1463 lines
38 KiB
C
1463 lines
38 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or https://opensource.org/licenses/CDDL-1.0.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
|
|
/*
|
|
* Copyright 2015 Nexenta Systems, Inc. All rights reserved.
|
|
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
|
|
* Copyright (c) 2014, 2022 by Delphix. All rights reserved.
|
|
* Copyright 2016 Igor Kozhukhov <ikozhukhov@gmail.com>
|
|
* Copyright 2017 RackTop Systems.
|
|
* Copyright (c) 2018 Datto Inc.
|
|
* Copyright 2018 OmniOS Community Edition (OmniOSce) Association.
|
|
*/
|
|
|
|
/*
|
|
* Routines to manage ZFS mounts. We separate all the nasty routines that have
|
|
* to deal with the OS. The following functions are the main entry points --
|
|
* they are used by mount and unmount and when changing a filesystem's
|
|
* mountpoint.
|
|
*
|
|
* zfs_is_mounted()
|
|
* zfs_mount()
|
|
* zfs_mount_at()
|
|
* zfs_unmount()
|
|
* zfs_unmountall()
|
|
*
|
|
* This file also contains the functions used to manage sharing filesystems:
|
|
*
|
|
* zfs_is_shared()
|
|
* zfs_share()
|
|
* zfs_unshare()
|
|
* zfs_unshareall()
|
|
* zfs_commit_shares()
|
|
*
|
|
* The following functions are available for pool consumers, and will
|
|
* mount/unmount and share/unshare all datasets within pool:
|
|
*
|
|
* zpool_enable_datasets()
|
|
* zpool_disable_datasets()
|
|
*/
|
|
|
|
#include <dirent.h>
|
|
#include <dlfcn.h>
|
|
#include <errno.h>
|
|
#include <fcntl.h>
|
|
#include <libgen.h>
|
|
#include <libintl.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <unistd.h>
|
|
#include <zone.h>
|
|
#include <sys/mntent.h>
|
|
#include <sys/mount.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/vfs.h>
|
|
#include <sys/dsl_crypt.h>
|
|
|
|
#include <libzfs.h>
|
|
|
|
#include "libzfs_impl.h"
|
|
#include <thread_pool.h>
|
|
|
|
#include <libshare.h>
|
|
#include <sys/systeminfo.h>
|
|
#define MAXISALEN 257 /* based on sysinfo(2) man page */
|
|
|
|
static int mount_tp_nthr = 512; /* tpool threads for multi-threaded mounting */
|
|
|
|
static void zfs_mount_task(void *);
|
|
|
|
static const proto_table_t proto_table[SA_PROTOCOL_COUNT] = {
|
|
[SA_PROTOCOL_NFS] =
|
|
{ZFS_PROP_SHARENFS, EZFS_SHARENFSFAILED, EZFS_UNSHARENFSFAILED},
|
|
[SA_PROTOCOL_SMB] =
|
|
{ZFS_PROP_SHARESMB, EZFS_SHARESMBFAILED, EZFS_UNSHARESMBFAILED},
|
|
};
|
|
|
|
static const enum sa_protocol share_all_proto[SA_PROTOCOL_COUNT + 1] = {
|
|
SA_PROTOCOL_NFS,
|
|
SA_PROTOCOL_SMB,
|
|
SA_NO_PROTOCOL
|
|
};
|
|
|
|
|
|
|
|
static boolean_t
|
|
dir_is_empty_stat(const char *dirname)
|
|
{
|
|
struct stat st;
|
|
|
|
/*
|
|
* We only want to return false if the given path is a non empty
|
|
* directory, all other errors are handled elsewhere.
|
|
*/
|
|
if (stat(dirname, &st) < 0 || !S_ISDIR(st.st_mode)) {
|
|
return (B_TRUE);
|
|
}
|
|
|
|
/*
|
|
* An empty directory will still have two entries in it, one
|
|
* entry for each of "." and "..".
|
|
*/
|
|
if (st.st_size > 2) {
|
|
return (B_FALSE);
|
|
}
|
|
|
|
return (B_TRUE);
|
|
}
|
|
|
|
static boolean_t
|
|
dir_is_empty_readdir(const char *dirname)
|
|
{
|
|
DIR *dirp;
|
|
struct dirent64 *dp;
|
|
int dirfd;
|
|
|
|
if ((dirfd = openat(AT_FDCWD, dirname,
|
|
O_RDONLY | O_NDELAY | O_LARGEFILE | O_CLOEXEC, 0)) < 0) {
|
|
return (B_TRUE);
|
|
}
|
|
|
|
if ((dirp = fdopendir(dirfd)) == NULL) {
|
|
(void) close(dirfd);
|
|
return (B_TRUE);
|
|
}
|
|
|
|
while ((dp = readdir64(dirp)) != NULL) {
|
|
|
|
if (strcmp(dp->d_name, ".") == 0 ||
|
|
strcmp(dp->d_name, "..") == 0)
|
|
continue;
|
|
|
|
(void) closedir(dirp);
|
|
return (B_FALSE);
|
|
}
|
|
|
|
(void) closedir(dirp);
|
|
return (B_TRUE);
|
|
}
|
|
|
|
/*
|
|
* Returns true if the specified directory is empty. If we can't open the
|
|
* directory at all, return true so that the mount can fail with a more
|
|
* informative error message.
|
|
*/
|
|
static boolean_t
|
|
dir_is_empty(const char *dirname)
|
|
{
|
|
struct statfs64 st;
|
|
|
|
/*
|
|
* If the statvfs call fails or the filesystem is not a ZFS
|
|
* filesystem, fall back to the slow path which uses readdir.
|
|
*/
|
|
if ((statfs64(dirname, &st) != 0) ||
|
|
(st.f_type != ZFS_SUPER_MAGIC)) {
|
|
return (dir_is_empty_readdir(dirname));
|
|
}
|
|
|
|
/*
|
|
* At this point, we know the provided path is on a ZFS
|
|
* filesystem, so we can use stat instead of readdir to
|
|
* determine if the directory is empty or not. We try to avoid
|
|
* using readdir because that requires opening "dirname"; this
|
|
* open file descriptor can potentially end up in a child
|
|
* process if there's a concurrent fork, thus preventing the
|
|
* zfs_mount() from otherwise succeeding (the open file
|
|
* descriptor inherited by the child process will cause the
|
|
* parent's mount to fail with EBUSY). The performance
|
|
* implications of replacing the open, read, and close with a
|
|
* single stat is nice; but is not the main motivation for the
|
|
* added complexity.
|
|
*/
|
|
return (dir_is_empty_stat(dirname));
|
|
}
|
|
|
|
/*
|
|
* Checks to see if the mount is active. If the filesystem is mounted, we fill
|
|
* in 'where' with the current mountpoint, and return 1. Otherwise, we return
|
|
* 0.
