloc(skc, offslab_size, flags);
|
|
if (!obj) {
|
|
rc = -ENOMEM;
|
|
goto out;
|
|
}
|
|
} else {
|
|
obj = base + spl_sks_size(skc) + (i * obj_size);
|
|
}
|
|
|
|
ASSERT(IS_P2ALIGNED(obj, skc->skc_obj_align));
|
|
sko = spl_sko_from_obj(skc, obj);
|
|
sko->sko_addr = obj;
|
|
sko->sko_magic = SKO_MAGIC;
|
|
sko->sko_slab = sks;
|
|
INIT_LIST_HEAD(&sko->sko_list);
|
|
list_add_tail(&sko->sko_list, &sks->sks_free_list);
|
|
}
|
|
|
|
out:
|
|
if (rc) {
|
|
spl_kmem_obj_t *n = NULL;
|
|
if (skc->skc_flags & KMC_OFFSLAB)
|
|
list_for_each_entry_safe(sko,
|
|
n, &sks->sks_free_list, sko_list) {
|
|
kv_free(skc, sko->sko_addr, offslab_size);
|
|
}
|
|
|
|
kv_free(skc, base, skc->skc_slab_size);
|
|
sks = NULL;
|
|
}
|
|
|
|
return (sks);
|
|
}
|
|
|
|
/*
|
|
* Remove a slab from complete or partial list, it must be called with
|
|
* the 'skc->skc_lock' held but the actual free must be performed
|
|
* outside the lock to prevent deadlocking on vmem addresses.
|
|
*/
|
|
static void
|
|
spl_slab_free(spl_kmem_slab_t *sks,
|
|
struct list_head *sks_list, struct list_head *sko_list)
|
|
{
|
|
spl_kmem_cache_t *skc;
|
|
|
|
ASSERT(sks->sks_magic == SKS_MAGIC);
|
|
ASSERT(sks->sks_ref == 0);
|
|
|
|
skc = sks->sks_cache;
|
|
ASSERT(skc->skc_magic == SKC_MAGIC);
|
|
|
|
/*
|
|
* Update slab/objects counters in the cache, then remove the
|
|
* slab from the skc->skc_partial_list. Finally add the slab
|
|
* and all its objects in to the private work lists where the
|
|
* destructors will be called and the memory freed to the system.
|
|
*/
|
|
skc->skc_obj_total -= sks->sks_objs;
|
|
skc->skc_slab_total--;
|
|
list_del(&sks->sks_list);
|
|
list_add(&sks->sks_list, sks_list);
|
|
list_splice_init(&sks->sks_free_list, sko_list);
|
|
}
|
|
|
|
/*
|
|
* Reclaim empty slabs at the end of the partial list.
|
|
*/
|
|
static void
|
|
spl_slab_reclaim(spl_kmem_cache_t *skc)
|
|
{
|
|
spl_kmem_slab_t *sks = NULL, *m = NULL;
|
|
spl_kmem_obj_t *sko = NULL, *n = NULL;
|
|
LIST_HEAD(sks_list);
|
|
LIST_HEAD(sko_list);
|
|
uint32_t size = 0;
|
|
|
|
/*
|
|
* Empty slabs and objects must be moved to a private list so they
|
|
* can be safely freed outside the spin lock. All empty slabs are
|
|
* at the end of skc->skc_partial_list, therefore once a non-empty
|
|
* slab is found we can stop scanning.
|
|
*/
|
|
spin_lock(&skc->skc_lock);
|
|
list_for_each_entry_safe_reverse(sks, m,
|
|
&skc->skc_partial_list, sks_list) {
|
|
|
|
if (sks->sks_ref > 0)
|
|
break;
|
|
|
|
spl_slab_free(sks, &sks_list, &sko_list);
|
|
}
|
|
spin_unlock(&skc->skc_lock);
|
|
|
|
/*
|
|
* The following two loops ensure all the object destructors are
|
|
* run, any offslab objects are freed, and the slabs themselves
|
|
* are freed. This is all done outside the skc->skc_lock since
|
|
* this allows the destructor to sleep, and allows us to perform
|
|
* a conditional reschedule when a freeing a large number of
|
|
* objects and slabs back to the system.
|
|
*/
|
|
if (skc->skc_flags & KMC_OFFSLAB)
|
|
size = spl_offslab_size(skc);
|
|
|
|
list_for_each_entry_safe(sko, n, &sko_list, sko_list) {
|
|
ASSERT(sko->sko_magic == SKO_MAGIC);
|
|
|
|
if (skc->skc_flags & KMC_OFFSLAB)
|
|
kv_free(skc, sko->sko_addr, size);
|
|
}
|
|
|
|
list_for_each_entry_safe(sks, m, &sks_list, sks_list) {
|
|
ASSERT(sks->sks_magic == SKS_MAGIC);
|
|
kv_free(skc, sks, skc->skc_slab_size);
|
|
}
|
|
}
|
|
|
|
static spl_kmem_emergency_t *
|
|
spl_emergency_search(struct rb_root *root, void *obj)
|
|
{
|
|
struct rb_node *node = root->rb_node;
|
|
spl_kmem_emergency_t *ske;
|
|
unsigned long address = (unsigned long)obj;
|
|
|
|
while (node) {
|
|
ske = container_of(node, spl_kmem_emergency_t, ske_node);
|
|
|
|
if (address < ske->ske_obj)
|
|
node = node->rb_left;
|
|
else if (address > ske->ske_obj)
|
|
node = node->rb_right;
|
|
else
|
|
return (ske);
|
|
}
|
|
|
|
return (NULL);
|
|
}
|
|
|
|
static int
|
|
spl_emergency_insert(struct rb_root *root, spl_kmem_emergency_t *ske)
|
|
{
|
|
struct rb_node **new = &(root->rb_node), *parent = NULL;
|
|
spl_kmem_emergency_t *ske_tmp;
|
|
unsigned long address = ske->ske_obj;
|
|
|
|
while (*new) {
|
|
ske_tmp = container_of(*new, spl_kmem_emergency_t, ske_node);
|
|
|
|
parent = *new;
|
|
if (address < ske_tmp->ske_obj)
|
|
new = &((*new)->rb_left);
|
|
else if (address > ske_tmp->ske_obj)
|
|
new = &((*new)->rb_right);
|
|
else
|
|
return (0);
|
|
}
|
|
|
|
rb_link_node(&ske->ske_node, parent, new);
|
|
rb_insert_color(&ske->ske_node, root);
|
|
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* Allocate a single emergency object and track it in a red black tree.
|
|
*/
|
|
static int
|
|
spl_emergency_alloc(spl_kmem_cache_t *skc, int flags, void **obj)
|
|
{
|
|
gfp_t lflags = kmem_flags_convert(flags);
|
|
spl_kmem_emergency_t *ske;
|
|
int order = get_order(skc->skc_obj_size);
|
|
int empty;
|
|
|
|
/* Last chance use a partial slab if one now exists */
|
|
spin_lock(&skc->skc_lock);
|
|
empty = list_empty(&skc->skc_partial_list);
|
|
spin_unlock(&skc->skc_lock);
|
|
if (!empty)
|
|
return (-EEXIST);
|
|
|
|
ske = kmalloc(sizeof (*ske), lflags);
|
|
if (ske == NULL)
|
|
return (-ENOMEM);
|
|
|
|
ske->ske_obj = __get_free_pages(lflags, order);
|
|
if (ske->ske_obj == 0) {
|
|
kfree(ske);
|
|
return (-ENOMEM);
|
|
}
|
|
|
|
spin_lock(&skc->skc_lock);
|
|
empty = spl_emergency_insert(&skc->skc_emergency_tree, ske);
|
|
if (likely(empty)) {
|
|
skc->skc_obj_total++;
|
|
skc->skc_obj_emergency++;
|
|
if (skc->skc_obj_emergency > skc->skc_obj_emergency_max)
|
|
skc->skc_obj_emergency_max = skc->skc_obj_emergency;
|
|
}
|
|
spin_unlock(&skc->skc_lock);
|
|
|
|
if (unlikely(!empty)) {
|
|
free_pages(ske->ske_obj, order);
|
|
kfree(ske);
|
|
return (-EINVAL);
|
|
}
|
|
|
|
*obj = (void *)ske->ske_obj;
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Locate the passed object in the red black tree and free it.
