zfs/module/spl/spl-kmem.c

462 lines
12 KiB
C

/*
* Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC.
* Copyright (C) 2007 The Regents of the University of California.
* Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
* Written by Brian Behlendorf <behlendorf1@llnl.gov>.
* UCRL-CODE-235197
*
* This file is part of the SPL, Solaris Porting Layer.
* For details, see <http://zfsonlinux.org/>.
*
* The SPL is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* The SPL is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with the SPL. If not, see <http://www.gnu.org/licenses/>.
*/
#include <sys/debug.h>
#include <sys/kmem.h>
#include <sys/vmem.h>
int
kmem_debugging(void)
{
return (0);
}
EXPORT_SYMBOL(kmem_debugging);
char *
kmem_vasprintf(const char *fmt, va_list ap)
{
va_list aq;
char *ptr;
do {
va_copy(aq, ap);
ptr = kvasprintf(GFP_KERNEL, fmt, aq);
va_end(aq);
} while (ptr == NULL);
return (ptr);
}
EXPORT_SYMBOL(kmem_vasprintf);
char *
kmem_asprintf(const char *fmt, ...)
{
va_list ap;
char *ptr;
do {
va_start(ap, fmt);
ptr = kvasprintf(GFP_KERNEL, fmt, ap);
va_end(ap);
} while (ptr == NULL);
return (ptr);
}
EXPORT_SYMBOL(kmem_asprintf);
static char *
__strdup(const char *str, int flags)
{
char *ptr;
int n;
n = strlen(str);
ptr = kmalloc_nofail(n + 1, flags);
if (ptr)
memcpy(ptr, str, n + 1);
return (ptr);
}
char *
strdup(const char *str)
{
return (__strdup(str, KM_SLEEP));
}
EXPORT_SYMBOL(strdup);
void
strfree(char *str)
{
kfree(str);
}
EXPORT_SYMBOL(strfree);
/*
* Memory allocation interfaces and debugging for basic kmem_*
* and vmem_* style memory allocation. When DEBUG_KMEM is enabled
* the SPL will keep track of the total memory allocated, and
* report any memory leaked when the module is unloaded.
*/
#ifdef DEBUG_KMEM
/* Shim layer memory accounting */
#ifdef HAVE_ATOMIC64_T
atomic64_t kmem_alloc_used = ATOMIC64_INIT(0);
unsigned long long kmem_alloc_max = 0;
#else /* HAVE_ATOMIC64_T */
atomic_t kmem_alloc_used = ATOMIC_INIT(0);
unsigned long long kmem_alloc_max = 0;
#endif /* HAVE_ATOMIC64_T */
EXPORT_SYMBOL(kmem_alloc_used);
EXPORT_SYMBOL(kmem_alloc_max);
/*
* When DEBUG_KMEM_TRACKING is enabled not only will total bytes be tracked
* but also the location of every alloc and free. When the SPL module is
* unloaded a list of all leaked addresses and where they were allocated
* will be dumped to the console. Enabling this feature has a significant
* impact on performance but it makes finding memory leaks straight forward.
*
* Not surprisingly with debugging enabled the xmem_locks are very highly
* contended particularly on xfree(). If we want to run with this detailed
* debugging enabled for anything other than debugging we need to minimize
* the contention by moving to a lock per xmem_table entry model.
*/
#ifdef DEBUG_KMEM_TRACKING
#define KMEM_HASH_BITS 10
#define KMEM_TABLE_SIZE (1 << KMEM_HASH_BITS)
typedef struct kmem_debug {
struct hlist_node kd_hlist; /* Hash node linkage */
struct list_head kd_list; /* List of all allocations */
void *kd_addr; /* Allocation pointer */
size_t kd_size; /* Allocation size */
const char *kd_func; /* Allocation function */
int kd_line; /* Allocation line */
} kmem_debug_t;
spinlock_t kmem_lock;
struct hlist_head kmem_table[KMEM_TABLE_SIZE];
struct list_head kmem_list;
EXPORT_SYMBOL(kmem_lock);
EXPORT_SYMBOL(kmem_table);
EXPORT_SYMBOL(kmem_list);
static kmem_debug_t *
kmem_del_init(spinlock_t *lock, struct hlist_head *table,
int bits, const void *addr)
{
struct hlist_head *head;
struct hlist_node *node;
struct kmem_debug *p;
unsigned long flags;
spin_lock_irqsave(lock, flags);
head = &table[hash_ptr((void *)addr, bits)];
hlist_for_each(node, head) {
p = list_entry(node, struct kmem_debug, kd_hlist);
if (p->kd_addr == addr) {
hlist_del_init(&p->kd_hlist);
list_del_init(&p->kd_list);
spin_unlock_irqrestore(lock, flags);
return (p);
}
}
spin_unlock_irqrestore(lock, flags);
return (NULL);
}
void *
kmem_alloc_track(size_t size, int flags, const char *func, int line,
int node_alloc, int node)
{
void *ptr = NULL;
kmem_debug_t *dptr;
unsigned long irq_flags;
/* Function may be called with KM_NOSLEEP so failure is possible */
dptr = (kmem_debug_t *) kmalloc_nofail(sizeof (kmem_debug_t),
flags & ~__GFP_ZERO);
if (unlikely(dptr == NULL)) {
printk(KERN_WARNING "debug kmem_alloc(%ld, 0x%x) at %s:%d "
"failed (%lld/%llu)\n", sizeof (kmem_debug_t), flags,
func, line, kmem_alloc_used_read(), kmem_alloc_max);
} else {
/*
* Marked unlikely because we should never be doing this,
* we tolerate to up 2 pages but a single page is best.