|
|
*/
|
|
boolean_t
|
|
is_mounted(libzfs_handle_t *zfs_hdl, const char *special, char **where)
|
|
{
|
|
struct mnttab entry;
|
|
|
|
if (libzfs_mnttab_find(zfs_hdl, special, &entry) != 0)
|
|
return (B_FALSE);
|
|
|
|
if (where != NULL)
|
|
*where = zfs_strdup(zfs_hdl, entry.mnt_mountp);
|
|
|
|
return (B_TRUE);
|
|
}
|
|
|
|
boolean_t
|
|
zfs_is_mounted(zfs_handle_t *zhp, char **where)
|
|
{
|
|
return (is_mounted(zhp->zfs_hdl, zfs_get_name(zhp), where));
|
|
}
|
|
|
|
/*
|
|
* Checks any higher order concerns about whether the given dataset is
|
|
* mountable, false otherwise. zfs_is_mountable_internal specifically assumes
|
|
* that the caller has verified the sanity of mounting the dataset at
|
|
* its mountpoint to the extent the caller wants.
|
|
*/
|
|
static boolean_t
|
|
zfs_is_mountable_internal(zfs_handle_t *zhp)
|
|
{
|
|
if (zfs_prop_get_int(zhp, ZFS_PROP_ZONED) &&
|
|
getzoneid() == GLOBAL_ZONEID)
|
|
return (B_FALSE);
|
|
|
|
return (B_TRUE);
|
|
}
|
|
|
|
/*
|
|
* Returns true if the given dataset is mountable, false otherwise. Returns the
|
|
* mountpoint in 'buf'.
|
|
*/
|
|
static boolean_t
|
|
zfs_is_mountable(zfs_handle_t *zhp, char *buf, size_t buflen,
|
|
zprop_source_t *source, int flags)
|
|
{
|
|
char sourceloc[MAXNAMELEN];
|
|
zprop_source_t sourcetype;
|
|
|
|
if (!zfs_prop_valid_for_type(ZFS_PROP_MOUNTPOINT, zhp->zfs_type,
|
|
B_FALSE))
|
|
return (B_FALSE);
|
|
|
|
verify(zfs_prop_get(zhp, ZFS_PROP_MOUNTPOINT, buf, buflen,
|
|
&sourcetype, sourceloc, sizeof (sourceloc), B_FALSE) == 0);
|
|
|
|
if (strcmp(buf, ZFS_MOUNTPOINT_NONE) == 0 ||
|
|
strcmp(buf, ZFS_MOUNTPOINT_LEGACY) == 0)
|
|
return (B_FALSE);
|
|
|
|
if (zfs_prop_get_int(zhp, ZFS_PROP_CANMOUNT) == ZFS_CANMOUNT_OFF)
|
|
return (B_FALSE);
|
|
|
|
if (!zfs_is_mountable_internal(zhp))
|
|
return (B_FALSE);
|
|
|
|
if (zfs_prop_get_int(zhp, ZFS_PROP_REDACTED) && !(flags & MS_FORCE))
|
|
return (B_FALSE);
|
|
|
|
if (source)
|
|
*source = sourcetype;
|
|
|
|
return (B_TRUE);
|
|
}
|
|
|
|
/*
|
|
* The filesystem is mounted by invoking the system mount utility rather
|
|
* than by the system call mount(2). This ensures that the /etc/mtab
|
|
* file is correctly locked for the update. Performing our own locking
|
|
* and /etc/mtab update requires making an unsafe assumption about how
|
|
* the mount utility performs its locking. Unfortunately, this also means
|
|
* in the case of a mount failure we do not have the exact errno. We must
|
|
* make due with return value from the mount process.
|
|
*
|
|
* In the long term a shared library called libmount is under development
|
|
* which provides a common API to address the locking and errno issues.
|
|
* Once the standard mount utility has been updated to use this library
|
|
* we can add an autoconf check to conditionally use it.
|
|
*
|
|
* http://www.kernel.org/pub/linux/utils/util-linux/libmount-docs/index.html
|
|
*/
|
|
|
|
static int
|
|
zfs_add_option(zfs_handle_t *zhp, char *options, int len,
|
|
zfs_prop_t prop, const char *on, const char *off)
|
|
{
|
|
const char *source;
|
|
uint64_t value;
|
|
|
|
/* Skip adding duplicate default options */
|
|
if ((strstr(options, on) != NULL) || (strstr(options, off) != NULL))
|
|
return (0);
|
|
|
|
/*
|
|
* zfs_prop_get_int() is not used to ensure our mount options
|
|
* are not influenced by the current /proc/self/mounts contents.
|
|
*/
|
|
value = getprop_uint64(zhp, prop, &source);
|
|
|
|
(void) strlcat(options, ",", len);
|
|
(void) strlcat(options, value ? on : off, len);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
zfs_add_options(zfs_handle_t *zhp, char *options, int len)
|
|
{
|
|
int error = 0;
|
|
|
|
error = zfs_add_option(zhp, options, len,
|
|
ZFS_PROP_ATIME, MNTOPT_ATIME, MNTOPT_NOATIME);
|
|
/*
|
|
* don't add relatime/strictatime when atime=off, otherwise strictatime
|
|
* will force atime=on
|
|
*/
|
|
if (strstr(options, MNTOPT_NOATIME) == NULL) {
|
|
error = zfs_add_option(zhp, options, len,
|
|
ZFS_PROP_RELATIME, MNTOPT_RELATIME, MNTOPT_STRICTATIME);
|
|
}
|
|
error = error ? error : zfs_add_option(zhp, options, len,
|
|
ZFS_PROP_DEVICES, MNTOPT_DEVICES, MNTOPT_NODEVICES);
|
|
error = error ? error : zfs_add_option(zhp, options, len,
|
|
ZFS_PROP_EXEC, MNTOPT_EXEC, MNTOPT_NOEXEC);
|
|
error = error ? error : zfs_add_option(zhp, options, len,
|
|
ZFS_PROP_READONLY, MNTOPT_RO, MNTOPT_RW);
|
|
error = error ? error : zfs_add_option(zhp, options, len,
|
|
ZFS_PROP_SETUID, MNTOPT_SETUID, MNTOPT_NOSETUID);
|
|
error = error ? error : zfs_add_option(zhp, options, len,
|
|
ZFS_PROP_NBMAND, MNTOPT_NBMAND, MNTOPT_NONBMAND);
|
|
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
zfs_mount(zfs_handle_t *zhp, const char *options, int flags)
|
|
{
|
|
char mountpoint[ZFS_MAXPROPLEN];
|
|
|
|
if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint), NULL,
|
|
flags))
|
|
return (0);
|
|
|
|
return (zfs_mount_at(zhp, options, flags, mountpoint));
|
|
}
|
|
|
|
/*
|
|
* Mount the given filesystem.
