674 lines
17 KiB
C
674 lines
17 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or https://opensource.org/licenses/CDDL-1.0.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
|
|
* Copyright (c) 2013, 2018 by Delphix. All rights reserved.
|
|
* Copyright (c) 2016, 2017 Intel Corporation.
|
|
* Copyright 2016 Igor Kozhukhov <ikozhukhov@gmail.com>.
|
|
*/
|
|
|
|
/*
|
|
* Functions to convert between a list of vdevs and an nvlist representing the
|
|
* configuration. Each entry in the list can be one of:
|
|
*
|
|
* Device vdevs
|
|
* disk=(path=..., devid=...)
|
|
* file=(path=...)
|
|
*
|
|
* Group vdevs
|
|
* raidz[1|2]=(...)
|
|
* mirror=(...)
|
|
*
|
|
* Hot spares
|
|
*
|
|
* While the underlying implementation supports it, group vdevs cannot contain
|
|
* other group vdevs. All userland verification of devices is contained within
|
|
* this file. If successful, the nvlist returned can be passed directly to the
|
|
* kernel; we've done as much verification as possible in userland.
|
|
*
|
|
* Hot spares are a special case, and passed down as an array of disk vdevs, at
|
|
* the same level as the root of the vdev tree.
|
|
*
|
|
* The only function exported by this file is 'make_root_vdev'. The
|
|
* function performs several passes:
|
|
*
|
|
* 1. Construct the vdev specification. Performs syntax validation and
|
|
* makes sure each device is valid.
|
|
* 2. Check for devices in use. Using libblkid to make sure that no
|
|
* devices are also in use. Some can be overridden using the 'force'
|
|
* flag, others cannot.
|
|
* 3. Check for replication errors if the 'force' flag is not specified.
|
|
* validates that the replication level is consistent across the
|
|
* entire pool.
|
|
* 4. Call libzfs to label any whole disks with an EFI label.
|
|
*/
|
|
|
|
#include <assert.h>
|
|
#include <ctype.h>
|
|
#include <errno.h>
|
|
#include <fcntl.h>
|
|
#include <libintl.h>
|
|
#include <libnvpair.h>
|
|
#include <libzutil.h>
|
|
#include <limits.h>
|
|
#include <sys/spa.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <unistd.h>
|
|
#include "zpool_util.h"
|
|
#include <sys/zfs_context.h>
|
|
|
|
#include <scsi/scsi.h>
|
|
#include <scsi/sg.h>
|
|
#include <sys/efi_partition.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/mntent.h>
|
|
#include <uuid/uuid.h>
|
|
#include <blkid/blkid.h>
|
|
|
|
typedef struct vdev_disk_db_entry
|
|
{
|
|
char id[24];
|
|
int sector_size;
|
|
} vdev_disk_db_entry_t;
|
|
|
|
/*
|
|
* Database of block devices that lie about physical sector sizes. The
|
|
