zfs/module/zfs/vdev.c

2433 lines
61 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2008 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#include <sys/zfs_context.h>
#include <sys/fm/fs/zfs.h>
#include <sys/spa.h>
#include <sys/spa_impl.h>
#include <sys/dmu.h>
#include <sys/dmu_tx.h>
#include <sys/vdev_impl.h>
#include <sys/uberblock_impl.h>
#include <sys/metaslab.h>
#include <sys/metaslab_impl.h>
#include <sys/space_map.h>
#include <sys/zio.h>
#include <sys/zap.h>
#include <sys/fs/zfs.h>
#include <sys/arc.h>
/*
* Virtual device management.
*/
static vdev_ops_t *vdev_ops_table[] = {
&vdev_root_ops,
&vdev_raidz_ops,
&vdev_mirror_ops,
&vdev_replacing_ops,
&vdev_spare_ops,
&vdev_disk_ops,
&vdev_file_ops,
&vdev_missing_ops,
NULL
};
/* maximum scrub/resilver I/O queue per leaf vdev */
int zfs_scrub_limit = 10;
/*
* Given a vdev type, return the appropriate ops vector.
*/
static vdev_ops_t *
vdev_getops(const char *type)
{
vdev_ops_t *ops, **opspp;
for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
if (strcmp(ops->vdev_op_type, type) == 0)
break;
return (ops);
}
/*
* Default asize function: return the MAX of psize with the asize of
* all children. This is what's used by anything other than RAID-Z.
*/
uint64_t
vdev_default_asize(vdev_t *vd, uint64_t psize)
{
uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
uint64_t csize;
uint64_t c;
for (c = 0; c < vd->vdev_children; c++) {
csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
asize = MAX(asize, csize);
}
return (asize);
}
/*
* Get the replaceable or attachable device size.
* If the parent is a mirror or raidz, the replaceable size is the minimum
* psize of all its children. For the rest, just return our own psize.
*
* e.g.
* psize rsize
* root - -
* mirror/raidz - -
* disk1 20g 20g
* disk2 40g 20g
* disk3 80g 80g
*/
uint64_t
vdev_get_rsize(vdev_t *vd)
{
vdev_t *pvd, *cvd;
uint64_t c, rsize;
pvd = vd->vdev_parent;
/*
* If our parent is NULL or the root, just return our own psize.
*/
if (pvd == NULL || pvd->vdev_parent == NULL)
return (vd->vdev_psize);
rsize = 0;
for (c = 0; c < pvd->vdev_children; c++) {
cvd = pvd->vdev_child[c];
rsize = MIN(rsize - 1, cvd->vdev_psize - 1) + 1;
}
return (rsize);
}
vdev_t *
vdev_lookup_top(spa_t *spa, uint64_t vdev)
{
vdev_t *rvd = spa->spa_root_vdev;
ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
if (vdev < rvd->vdev_children) {
ASSERT(rvd->vdev_child[vdev] != NULL);
return (rvd->vdev_child[vdev]);
}
return (NULL);
}
vdev_t *
vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
{
int c;
vdev_t *mvd;
if (vd->vdev_guid == guid)
return (vd);
for (c = 0; c < vd->vdev_children; c++)
if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
NULL)
return (mvd);
return (NULL);
}
void
vdev_add_child(vdev_t *pvd, vdev_t *cvd)
{
size_t oldsize, newsize;
uint64_t id = cvd->vdev_id;
vdev_t **newchild;
ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
ASSERT(cvd->vdev_parent == NULL);
cvd->vdev_parent = pvd;
if (pvd == NULL)
return;
ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
oldsize = pvd->vdev_children * sizeof (vdev_t *);
pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
newsize = pvd->vdev_children * sizeof (vdev_t *);
newchild = kmem_zalloc(newsize, KM_SLEEP);
if (pvd->vdev_child != NULL) {
bcopy(pvd->vdev_child, newchild, oldsize);
kmem_free(pvd->vdev_child, oldsize);
}
pvd->vdev_child = newchild;
pvd->vdev_child[id] = cvd;
cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
/*
* Walk up all ancestors to update guid sum.