|
|
*/
|
|
int
|
|
zfs_mount_at(zfs_handle_t *zhp, const char *options, int flags,
|
|
const char *mountpoint)
|
|
{
|
|
struct stat buf;
|
|
char mntopts[MNT_LINE_MAX];
|
|
char overlay[ZFS_MAXPROPLEN];
|
|
char prop_encroot[MAXNAMELEN];
|
|
boolean_t is_encroot;
|
|
zfs_handle_t *encroot_hp = zhp;
|
|
libzfs_handle_t *hdl = zhp->zfs_hdl;
|
|
uint64_t keystatus;
|
|
int remount = 0, rc;
|
|
|
|
if (options == NULL) {
|
|
(void) strlcpy(mntopts, MNTOPT_DEFAULTS, sizeof (mntopts));
|
|
} else {
|
|
(void) strlcpy(mntopts, options, sizeof (mntopts));
|
|
}
|
|
|
|
if (strstr(mntopts, MNTOPT_REMOUNT) != NULL)
|
|
remount = 1;
|
|
|
|
/* Potentially duplicates some checks if invoked by zfs_mount(). */
|
|
if (!zfs_is_mountable_internal(zhp))
|
|
return (0);
|
|
|
|
/*
|
|
* If the pool is imported read-only then all mounts must be read-only
|
|
*/
|
|
if (zpool_get_prop_int(zhp->zpool_hdl, ZPOOL_PROP_READONLY, NULL))
|
|
(void) strlcat(mntopts, "," MNTOPT_RO, sizeof (mntopts));
|
|
|
|
/*
|
|
* Append default mount options which apply to the mount point.
|
|
* This is done because under Linux (unlike Solaris) multiple mount
|
|
* points may reference a single super block. This means that just
|
|
* given a super block there is no back reference to update the per
|
|
* mount point options.
|
|
*/
|
|
rc = zfs_add_options(zhp, mntopts, sizeof (mntopts));
|
|
if (rc) {
|
|
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
|
|
"default options unavailable"));
|
|
return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
|
|
dgettext(TEXT_DOMAIN, "cannot mount '%s'"),
|
|
mountpoint));
|
|
}
|
|
|
|
/*
|
|
* If the filesystem is encrypted the key must be loaded in order to
|
|
* mount. If the key isn't loaded, the MS_CRYPT flag decides whether
|
|
* or not we attempt to load the keys. Note: we must call
|
|
* zfs_refresh_properties() here since some callers of this function
|
|
* (most notably zpool_enable_datasets()) may implicitly load our key
|
|
* by loading the parent's key first.
|
|
*/
|
|
if (zfs_prop_get_int(zhp, ZFS_PROP_ENCRYPTION) != ZIO_CRYPT_OFF) {
|
|
zfs_refresh_properties(zhp);
|
|
keystatus = zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS);
|
|
|
|
/*
|
|
* If the key is unavailable and MS_CRYPT is set give the
|
|
* user a chance to enter the key. Otherwise just fail
|
|
* immediately.
|
|
*/
|
|
if (keystatus == ZFS_KEYSTATUS_UNAVAILABLE) {
|
|
if (flags & MS_CRYPT) {
|
|
rc = zfs_crypto_get_encryption_root(zhp,
|
|
&is_encroot, prop_encroot);
|
|
if (rc) {
|
|
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
|
|
"Failed to get encryption root for "
|
|
"'%s'."), zfs_get_name(zhp));
|
|
return (rc);
|
|
}
|
|
|
|
if (!is_encroot) {
|
|
encroot_hp = zfs_open(hdl, prop_encroot,
|
|
ZFS_TYPE_DATASET);
|
|
if (encroot_hp == NULL)
|
|
return (hdl->libzfs_error);
|
|
}
|
|
|
|
rc = zfs_crypto_load_key(encroot_hp,
|
|
B_FALSE, NULL);
|
|
|
|
if (!is_encroot)
|
|
zfs_close(encroot_hp);
|
|
if (rc)
|
|
return (rc);
|
|
} else {
|
|
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
|
|
"encryption key not loaded"));
|
|
return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
|
|
dgettext(TEXT_DOMAIN, "cannot mount '%s'"),
|
|
mountpoint));
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
/*
|
|
* Append zfsutil option so the mount helper allow the mount
|
|
*/
|
|
strlcat(mntopts, "," MNTOPT_ZFSUTIL, sizeof (mntopts));
|
|
|
|
/* Create the directory if it doesn't already exist */
|
|
if (lstat(mountpoint, &buf) != 0) {
|
|
if (mkdirp(mountpoint, 0755) != 0) {
|
|
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
|
|
"failed to create mountpoint: %s"),
|
|
strerror(errno));
|
|
return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
|
|
dgettext(TEXT_DOMAIN, "cannot mount '%s'"),
|
|
mountpoint));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Overlay mounts are enabled by default but may be disabled
|
|
* via the 'overlay' property. The -O flag remains for compatibility.
|
|
*/
|
|
if (!(flags & MS_OVERLAY)) {
|
|
if (zfs_prop_get(zhp, ZFS_PROP_OVERLAY, overlay,
|
|
sizeof (overlay), NULL, NULL, 0, B_FALSE) == 0) {
|
|
if (strcmp(overlay, "on") == 0) {
|
|
flags |= MS_OVERLAY;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Determine if the mountpoint is empty. If so, refuse to perform the
|
|
* mount. We don't perform this check if 'remount' is
|
|
* specified or if overlay option (-O) is given
|
|
*/
|
|
if ((flags & MS_OVERLAY) == 0 && !remount &&
|
|
!dir_is_empty(mountpoint)) {
|
|
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
|
|
"directory is not empty"));
|
|
return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
|
|
dgettext(TEXT_DOMAIN, "cannot mount '%s'"), mountpoint));
|
|
}
|
|
|
|
/* perform the mount */
|
|
rc = do_mount(zhp, mountpoint, mntopts, flags);
|
|
if (rc) {
|
|
/*
|
|
* Generic errors are nasty, but there are just way too many
|
|
* from mount(), and they're well-understood. We pick a few
|
|
* common ones to improve upon.
|
|
*/
|
|
if (rc == EBUSY) {
|
|
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
|
|
"mountpoint or dataset is busy"));
|
|
} else if (rc == EPERM) {
|
|
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
|
|
"Insufficient privileges"));
|
|
} else if (rc == ENOTSUP) {
|
|
int spa_version;
|
|
|
|
VERIFY(zfs_spa_version(zhp, &spa_version) == 0);
|
|
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
|
|
"Can't mount a version %llu "
|
|
"file system on a version %d pool. Pool must be"
|
|
" upgraded to mount this file system."),
|
|
(u_longlong_t)zfs_prop_get_int(zhp,
|
|
ZFS_PROP_VERSION), spa_version);
|
|
} else {
|
|
zfs_error_aux(hdl, "%s", strerror(rc));
|
|
}
|
|
return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
|
|
dgettext(TEXT_DOMAIN, "cannot mount '%s'"),
|
|
zhp->zfs_name));
|
|
}
|
|
|
|
/* remove the mounted entry before re-adding on remount */
|
|
if (remount)
|
|
libzfs_mnttab_remove(hdl, zhp->zfs_name);
|
|
|
|
/* add the mounted entry into our cache */
|
|
libzfs_mnttab_add(hdl, zfs_get_name(zhp), mountpoint, mntopts);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Unmount a single filesystem.