|
|
*/
|
|
static int
|
|
spl_emergency_free(spl_kmem_cache_t *skc, void *obj)
|
|
{
|
|
spl_kmem_emergency_t *ske;
|
|
int order = get_order(skc->skc_obj_size);
|
|
|
|
spin_lock(&skc->skc_lock);
|
|
ske = spl_emergency_search(&skc->skc_emergency_tree, obj);
|
|
if (ske) {
|
|
rb_erase(&ske->ske_node, &skc->skc_emergency_tree);
|
|
skc->skc_obj_emergency--;
|
|
skc->skc_obj_total--;
|
|
}
|
|
spin_unlock(&skc->skc_lock);
|
|
|
|
if (ske == NULL)
|
|
return (-ENOENT);
|
|
|
|
free_pages(ske->ske_obj, order);
|
|
kfree(ske);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Release objects from the per-cpu magazine back to their slab. The flush
|
|
* argument contains the max number of entries to remove from the magazine.
|
|
*/
|
|
static void
|
|
__spl_cache_flush(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flush)
|
|
{
|
|
int i, count = MIN(flush, skm->skm_avail);
|
|
|
|
ASSERT(skc->skc_magic == SKC_MAGIC);
|
|
ASSERT(skm->skm_magic == SKM_MAGIC);
|
|
|
|
for (i = 0; i < count; i++)
|
|
spl_cache_shrink(skc, skm->skm_objs[i]);
|
|
|
|
skm->skm_avail -= count;
|
|
memmove(skm->skm_objs, &(skm->skm_objs[count]),
|
|
sizeof (void *) * skm->skm_avail);
|
|
}
|
|
|
|
static void
|
|
spl_cache_flush(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flush)
|
|
{
|
|
spin_lock(&skc->skc_lock);
|
|
__spl_cache_flush(skc, skm, flush);
|
|
spin_unlock(&skc->skc_lock);
|
|
}
|
|
|
|
static void
|
|
spl_magazine_age(void *data)
|
|
{
|
|
spl_kmem_cache_t *skc = (spl_kmem_cache_t *)data;
|
|
spl_kmem_magazine_t *skm = skc->skc_mag[smp_processor_id()];
|
|
|
|
ASSERT(skm->skm_magic == SKM_MAGIC);
|
|
ASSERT(skm->skm_cpu == smp_processor_id());
|
|
ASSERT(irqs_disabled());
|
|
|
|
/* There are no available objects or they are too young to age out */
|
|
if ((skm->skm_avail == 0) ||
|
|
time_before(jiffies, skm->skm_age + skc->skc_delay * HZ))
|
|
return;
|
|
|
|
/*
|
|
* Because we're executing in interrupt context we may have
|
|
* interrupted the holder of this lock. To avoid a potential
|
|
* deadlock return if the lock is contended.
|
|
*/
|
|
if (!spin_trylock(&skc->skc_lock))
|
|
return;
|
|
|
|
__spl_cache_flush(skc, skm, skm->skm_refill);
|
|
spin_unlock(&skc->skc_lock);
|
|
}
|
|
|
|
/*
|
|
* Called regularly to keep a downward pressure on the cache.
|
|
*
|
|
* Objects older than skc->skc_delay seconds in the per-cpu magazines will
|
|
* be returned to the caches. This is done to prevent idle magazines from
|
|
* holding memory which could be better used elsewhere. The delay is
|
|
* present to prevent thrashing the magazine.
|
|
*
|
|
* The newly released objects may result in empty partial slabs. Those
|
|
* slabs should be released to the system. Otherwise moving the objects
|
|
* out of the magazines is just wasted work.
|
|
*/
|
|
static void
|
|
spl_cache_age(void *data)
|
|
{
|
|
spl_kmem_cache_t *skc = (spl_kmem_cache_t *)data;
|
|
taskqid_t id = 0;
|
|
|
|
ASSERT(skc->skc_magic == SKC_MAGIC);
|
|
|
|
/* Dynamically disabled at run time */
|
|
if (!(spl_kmem_cache_expire & KMC_EXPIRE_AGE))
|
|
return;
|
|
|
|
atomic_inc(&skc->skc_ref);
|
|
|
|
if (!(skc->skc_flags & KMC_NOMAGAZINE))
|
|
on_each_cpu(spl_magazine_age, skc, 1);
|
|
|
|
spl_slab_reclaim(skc);
|
|
|
|
while (!test_bit(KMC_BIT_DESTROY, &skc->skc_flags) && !id) {
|
|
id = taskq_dispatch_delay(
|
|
spl_kmem_cache_taskq, spl_cache_age, skc, TQ_SLEEP,
|
|
ddi_get_lbolt() + skc->skc_delay / 3 * HZ);
|
|
|
|
/* Destroy issued after dispatch immediately cancel it */
|
|
if (test_bit(KMC_BIT_DESTROY, &skc->skc_flags) && id)
|
|
taskq_cancel_id(spl_kmem_cache_taskq, id);
|
|
}
|
|
|
|
spin_lock(&skc->skc_lock);
|
|
skc->skc_taskqid = id;
|
|
spin_unlock(&skc->skc_lock);
|
|
|
|
atomic_dec(&skc->skc_ref);
|
|
}
|
|
|
|
/*
|
|
* Size a slab based on the size of each aligned object plus spl_kmem_obj_t.
|
|
* When on-slab we want to target spl_kmem_cache_obj_per_slab. However,
|
|
* for very small objects we may end up with more than this so as not
|
|
* to waste space in the minimal allocation of a single page. Also for
|
|
* very large objects we may use as few as spl_kmem_cache_obj_per_slab_min,
|
|
* lower than this and we will fail.
|
|
*/
|
|
static int
|
|
spl_slab_size(spl_kmem_cache_t *skc, uint32_t *objs, uint32_t *size)
|
|
{
|
|
uint32_t sks_size, obj_size, max_size, tgt_size, tgt_objs;
|
|
|
|
if (skc->skc_flags & KMC_OFFSLAB) {
|
|
tgt_objs = spl_kmem_cache_obj_per_slab;
|
|
tgt_size = P2ROUNDUP(sizeof (spl_kmem_slab_t), PAGE_SIZE);
|
|
|
|
if ((skc->skc_flags & KMC_KMEM) &&
|
|
(spl_obj_size(skc) > (SPL_MAX_ORDER_NR_PAGES * PAGE_SIZE)))
|
|
return (-ENOSPC);
|
|
} else {
|
|
sks_size = spl_sks_size(skc);
|
|
obj_size = spl_obj_size(skc);
|
|
max_size = (spl_kmem_cache_max_size * 1024 * 1024);
|
|
tgt_size = (spl_kmem_cache_obj_per_slab * obj_size + sks_size);
|
|
|
|
/*
|
|
* KMC_KMEM slabs are allocated by __get_free_pages() which
|
|
* rounds up to the nearest order. Knowing this the size
|
|
* should be rounded up to the next power of two with a hard
|
|
* maximum defined by the maximum allowed allocation order.