*/
if (unlikely((size > PAGE_SIZE*2) && !(flags & KM_NODEBUG))) {
printk(KERN_WARNING "large kmem_alloc(%llu, 0x%x) "
"at %s:%d failed (%lld/%llu)\n",
(unsigned long long)size, flags, func, line,
kmem_alloc_used_read(), kmem_alloc_max);
spl_dumpstack();
}
/*
* We use __strdup() below because the string pointed to by
* __FUNCTION__ might not be available by the time we want
* to print it since the module might have been unloaded.
* This can only fail in the KM_NOSLEEP case.
*/
dptr->kd_func = __strdup(func, flags & ~__GFP_ZERO);
if (unlikely(dptr->kd_func == NULL)) {
kfree(dptr);
printk(KERN_WARNING "debug __strdup() at %s:%d "
"failed (%lld/%llu)\n", func, line,
kmem_alloc_used_read(), kmem_alloc_max);
goto out;
}
/* Use the correct allocator */
if (node_alloc) {
ASSERT(!(flags & __GFP_ZERO));
ptr = kmalloc_node_nofail(size, flags, node);
} else if (flags & __GFP_ZERO) {
ptr = kzalloc_nofail(size, flags & ~__GFP_ZERO);
} else {
ptr = kmalloc_nofail(size, flags);
}
if (unlikely(ptr == NULL)) {
kfree(dptr->kd_func);
kfree(dptr);
printk(KERN_WARNING "kmem_alloc(%llu, 0x%x) "
"at %s:%d failed (%lld/%llu)\n",
(unsigned long long) size, flags, func, line,
kmem_alloc_used_read(), kmem_alloc_max);
goto out;
}
kmem_alloc_used_add(size);
if (unlikely(kmem_alloc_used_read() > kmem_alloc_max))
kmem_alloc_max = kmem_alloc_used_read();
INIT_HLIST_NODE(&dptr->kd_hlist);
INIT_LIST_HEAD(&dptr->kd_list);
dptr->kd_addr = ptr;
dptr->kd_size = size;
dptr->kd_line = line;
spin_lock_irqsave(&kmem_lock, irq_flags);
hlist_add_head(&dptr->kd_hlist,
&kmem_table[hash_ptr(ptr, KMEM_HASH_BITS)]);
list_add_tail(&dptr->kd_list, &kmem_list);
spin_unlock_irqrestore(&kmem_lock, irq_flags);
}
out:
return (ptr);
}
EXPORT_SYMBOL(kmem_alloc_track);
void
kmem_free_track(const void *ptr, size_t size)
{
kmem_debug_t *dptr;
ASSERTF(ptr || size > 0, "ptr: %p, size: %llu", ptr,
(unsigned long long) size);
/* Must exist in hash due to kmem_alloc() */
dptr = kmem_del_init(&kmem_lock, kmem_table, KMEM_HASH_BITS, ptr);
ASSERT(dptr);
/* Size must match */
ASSERTF(dptr->kd_size == size, "kd_size (%llu) != size (%llu), "
"kd_func = %s, kd_line = %d\n", (unsigned long long) dptr->kd_size,
(unsigned long long) size, dptr->kd_func, dptr->kd_line);
kmem_alloc_used_sub(size);
kfree(dptr->kd_func);
memset((void *)dptr, 0x5a, sizeof (kmem_debug_t));
kfree(dptr);
memset((void *)ptr, 0x5a, size);
kfree(ptr);
}
EXPORT_SYMBOL(kmem_free_track);
#else /* DEBUG_KMEM_TRACKING */
void *
kmem_alloc_debug(size_t size, int flags, const char *func, int line,
int node_alloc, int node)
{
void *ptr;
/*
* Marked unlikely because we should never be doing this,
* we tolerate to up 2 pages but a single page is best.