|
|
*/
|
|
static int
|
|
unmount_one(zfs_handle_t *zhp, const char *mountpoint, int flags)
|
|
{
|
|
int error;
|
|
|
|
error = do_unmount(zhp, mountpoint, flags);
|
|
if (error != 0) {
|
|
int libzfs_err;
|
|
|
|
switch (error) {
|
|
case EBUSY:
|
|
libzfs_err = EZFS_BUSY;
|
|
break;
|
|
case EIO:
|
|
libzfs_err = EZFS_IO;
|
|
break;
|
|
case ENOENT:
|
|
libzfs_err = EZFS_NOENT;
|
|
break;
|
|
case ENOMEM:
|
|
libzfs_err = EZFS_NOMEM;
|
|
break;
|
|
case EPERM:
|
|
libzfs_err = EZFS_PERM;
|
|
break;
|
|
default:
|
|
libzfs_err = EZFS_UMOUNTFAILED;
|
|
}
|
|
if (zhp) {
|
|
return (zfs_error_fmt(zhp->zfs_hdl, libzfs_err,
|
|
dgettext(TEXT_DOMAIN, "cannot unmount '%s'"),
|
|
mountpoint));
|
|
} else {
|
|
return (-1);
|
|
}
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Unmount the given filesystem.
|
|
*/
|
|
int
|
|
zfs_unmount(zfs_handle_t *zhp, const char *mountpoint, int flags)
|
|
{
|
|
libzfs_handle_t *hdl = zhp->zfs_hdl;
|
|
struct mnttab entry;
|
|
char *mntpt = NULL;
|
|
boolean_t encroot, unmounted = B_FALSE;
|
|
|
|
/* check to see if we need to unmount the filesystem */
|
|
if (mountpoint != NULL || ((zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM) &&
|
|
libzfs_mnttab_find(hdl, zhp->zfs_name, &entry) == 0)) {
|
|
/*
|
|
* mountpoint may have come from a call to
|
|
* getmnt/getmntany if it isn't NULL. If it is NULL,
|
|
* we know it comes from libzfs_mnttab_find which can
|
|
* then get freed later. We strdup it to play it safe.
|
|
*/
|
|
if (mountpoint == NULL)
|
|
mntpt = zfs_strdup(hdl, entry.mnt_mountp);
|
|
else
|
|
mntpt = zfs_strdup(hdl, mountpoint);
|
|
|
|
/*
|
|
* Unshare and unmount the filesystem
|
|
*/
|
|
if (zfs_unshare(zhp, mntpt, share_all_proto) != 0) {
|
|
free(mntpt);
|
|
return (-1);
|
|
}
|
|
zfs_commit_shares(NULL);
|
|
|
|
if (unmount_one(zhp, mntpt, flags) != 0) {
|
|
free(mntpt);
|
|
(void) zfs_share(zhp, NULL);
|
|
zfs_commit_shares(NULL);
|
|
return (-1);
|
|
}
|
|
|
|
libzfs_mnttab_remove(hdl, zhp->zfs_name);
|
|
free(mntpt);
|
|
unmounted = B_TRUE;
|
|
}
|
|
|
|
/*
|
|
* If the MS_CRYPT flag is provided we must ensure we attempt to
|
|
* unload the dataset's key regardless of whether we did any work
|
|
* to unmount it. We only do this for encryption roots.
|
|
*/
|
|
if ((flags & MS_CRYPT) != 0 &&
|
|
zfs_prop_get_int(zhp, ZFS_PROP_ENCRYPTION) != ZIO_CRYPT_OFF) {
|
|
zfs_refresh_properties(zhp);
|
|
|
|
if (zfs_crypto_get_encryption_root(zhp, &encroot, NULL) != 0 &&
|
|
unmounted) {
|
|
(void) zfs_mount(zhp, NULL, 0);
|
|
return (-1);
|
|
}
|
|
|
|
if (encroot && zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS) ==
|
|
ZFS_KEYSTATUS_AVAILABLE &&
|
|
zfs_crypto_unload_key(zhp) != 0) {
|
|
(void) zfs_mount(zhp, NULL, 0);
|
|
return (-1);
|
|
}
|
|
}
|
|
|
|
zpool_disable_volume_os(zhp->zfs_name);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Unmount this filesystem and any children inheriting the mountpoint property.
|
|
* To do this, just act like we're changing the mountpoint property, but don't
|
|
* remount the filesystems afterwards.
|
|
*/
|
|
int
|
|
zfs_unmountall(zfs_handle_t *zhp, int flags)
|
|
{
|
|
prop_changelist_t *clp;
|
|
int ret;
|
|
|
|
clp = changelist_gather(zhp, ZFS_PROP_MOUNTPOINT,
|
|
CL_GATHER_ITER_MOUNTED, flags);
|
|
if (clp == NULL)
|
|
return (-1);
|
|
|
|
ret = changelist_prefix(clp);
|
|
changelist_free(clp);
|
|
|
|
return (ret);
|
|
}
|
|
|
|
/*
|
|
* Unshare a filesystem by mountpoint.
|
|
*/
|
|
static int
|
|
unshare_one(libzfs_handle_t *hdl, const char *name, const char *mountpoint,
|
|
enum sa_protocol proto)
|
|
{
|
|
int err = sa_disable_share(mountpoint, proto);
|
|
if (err != SA_OK)
|
|
return (zfs_error_fmt(hdl, proto_table[proto].p_unshare_err,
|
|
dgettext(TEXT_DOMAIN, "cannot unshare '%s': %s"),
|
|
name, sa_errorstr(err)));
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Share the given filesystem according to the options in the specified
|
|
* protocol specific properties (sharenfs, sharesmb). We rely
|
|
* on "libshare" to do the dirty work for us.
|
|
*/
|
|
int
|
|
zfs_share(zfs_handle_t *zhp, const enum sa_protocol *proto)
|
|
{
|
|
char mountpoint[ZFS_MAXPROPLEN];
|
|
char shareopts[ZFS_MAXPROPLEN];
|
|
char sourcestr[ZFS_MAXPROPLEN];
|
|
const enum sa_protocol *curr_proto;
|
|
zprop_source_t sourcetype;
|
|
int err = 0;
|
|
|
|
if (proto == NULL)
|
|
proto = share_all_proto;
|
|
|
|
if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint), NULL, 0))
|
|
return (0);
|
|
|
|
for (curr_proto = proto; *curr_proto != SA_NO_PROTOCOL; curr_proto++) {
|
|
/*
|
|
* Return success if there are no share options.
|
|
*/
|
|
if (zfs_prop_get(zhp, proto_table[*curr_proto].p_prop,
|
|
shareopts, sizeof (shareopts), &sourcetype, sourcestr,
|
|
ZFS_MAXPROPLEN, B_FALSE) != 0 ||
|
|
strcmp(shareopts, "off") == 0)
|
|
continue;
|
|
|
|
/*
|
|
* If the 'zoned' property is set, then zfs_is_mountable()
|
|
* will have already bailed out if we are in the global zone.
|
|
* But local zones cannot be NFS servers, so we ignore it for
|
|
* local zones as well.
|
|
*/
|
|
if (zfs_prop_get_int(zhp, ZFS_PROP_ZONED))
|
|
continue;
|
|
|
|
err = sa_enable_share(zfs_get_name(zhp), mountpoint, shareopts,
|
|
*curr_proto);
|
|
if (err != SA_OK) {
|
|
return (zfs_error_fmt(zhp->zfs_hdl,
|
|
proto_table[*curr_proto].p_share_err,
|
|
dgettext(TEXT_DOMAIN, "cannot share '%s: %s'"),
|
|
zfs_get_name(zhp), sa_errorstr(err)));
|
|
}
|
|
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Check to see if the filesystem is currently shared.