|
|
*/
|
|
if (skc->skc_flags & KMC_KMEM) {
|
|
max_size = SPL_MAX_ORDER_NR_PAGES * PAGE_SIZE;
|
|
tgt_size = MIN(max_size,
|
|
PAGE_SIZE * (1 << MAX(get_order(tgt_size) - 1, 1)));
|
|
}
|
|
|
|
if (tgt_size <= max_size) {
|
|
tgt_objs = (tgt_size - sks_size) / obj_size;
|
|
} else {
|
|
tgt_objs = (max_size - sks_size) / obj_size;
|
|
tgt_size = (tgt_objs * obj_size) + sks_size;
|
|
}
|
|
}
|
|
|
|
if (tgt_objs == 0)
|
|
return (-ENOSPC);
|
|
|
|
*objs = tgt_objs;
|
|
*size = tgt_size;
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Make a guess at reasonable per-cpu magazine size based on the size of
|
|
* each object and the cost of caching N of them in each magazine. Long
|
|
* term this should really adapt based on an observed usage heuristic.
|
|
*/
|
|
static int
|
|
spl_magazine_size(spl_kmem_cache_t *skc)
|
|
{
|
|
uint32_t obj_size = spl_obj_size(skc);
|
|
int size;
|
|
|
|
if (spl_kmem_cache_magazine_size > 0)
|
|
return (MAX(MIN(spl_kmem_cache_magazine_size, 256), 2));
|
|
|
|
/* Per-magazine sizes below assume a 4Kib page size */
|
|
if (obj_size > (PAGE_SIZE * 256))
|
|
size = 4; /* Minimum 4Mib per-magazine */
|
|
else if (obj_size > (PAGE_SIZE * 32))
|
|
size = 16; /* Minimum 2Mib per-magazine */
|
|
else if (obj_size > (PAGE_SIZE))
|
|
size = 64; /* Minimum 256Kib per-magazine */
|
|
else if (obj_size > (PAGE_SIZE / 4))
|
|
size = 128; /* Minimum 128Kib per-magazine */
|
|
else
|
|
size = 256;
|
|
|
|
return (size);
|
|
}
|
|
|
|
/*
|
|
* Allocate a per-cpu magazine to associate with a specific core.
|
|
*/
|
|
static spl_kmem_magazine_t *
|
|
spl_magazine_alloc(spl_kmem_cache_t *skc, int cpu)
|
|
{
|
|
spl_kmem_magazine_t *skm;
|
|
int size = sizeof (spl_kmem_magazine_t) +
|
|
sizeof (void *) * skc->skc_mag_size;
|
|
|
|
skm = kmalloc_node(size, GFP_KERNEL, cpu_to_node(cpu));
|
|
if (skm) {
|
|
skm->skm_magic = SKM_MAGIC;
|
|
skm->skm_avail = 0;
|
|
skm->skm_size = skc->skc_mag_size;
|
|
skm->skm_refill = skc->skc_mag_refill;
|
|
skm->skm_cache = skc;
|
|
skm->skm_age = jiffies;
|
|
skm->skm_cpu = cpu;
|
|
}
|
|
|
|
return (skm);
|
|
}
|
|
|
|
/*
|
|
* Free a per-cpu magazine associated with a specific core.
|
|
*/
|
|
static void
|
|
spl_magazine_free(spl_kmem_magazine_t *skm)
|
|
{
|
|
ASSERT(skm->skm_magic == SKM_MAGIC);
|
|
ASSERT(skm->skm_avail == 0);
|
|
kfree(skm);
|
|
}
|
|
|
|
/*
|
|
* Create all pre-cpu magazines of reasonable sizes.
|
|
*/
|
|
static int
|
|
spl_magazine_create(spl_kmem_cache_t *skc)
|
|
{
|
|
int i = 0;
|
|
|
|
if (skc->skc_flags & KMC_NOMAGAZINE)
|
|
return (0);
|
|
|
|
skc->skc_mag = kzalloc(sizeof (spl_kmem_magazine_t *) *
|
|
num_possible_cpus(), kmem_flags_convert(KM_SLEEP));
|
|
skc->skc_mag_size = spl_magazine_size(skc);
|
|
skc->skc_mag_refill = (skc->skc_mag_size + 1) / 2;
|
|
|
|
for_each_possible_cpu(i) {
|
|
skc->skc_mag[i] = spl_magazine_alloc(skc, i);
|
|
if (!skc->skc_mag[i]) {
|
|
for (i--; i >= 0; i--)
|
|
spl_magazine_free(skc->skc_mag[i]);
|
|
|
|
kfree(skc->skc_mag);
|
|
return (-ENOMEM);
|
|
}
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Destroy all pre-cpu magazines.
|
|
*/
|
|
static void
|
|
spl_magazine_destroy(spl_kmem_cache_t *skc)
|
|
{
|
|
spl_kmem_magazine_t *skm;
|
|
int i = 0;
|
|
|
|
if (skc->skc_flags & KMC_NOMAGAZINE)
|
|
return;
|
|
|
|
for_each_possible_cpu(i) {
|
|
skm = skc->skc_mag[i];
|
|
spl_cache_flush(skc, skm, skm->skm_avail);
|
|
spl_magazine_free(skm);
|
|
}
|
|
|
|
kfree(skc->skc_mag);
|
|
}
|
|
|
|
/*
|
|
* Create a object cache based on the following arguments:
|
|
* name cache name
|
|
* size cache object size
|
|
* align cache object alignment
|
|
* ctor cache object constructor
|
|
* dtor cache object destructor
|
|
* reclaim cache object reclaim
|
|
* priv cache private data for ctor/dtor/reclaim
|
|
* vmp unused must be NULL
|
|
* flags
|
|
* KMC_KMEM Force SPL kmem backed cache
|
|
* KMC_VMEM Force SPL vmem backed cache
|
|
* KMC_SLAB Force Linux slab backed cache
|
|
* KMC_OFFSLAB Locate objects off the slab
|
|
* KMC_NOTOUCH Disable cache object aging (unsupported)
|
|
* KMC_NODEBUG Disable debugging (unsupported)
|
|
* KMC_NOHASH Disable hashing (unsupported)
|
|
* KMC_QCACHE Disable qcache (unsupported)
|
|
* KMC_NOMAGAZINE Enabled for kmem/vmem, Disabled for Linux slab
|
|
*/
|
|
spl_kmem_cache_t *
|
|
spl_kmem_cache_create(char *name, size_t size, size_t align,
|
|
spl_kmem_ctor_t ctor, spl_kmem_dtor_t dtor, spl_kmem_reclaim_t reclaim,
|
|
void *priv, void *vmp, int flags)
|
|
{
|
|
gfp_t lflags = kmem_flags_convert(KM_SLEEP);
|
|
spl_kmem_cache_t *skc;
|
|
int rc;
|
|
|
|
/*
|
|
* Unsupported flags
|
|
*/
|
|
ASSERT0(flags & KMC_NOMAGAZINE);
|
|
ASSERT0(flags & KMC_NOHASH);
|
|
ASSERT0(flags & KMC_QCACHE);
|
|
ASSERT(vmp == NULL);
|
|
|
|
might_sleep();
|
|
|
|
skc = kzalloc(sizeof (*skc), lflags);
|
|
if (skc == NULL)
|
|
return (NULL);
|
|
|
|
skc->skc_magic = SKC_MAGIC;
|
|
skc->skc_name_size = strlen(name) + 1;
|
|
skc->skc_name = (char *)kmalloc(skc->skc_name_size, lflags);
|
|
if (skc->skc_name == NULL) {
|
|
kfree(skc);
|
|
return (NULL);
|
|
}
|
|
strncpy(skc->skc_name, name, skc->skc_name_size);
|
|
|
|
skc->skc_ctor = ctor;
|
|
skc->skc_dtor = dtor;
|
|
skc->skc_reclaim = reclaim;
|
|
skc->skc_private = priv;
|
|
skc->skc_vmp = vmp;
|
|
skc->skc_linux_cache = NULL;
|
|
skc->skc_flags = flags;
|
|
skc->skc_obj_size = size;
|
|
skc->skc_obj_align = SPL_KMEM_CACHE_ALIGN;
|
|
skc->skc_delay = SPL_KMEM_CACHE_DELAY;
|
|
skc->skc_reap = SPL_KMEM_CACHE_REAP;
|
|
atomic_set(&skc->skc_ref, 0);
|
|
|
|
INIT_LIST_HEAD(&skc->skc_list);
|
|
INIT_LIST_HEAD(&skc->skc_complete_list);
|
|
INIT_LIST_HEAD(&skc->skc_partial_list);
|
|
skc->skc_emergency_tree = RB_ROOT;
|
|
spin_lock_init(&skc->skc_lock);
|
|
init_waitqueue_head(&skc->skc_waitq);
|
|
skc->skc_slab_fail = 0;
|
|
skc->skc_slab_create = 0;
|
|
skc->skc_slab_destroy = 0;
|
|
skc->skc_slab_total = 0;
|
|
skc->skc_slab_alloc = 0;
|
|
skc->skc_slab_max = 0;
|
|
skc->skc_obj_total = 0;
|
|
skc->skc_obj_alloc = 0;
|
|
skc->skc_obj_max = 0;
|
|
skc->skc_obj_deadlock = 0;
|
|
skc->skc_obj_emergency = 0;
|
|
skc->skc_obj_emergency_max = 0;
|
|
|
|
/*
|
|
* Verify the requested alignment restriction is sane.