* identification string must be precisely 24 characters to avoid false
|
|
* negatives
|
|
*/
|
|
static vdev_disk_db_entry_t vdev_disk_database[] = {
|
|
{"ATA ADATA SSD S396 3", 8192},
|
|
{"ATA APPLE SSD SM128E", 8192},
|
|
{"ATA APPLE SSD SM256E", 8192},
|
|
{"ATA APPLE SSD SM512E", 8192},
|
|
{"ATA APPLE SSD SM768E", 8192},
|
|
{"ATA C400-MTFDDAC064M", 8192},
|
|
{"ATA C400-MTFDDAC128M", 8192},
|
|
{"ATA C400-MTFDDAC256M", 8192},
|
|
{"ATA C400-MTFDDAC512M", 8192},
|
|
{"ATA Corsair Force 3 ", 8192},
|
|
{"ATA Corsair Force GS", 8192},
|
|
{"ATA INTEL SSDSA2CT04", 8192},
|
|
{"ATA INTEL SSDSA2BZ10", 8192},
|
|
{"ATA INTEL SSDSA2BZ20", 8192},
|
|
{"ATA INTEL SSDSA2BZ30", 8192},
|
|
{"ATA INTEL SSDSA2CW04", 8192},
|
|
{"ATA INTEL SSDSA2CW08", 8192},
|
|
{"ATA INTEL SSDSA2CW12", 8192},
|
|
{"ATA INTEL SSDSA2CW16", 8192},
|
|
{"ATA INTEL SSDSA2CW30", 8192},
|
|
{"ATA INTEL SSDSA2CW60", 8192},
|
|
{"ATA INTEL SSDSC2CT06", 8192},
|
|
{"ATA INTEL SSDSC2CT12", 8192},
|
|
{"ATA INTEL SSDSC2CT18", 8192},
|
|
{"ATA INTEL SSDSC2CT24", 8192},
|
|
{"ATA INTEL SSDSC2CW06", 8192},
|
|
{"ATA INTEL SSDSC2CW12", 8192},
|
|
{"ATA INTEL SSDSC2CW18", 8192},
|
|
{"ATA INTEL SSDSC2CW24", 8192},
|
|
{"ATA INTEL SSDSC2CW48", 8192},
|
|
{"ATA KINGSTON SH100S3", 8192},
|
|
{"ATA KINGSTON SH103S3", 8192},
|
|
{"ATA M4-CT064M4SSD2 ", 8192},
|
|
{"ATA M4-CT128M4SSD2 ", 8192},
|
|
{"ATA M4-CT256M4SSD2 ", 8192},
|
|
{"ATA M4-CT512M4SSD2 ", 8192},
|
|
{"ATA OCZ-AGILITY2 ", 8192},
|
|
{"ATA OCZ-AGILITY3 ", 8192},
|
|
{"ATA OCZ-VERTEX2 3.5 ", 8192},
|
|
{"ATA OCZ-VERTEX3 ", 8192},
|
|
{"ATA OCZ-VERTEX3 LT ", 8192},
|
|
{"ATA OCZ-VERTEX3 MI ", 8192},
|
|
{"ATA OCZ-VERTEX4 ", 8192},
|
|
{"ATA SAMSUNG MZ7WD120", 8192},
|
|
{"ATA SAMSUNG MZ7WD240", 8192},
|
|
{"ATA SAMSUNG MZ7WD480", 8192},
|
|
{"ATA SAMSUNG MZ7WD960", 8192},
|
|
{"ATA SAMSUNG SSD 830 ", 8192},
|
|
{"ATA Samsung SSD 840 ", 8192},
|
|
{"ATA SanDisk SSD U100", 8192},
|
|
{"ATA TOSHIBA THNSNH06", 8192},
|
|
{"ATA TOSHIBA THNSNH12", 8192},
|
|
{"ATA TOSHIBA THNSNH25", 8192},
|
|
{"ATA TOSHIBA THNSNH51", 8192},
|
|
{"ATA APPLE SSD TS064C", 4096},
|
|
{"ATA APPLE SSD TS128C", 4096},
|
|
{"ATA APPLE SSD TS256C", 4096},
|
|
{"ATA APPLE SSD TS512C", 4096},
|
|
{"ATA INTEL SSDSA2M040", 4096},
|
|
{"ATA INTEL SSDSA2M080", 4096},
|
|
{"ATA INTEL SSDSA2M160", 4096},
|
|
{"ATA INTEL SSDSC2MH12", 4096},
|
|
{"ATA INTEL SSDSC2MH25", 4096},
|
|
{"ATA OCZ CORE_SSD ", 4096},
|
|
{"ATA OCZ-VERTEX ", 4096},
|
|
{"ATA SAMSUNG MCCOE32G", 4096},
|
|
{"ATA SAMSUNG MCCOE64G", 4096},
|
|
{"ATA SAMSUNG SSD PM80", 4096},
|
|