|
|
*/
|
|
boolean_t
|
|
zfs_is_shared(zfs_handle_t *zhp, char **where,
|
|
const enum sa_protocol *proto)
|
|
{
|
|
char *mountpoint;
|
|
if (proto == NULL)
|
|
proto = share_all_proto;
|
|
|
|
if (ZFS_IS_VOLUME(zhp))
|
|
return (B_FALSE);
|
|
|
|
if (!zfs_is_mounted(zhp, &mountpoint))
|
|
return (B_FALSE);
|
|
|
|
for (const enum sa_protocol *p = proto; *p != SA_NO_PROTOCOL; ++p)
|
|
if (sa_is_shared(mountpoint, *p)) {
|
|
if (where != NULL)
|
|
*where = mountpoint;
|
|
else
|
|
free(mountpoint);
|
|
return (B_TRUE);
|
|
}
|
|
|
|
free(mountpoint);
|
|
return (B_FALSE);
|
|
}
|
|
|
|
void
|
|
zfs_commit_shares(const enum sa_protocol *proto)
|
|
{
|
|
if (proto == NULL)
|
|
proto = share_all_proto;
|
|
|
|
for (const enum sa_protocol *p = proto; *p != SA_NO_PROTOCOL; ++p)
|
|
sa_commit_shares(*p);
|
|
}
|
|
|
|
void
|
|
zfs_truncate_shares(const enum sa_protocol *proto)
|
|
{
|
|
if (proto == NULL)
|
|
proto = share_all_proto;
|
|
|
|
for (const enum sa_protocol *p = proto; *p != SA_NO_PROTOCOL; ++p)
|
|
sa_truncate_shares(*p);
|
|
}
|
|
|
|
/*
|
|
* Unshare the given filesystem.
|
|
*/
|
|
int
|
|
zfs_unshare(zfs_handle_t *zhp, const char *mountpoint,
|
|
const enum sa_protocol *proto)
|
|
{
|
|
libzfs_handle_t *hdl = zhp->zfs_hdl;
|
|
struct mnttab entry;
|
|
|
|
if (proto == NULL)
|
|
proto = share_all_proto;
|
|
|
|
if (mountpoint != NULL || ((zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM) &&
|
|
libzfs_mnttab_find(hdl, zfs_get_name(zhp), &entry) == 0)) {
|
|
|
|
/* check to see if need to unmount the filesystem */
|
|
const char *mntpt = mountpoint ?: entry.mnt_mountp;
|
|
|
|
for (const enum sa_protocol *curr_proto = proto;
|
|
*curr_proto != SA_NO_PROTOCOL; curr_proto++)
|
|
if (sa_is_shared(mntpt, *curr_proto) &&
|
|
unshare_one(hdl, zhp->zfs_name,
|
|
mntpt, *curr_proto) != 0)
|
|
return (-1);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Same as zfs_unmountall(), but for NFS and SMB unshares.
|
|
*/
|
|
int
|
|
zfs_unshareall(zfs_handle_t *zhp, const enum sa_protocol *proto)
|
|
{
|
|
prop_changelist_t *clp;
|
|
int ret;
|
|
|
|
if (proto == NULL)
|
|
proto = share_all_proto;
|
|
|
|
clp = changelist_gather(zhp, ZFS_PROP_SHARENFS, 0, 0);
|
|
if (clp == NULL)
|
|
return (-1);
|
|
|
|
ret = changelist_unshare(clp, proto);
|
|
changelist_free(clp);
|
|
|
|
return (ret);
|
|
}
|
|
|
|
/*
|
|
* Remove the mountpoint associated with the current dataset, if necessary.
|
|
* We only remove the underlying directory if:
|
|
*
|
|
* - The mountpoint is not 'none' or 'legacy'
|
|
* - The mountpoint is non-empty
|
|
* - The mountpoint is the default or inherited
|
|
* - The 'zoned' property is set, or we're in a local zone
|
|
*
|
|
* Any other directories we leave alone.
|
|
*/
|
|
void
|
|
remove_mountpoint(zfs_handle_t *zhp)
|
|
{
|
|
char mountpoint[ZFS_MAXPROPLEN];
|
|
zprop_source_t source;
|
|
|
|
if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint),
|
|
&source, 0))
|
|
return;
|
|
|
|
if (source == ZPROP_SRC_DEFAULT ||
|
|
source == ZPROP_SRC_INHERITED) {
|
|
/*
|
|
* Try to remove the directory, silently ignoring any errors.
|
|
* The filesystem may have since been removed or moved around,
|
|
* and this error isn't really useful to the administrator in
|
|
* any way.
|
|
*/
|
|
(void) rmdir(mountpoint);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Add the given zfs handle to the cb_handles array, dynamically reallocating
|
|
* the array if it is out of space.
|
|
*/
|
|
void
|
|
libzfs_add_handle(get_all_cb_t *cbp, zfs_handle_t *zhp)
|
|
{
|
|
if (cbp->cb_alloc == cbp->cb_used) {
|
|
size_t newsz;
|
|
zfs_handle_t **newhandles;
|
|
|
|
newsz = cbp->cb_alloc != 0 ? cbp->cb_alloc * 2 : 64;
|
|
newhandles = zfs_realloc(zhp->zfs_hdl,
|
|
cbp->cb_handles, cbp->cb_alloc * sizeof (zfs_handle_t *),
|
|
newsz * sizeof (zfs_handle_t *));
|
|
cbp->cb_handles = newhandles;
|
|
cbp->cb_alloc = newsz;
|
|
}
|
|
cbp->cb_handles[cbp->cb_used++] = zhp;
|
|
}
|
|
|
|
/*
|
|
* Recursive helper function used during file system enumeration
|
|
*/
|
|
static int
|
|
zfs_iter_cb(zfs_handle_t *zhp, void *data)
|
|
{
|
|
get_all_cb_t *cbp = data;
|
|
|
|
if (!(zfs_get_type(zhp) & ZFS_TYPE_FILESYSTEM)) {
|
|
zfs_close(zhp);
|
|
return (0);
|
|
}
|
|
|
|
if (zfs_prop_get_int(zhp, ZFS_PROP_CANMOUNT) == ZFS_CANMOUNT_NOAUTO) {
|
|
zfs_close(zhp);
|
|
return (0);
|
|
}
|
|
|
|
if (zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS) ==
|
|
ZFS_KEYSTATUS_UNAVAILABLE) {
|
|
zfs_close(zhp);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* If this filesystem is inconsistent and has a receive resume
|
|
* token, we can not mount it.
|
|
*/
|
|
if (zfs_prop_get_int(zhp, ZFS_PROP_INCONSISTENT) &&
|
|
zfs_prop_get(zhp, ZFS_PROP_RECEIVE_RESUME_TOKEN,
|
|
NULL, 0, NULL, NULL, 0, B_TRUE) == 0) {
|
|
zfs_close(zhp);
|
|
return (0);
|
|
}
|
|
|
|
libzfs_add_handle(cbp, zhp);
|
|
if (zfs_iter_filesystems(zhp, 0, zfs_iter_cb, cbp) != 0) {
|
|
zfs_close(zhp);
|
|
return (-1);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Sort comparator that compares two mountpoint paths. We sort these paths so
|
|
* that subdirectories immediately follow their parents. This means that we
|
|
* effectively treat the '/' character as the lowest value non-nul char.