|
|
*/
|
|
if (align) {
|
|
VERIFY(ISP2(align));
|
|
VERIFY3U(align, >=, SPL_KMEM_CACHE_ALIGN);
|
|
VERIFY3U(align, <=, PAGE_SIZE);
|
|
skc->skc_obj_align = align;
|
|
}
|
|
|
|
/*
|
|
* When no specific type of slab is requested (kmem, vmem, or
|
|
* linuxslab) then select a cache type based on the object size
|
|
* and default tunables.
|
|
*/
|
|
if (!(skc->skc_flags & (KMC_KMEM | KMC_VMEM | KMC_SLAB))) {
|
|
|
|
if (spl_kmem_cache_slab_limit &&
|
|
size <= (size_t)spl_kmem_cache_slab_limit) {
|
|
/*
|
|
* Objects smaller than spl_kmem_cache_slab_limit can
|
|
* use the Linux slab for better space-efficiency.
|
|
*/
|
|
skc->skc_flags |= KMC_SLAB;
|
|
} else if (spl_obj_size(skc) <= spl_kmem_cache_kmem_limit) {
|
|
/*
|
|
* Small objects, less than spl_kmem_cache_kmem_limit
|
|
* per object should use kmem because their slabs are
|
|
* small.
|
|
*/
|
|
skc->skc_flags |= KMC_KMEM;
|
|
} else {
|
|
/*
|
|
* All other objects are considered large and are
|
|
* placed on vmem backed slabs.
|
|
*/
|
|
skc->skc_flags |= KMC_VMEM;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Given the type of slab allocate the required resources.
|
|
*/
|
|
if (skc->skc_flags & (KMC_KMEM | KMC_VMEM)) {
|
|
rc = spl_slab_size(skc,
|
|
&skc->skc_slab_objs, &skc->skc_slab_size);
|
|
if (rc)
|
|
goto out;
|
|
|
|
rc = spl_magazine_create(skc);
|
|
if (rc)
|
|
goto out;
|
|
} else {
|
|
unsigned long slabflags = 0;
|
|
|
|
if (size > (SPL_MAX_KMEM_ORDER_NR_PAGES * PAGE_SIZE)) {
|
|
rc = EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
#if defined(SLAB_USERCOPY)
|
|
/*
|
|
* Required for PAX-enabled kernels if the slab is to be
|
|
* used for copying between user and kernel space.
|
|
*/
|
|
slabflags |= SLAB_USERCOPY;
|
|
#endif
|
|
|
|
#if defined(HAVE_KMEM_CACHE_CREATE_USERCOPY)
|
|
/*
|
|
* Newer grsec patchset uses kmem_cache_create_usercopy()
|
|
* instead of SLAB_USERCOPY flag
|
|
*/
|
|
skc->skc_linux_cache = kmem_cache_create_usercopy(
|
|
skc->skc_name, size, align, slabflags, 0, size, NULL);
|
|
#else
|
|
skc->skc_linux_cache = kmem_cache_create(
|
|
skc->skc_name, size, align, slabflags, NULL);
|
|
#endif
|
|
if (skc->skc_linux_cache == NULL) {
|
|
rc = ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
#if defined(HAVE_KMEM_CACHE_ALLOCFLAGS)
|
|
skc->skc_linux_cache->allocflags |= __GFP_COMP;
|
|
#elif defined(HAVE_KMEM_CACHE_GFPFLAGS)
|
|
skc->skc_linux_cache->gfpflags |= __GFP_COMP;
|
|
#endif
|
|
skc->skc_flags |= KMC_NOMAGAZINE;
|
|
}
|
|
|
|
if (spl_kmem_cache_expire & KMC_EXPIRE_AGE) {
|
|
skc->skc_taskqid = taskq_dispatch_delay(spl_kmem_cache_taskq,
|
|
spl_cache_age, skc, TQ_SLEEP,
|
|
ddi_get_lbolt() + skc->skc_delay / 3 * HZ);
|
|
}
|
|
|
|
down_write(&spl_kmem_cache_sem);
|
|
list_add_tail(&skc->skc_list, &spl_kmem_cache_list);
|
|
up_write(&spl_kmem_cache_sem);
|
|
|
|
return (skc);
|
|
out:
|
|
kfree(skc->skc_name);
|
|
kfree(skc);
|
|
return (NULL);
|
|
}
|
|
EXPORT_SYMBOL(spl_kmem_cache_create);
|
|
|
|
/*
|
|
* Register a move callback for cache defragmentation.
|
|
* XXX: Unimplemented but harmless to stub out for now.
|
|
*/
|
|
void
|
|
spl_kmem_cache_set_move(spl_kmem_cache_t *skc,
|
|
kmem_cbrc_t (move)(void *, void *, size_t, void *))
|
|
{
|
|
ASSERT(move != NULL);
|
|
}
|
|
EXPORT_SYMBOL(spl_kmem_cache_set_move);
|
|
|
|
/*
|
|
* Destroy a cache and all objects associated with the cache.