/* Flash drives optimized for 4KB IOs on larger pages */
|
|
{"ATA INTEL SSDSC2BA10", 4096},
|
|
{"ATA INTEL SSDSC2BA20", 4096},
|
|
{"ATA INTEL SSDSC2BA40", 4096},
|
|
{"ATA INTEL SSDSC2BA80", 4096},
|
|
{"ATA INTEL SSDSC2BB08", 4096},
|
|
{"ATA INTEL SSDSC2BB12", 4096},
|
|
{"ATA INTEL SSDSC2BB16", 4096},
|
|
{"ATA INTEL SSDSC2BB24", 4096},
|
|
{"ATA INTEL SSDSC2BB30", 4096},
|
|
{"ATA INTEL SSDSC2BB40", 4096},
|
|
{"ATA INTEL SSDSC2BB48", 4096},
|
|
{"ATA INTEL SSDSC2BB60", 4096},
|
|
{"ATA INTEL SSDSC2BB80", 4096},
|
|
{"ATA INTEL SSDSC2BW24", 4096},
|
|
{"ATA INTEL SSDSC2BW48", 4096},
|
|
{"ATA INTEL SSDSC2BP24", 4096},
|
|
{"ATA INTEL SSDSC2BP48", 4096},
|
|
{"NA SmrtStorSDLKAE9W", 4096},
|
|
{"NVMe Amazon EC2 NVMe ", 4096},
|
|
/* Imported from Open Solaris */
|
|
{"ATA MARVELL SD88SA02", 4096},
|
|
/* Advanced format Hard drives */
|
|
{"ATA Hitachi HDS5C303", 4096},
|
|
{"ATA SAMSUNG HD204UI ", 4096},
|
|
{"ATA ST2000DL004 HD20", 4096},
|
|
{"ATA WDC WD10EARS-00M", 4096},
|
|
{"ATA WDC WD10EARS-00S", 4096},
|
|
{"ATA WDC WD10EARS-00Z", 4096},
|
|
{"ATA WDC WD15EARS-00M", 4096},
|
|
{"ATA WDC WD15EARS-00S", 4096},
|
|
{"ATA WDC WD15EARS-00Z", 4096},
|
|
{"ATA WDC WD20EARS-00M", 4096},
|
|
{"ATA WDC WD20EARS-00S", 4096},
|
|
{"ATA WDC WD20EARS-00Z", 4096},
|
|
{"ATA WDC WD1600BEVT-0", 4096},
|
|
{"ATA WDC WD2500BEVT-0", 4096},
|
|
{"ATA WDC WD3200BEVT-0", 4096},
|
|
{"ATA WDC WD5000BEVT-0", 4096},
|
|
};
|
|
|
|
|
|
#define INQ_REPLY_LEN 96
|
|
#define INQ_CMD_LEN 6
|
|
|
|
static const int vdev_disk_database_size =
|
|
sizeof (vdev_disk_database) / sizeof (vdev_disk_database[0]);
|
|
|
|
boolean_t
|
|
check_sector_size_database(char *path, int *sector_size)
|
|
{
|
|
unsigned char inq_buff[INQ_REPLY_LEN];
|
|
unsigned char sense_buffer[32];
|
|
unsigned char inq_cmd_blk[INQ_CMD_LEN] =
|
|
{INQUIRY, 0, 0, 0, INQ_REPLY_LEN, 0};
|
|
sg_io_hdr_t io_hdr;
|
|
int error;
|
|
int fd;
|
|
int i;
|
|
|
|
/* Prepare INQUIRY command */
|
|
memset(&io_hdr, 0, sizeof (sg_io_hdr_t));
|
|
io_hdr.interface_id = 'S';
|
|
io_hdr.cmd_len = sizeof (inq_cmd_blk);
|
|
io_hdr.mx_sb_len = sizeof (sense_buffer);
|
|
io_hdr.dxfer_direction = SG_DXFER_FROM_DEV;
|
|
io_hdr.dxfer_len = INQ_REPLY_LEN;
|
|
io_hdr.dxferp = inq_buff;
|
|
io_hdr.cmdp = inq_cmd_blk;
|
|
io_hdr.sbp = sense_buffer;
|
|
io_hdr.timeout = 10; /* 10 milliseconds is ample time */
|
|
|
|
if ((fd = open(path, O_RDONLY|O_DIRECT)) < 0)
|
|
return (B_FALSE);
|
|
|
|
error = ioctl(fd, SG_IO, (unsigned long) &io_hdr);
|
|
|
|
(void) close(fd);
|
|
|
|
if (error < 0)
|
|
return (B_FALSE);
|