|
|
* Since filesystems from non-global zones can have the same mountpoint
|
|
* as other filesystems, the comparator sorts global zone filesystems to
|
|
* the top of the list. This means that the global zone will traverse the
|
|
* filesystem list in the correct order and can stop when it sees the
|
|
* first zoned filesystem. In a non-global zone, only the delegated
|
|
* filesystems are seen.
|
|
*
|
|
* An example sorted list using this comparator would look like:
|
|
*
|
|
* /foo
|
|
* /foo/bar
|
|
* /foo/bar/baz
|
|
* /foo/baz
|
|
* /foo.bar
|
|
* /foo (NGZ1)
|
|
* /foo (NGZ2)
|
|
*
|
|
* The mounting code depends on this ordering to deterministically iterate
|
|
* over filesystems in order to spawn parallel mount tasks.
|
|
*/
|
|
static int
|
|
mountpoint_cmp(const void *arga, const void *argb)
|
|
{
|
|
zfs_handle_t *const *zap = arga;
|
|
zfs_handle_t *za = *zap;
|
|
zfs_handle_t *const *zbp = argb;
|
|
zfs_handle_t *zb = *zbp;
|
|
char mounta[MAXPATHLEN];
|
|
char mountb[MAXPATHLEN];
|
|
const char *a = mounta;
|
|
const char *b = mountb;
|
|
boolean_t gota, gotb;
|
|
uint64_t zoneda, zonedb;
|
|
|
|
zoneda = zfs_prop_get_int(za, ZFS_PROP_ZONED);
|
|
zonedb = zfs_prop_get_int(zb, ZFS_PROP_ZONED);
|
|
if (zoneda && !zonedb)
|
|
return (1);
|
|
if (!zoneda && zonedb)
|
|
return (-1);
|
|
|
|
gota = (zfs_get_type(za) == ZFS_TYPE_FILESYSTEM);
|
|
if (gota) {
|
|
verify(zfs_prop_get(za, ZFS_PROP_MOUNTPOINT, mounta,
|
|
sizeof (mounta), NULL, NULL, 0, B_FALSE) == 0);
|
|
}
|
|
gotb = (zfs_get_type(zb) == ZFS_TYPE_FILESYSTEM);
|
|
if (gotb) {
|
|
verify(zfs_prop_get(zb, ZFS_PROP_MOUNTPOINT, mountb,
|
|
sizeof (mountb), NULL, NULL, 0, B_FALSE) == 0);
|
|
}
|
|
|
|
if (gota && gotb) {
|
|
while (*a != '\0' && (*a == *b)) {
|
|
a++;
|
|
b++;
|
|
}
|
|
if (*a == *b)
|
|
return (0);
|
|
if (*a == '\0')
|
|
return (-1);
|
|
if (*b == '\0')
|
|
return (1);
|
|
if (*a == '/')
|
|
return (-1);
|
|
if (*b == '/')
|
|
return (1);
|
|
return (*a < *b ? -1 : *a > *b);
|
|
}
|
|
|
|
if (gota)
|
|
return (-1);
|
|
if (gotb)
|
|
return (1);
|
|
|
|
/*
|
|
* If neither filesystem has a mountpoint, revert to sorting by
|
|
* dataset name.
|
|
*/
|
|
return (strcmp(zfs_get_name(za), zfs_get_name(zb)));
|
|
}
|
|
|
|
/*
|
|
* Return true if path2 is a child of path1 or path2 equals path1 or
|
|
* path1 is "/" (path2 is always a child of "/").
|
|
*/
|
|
static boolean_t
|
|
libzfs_path_contains(const char *path1, const char *path2)
|
|
{
|
|
return (strcmp(path1, path2) == 0 || strcmp(path1, "/") == 0 ||
|
|
(strstr(path2, path1) == path2 && path2[strlen(path1)] == '/'));
|
|
}
|
|
|
|
/*
|
|
* Given a mountpoint specified by idx in the handles array, find the first
|
|
* non-descendent of that mountpoint and return its index. Descendant paths
|
|
* start with the parent's path. This function relies on the ordering
|
|
* enforced by mountpoint_cmp().
|
|
*/
|
|
static int
|
|
non_descendant_idx(zfs_handle_t **handles, size_t num_handles, int idx)
|
|
{
|
|
char parent[ZFS_MAXPROPLEN];
|
|
char child[ZFS_MAXPROPLEN];
|
|
int i;
|
|
|
|
verify(zfs_prop_get(handles[idx], ZFS_PROP_MOUNTPOINT, parent,
|
|
sizeof (parent), NULL, NULL, 0, B_FALSE) == 0);
|
|
|
|
for (i = idx + 1; i < num_handles; i++) {
|
|
verify(zfs_prop_get(handles[i], ZFS_PROP_MOUNTPOINT, child,
|
|
sizeof (child), NULL, NULL, 0, B_FALSE) == 0);
|
|
if (!libzfs_path_contains(parent, child))
|
|
break;
|
|
}
|
|
return (i);
|
|
}
|
|
|
|
typedef struct mnt_param {
|
|
libzfs_handle_t *mnt_hdl;
|
|
tpool_t *mnt_tp;
|
|
zfs_handle_t **mnt_zhps; /* filesystems to mount */
|
|
size_t mnt_num_handles;
|
|
int mnt_idx; /* Index of selected entry to mount */
|
|
zfs_iter_f mnt_func;
|
|
void *mnt_data;
|
|
} mnt_param_t;
|
|
|
|
/*
|
|
* Allocate and populate the parameter struct for mount function, and
|
|
* schedule mounting of the entry selected by idx.
|
|
*/
|
|
static void
|
|
zfs_dispatch_mount(libzfs_handle_t *hdl, zfs_handle_t **handles,
|
|
size_t num_handles, int idx, zfs_iter_f func, void *data, tpool_t *tp)
|
|
{
|
|
mnt_param_t *mnt_param = zfs_alloc(hdl, sizeof (mnt_param_t));
|
|
|
|
mnt_param->mnt_hdl = hdl;
|
|
mnt_param->mnt_tp = tp;
|
|
mnt_param->mnt_zhps = handles;
|
|
mnt_param->mnt_num_handles = num_handles;
|
|
mnt_param->mnt_idx = idx;
|
|
mnt_param->mnt_func = func;
|
|
mnt_param->mnt_data = data;
|
|
|
|
(void) tpool_dispatch(tp, zfs_mount_task, (void*)mnt_param);
|
|
}
|
|
|
|
/*
|
|
* This is the structure used to keep state of mounting or sharing operations
|
|
* during a call to zpool_enable_datasets().
|
|
*/
|
|
typedef struct mount_state {
|
|
/*
|
|
* ms_mntstatus is set to -1 if any mount fails. While multiple threads
|
|
* could update this variable concurrently, no synchronization is
|
|
* needed as it's only ever set to -1.