*/
if (unlikely((size > PAGE_SIZE * 2) && !(flags & KM_NODEBUG))) {
printk(KERN_WARNING
"large kmem_alloc(%llu, 0x%x) at %s:%d (%lld/%llu)\n",
(unsigned long long)size, flags, func, line,
(unsigned long long)kmem_alloc_used_read(), kmem_alloc_max);
spl_dumpstack();
}
/* Use the correct allocator */
if (node_alloc) {
ASSERT(!(flags & __GFP_ZERO));
ptr = kmalloc_node_nofail(size, flags, node);
} else if (flags & __GFP_ZERO) {
ptr = kzalloc_nofail(size, flags & (~__GFP_ZERO));
} else {
ptr = kmalloc_nofail(size, flags);
}
if (unlikely(ptr == NULL)) {
printk(KERN_WARNING
"kmem_alloc(%llu, 0x%x) at %s:%d failed (%lld/%llu)\n",
(unsigned long long)size, flags, func, line,
(unsigned long long)kmem_alloc_used_read(), kmem_alloc_max);
} else {
kmem_alloc_used_add(size);
if (unlikely(kmem_alloc_used_read() > kmem_alloc_max))
kmem_alloc_max = kmem_alloc_used_read();
}
return (ptr);
}
EXPORT_SYMBOL(kmem_alloc_debug);
void
kmem_free_debug(const void *ptr, size_t size)
{
ASSERT(ptr || size > 0);
kmem_alloc_used_sub(size);
kfree(ptr);
}
EXPORT_SYMBOL(kmem_free_debug);
#endif /* DEBUG_KMEM_TRACKING */
#endif /* DEBUG_KMEM */
#if defined(DEBUG_KMEM) && defined(DEBUG_KMEM_TRACKING)
static char *
spl_sprintf_addr(kmem_debug_t *kd, char *str, int len, int min)
{
int size = ((len - 1) < kd->kd_size) ? (len - 1) : kd->kd_size;
int i, flag = 1;
ASSERT(str != NULL && len >= 17);
memset(str, 0, len);
/*
* Check for a fully printable string, and while we are at
* it place the printable characters in the passed buffer.
*/
for (i = 0; i < size; i++) {
str[i] = ((char *)(kd->kd_addr))[i];
if (isprint(str[i])) {
continue;
} else {
/*
* Minimum number of printable characters found
* to make it worthwhile to print this as ascii.
*/
if (i > min)
break;
flag = 0;
break;
}
}
if (!flag) {
sprintf(str, "%02x%02x%02x%02x%02x%02x%02x%02x",
*((uint8_t *)kd->kd_addr),
*((uint8_t *)kd->kd_addr + 2),
*((uint8_t *)kd->kd_addr + 4),
*((uint8_t *)kd->kd_addr + 6),
*((uint8_t *)kd->kd_addr + 8),
*((uint8_t *)kd->kd_addr + 10),
*((uint8_t *)kd->kd_addr + 12),
*((uint8_t *)kd->kd_addr + 14));
}
return (str);
}
static int
spl_kmem_init_tracking(struct list_head *list, spinlock_t *lock, int size)
{
int i;
spin_lock_init(lock);
INIT_LIST_HEAD(list);
for (i = 0; i < size; i++)
INIT_HLIST_HEAD(&kmem_table[i]);
return (0);
}
static void
spl_kmem_fini_tracking(struct list_head *list, spinlock_t *lock)
{
unsigned long flags;
kmem_debug_t *kd;
char str[17];
spin_lock_irqsave(lock, flags);
if (!list_empty(list))
printk(KERN_WARNING "%-16s %-5s %-16s %s:%s\n", "address",
"size", "data", "func", "line");
list_for_each_entry(kd, list, kd_list)
printk(KERN_WARNING "%p %-5d %-16s %s:%d\n", kd->kd_addr,
(int)kd->kd_size, spl_sprintf_addr(kd, str, 17, 8),
kd->kd_func, kd->kd_line);
spin_unlock_irqrestore(lock, flags);
}
#else /* DEBUG_KMEM && DEBUG_KMEM_TRACKING */
#define spl_kmem_init_tracking(list, lock, size)
#define spl_kmem_fini_tracking(list, lock)
#endif /* DEBUG_KMEM && DEBUG_KMEM_TRACKING */
int
spl_kmem_init(void)
{
int rc = 0;
#ifdef DEBUG_KMEM
kmem_alloc_used_set(0);
spl_kmem_init_tracking(&kmem_list, &kmem_lock, KMEM_TABLE_SIZE);
#endif
return (rc);
}
void
spl_kmem_fini(void)
{
#ifdef DEBUG_KMEM
/*
* Display all unreclaimed memory addresses, including the
* allocation size and the first few bytes of what's located
* at that address to aid in debugging. Performance is not
* a serious concern here since it is module unload time.
*/
if (kmem_alloc_used_read() != 0)
printk(KERN_WARNING "kmem leaked %ld/%llu bytes\n",
kmem_alloc_used_read(), kmem_alloc_max);
spl_kmem_fini_tracking(&kmem_list, &kmem_lock);
#endif /* DEBUG_KMEM */
}