|
|
|
if ((io_hdr.info & SG_INFO_OK_MASK) != SG_INFO_OK)
|
|
return (B_FALSE);
|
|
|
|
for (i = 0; i < vdev_disk_database_size; i++) {
|
|
if (memcmp(inq_buff + 8, vdev_disk_database[i].id, 24))
|
|
continue;
|
|
|
|
*sector_size = vdev_disk_database[i].sector_size;
|
|
return (B_TRUE);
|
|
}
|
|
|
|
return (B_FALSE);
|
|
}
|
|
|
|
static int
|
|
check_slice(const char *path, blkid_cache cache, int force, boolean_t isspare)
|
|
{
|
|
int err;
|
|
char *value;
|
|
|
|
/* No valid type detected device is safe to use */
|
|
value = blkid_get_tag_value(cache, "TYPE", path);
|
|
if (value == NULL)
|
|
return (0);
|
|
|
|
/*
|
|
* If libblkid detects a ZFS device, we check the device
|
|
* using check_file() to see if it's safe. The one safe
|
|
* case is a spare device shared between multiple pools.
|
|
*/
|
|
if (strcmp(value, "zfs_member") == 0) {
|
|
err = check_file(path, force, isspare);
|
|
} else {
|
|
if (force) {
|
|
err = 0;
|
|
} else {
|
|
err = -1;
|
|
vdev_error(gettext("%s contains a filesystem of "
|
|
"type '%s'\n"), path, value);
|
|
}
|
|
}
|
|
|
|
free(value);
|
|
|
|
return (err);
|
|
}
|
|
|
|
/*
|
|
* Validate that a disk including all partitions are safe to use.
|
|
*
|
|
* For EFI labeled disks this can done relatively easily with the libefi
|
|
* library. The partition numbers are extracted from the label and used
|
|
* to generate the expected /dev/ paths. Each partition can then be
|
|
* checked for conflicts.
|
|
*
|
|
* For non-EFI labeled disks (MBR/EBR/etc) the same process is possible
|
|
* but due to the lack of a readily available libraries this scanning is
|
|
* not implemented. Instead only the device path as given is checked.
|
|
*/
|
|
static int
|
|
check_disk(const char *path, blkid_cache cache, int force,
|
|
boolean_t isspare, boolean_t iswholedisk)
|
|
{
|
|
struct dk_gpt *vtoc;
|
|
char slice_path[MAXPATHLEN];
|
|
int err = 0;
|
|
int fd, i;
|
|
int flags = O_RDONLY|O_DIRECT;
|
|
|
|
if (!iswholedisk)
|
|
return (check_slice(path, cache, force, isspare));
|
|
|
|
/* only spares can be shared, other devices require exclusive access */
|
|
if (!isspare)
|
|
flags |= O_EXCL;
|
|
|
|
if ((fd = open(path, flags)) < 0) {
|
|
char *value = blkid_get_tag_value(cache, "TYPE", path);
|
|
(void) fprintf(stderr, gettext("%s is in use and contains "
|
|
"a %s filesystem.\n"), path, value ? value : "unknown");
|
|
free(value);
|
|
return (-1);
|
|
}
|
|
|
|
/*
|
|
* Expected to fail for non-EFI labeled disks. Just check the device
|
|
* as given and do not attempt to detect and scan partitions.