*/
for (; pvd != NULL; pvd = pvd->vdev_parent)
pvd->vdev_guid_sum += cvd->vdev_guid_sum;
if (cvd->vdev_ops->vdev_op_leaf)
cvd->vdev_spa->spa_scrub_maxinflight += zfs_scrub_limit;
}
void
vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
{
int c;
uint_t id = cvd->vdev_id;
ASSERT(cvd->vdev_parent == pvd);
if (pvd == NULL)
return;
ASSERT(id < pvd->vdev_children);
ASSERT(pvd->vdev_child[id] == cvd);
pvd->vdev_child[id] = NULL;
cvd->vdev_parent = NULL;
for (c = 0; c < pvd->vdev_children; c++)
if (pvd->vdev_child[c])
break;
if (c == pvd->vdev_children) {
kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
pvd->vdev_child = NULL;
pvd->vdev_children = 0;
}
/*
* Walk up all ancestors to update guid sum.
*/
for (; pvd != NULL; pvd = pvd->vdev_parent)
pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
if (cvd->vdev_ops->vdev_op_leaf)
cvd->vdev_spa->spa_scrub_maxinflight -= zfs_scrub_limit;
}
/*
* Remove any holes in the child array.
*/
void
vdev_compact_children(vdev_t *pvd)
{
vdev_t **newchild, *cvd;
int oldc = pvd->vdev_children;
int newc, c;
ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
for (c = newc = 0; c < oldc; c++)
if (pvd->vdev_child[c])
newc++;
newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
for (c = newc = 0; c < oldc; c++) {
if ((cvd = pvd->vdev_child[c]) != NULL) {
newchild[newc] = cvd;
cvd->vdev_id = newc++;
}
}
kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
pvd->vdev_child = newchild;
pvd->vdev_children = newc;
}
/*
* Allocate and minimally initialize a vdev_t.
*/
static vdev_t *
vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
{
vdev_t *vd;
vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
if (spa->spa_root_vdev == NULL) {
ASSERT(ops == &vdev_root_ops);
spa->spa_root_vdev = vd;
}
if (guid == 0) {
if (spa->spa_root_vdev == vd) {
/*
* The root vdev's guid will also be the pool guid,
* which must be unique among all pools.
*/
while (guid == 0 || spa_guid_exists(guid, 0))
guid = spa_get_random(-1ULL);
} else {
/*
* Any other vdev's guid must be unique within the pool.
*/
while (guid == 0 ||
spa_guid_exists(spa_guid(spa), guid))
guid = spa_get_random(-1ULL);
}
ASSERT(!spa_guid_exists(spa_guid(spa), guid));
}
vd->vdev_spa = spa;
vd->vdev_id = id;
vd->vdev_guid = guid;
vd->vdev_guid_sum = guid;
vd->vdev_ops = ops;
vd->vdev_state = VDEV_STATE_CLOSED;
mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
space_map_create(&vd->vdev_dtl_map, 0, -1ULL, 0, &vd->vdev_dtl_lock);
space_map_create(&vd->vdev_dtl_scrub, 0, -1ULL, 0, &vd->vdev_dtl_lock);
txg_list_create(&vd->vdev_ms_list,
offsetof(struct metaslab, ms_txg_node));
txg_list_create(&vd->vdev_dtl_list,
offsetof(struct vdev, vdev_dtl_node));
vd->vdev_stat.vs_timestamp = gethrtime();
vdev_queue_init(vd);
vdev_cache_init(vd);
return (vd);
}
/*
* Allocate a new vdev. The 'alloctype' is used to control whether we are
* creating a new vdev or loading an existing one - the behavior is slightly
* different for each case.
*/
int
vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
int alloctype)
{
vdev_ops_t *ops;
char *type;
uint64_t guid = 0, islog, nparity;
vdev_t *vd;
ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
return (EINVAL);
if ((ops = vdev_getops(type)) == NULL)
return (EINVAL);
/*
* If this is a load, get the vdev guid from the nvlist.
* Otherwise, vdev_alloc_common() will generate one for us.