|
|
*/
|
|
int ms_mntstatus;
|
|
int ms_mntflags;
|
|
const char *ms_mntopts;
|
|
} mount_state_t;
|
|
|
|
static int
|
|
zfs_mount_one(zfs_handle_t *zhp, void *arg)
|
|
{
|
|
mount_state_t *ms = arg;
|
|
int ret = 0;
|
|
|
|
/*
|
|
* don't attempt to mount encrypted datasets with
|
|
* unloaded keys
|
|
*/
|
|
if (zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS) ==
|
|
ZFS_KEYSTATUS_UNAVAILABLE)
|
|
return (0);
|
|
|
|
if (zfs_mount(zhp, ms->ms_mntopts, ms->ms_mntflags) != 0)
|
|
ret = ms->ms_mntstatus = -1;
|
|
return (ret);
|
|
}
|
|
|
|
static int
|
|
zfs_share_one(zfs_handle_t *zhp, void *arg)
|
|
{
|
|
mount_state_t *ms = arg;
|
|
int ret = 0;
|
|
|
|
if (zfs_share(zhp, NULL) != 0)
|
|
ret = ms->ms_mntstatus = -1;
|
|
return (ret);
|
|
}
|
|
|
|
/*
|
|
* Thread pool function to mount one file system. On completion, it finds and
|
|
* schedules its children to be mounted. This depends on the sorting done in
|
|
* zfs_foreach_mountpoint(). Note that the degenerate case (chain of entries
|
|
* each descending from the previous) will have no parallelism since we always
|
|
* have to wait for the parent to finish mounting before we can schedule
|
|
* its children.
|
|
*/
|
|
static void
|
|
zfs_mount_task(void *arg)
|
|
{
|
|
mnt_param_t *mp = arg;
|
|
int idx = mp->mnt_idx;
|
|
zfs_handle_t **handles = mp->mnt_zhps;
|
|
size_t num_handles = mp->mnt_num_handles;
|
|
char mountpoint[ZFS_MAXPROPLEN];
|
|
|
|
verify(zfs_prop_get(handles[idx], ZFS_PROP_MOUNTPOINT, mountpoint,
|
|
sizeof (mountpoint), NULL, NULL, 0, B_FALSE) == 0);
|
|
|
|
if (mp->mnt_func(handles[idx], mp->mnt_data) != 0)
|
|
goto out;
|
|
|
|
/*
|
|
* We dispatch tasks to mount filesystems with mountpoints underneath
|
|
* this one. We do this by dispatching the next filesystem with a
|
|
* descendant mountpoint of the one we just mounted, then skip all of
|
|
* its descendants, dispatch the next descendant mountpoint, and so on.
|
|
* The non_descendant_idx() function skips over filesystems that are
|
|
* descendants of the filesystem we just dispatched.
|
|
*/
|
|
for (int i = idx + 1; i < num_handles;
|
|
i = non_descendant_idx(handles, num_handles, i)) {
|
|
char child[ZFS_MAXPROPLEN];
|
|
verify(zfs_prop_get(handles[i], ZFS_PROP_MOUNTPOINT,
|
|
child, sizeof (child), NULL, NULL, 0, B_FALSE) == 0);
|
|
|
|
if (!libzfs_path_contains(mountpoint, child))
|
|
break; /* not a descendant, return */
|
|
zfs_dispatch_mount(mp->mnt_hdl, handles, num_handles, i,
|
|
mp->mnt_func, mp->mnt_data, mp->mnt_tp);
|
|
}
|
|
|
|
out:
|
|
free(mp);
|
|
}
|
|
|
|
/*
|
|
* Issue the func callback for each ZFS handle contained in the handles
|
|
* array. This function is used to mount all datasets, and so this function
|
|
* guarantees that filesystems for parent mountpoints are called before their
|
|
* children. As such, before issuing any callbacks, we first sort the array
|
|
* of handles by mountpoint.
|
|
*
|
|
* Callbacks are issued in one of two ways:
|
|
*
|
|
* 1. Sequentially: If the parallel argument is B_FALSE or the ZFS_SERIAL_MOUNT
|
|
* environment variable is set, then we issue callbacks sequentially.
|
|
*
|
|
* 2. In parallel: If the parallel argument is B_TRUE and the ZFS_SERIAL_MOUNT
|
|
* environment variable is not set, then we use a tpool to dispatch threads
|
|
* to mount filesystems in parallel. This function dispatches tasks to mount
|
|
* the filesystems at the top-level mountpoints, and these tasks in turn
|
|
* are responsible for recursively mounting filesystems in their children
|
|
* mountpoints.
|
|
*/
|
|
void
|
|
zfs_foreach_mountpoint(libzfs_handle_t *hdl, zfs_handle_t **handles,
|
|
size_t num_handles, zfs_iter_f func, void *data, boolean_t parallel)
|
|
{
|
|
zoneid_t zoneid = getzoneid();
|
|
|
|
/*
|
|
* The ZFS_SERIAL_MOUNT environment variable is an undocumented
|
|
* variable that can be used as a convenience to do a/b comparison
|
|
* of serial vs. parallel mounting.
|
|
*/
|
|
boolean_t serial_mount = !parallel ||
|
|
(getenv("ZFS_SERIAL_MOUNT") != NULL);
|
|
|
|
/*
|
|
* Sort the datasets by mountpoint. See mountpoint_cmp for details
|
|
* of how these are sorted.
|
|
*/
|
|
qsort(handles, num_handles, sizeof (zfs_handle_t *), mountpoint_cmp);
|
|
|
|
if (serial_mount) {
|
|
for (int i = 0; i < num_handles; i++) {
|
|
func(handles[i], data);
|
|
}
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Issue the callback function for each dataset using a parallel
|
|
* algorithm that uses a thread pool to manage threads.
|
|
*/
|
|
tpool_t *tp = tpool_create(1, mount_tp_nthr, 0, NULL);
|
|
|
|
/*
|
|
* There may be multiple "top level" mountpoints outside of the pool's
|
|
* root mountpoint, e.g.: /foo /bar. Dispatch a mount task for each of
|
|
* these.
|
|
*/
|
|
for (int i = 0; i < num_handles;
|
|
i = non_descendant_idx(handles, num_handles, i)) {
|
|
/*
|
|
* Since the mountpoints have been sorted so that the zoned
|
|
* filesystems are at the end, a zoned filesystem seen from
|
|
* the global zone means that we're done.
|
|
*/
|
|
if (zoneid == GLOBAL_ZONEID &&
|
|
zfs_prop_get_int(handles[i], ZFS_PROP_ZONED))
|
|
break;
|
|
zfs_dispatch_mount(hdl, handles, num_handles, i, func, data,
|
|
tp);
|
|
}
|
|
|
|
tpool_wait(tp); /* wait for all scheduled mounts to complete */
|
|
tpool_destroy(tp);
|
|
}
|
|
|
|
/*
|
|
* Mount and share all datasets within the given pool. This assumes that no
|
|
* datasets within the pool are currently mounted.