|
|
*/
|
|
void
|
|
spl_kmem_cache_destroy(spl_kmem_cache_t *skc)
|
|
{
|
|
DECLARE_WAIT_QUEUE_HEAD(wq);
|
|
taskqid_t id;
|
|
|
|
ASSERT(skc->skc_magic == SKC_MAGIC);
|
|
ASSERT(skc->skc_flags & (KMC_KMEM | KMC_VMEM | KMC_SLAB));
|
|
|
|
down_write(&spl_kmem_cache_sem);
|
|
list_del_init(&skc->skc_list);
|
|
up_write(&spl_kmem_cache_sem);
|
|
|
|
/* Cancel any and wait for any pending delayed tasks */
|
|
VERIFY(!test_and_set_bit(KMC_BIT_DESTROY, &skc->skc_flags));
|
|
|
|
spin_lock(&skc->skc_lock);
|
|
id = skc->skc_taskqid;
|
|
spin_unlock(&skc->skc_lock);
|
|
|
|
taskq_cancel_id(spl_kmem_cache_taskq, id);
|
|
|
|
/*
|
|
* Wait until all current callers complete, this is mainly
|
|
* to catch the case where a low memory situation triggers a
|
|
* cache reaping action which races with this destroy.
|
|
*/
|
|
wait_event(wq, atomic_read(&skc->skc_ref) == 0);
|
|
|
|
if (skc->skc_flags & (KMC_KMEM | KMC_VMEM)) {
|
|
spl_magazine_destroy(skc);
|
|
spl_slab_reclaim(skc);
|
|
} else {
|
|
ASSERT(skc->skc_flags & KMC_SLAB);
|
|
kmem_cache_destroy(skc->skc_linux_cache);
|
|
}
|
|
|
|
spin_lock(&skc->skc_lock);
|
|
|
|
/*
|
|
* Validate there are no objects in use and free all the
|
|
* spl_kmem_slab_t, spl_kmem_obj_t, and object buffers.
|
|
*/
|
|
ASSERT3U(skc->skc_slab_alloc, ==, 0);
|
|
ASSERT3U(skc->skc_obj_alloc, ==, 0);
|
|
ASSERT3U(skc->skc_slab_total, ==, 0);
|
|
ASSERT3U(skc->skc_obj_total, ==, 0);
|
|
ASSERT3U(skc->skc_obj_emergency, ==, 0);
|
|
ASSERT(list_empty(&skc->skc_complete_list));
|
|
|
|
spin_unlock(&skc->skc_lock);
|
|
|
|
kfree(skc->skc_name);
|
|
kfree(skc);
|
|
}
|
|
EXPORT_SYMBOL(spl_kmem_cache_destroy);
|
|
|
|
/*
|
|
* Allocate an object from a slab attached to the cache. This is used to
|
|
* repopulate the per-cpu magazine caches in batches when they run low.
|
|
*/
|
|
static void *
|
|
spl_cache_obj(spl_kmem_cache_t *skc, spl_kmem_slab_t *sks)
|
|
{
|
|
spl_kmem_obj_t *sko;
|
|
|
|
ASSERT(skc->skc_magic == SKC_MAGIC);
|
|
ASSERT(sks->sks_magic == SKS_MAGIC);
|
|
|
|
sko = list_entry(sks->sks_free_list.next, spl_kmem_obj_t, sko_list);
|
|
ASSERT(sko->sko_magic == SKO_MAGIC);
|
|
ASSERT(sko->sko_addr != NULL);
|
|
|
|
/* Remove from sks_free_list */
|
|
list_del_init(&sko->sko_list);
|
|
|
|
sks->sks_age = jiffies;
|
|
sks->sks_ref++;
|
|
skc->skc_obj_alloc++;
|
|
|
|
/* Track max obj usage statistics */
|
|
if (skc->skc_obj_alloc > skc->skc_obj_max)
|
|
skc->skc_obj_max = skc->skc_obj_alloc;
|
|
|
|
/* Track max slab usage statistics */
|
|
if (sks->sks_ref == 1) {
|
|
skc->skc_slab_alloc++;
|
|
|
|
if (skc->skc_slab_alloc > skc->skc_slab_max)
|
|
skc->skc_slab_max = skc->skc_slab_alloc;
|
|
}
|
|
|
|
return (sko->sko_addr);
|
|
}
|
|
|
|
/*
|
|
* Generic slab allocation function to run by the global work queues.
|
|
* It is responsible for allocating a new slab, linking it in to the list
|
|
* of partial slabs, and then waking any waiters.
|
|
*/
|
|
static int
|
|
__spl_cache_grow(spl_kmem_cache_t *skc, int flags)
|
|
{
|
|
spl_kmem_slab_t *sks;
|
|
|
|
fstrans_cookie_t cookie = spl_fstrans_mark();
|
|
sks = spl_slab_alloc(skc, flags);
|
|
spl_fstrans_unmark(cookie);
|
|
|
|
spin_lock(&skc->skc_lock);
|
|
if (sks) {
|
|
skc->skc_slab_total++;
|
|
skc->skc_obj_total += sks->sks_objs;
|
|
list_add_tail(&sks->sks_list, &skc->skc_partial_list);
|
|
|
|
smp_mb__before_atomic();
|
|
clear_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags);
|
|
smp_mb__after_atomic();
|
|
}
|
|
spin_unlock(&skc->skc_lock);
|
|
|
|
return (sks == NULL ? -ENOMEM : 0);
|
|
}
|
|
|
|
static void
|
|
spl_cache_grow_work(void *data)
|
|
{
|
|
spl_kmem_alloc_t *ska = (spl_kmem_alloc_t *)data;
|
|
spl_kmem_cache_t *skc = ska->ska_cache;
|
|
|
|
int error = __spl_cache_grow(skc, ska->ska_flags);
|
|
|
|
atomic_dec(&skc->skc_ref);
|
|
smp_mb__before_atomic();
|
|
clear_bit(KMC_BIT_GROWING, &skc->skc_flags);
|
|
smp_mb__after_atomic();
|
|
if (error == 0)
|
|
wake_up_all(&skc->skc_waitq);
|
|
|
|
kfree(ska);
|
|
}
|
|
|
|
/*
|
|
* Returns non-zero when a new slab should be available.
|
|
*/
|
|
static int
|
|
spl_cache_grow_wait(spl_kmem_cache_t *skc)
|
|
{
|
|
return (!test_bit(KMC_BIT_GROWING, &skc->skc_flags));
|
|
}
|
|
|
|
/*
|
|
* No available objects on any slabs, create a new slab. Note that this
|
|
* functionality is disabled for KMC_SLAB caches which are backed by the
|
|
* Linux slab.
|
|
*/
|
|
static int
|
|
spl_cache_grow(spl_kmem_cache_t *skc, int flags, void **obj)
|
|
{
|
|
int remaining, rc = 0;
|
|
|
|
ASSERT0(flags & ~KM_PUBLIC_MASK);
|
|
ASSERT(skc->skc_magic == SKC_MAGIC);
|
|
ASSERT((skc->skc_flags & KMC_SLAB) == 0);
|
|
might_sleep();
|
|
*obj = NULL;
|
|
|
|
/*
|
|
* Before allocating a new slab wait for any reaping to complete and
|
|
* then return so the local magazine can be rechecked for new objects.
|
|
*/
|
|
if (test_bit(KMC_BIT_REAPING, &skc->skc_flags)) {
|
|
rc = spl_wait_on_bit(&skc->skc_flags, KMC_BIT_REAPING,
|
|
TASK_UNINTERRUPTIBLE);
|
|
return (rc ? rc : -EAGAIN);
|
|
}
|
|
|
|
/*
|
|
* To reduce the overhead of context switch and improve NUMA locality,
|
|
* it tries to allocate a new slab in the current process context with
|
|
* KM_NOSLEEP flag. If it fails, it will launch a new taskq to do the
|
|
* allocation.