*/
if (alloctype == VDEV_ALLOC_LOAD) {
uint64_t label_id;
if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
label_id != id)
return (EINVAL);
if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
return (EINVAL);
} else if (alloctype == VDEV_ALLOC_SPARE) {
if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
return (EINVAL);
} else if (alloctype == VDEV_ALLOC_L2CACHE) {
if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
return (EINVAL);
}
/*
* The first allocated vdev must be of type 'root'.
*/
if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
return (EINVAL);
/*
* Determine whether we're a log vdev.
*/
islog = 0;
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
return (ENOTSUP);
/*
* Set the nparity property for RAID-Z vdevs.
*/
nparity = -1ULL;
if (ops == &vdev_raidz_ops) {
if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
&nparity) == 0) {
/*
* Currently, we can only support 2 parity devices.
*/
if (nparity == 0 || nparity > 2)
return (EINVAL);
/*
* Older versions can only support 1 parity device.
*/
if (nparity == 2 &&
spa_version(spa) < SPA_VERSION_RAID6)
return (ENOTSUP);
} else {
/*
* We require the parity to be specified for SPAs that
* support multiple parity levels.
*/
if (spa_version(spa) >= SPA_VERSION_RAID6)
return (EINVAL);
/*
* Otherwise, we default to 1 parity device for RAID-Z.
*/
nparity = 1;
}
} else {
nparity = 0;
}
ASSERT(nparity != -1ULL);
vd = vdev_alloc_common(spa, id, guid, ops);
vd->vdev_islog = islog;
vd->vdev_nparity = nparity;
if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
vd->vdev_path = spa_strdup(vd->vdev_path);
if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
vd->vdev_devid = spa_strdup(vd->vdev_devid);
if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
&vd->vdev_physpath) == 0)
vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
/*
* Set the whole_disk property. If it's not specified, leave the value
* as -1.
*/
if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
&vd->vdev_wholedisk) != 0)
vd->vdev_wholedisk = -1ULL;
/*
* Look for the 'not present' flag. This will only be set if the device
* was not present at the time of import.
*/
if (!spa->spa_import_faulted)
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
&vd->vdev_not_present);
/*
* Get the alignment requirement.
*/
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
/*
* If we're a top-level vdev, try to load the allocation parameters.
*/
if (parent && !parent->vdev_parent && alloctype == VDEV_ALLOC_LOAD) {
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
&vd->vdev_ms_array);
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
&vd->vdev_ms_shift);
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
&vd->vdev_asize);
}
/*
* If we're a leaf vdev, try to load the DTL object and other state.
*/
if (vd->vdev_ops->vdev_op_leaf &&
(alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE)) {
if (alloctype == VDEV_ALLOC_LOAD) {
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
&vd->vdev_dtl.smo_object);
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
&vd->vdev_unspare);
}
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
&vd->vdev_offline);
/*
* When importing a pool, we want to ignore the persistent fault
* state, as the diagnosis made on another system may not be
* valid in the current context.
*/
if (spa->spa_load_state == SPA_LOAD_OPEN) {
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
&vd->vdev_faulted);
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
&vd->vdev_degraded);
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
&vd->vdev_removed);
}
}
/*
* Add ourselves to the parent's list of children.
*/
vdev_add_child(parent, vd);
*vdp = vd;
return (0);
}
void
vdev_free(vdev_t *vd)
{
int c;
spa_t *spa = vd->vdev_spa;
/*
* vdev_free() implies closing the vdev first. This is simpler than
* trying to ensure complicated semantics for all callers.
*/
vdev_close(vd);
ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
/*
* Free all children.
*/
for (c = 0; c < vd->vdev_children; c++)
vdev_free(vd->vdev_child[c]);
ASSERT(vd->vdev_child == NULL);
ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
/*
* Discard allocation state.
*/
if (vd == vd->vdev_top)
vdev_metaslab_fini(vd);
ASSERT3U(vd->vdev_stat.vs_space, ==, 0);
ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0);
ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);
/*
* Remove this vdev from its parent's child list.
*/
vdev_remove_child(vd->vdev_parent, vd);
ASSERT(vd->vdev_parent == NULL);
/*
* Clean up vdev structure.