|
|
*/
|
|
err = efi_alloc_and_read(fd, &vtoc);
|
|
if (err) {
|
|
(void) close(fd);
|
|
return (check_slice(path, cache, force, isspare));
|
|
}
|
|
|
|
/*
|
|
* The primary efi partition label is damaged however the secondary
|
|
* label at the end of the device is intact. Rather than use this
|
|
* label we should play it safe and treat this as a non efi device.
|
|
*/
|
|
if (vtoc->efi_flags & EFI_GPT_PRIMARY_CORRUPT) {
|
|
efi_free(vtoc);
|
|
(void) close(fd);
|
|
|
|
if (force) {
|
|
/* Partitions will now be created using the backup */
|
|
return (0);
|
|
} else {
|
|
vdev_error(gettext("%s contains a corrupt primary "
|
|
"EFI label.\n"), path);
|
|
return (-1);
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < vtoc->efi_nparts; i++) {
|
|
|
|
if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED ||
|
|
uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_guid))
|
|
continue;
|
|
|
|
if (strncmp(path, UDISK_ROOT, strlen(UDISK_ROOT)) == 0)
|
|
(void) snprintf(slice_path, sizeof (slice_path),
|
|
"%s%s%d", path, "-part", i+1);
|
|
else
|
|
(void) snprintf(slice_path, sizeof (slice_path),
|
|
"%s%s%d", path, isdigit(path[strlen(path)-1]) ?
|
|
"p" : "", i+1);
|
|
|
|
err = check_slice(slice_path, cache, force, isspare);
|
|
if (err)
|
|
break;
|
|
}
|
|
|
|
efi_free(vtoc);
|
|
(void) close(fd);
|
|
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
check_device(const char *path, boolean_t force,
|
|
boolean_t isspare, boolean_t iswholedisk)
|
|
{
|
|
blkid_cache cache;
|
|
int error;
|
|
|
|
error = blkid_get_cache(&cache, NULL);
|
|
if (error != 0) {
|
|
(void) fprintf(stderr, gettext("unable to access the blkid "
|
|
"cache.\n"));
|
|
return (-1);
|
|
}
|
|
|
|
error = check_disk(path, cache, force, isspare, iswholedisk);
|
|
blkid_put_cache(cache);
|
|
|
|
return (error);
|
|
}
|
|
|
|
void
|
|
after_zpool_upgrade(zpool_handle_t *zhp)
|
|
{
|
|
(void) zhp;
|
|
}
|
|
|
|
int
|
|
check_file(const char *file, boolean_t force, boolean_t isspare)
|
|
{
|
|
return (check_file_generic(file, force, isspare));
|
|
}
|
|
|
|
/*
|
|
* Read from a sysfs file and return an allocated string. Removes
|
|
* the newline from the end of the string if there is one.
|
|
*
|
|
* Returns a string on success (which must be freed), or NULL on error.
|
|
*/
|
|
static char *zpool_sysfs_gets(char *path)
|
|
{
|
|
int fd;
|
|
struct stat statbuf;
|
|
char *buf = NULL;
|
|
ssize_t count = 0;
|
|
fd = open(path, O_RDONLY);
|
|
if (fd < 0)
|
|
return (NULL);
|
|
|
|
if (fstat(fd, &statbuf) != 0) {
|
|
close(fd);
|
|
return (NULL);
|
|
}
|
|
|
|
buf = calloc(sizeof (*buf), statbuf.st_size + 1);
|
|
if (buf == NULL) {
|
|
close(fd);
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Note, we can read less bytes than st_size, and that's ok. Sysfs
|
|
* files will report their size is 4k even if they only return a small
|
|
* string.