|
|
*
|
|
* However, this can't be applied to KVM_VMEM due to a bug that
|
|
* __vmalloc() doesn't honor gfp flags in page table allocation.
|
|
*/
|
|
if (!(skc->skc_flags & KMC_VMEM)) {
|
|
rc = __spl_cache_grow(skc, flags | KM_NOSLEEP);
|
|
if (rc == 0) {
|
|
wake_up_all(&skc->skc_waitq);
|
|
return (0);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This is handled by dispatching a work request to the global work
|
|
* queue. This allows us to asynchronously allocate a new slab while
|
|
* retaining the ability to safely fall back to a smaller synchronous
|
|
* allocations to ensure forward progress is always maintained.
|
|
*/
|
|
if (test_and_set_bit(KMC_BIT_GROWING, &skc->skc_flags) == 0) {
|
|
spl_kmem_alloc_t *ska;
|
|
|
|
ska = kmalloc(sizeof (*ska), kmem_flags_convert(flags));
|
|
if (ska == NULL) {
|
|
clear_bit_unlock(KMC_BIT_GROWING, &skc->skc_flags);
|
|
smp_mb__after_atomic();
|
|
wake_up_all(&skc->skc_waitq);
|
|
return (-ENOMEM);
|
|
}
|
|
|
|
atomic_inc(&skc->skc_ref);
|
|
ska->ska_cache = skc;
|
|
ska->ska_flags = flags;
|
|
taskq_init_ent(&ska->ska_tqe);
|
|
taskq_dispatch_ent(spl_kmem_cache_taskq,
|
|
spl_cache_grow_work, ska, 0, &ska->ska_tqe);
|
|
}
|
|
|
|
/*
|
|
* The goal here is to only detect the rare case where a virtual slab
|
|
* allocation has deadlocked. We must be careful to minimize the use
|
|
* of emergency objects which are more expensive to track. Therefore,
|
|
* we set a very long timeout for the asynchronous allocation and if
|
|
* the timeout is reached the cache is flagged as deadlocked. From
|
|
* this point only new emergency objects will be allocated until the
|
|
* asynchronous allocation completes and clears the deadlocked flag.
|
|
*/
|
|
if (test_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags)) {
|
|
rc = spl_emergency_alloc(skc, flags, obj);
|
|
} else {
|
|
remaining = wait_event_timeout(skc->skc_waitq,
|
|
spl_cache_grow_wait(skc), HZ / 10);
|
|
|
|
if (!remaining) {
|
|
spin_lock(&skc->skc_lock);
|
|
if (test_bit(KMC_BIT_GROWING, &skc->skc_flags)) {
|
|
set_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags);
|
|
skc->skc_obj_deadlock++;
|
|
}
|
|
spin_unlock(&skc->skc_lock);
|
|
}
|
|
|
|
rc = -ENOMEM;
|
|
}
|
|
|
|
return (rc);
|
|
}
|
|
|
|
/*
|
|
* Refill a per-cpu magazine with objects from the slabs for this cache.
|
|
* Ideally the magazine can be repopulated using existing objects which have
|
|
* been released, however if we are unable to locate enough free objects new
|
|
* slabs of objects will be created. On success NULL is returned, otherwise
|
|
* the address of a single emergency object is returned for use by the caller.
|
|
*/
|
|
static void *
|
|
spl_cache_refill(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flags)
|
|
{
|
|
spl_kmem_slab_t *sks;
|
|
int count = 0, rc, refill;
|
|
void *obj = NULL;
|
|
|
|
ASSERT(skc->skc_magic == SKC_MAGIC);
|
|
ASSERT(skm->skm_magic == SKM_MAGIC);
|
|
|
|
refill = MIN(skm->skm_refill, skm->skm_size - skm->skm_avail);
|
|
spin_lock(&skc->skc_lock);
|
|
|
|
while (refill > 0) {
|
|
/* No slabs available we may need to grow the cache */
|
|
if (list_empty(&skc->skc_partial_list)) {
|
|
spin_unlock(&skc->skc_lock);
|
|
|
|
local_irq_enable();
|
|
rc = spl_cache_grow(skc, flags, &obj);
|
|
local_irq_disable();
|
|
|
|
/* Emergency object for immediate use by caller */
|
|
if (rc == 0 && obj != NULL)
|
|
return (obj);
|
|
|
|
if (rc)
|
|
goto out;
|
|
|
|
/* Rescheduled to different CPU skm is not local */
|
|
if (skm != skc->skc_mag[smp_processor_id()])
|
|
goto out;
|
|
|
|
/*
|
|
* Potentially rescheduled to the same CPU but
|
|
* allocations may have occurred from this CPU while
|
|
* we were sleeping so recalculate max refill.
|
|
*/
|
|
refill = MIN(refill, skm->skm_size - skm->skm_avail);
|
|
|
|
spin_lock(&skc->skc_lock);
|
|
continue;
|
|
}
|
|
|
|
/* Grab the next available slab */
|
|
sks = list_entry((&skc->skc_partial_list)->next,
|
|
spl_kmem_slab_t, sks_list);
|
|
ASSERT(sks->sks_magic == SKS_MAGIC);
|
|
ASSERT(sks->sks_ref < sks->sks_objs);
|
|
ASSERT(!list_empty(&sks->sks_free_list));
|
|
|
|
/*
|
|
* Consume as many objects as needed to refill the requested
|
|
* cache. We must also be careful not to overfill it.
|
|
*/
|
|
while (sks->sks_ref < sks->sks_objs && refill-- > 0 &&
|
|
++count) {
|
|
ASSERT(skm->skm_avail < skm->skm_size);
|
|
ASSERT(count < skm->skm_size);
|
|
skm->skm_objs[skm->skm_avail++] =
|
|
spl_cache_obj(skc, sks);
|
|
}
|
|
|
|
/* Move slab to skc_complete_list when full */
|
|
if (sks->sks_ref == sks->sks_objs) {
|
|
list_del(&sks->sks_list);
|
|
list_add(&sks->sks_list, &skc->skc_complete_list);
|
|
}
|
|
}
|
|
|
|
spin_unlock(&skc->skc_lock);
|
|
out:
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Release an object back to the slab from which it came.
|
|
*/
|
|
static void
|
|
spl_cache_shrink(spl_kmem_cache_t *skc, void *obj)
|
|
{
|
|
spl_kmem_slab_t *sks = NULL;
|
|
spl_kmem_obj_t *sko = NULL;
|
|
|
|
ASSERT(skc->skc_magic == SKC_MAGIC);
|
|
|
|
sko = spl_sko_from_obj(skc, obj);
|
|
ASSERT(sko->sko_magic == SKO_MAGIC);
|
|
sks = sko->sko_slab;
|
|
ASSERT(sks->sks_magic == SKS_MAGIC);
|
|
ASSERT(sks->sks_cache == skc);
|
|
list_add(&sko->sko_list, &sks->sks_free_list);
|
|
|
|
sks->sks_age = jiffies;
|
|
sks->sks_ref--;
|
|
skc->skc_obj_alloc--;
|
|
|
|
/*
|
|
* Move slab to skc_partial_list when no longer full. Slabs
|
|
* are added to the head to keep the partial list is quasi-full
|
|
* sorted order. Fuller at the head, emptier at the tail.
|
|
*/
|
|
if (sks->sks_ref == (sks->sks_objs - 1)) {
|
|
list_del(&sks->sks_list);
|
|
list_add(&sks->sks_list, &skc->skc_partial_list);
|
|
}
|
|
|
|
/*
|
|
* Move empty slabs to the end of the partial list so
|
|
* they can be easily found and freed during reclamation.