*/
vdev_queue_fini(vd);
vdev_cache_fini(vd);
if (vd->vdev_path)
spa_strfree(vd->vdev_path);
if (vd->vdev_devid)
spa_strfree(vd->vdev_devid);
if (vd->vdev_physpath)
spa_strfree(vd->vdev_physpath);
if (vd->vdev_isspare)
spa_spare_remove(vd);
if (vd->vdev_isl2cache)
spa_l2cache_remove(vd);
txg_list_destroy(&vd->vdev_ms_list);
txg_list_destroy(&vd->vdev_dtl_list);
mutex_enter(&vd->vdev_dtl_lock);
space_map_unload(&vd->vdev_dtl_map);
space_map_destroy(&vd->vdev_dtl_map);
space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL);
space_map_destroy(&vd->vdev_dtl_scrub);
mutex_exit(&vd->vdev_dtl_lock);
mutex_destroy(&vd->vdev_dtl_lock);
mutex_destroy(&vd->vdev_stat_lock);
mutex_destroy(&vd->vdev_probe_lock);
if (vd == spa->spa_root_vdev)
spa->spa_root_vdev = NULL;
kmem_free(vd, sizeof (vdev_t));
}
/*
* Transfer top-level vdev state from svd to tvd.
*/
static void
vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
{
spa_t *spa = svd->vdev_spa;
metaslab_t *msp;
vdev_t *vd;
int t;
ASSERT(tvd == tvd->vdev_top);
tvd->vdev_ms_array = svd->vdev_ms_array;
tvd->vdev_ms_shift = svd->vdev_ms_shift;
tvd->vdev_ms_count = svd->vdev_ms_count;
svd->vdev_ms_array = 0;
svd->vdev_ms_shift = 0;
svd->vdev_ms_count = 0;
tvd->vdev_mg = svd->vdev_mg;
tvd->vdev_ms = svd->vdev_ms;
svd->vdev_mg = NULL;
svd->vdev_ms = NULL;
if (tvd->vdev_mg != NULL)
tvd->vdev_mg->mg_vd = tvd;
tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
svd->vdev_stat.vs_alloc = 0;
svd->vdev_stat.vs_space = 0;
svd->vdev_stat.vs_dspace = 0;
for (t = 0; t < TXG_SIZE; t++) {
while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
}
if (list_link_active(&svd->vdev_config_dirty_node)) {
vdev_config_clean(svd);
vdev_config_dirty(tvd);
}
if (list_link_active(&svd->vdev_state_dirty_node)) {
vdev_state_clean(svd);
vdev_state_dirty(tvd);
}
tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
svd->vdev_deflate_ratio = 0;
tvd->vdev_islog = svd->vdev_islog;
svd->vdev_islog = 0;
}
static void
vdev_top_update(vdev_t *tvd, vdev_t *vd)
{
int c;
if (vd == NULL)
return;
vd->vdev_top = tvd;
for (c = 0; c < vd->vdev_children; c++)
vdev_top_update(tvd, vd->vdev_child[c]);
}
/*
* Add a mirror/replacing vdev above an existing vdev.
*/
vdev_t *
vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
{
spa_t *spa = cvd->vdev_spa;
vdev_t *pvd = cvd->vdev_parent;
vdev_t *mvd;
ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
mvd->vdev_asize = cvd->vdev_asize;
mvd->vdev_ashift = cvd->vdev_ashift;
mvd->vdev_state = cvd->vdev_state;
vdev_remove_child(pvd, cvd);
vdev_add_child(pvd, mvd);
cvd->vdev_id = mvd->vdev_children;
vdev_add_child(mvd, cvd);
vdev_top_update(cvd->vdev_top, cvd->vdev_top);
if (mvd == mvd->vdev_top)
vdev_top_transfer(cvd, mvd);
return (mvd);
}
/*
* Remove a 1-way mirror/replacing vdev from the tree.
*/
void
vdev_remove_parent(vdev_t *cvd)
{
vdev_t *mvd = cvd->vdev_parent;
vdev_t *pvd = mvd->vdev_parent;
ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
ASSERT(mvd->vdev_children == 1);
ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
mvd->vdev_ops == &vdev_replacing_ops ||
mvd->vdev_ops == &vdev_spare_ops);
cvd->vdev_ashift = mvd->vdev_ashift;
vdev_remove_child(mvd, cvd);
vdev_remove_child(pvd, mvd);
/*
* If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
* Otherwise, we could have detached an offline device, and when we
* go to import the pool we'll think we have two top-level vdevs,
* instead of a different version of the same top-level vdev.