|
|
*/
|
|
int
|
|
zpool_enable_datasets(zpool_handle_t *zhp, const char *mntopts, int flags)
|
|
{
|
|
get_all_cb_t cb = { 0 };
|
|
mount_state_t ms = { 0 };
|
|
zfs_handle_t *zfsp;
|
|
int ret = 0;
|
|
|
|
if ((zfsp = zfs_open(zhp->zpool_hdl, zhp->zpool_name,
|
|
ZFS_TYPE_DATASET)) == NULL)
|
|
goto out;
|
|
|
|
/*
|
|
* Gather all non-snapshot datasets within the pool. Start by adding
|
|
* the root filesystem for this pool to the list, and then iterate
|
|
* over all child filesystems.
|
|
*/
|
|
libzfs_add_handle(&cb, zfsp);
|
|
if (zfs_iter_filesystems(zfsp, 0, zfs_iter_cb, &cb) != 0)
|
|
goto out;
|
|
|
|
/*
|
|
* Mount all filesystems
|
|
*/
|
|
ms.ms_mntopts = mntopts;
|
|
ms.ms_mntflags = flags;
|
|
zfs_foreach_mountpoint(zhp->zpool_hdl, cb.cb_handles, cb.cb_used,
|
|
zfs_mount_one, &ms, B_TRUE);
|
|
if (ms.ms_mntstatus != 0)
|
|
ret = ms.ms_mntstatus;
|
|
|
|
/*
|
|
* Share all filesystems that need to be shared. This needs to be
|
|
* a separate pass because libshare is not mt-safe, and so we need
|
|
* to share serially.
|
|
*/
|
|
ms.ms_mntstatus = 0;
|
|
zfs_foreach_mountpoint(zhp->zpool_hdl, cb.cb_handles, cb.cb_used,
|
|
zfs_share_one, &ms, B_FALSE);
|
|
if (ms.ms_mntstatus != 0)
|
|
ret = ms.ms_mntstatus;
|
|
else
|
|
zfs_commit_shares(NULL);
|
|
|
|
out:
|
|
for (int i = 0; i < cb.cb_used; i++)
|
|
zfs_close(cb.cb_handles[i]);
|
|
free(cb.cb_handles);
|
|
|
|
return (ret);
|
|
}
|
|
|
|
struct sets_s {
|
|
char *mountpoint;
|
|
zfs_handle_t *dataset;
|
|
};
|
|
|
|
static int
|
|
mountpoint_compare(const void *a, const void *b)
|
|
{
|
|
const struct sets_s *mounta = (struct sets_s *)a;
|
|
const struct sets_s *mountb = (struct sets_s *)b;
|
|
|
|
return (strcmp(mountb->mountpoint, mounta->mountpoint));
|
|
}
|
|
|
|
/*
|
|
* Unshare and unmount all datasets within the given pool. We don't want to
|
|
* rely on traversing the DSL to discover the filesystems within the pool,
|
|
* because this may be expensive (if not all of them are mounted), and can fail
|
|
* arbitrarily (on I/O error, for example). Instead, we walk /proc/self/mounts
|
|
* and gather all the filesystems that are currently mounted.
|
|
*/
|
|
int
|
|
zpool_disable_datasets(zpool_handle_t *zhp, boolean_t force)
|
|
{
|
|
int used, alloc;
|
|
FILE *mnttab;
|
|
struct mnttab entry;
|
|
size_t namelen;
|
|
struct sets_s *sets = NULL;
|
|
libzfs_handle_t *hdl = zhp->zpool_hdl;
|
|
int i;
|
|
int ret = -1;
|
|
int flags = (force ? MS_FORCE : 0);
|
|
|
|
namelen = strlen(zhp->zpool_name);
|
|
|
|
if ((mnttab = fopen(MNTTAB, "re")) == NULL)
|
|
return (ENOENT);
|
|
|
|
used = alloc = 0;
|
|
while (getmntent(mnttab, &entry) == 0) {
|
|
/*
|
|
* Ignore non-ZFS entries.
|
|
*/
|
|
if (entry.mnt_fstype == NULL ||
|
|
strcmp(entry.mnt_fstype, MNTTYPE_ZFS) != 0)
|
|
continue;
|
|
|
|
/*
|
|
* Ignore filesystems not within this pool.
|
|
*/
|
|
if (entry.mnt_mountp == NULL ||
|
|
strncmp(entry.mnt_special, zhp->zpool_name, namelen) != 0 ||
|
|
(entry.mnt_special[namelen] != '/' &&
|
|
entry.mnt_special[namelen] != '\0'))
|
|
continue;
|
|
|
|
/*
|
|
* At this point we've found a filesystem within our pool. Add
|
|
* it to our growing list.
|
|
*/
|
|
if (used == alloc) {
|
|
if (alloc == 0) {
|
|
sets = zfs_alloc(hdl,
|
|
8 * sizeof (struct sets_s));
|
|
alloc = 8;
|
|
} else {
|
|
sets = zfs_realloc(hdl, sets,
|
|
alloc * sizeof (struct sets_s),
|
|
alloc * 2 * sizeof (struct sets_s));
|
|
|
|
alloc *= 2;
|
|
}
|
|
}
|
|
|
|
sets[used].mountpoint = zfs_strdup(hdl, entry.mnt_mountp);
|
|
|
|
/*
|
|
* This is allowed to fail, in case there is some I/O error. It
|
|
* is only used to determine if we need to remove the underlying
|
|
* mountpoint, so failure is not fatal.
|
|
*/
|
|
sets[used].dataset = make_dataset_handle(hdl,
|
|
entry.mnt_special);
|
|
|
|
used++;
|
|
}
|
|
|
|
/*
|
|
* At this point, we have the entire list of filesystems, so sort it by
|
|
* mountpoint.
|
|
*/
|
|
if (used != 0)
|
|
qsort(sets, used, sizeof (struct sets_s), mountpoint_compare);
|
|
|
|
/*
|
|
* Walk through and first unshare everything.
|
|
*/
|
|
for (i = 0; i < used; i++) {
|
|
for (enum sa_protocol p = 0; p < SA_PROTOCOL_COUNT; ++p) {
|
|
if (sa_is_shared(sets[i].mountpoint, p) &&
|
|
unshare_one(hdl, sets[i].mountpoint,
|
|
sets[i].mountpoint, p) != 0)
|
|
goto out;
|
|
}
|
|
}
|
|
zfs_commit_shares(NULL);
|
|
|
|
/*
|
|
* Now unmount everything, removing the underlying directories as
|
|
* appropriate.
|
|
*/
|
|
for (i = 0; i < used; i++) {
|
|
if (unmount_one(sets[i].dataset, sets[i].mountpoint,
|
|
flags) != 0)
|
|
goto out;
|
|
}
|
|
|
|
for (i = 0; i < used; i++) {
|
|
if (sets[i].dataset)
|
|
remove_mountpoint(sets[i].dataset);
|
|
}
|
|
|
|
zpool_disable_datasets_os(zhp, force);
|
|
|
|
ret = 0;
|
|
out:
|
|
(void) fclose(mnttab);
|
|
for (i = 0; i < used; i++) {
|
|
if (sets[i].dataset)
|
|
zfs_close(sets[i].dataset);
|
|
free(sets[i].mountpoint);
|
|
}
|
|
free(sets);
|
|
|
|
return (ret);
|
|
}
|