|
|
*/
|
|
count = read(fd, buf, statbuf.st_size);
|
|
if (count < 0) {
|
|
/* Error doing read() or we overran the buffer */
|
|
close(fd);
|
|
free(buf);
|
|
return (NULL);
|
|
}
|
|
|
|
/* Remove trailing newline */
|
|
if (buf[count - 1] == '\n')
|
|
buf[count - 1] = 0;
|
|
|
|
close(fd);
|
|
|
|
return (buf);
|
|
}
|
|
|
|
/*
|
|
* Write a string to a sysfs file.
|
|
*
|
|
* Returns 0 on success, non-zero otherwise.
|
|
*/
|
|
static int zpool_sysfs_puts(char *path, char *str)
|
|
{
|
|
FILE *file;
|
|
|
|
file = fopen(path, "w");
|
|
if (!file) {
|
|
return (-1);
|
|
}
|
|
|
|
if (fputs(str, file) < 0) {
|
|
fclose(file);
|
|
return (-2);
|
|
}
|
|
fclose(file);
|
|
return (0);
|
|
}
|
|
|
|
/* Given a vdev nvlist_t, rescan its enclosure sysfs path */
|
|
static void
|
|
rescan_vdev_config_dev_sysfs_path(nvlist_t *vdev_nv)
|
|
{
|
|
update_vdev_config_dev_sysfs_path(vdev_nv,
|
|
fnvlist_lookup_string(vdev_nv, ZPOOL_CONFIG_PATH),
|
|
ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH);
|
|
}
|
|
|
|
/*
|
|
* Given a power string: "on", "off", "1", or "0", return 0 if it's an
|
|
* off value, 1 if it's an on value, and -1 if the value is unrecognized.
|
|
*/
|
|
static int zpool_power_parse_value(char *str)
|
|
{
|
|
if ((strcmp(str, "off") == 0) || (strcmp(str, "0") == 0))
|
|
return (0);
|
|
|
|
if ((strcmp(str, "on") == 0) || (strcmp(str, "1") == 0))
|
|
return (1);
|
|
|
|
return (-1);
|
|
}
|
|
|
|
/*
|
|
* Given a vdev string return an allocated string containing the sysfs path to
|
|
* its power control file. Also do a check if the power control file really
|
|
* exists and has correct permissions.
|
|
*
|
|
* Example returned strings:
|
|
*
|
|
* /sys/class/enclosure/0:0:122:0/10/power_status
|
|
* /sys/bus/pci/slots/10/power
|
|
*
|
|
* Returns allocated string on success (which must be freed), NULL on failure.
|
|
*/
|
|
static char *
|
|
zpool_power_sysfs_path(zpool_handle_t *zhp, char *vdev)
|
|
{
|
|
const char *enc_sysfs_dir = NULL;
|
|
char *path = NULL;
|
|
nvlist_t *vdev_nv = zpool_find_vdev(zhp, vdev, NULL, NULL, NULL);
|
|
|
|
if (vdev_nv == NULL) {
|
|
return (NULL);
|
|
}
|
|
|
|
/* Make sure we're getting the updated enclosure sysfs path */
|
|
rescan_vdev_config_dev_sysfs_path(vdev_nv);
|
|
|
|
if (nvlist_lookup_string(vdev_nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH,
|
|
&enc_sysfs_dir) != 0) {
|
|
return (NULL);
|
|
}
|
|
|
|
if (asprintf(&path, "%s/power_status", enc_sysfs_dir) == -1)
|
|
return (NULL);
|
|
|
|
if (access(path, W_OK) != 0) {
|
|
free(path);
|
|
path = NULL;
|
|
/* No HDD 'power_control' file, maybe it's NVMe? */
|
|
if (asprintf(&path, "%s/power", enc_sysfs_dir) == -1) {
|
|
return (NULL);
|
|
}
|
|
|
|
if (access(path, R_OK | W_OK) != 0) {
|
|
/* Not NVMe either */
|
|
free(path);
|
|
return (NULL);
|
|
}
|
|
}
|
|
|
|
return (path);
|
|
}
|
|
|
|
/*
|
|
* Given a path to a sysfs power control file, return B_TRUE if you should use
|
|
* "on/off" words to control it, or B_FALSE otherwise ("0/1" to control).