*/
if (mvd->vdev_top == mvd)
cvd->vdev_guid = cvd->vdev_guid_sum = mvd->vdev_guid;
cvd->vdev_id = mvd->vdev_id;
vdev_add_child(pvd, cvd);
vdev_top_update(cvd->vdev_top, cvd->vdev_top);
if (cvd == cvd->vdev_top)
vdev_top_transfer(mvd, cvd);
ASSERT(mvd->vdev_children == 0);
vdev_free(mvd);
}
int
vdev_metaslab_init(vdev_t *vd, uint64_t txg)
{
spa_t *spa = vd->vdev_spa;
objset_t *mos = spa->spa_meta_objset;
metaslab_class_t *mc;
uint64_t m;
uint64_t oldc = vd->vdev_ms_count;
uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
metaslab_t **mspp;
int error;
if (vd->vdev_ms_shift == 0) /* not being allocated from yet */
return (0);
ASSERT(oldc <= newc);
if (vd->vdev_islog)
mc = spa->spa_log_class;
else
mc = spa->spa_normal_class;
if (vd->vdev_mg == NULL)
vd->vdev_mg = metaslab_group_create(mc, vd);
mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
if (oldc != 0) {
bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
}
vd->vdev_ms = mspp;
vd->vdev_ms_count = newc;
for (m = oldc; m < newc; m++) {
space_map_obj_t smo = { 0, 0, 0 };
if (txg == 0) {
uint64_t object = 0;
error = dmu_read(mos, vd->vdev_ms_array,
m * sizeof (uint64_t), sizeof (uint64_t), &object);
if (error)
return (error);
if (object != 0) {
dmu_buf_t *db;
error = dmu_bonus_hold(mos, object, FTAG, &db);
if (error)
return (error);
ASSERT3U(db->db_size, >=, sizeof (smo));
bcopy(db->db_data, &smo, sizeof (smo));
ASSERT3U(smo.smo_object, ==, object);
dmu_buf_rele(db, FTAG);
}
}
vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo,
m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
}
return (0);
}
void
vdev_metaslab_fini(vdev_t *vd)
{
uint64_t m;
uint64_t count = vd->vdev_ms_count;
if (vd->vdev_ms != NULL) {
for (m = 0; m < count; m++)
if (vd->vdev_ms[m] != NULL)
metaslab_fini(vd->vdev_ms[m]);
kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
vd->vdev_ms = NULL;
}
}
typedef struct vdev_probe_stats {
boolean_t vps_readable;
boolean_t vps_writeable;
int vps_flags;
zio_t *vps_root;
vdev_t *vps_vd;
} vdev_probe_stats_t;
static void
vdev_probe_done(zio_t *zio)
{
vdev_probe_stats_t *vps = zio->io_private;
vdev_t *vd = vps->vps_vd;
if (zio->io_type == ZIO_TYPE_READ) {
ASSERT(zio->io_vd == vd);
if (zio->io_error == 0)
vps->vps_readable = 1;
if (zio->io_error == 0 && (spa_mode & FWRITE)) {
zio_nowait(zio_write_phys(vps->vps_root, vd,
zio->io_offset, zio->io_size, zio->io_data,
ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
} else {
zio_buf_free(zio->io_data, zio->io_size);
}
} else if (zio->io_type == ZIO_TYPE_WRITE) {
ASSERT(zio->io_vd == vd);
if (zio->io_error == 0)
vps->vps_writeable = 1;
zio_buf_free(zio->io_data, zio->io_size);
} else if (zio->io_type == ZIO_TYPE_NULL) {
ASSERT(zio->io_vd == NULL);
ASSERT(zio == vps->vps_root);
vd->vdev_cant_read |= !vps->vps_readable;
vd->vdev_cant_write |= !vps->vps_writeable;
if (vdev_readable(vd) &&
(vdev_writeable(vd) || !(spa_mode & FWRITE))) {
zio->io_error = 0;
} else {
ASSERT(zio->io_error != 0);
zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
zio->io_spa, vd, NULL, 0, 0);
zio->io_error = ENXIO;
}
kmem_free(vps, sizeof (*vps));
}
}
/*
* Determine whether this device is accessible by reading and writing
* to several known locations: the pad regions of each vdev label
* but the first (which we leave alone in case it contains a VTOC).