|
|
*/
|
|
if (sks->sks_ref == 0) {
|
|
list_del(&sks->sks_list);
|
|
list_add_tail(&sks->sks_list, &skc->skc_partial_list);
|
|
skc->skc_slab_alloc--;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Allocate an object from the per-cpu magazine, or if the magazine
|
|
* is empty directly allocate from a slab and repopulate the magazine.
|
|
*/
|
|
void *
|
|
spl_kmem_cache_alloc(spl_kmem_cache_t *skc, int flags)
|
|
{
|
|
spl_kmem_magazine_t *skm;
|
|
void *obj = NULL;
|
|
|
|
ASSERT0(flags & ~KM_PUBLIC_MASK);
|
|
ASSERT(skc->skc_magic == SKC_MAGIC);
|
|
ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
|
|
|
|
/*
|
|
* Allocate directly from a Linux slab. All optimizations are left
|
|
* to the underlying cache we only need to guarantee that KM_SLEEP
|
|
* callers will never fail.
|
|
*/
|
|
if (skc->skc_flags & KMC_SLAB) {
|
|
struct kmem_cache *slc = skc->skc_linux_cache;
|
|
do {
|
|
obj = kmem_cache_alloc(slc, kmem_flags_convert(flags));
|
|
} while ((obj == NULL) && !(flags & KM_NOSLEEP));
|
|
|
|
if (obj != NULL) {
|
|
/*
|
|
* Even though we leave everything up to the
|
|
* underlying cache we still keep track of
|
|
* how many objects we've allocated in it for
|
|
* better debuggability.
|
|
*/
|
|
spin_lock(&skc->skc_lock);
|
|
skc->skc_obj_alloc++;
|
|
spin_unlock(&skc->skc_lock);
|
|
}
|
|
goto ret;
|
|
}
|
|
|
|
local_irq_disable();
|
|
|
|
restart:
|
|
/*
|
|
* Safe to update per-cpu structure without lock, but
|
|
* in the restart case we must be careful to reacquire
|
|
* the local magazine since this may have changed
|
|
* when we need to grow the cache.
|
|
*/
|
|
skm = skc->skc_mag[smp_processor_id()];
|
|
ASSERT(skm->skm_magic == SKM_MAGIC);
|
|
|
|
if (likely(skm->skm_avail)) {
|
|
/* Object available in CPU cache, use it */
|
|
obj = skm->skm_objs[--skm->skm_avail];
|
|
skm->skm_age = jiffies;
|
|
} else {
|
|
obj = spl_cache_refill(skc, skm, flags);
|
|
if ((obj == NULL) && !(flags & KM_NOSLEEP))
|
|
goto restart;
|
|
|
|
local_irq_enable();
|
|
goto ret;
|
|
}
|
|
|
|
local_irq_enable();
|
|
ASSERT(obj);
|
|
ASSERT(IS_P2ALIGNED(obj, skc->skc_obj_align));
|
|
|
|
ret:
|
|
/* Pre-emptively migrate object to CPU L1 cache */
|
|
if (obj) {
|
|
if (obj && skc->skc_ctor)
|
|
skc->skc_ctor(obj, skc->skc_private, flags);
|
|
else
|
|
prefetchw(obj);
|
|
}
|
|
|
|
return (obj);
|
|
}
|
|
EXPORT_SYMBOL(spl_kmem_cache_alloc);
|
|
|
|
/*
|
|
* Free an object back to the local per-cpu magazine, there is no
|
|
* guarantee that this is the same magazine the object was originally
|
|
* allocated from. We may need to flush entire from the magazine
|
|
* back to the slabs to make space.
|
|
*/
|
|
void
|
|
spl_kmem_cache_free(spl_kmem_cache_t *skc, void *obj)
|
|
{
|
|
spl_kmem_magazine_t *skm;
|
|
unsigned long flags;
|
|
int do_reclaim = 0;
|
|
int do_emergency = 0;
|
|
|
|
ASSERT(skc->skc_magic == SKC_MAGIC);
|
|
ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
|
|
|
|
/*
|
|
* Run the destructor
|
|
*/
|
|
if (skc->skc_dtor)
|
|
skc->skc_dtor(obj, skc->skc_private);
|
|
|
|
/*
|
|
* Free the object from the Linux underlying Linux slab.
|
|
*/
|
|
if (skc->skc_flags & KMC_SLAB) {
|
|
kmem_cache_free(skc->skc_linux_cache, obj);
|
|
spin_lock(&skc->skc_lock);
|
|
skc->skc_obj_alloc--;
|
|
spin_unlock(&skc->skc_lock);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* While a cache has outstanding emergency objects all freed objects
|
|
* must be checked. However, since emergency objects will never use
|
|
* a virtual address these objects can be safely excluded as an
|
|
* optimization.
|
|
*/
|
|
if (!is_vmalloc_addr(obj)) {
|
|
spin_lock(&skc->skc_lock);
|
|
do_emergency = (skc->skc_obj_emergency > 0);
|
|
spin_unlock(&skc->skc_lock);
|
|
|
|
if (do_emergency && (spl_emergency_free(skc, obj) == 0))
|
|
return;
|
|
}
|
|
|
|
local_irq_save(flags);
|
|
|
|
/*
|
|
* Safe to update per-cpu structure without lock, but
|
|
* no remote memory allocation tracking is being performed
|
|
* it is entirely possible to allocate an object from one
|
|
* CPU cache and return it to another.
|
|
*/
|
|
skm = skc->skc_mag[smp_processor_id()];
|
|
ASSERT(skm->skm_magic == SKM_MAGIC);
|
|
|
|
/*
|
|
* Per-CPU cache full, flush it to make space for this object,
|
|
* this may result in an empty slab which can be reclaimed once
|
|
* interrupts are re-enabled.
|
|
*/
|
|
if (unlikely(skm->skm_avail >= skm->skm_size)) {
|
|
spl_cache_flush(skc, skm, skm->skm_refill);
|
|
do_reclaim = 1;
|
|
}
|
|
|
|
/* Available space in cache, use it */
|
|
skm->skm_objs[skm->skm_avail++] = obj;
|
|
|
|
local_irq_restore(flags);
|
|
|
|
if (do_reclaim)
|
|
spl_slab_reclaim(skc);
|
|
}
|
|
EXPORT_SYMBOL(spl_kmem_cache_free);
|
|
|
|
/*
|
|
* The generic shrinker function for all caches. Under Linux a shrinker
|
|
* may not be tightly coupled with a slab cache. In fact Linux always
|
|
* systematically tries calling all registered shrinker callbacks which
|
|
* report that they contain unused objects. Because of this we only
|
|
* register one shrinker function in the shim layer for all slab caches.
|
|
* We always attempt to shrink all caches when this generic shrinker
|
|
* is called.
|
|
*
|
|
* If sc->nr_to_scan is zero, the caller is requesting a query of the
|
|
* number of objects which can potentially be freed. If it is nonzero,
|
|
* the request is to free that many objects.
|
|
*
|
|
* Linux kernels >= 3.12 have the count_objects and scan_objects callbacks
|
|
* in struct shrinker and also require the shrinker to return the number
|
|
* of objects freed.
|
|
*
|
|
* Older kernels require the shrinker to return the number of freeable
|
|
* objects following the freeing of nr_to_free.
|
|
*
|
|
* Linux semantics differ from those under Solaris, which are to
|
|
* free all available objects which may (and probably will) be more
|
|
* objects than the requested nr_to_scan.