|
|
*/
|
|
static boolean_t
|
|
zpool_power_use_word(char *sysfs_path)
|
|
{
|
|
if (strcmp(&sysfs_path[strlen(sysfs_path) - strlen("power_status")],
|
|
"power_status") == 0) {
|
|
return (B_TRUE);
|
|
}
|
|
return (B_FALSE);
|
|
}
|
|
|
|
/*
|
|
* Check the sysfs power control value for a vdev.
|
|
*
|
|
* Returns:
|
|
* 0 - Power is off
|
|
* 1 - Power is on
|
|
* -1 - Error or unsupported
|
|
*/
|
|
int
|
|
zpool_power_current_state(zpool_handle_t *zhp, char *vdev)
|
|
{
|
|
char *val;
|
|
int rc;
|
|
|
|
char *path = zpool_power_sysfs_path(zhp, vdev);
|
|
if (path == NULL)
|
|
return (-1);
|
|
|
|
val = zpool_sysfs_gets(path);
|
|
if (val == NULL) {
|
|
free(path);
|
|
return (-1);
|
|
}
|
|
|
|
rc = zpool_power_parse_value(val);
|
|
free(val);
|
|
free(path);
|
|
return (rc);
|
|
}
|
|
|
|
/*
|
|
* Turn on or off the slot to a device
|
|
*
|
|
* Device path is the full path to the device (like /dev/sda or /dev/sda1).
|
|
*
|
|
* Return code:
|
|
* 0: Success
|
|
* ENOTSUP: Power control not supported for OS
|
|
* EBADSLT: Couldn't read current power state
|
|
* ENOENT: No sysfs path to power control
|
|
* EIO: Couldn't write sysfs power value
|
|
* EBADE: Sysfs power value didn't change
|
|
*/
|
|
int
|
|
zpool_power(zpool_handle_t *zhp, char *vdev, boolean_t turn_on)
|
|
{
|
|
char *sysfs_path;
|
|
const char *val;
|
|
int rc;
|
|
int timeout_ms;
|
|
|
|
rc = zpool_power_current_state(zhp, vdev);
|
|
if (rc == -1) {
|
|
return (EBADSLT);
|
|
}
|
|
|
|
/* Already correct value? */
|
|
if (rc == (int)turn_on)
|
|
return (0);
|
|
|
|
sysfs_path = zpool_power_sysfs_path(zhp, vdev);
|
|
if (sysfs_path == NULL)
|
|
return (ENOENT);
|
|
|
|
if (zpool_power_use_word(sysfs_path)) {
|
|
val = turn_on ? "on" : "off";
|
|
} else {
|
|
val = turn_on ? "1" : "0";
|
|
}
|
|
|
|
rc = zpool_sysfs_puts(sysfs_path, (char *)val);
|
|
|
|
free(sysfs_path);
|
|
if (rc != 0) {
|
|
return (EIO);
|
|
}
|
|
|
|
/*
|
|
* Wait up to 30 seconds for sysfs power value to change after
|
|
* writing it.
|
|
*/
|
|
timeout_ms = zpool_getenv_int("ZPOOL_POWER_ON_SLOT_TIMEOUT_MS", 30000);
|
|
for (int i = 0; i < MAX(1, timeout_ms / 200); i++) {
|
|
rc = zpool_power_current_state(zhp, vdev);
|
|
if (rc == (int)turn_on)
|
|
return (0); /* success */
|
|
|
|
fsleep(0.200); /* 200ms */
|
|
}
|
|
|
|
/* sysfs value never changed */
|
|
return (EBADE);
|
|
}
|