*/
zio_t *
vdev_probe(vdev_t *vd, zio_t *pio)
{
spa_t *spa = vd->vdev_spa;
vdev_probe_stats_t *vps;
zio_t *zio;
vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE | ZIO_FLAG_DONT_RETRY;
if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
/*
* vdev_cant_read and vdev_cant_write can only transition
* from TRUE to FALSE when we have the SCL_ZIO lock as writer;
* otherwise they can only transition from FALSE to TRUE.
* This ensures that any zio looking at these values can
* assume that failures persist for the life of the I/O.
* That's important because when a device has intermittent
* connectivity problems, we want to ensure that they're
* ascribed to the device (ENXIO) and not the zio (EIO).
*
* Since we hold SCL_ZIO as writer here, clear both values
* so the probe can reevaluate from first principles.
*/
vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
vd->vdev_cant_read = B_FALSE;
vd->vdev_cant_write = B_FALSE;
}
ASSERT(vd->vdev_ops->vdev_op_leaf);
zio = zio_null(pio, spa, vdev_probe_done, vps, vps->vps_flags);
vps->vps_root = zio;
vps->vps_vd = vd;
for (int l = 1; l < VDEV_LABELS; l++) {
zio_nowait(zio_read_phys(zio, vd,
vdev_label_offset(vd->vdev_psize, l,
offsetof(vdev_label_t, vl_pad)),
VDEV_SKIP_SIZE, zio_buf_alloc(VDEV_SKIP_SIZE),
ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
}
return (zio);
}
/*
* Prepare a virtual device for access.
*/
int
vdev_open(vdev_t *vd)
{
int error;
int c;
uint64_t osize = 0;
uint64_t asize, psize;
uint64_t ashift = 0;
ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
vd->vdev_state == VDEV_STATE_CANT_OPEN ||
vd->vdev_state == VDEV_STATE_OFFLINE);
vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
if (!vd->vdev_removed && vd->vdev_faulted) {
ASSERT(vd->vdev_children == 0);
vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
VDEV_AUX_ERR_EXCEEDED);
return (ENXIO);
} else if (vd->vdev_offline) {
ASSERT(vd->vdev_children == 0);
vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
return (ENXIO);
}
error = vd->vdev_ops->vdev_op_open(vd, &osize, &ashift);
if (zio_injection_enabled && error == 0)
error = zio_handle_device_injection(vd, ENXIO);
if (error) {
if (vd->vdev_removed &&
vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
vd->vdev_removed = B_FALSE;
vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
vd->vdev_stat.vs_aux);
return (error);
}
vd->vdev_removed = B_FALSE;
if (vd->vdev_degraded) {
ASSERT(vd->vdev_children == 0);
vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
VDEV_AUX_ERR_EXCEEDED);
} else {
vd->vdev_state = VDEV_STATE_HEALTHY;
}
for (c = 0; c < vd->vdev_children; c++)
if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
VDEV_AUX_NONE);
break;
}
osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
if (vd->vdev_children == 0) {
if (osize < SPA_MINDEVSIZE) {
vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
VDEV_AUX_TOO_SMALL);
return (EOVERFLOW);
}
psize = osize;
asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
} else {
if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
(VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
VDEV_AUX_TOO_SMALL);
return (EOVERFLOW);
}
psize = 0;
asize = osize;
}
vd->vdev_psize = psize;
if (vd->vdev_asize == 0) {
/*
* This is the first-ever open, so use the computed values.
* For testing purposes, a higher ashift can be requested.
*/
vd->vdev_asize = asize;
vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
} else {
/*
* Make sure the alignment requirement hasn't increased.
*/
if (ashift > vd->vdev_top->vdev_ashift) {
vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
VDEV_AUX_BAD_LABEL);
return (EINVAL);
}
/*
* Make sure the device hasn't shrunk.