|
|
*/
|
|
static spl_shrinker_t
|
|
__spl_kmem_cache_generic_shrinker(struct shrinker *shrink,
|
|
struct shrink_control *sc)
|
|
{
|
|
spl_kmem_cache_t *skc = NULL;
|
|
int alloc = 0;
|
|
|
|
/*
|
|
* No shrinking in a transaction context. Can cause deadlocks.
|
|
*/
|
|
if (sc->nr_to_scan && spl_fstrans_check())
|
|
return (SHRINK_STOP);
|
|
|
|
down_read(&spl_kmem_cache_sem);
|
|
list_for_each_entry(skc, &spl_kmem_cache_list, skc_list) {
|
|
if (sc->nr_to_scan) {
|
|
#ifdef HAVE_SPLIT_SHRINKER_CALLBACK
|
|
uint64_t oldalloc = skc->skc_obj_alloc;
|
|
spl_kmem_cache_reap_now(skc,
|
|
MAX(sc->nr_to_scan>>fls64(skc->skc_slab_objs), 1));
|
|
if (oldalloc > skc->skc_obj_alloc)
|
|
alloc += oldalloc - skc->skc_obj_alloc;
|
|
#else
|
|
spl_kmem_cache_reap_now(skc,
|
|
MAX(sc->nr_to_scan>>fls64(skc->skc_slab_objs), 1));
|
|
alloc += skc->skc_obj_alloc;
|
|
#endif /* HAVE_SPLIT_SHRINKER_CALLBACK */
|
|
} else {
|
|
/* Request to query number of freeable objects */
|
|
alloc += skc->skc_obj_alloc;
|
|
}
|
|
}
|
|
up_read(&spl_kmem_cache_sem);
|
|
|
|
/*
|
|
* When KMC_RECLAIM_ONCE is set allow only a single reclaim pass.
|
|
* This functionality only exists to work around a rare issue where
|
|
* shrink_slabs() is repeatedly invoked by many cores causing the
|
|
* system to thrash.
|
|
*/
|
|
if ((spl_kmem_cache_reclaim & KMC_RECLAIM_ONCE) && sc->nr_to_scan)
|
|
return (SHRINK_STOP);
|
|
|
|
return (MAX(alloc, 0));
|
|
}
|
|
|
|
SPL_SHRINKER_CALLBACK_WRAPPER(spl_kmem_cache_generic_shrinker);
|
|
|
|
/*
|
|
* Call the registered reclaim function for a cache. Depending on how
|
|
* many and which objects are released it may simply repopulate the
|
|
* local magazine which will then need to age-out. Objects which cannot
|
|
* fit in the magazine we will be released back to their slabs which will
|
|
* also need to age out before being release. This is all just best
|
|
* effort and we do not want to thrash creating and destroying slabs.
|
|
*/
|
|
void
|
|
spl_kmem_cache_reap_now(spl_kmem_cache_t *skc, int count)
|
|
{
|
|
ASSERT(skc->skc_magic == SKC_MAGIC);
|
|
ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
|
|
|
|
atomic_inc(&skc->skc_ref);
|
|
|
|
/*
|
|
* Execute the registered reclaim callback if it exists.
|
|
*/
|
|
if (skc->skc_flags & KMC_SLAB) {
|
|
if (skc->skc_reclaim)
|
|
skc->skc_reclaim(skc->skc_private);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Prevent concurrent cache reaping when contended.
|
|
*/
|
|
if (test_and_set_bit(KMC_BIT_REAPING, &skc->skc_flags))
|
|
goto out;
|
|
|
|
/*
|
|
* When a reclaim function is available it may be invoked repeatedly
|
|
* until at least a single slab can be freed. This ensures that we
|
|
* do free memory back to the system. This helps minimize the chance
|
|
* of an OOM event when the bulk of memory is used by the slab.
|
|
*
|
|
* When free slabs are already available the reclaim callback will be
|
|
* skipped. Additionally, if no forward progress is detected despite
|
|
* a reclaim function the cache will be skipped to avoid deadlock.
|
|
*
|
|
* Longer term this would be the correct place to add the code which
|
|
* repacks the slabs in order minimize fragmentation.
|
|
*/
|
|
if (skc->skc_reclaim) {
|
|
uint64_t objects = UINT64_MAX;
|
|
int do_reclaim;
|
|
|
|
do {
|
|
spin_lock(&skc->skc_lock);
|
|
do_reclaim =
|
|
(skc->skc_slab_total > 0) &&
|
|
((skc->skc_slab_total-skc->skc_slab_alloc) == 0) &&
|
|
(skc->skc_obj_alloc < objects);
|
|
|
|
objects = skc->skc_obj_alloc;
|
|
spin_unlock(&skc->skc_lock);
|
|
|
|
if (do_reclaim)
|
|
skc->skc_reclaim(skc->skc_private);
|
|
|
|
} while (do_reclaim);
|
|
}
|
|
|
|
/* Reclaim from the magazine and free all now empty slabs. */
|
|
if (spl_kmem_cache_expire & KMC_EXPIRE_MEM) {
|
|
spl_kmem_magazine_t *skm;
|
|
unsigned long irq_flags;
|
|
|
|
local_irq_save(irq_flags);
|
|
skm = skc->skc_mag[smp_processor_id()];
|
|
spl_cache_flush(skc, skm, skm->skm_avail);
|
|
local_irq_restore(irq_flags);
|
|
}
|
|
|
|
spl_slab_reclaim(skc);
|
|
clear_bit_unlock(KMC_BIT_REAPING, &skc->skc_flags);
|
|
smp_mb__after_atomic();
|
|
wake_up_bit(&skc->skc_flags, KMC_BIT_REAPING);
|
|
out:
|
|
atomic_dec(&skc->skc_ref);
|
|
}
|
|
EXPORT_SYMBOL(spl_kmem_cache_reap_now);
|
|
|
|
/*
|
|
* This is stubbed out for code consistency with other platforms. There
|
|
* is existing logic to prevent concurrent reaping so while this is ugly
|
|
* it should do no harm.
|
|
*/
|
|
int
|
|
spl_kmem_cache_reap_active()
|
|
{
|
|
return (0);
|
|
}
|
|
EXPORT_SYMBOL(spl_kmem_cache_reap_active);
|
|
|
|
/*
|
|
* Reap all free slabs from all registered caches.
|
|
*/
|
|
void
|
|
spl_kmem_reap(void)
|
|
{
|
|
struct shrink_control sc;
|
|
|
|
sc.nr_to_scan = KMC_REAP_CHUNK;
|
|
sc.gfp_mask = GFP_KERNEL;
|
|
|
|
(void) __spl_kmem_cache_generic_shrinker(NULL, &sc);
|
|
}
|
|
EXPORT_SYMBOL(spl_kmem_reap);
|
|
|
|
int
|
|
spl_kmem_cache_init(void)
|
|
{
|
|
init_rwsem(&spl_kmem_cache_sem);
|
|
INIT_LIST_HEAD(&spl_kmem_cache_list);
|
|
spl_kmem_cache_taskq = taskq_create("spl_kmem_cache",
|
|
spl_kmem_cache_kmem_threads, maxclsyspri,
|
|
spl_kmem_cache_kmem_threads * 8, INT_MAX,
|
|
TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
|
|
spl_register_shrinker(&spl_kmem_cache_shrinker);
|
|
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
spl_kmem_cache_fini(void)
|
|
{
|
|
spl_unregister_shrinker(&spl_kmem_cache_shrinker);
|
|
taskq_destroy(spl_kmem_cache_taskq);
|
|
}
|