*/
if (asize < vd->vdev_asize) {
vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
VDEV_AUX_BAD_LABEL);
return (EINVAL);
}
/*
* If all children are healthy and the asize has increased,
* then we've experienced dynamic LUN growth.
*/
if (vd->vdev_state == VDEV_STATE_HEALTHY &&
asize > vd->vdev_asize) {
vd->vdev_asize = asize;
}
}
/*
* Ensure we can issue some IO before declaring the
* vdev open for business.
*/
if (vd->vdev_ops->vdev_op_leaf &&
(error = zio_wait(vdev_probe(vd, NULL))) != 0) {
vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
VDEV_AUX_IO_FAILURE);
return (error);
}
/*
* If this is a top-level vdev, compute the raidz-deflation
* ratio. Note, we hard-code in 128k (1<<17) because it is the
* current "typical" blocksize. Even if SPA_MAXBLOCKSIZE
* changes, this algorithm must never change, or we will
* inconsistently account for existing bp's.
*/
if (vd->vdev_top == vd) {
vd->vdev_deflate_ratio = (1<<17) /
(vdev_psize_to_asize(vd, 1<<17) >> SPA_MINBLOCKSHIFT);
}
/*
* If a leaf vdev has a DTL, and seems healthy, then kick off a
* resilver. But don't do this if we are doing a reopen for a
* scrub, since this would just restart the scrub we are already
* doing.
*/
if (vd->vdev_children == 0 && !vd->vdev_spa->spa_scrub_reopen) {
mutex_enter(&vd->vdev_dtl_lock);
if (vd->vdev_dtl_map.sm_space != 0 && vdev_writeable(vd))
spa_async_request(vd->vdev_spa, SPA_ASYNC_RESILVER);
mutex_exit(&vd->vdev_dtl_lock);
}
return (0);
}
/*
* Called once the vdevs are all opened, this routine validates the label
* contents. This needs to be done before vdev_load() so that we don't
* inadvertently do repair I/Os to the wrong device.
*
* This function will only return failure if one of the vdevs indicates that it
* has since been destroyed or exported. This is only possible if
* /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state
* will be updated but the function will return 0.
*/
int
vdev_validate(vdev_t *vd)
{
spa_t *spa = vd->vdev_spa;
int c;
nvlist_t *label;
uint64_t guid, top_guid;
uint64_t state;
for (c = 0; c < vd->vdev_children; c++)
if (vdev_validate(vd->vdev_child[c]) != 0)
return (EBADF);
/*
* If the device has already failed, or was marked offline, don't do
* any further validation. Otherwise, label I/O will fail and we will
* overwrite the previous state.
*/
if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
if ((label = vdev_label_read_config(vd)) == NULL) {
vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
VDEV_AUX_BAD_LABEL);
return (0);
}
if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
&guid) != 0 || guid != spa_guid(spa)) {
vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
VDEV_AUX_CORRUPT_DATA);
nvlist_free(label);
return (0);
}
/*
* If this vdev just became a top-level vdev because its
* sibling was detached, it will have adopted the parent's
* vdev guid -- but the label may or may not be on disk yet.
* Fortunately, either version of the label will have the
* same top guid, so if we're a top-level vdev, we can
* safely compare to that instead.
*/
if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
&guid) != 0 ||
nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
&top_guid) != 0 ||
(vd->vdev_guid != guid &&
(vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
VDEV_AUX_CORRUPT_DATA);
nvlist_free(label);
return (0);
}
if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
&state) != 0) {
vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
VDEV_AUX_CORRUPT_DATA);
nvlist_free(label);
return (0);
}
nvlist_free(label);
if (spa->spa_load_state == SPA_LOAD_OPEN &&
state != POOL_STATE_ACTIVE)
return (EBADF);
/*
* If we were able to open and validate a vdev that was
* previously marked permanently unavailable, clear that state
* now.
*/
if (vd->vdev_not_present)
vd->vdev_not_present = 0;
}
return (0);
}
/*
* Close a virtual device.
*/
void
vdev_close(vdev_t *vd)
{
vd->vdev_ops->vdev_op_close(vd);
vdev_cache_purge(vd);
/*
* We record the previous state before we close it, so that if we are
* doing a reopen(), we don't generate FMA ereports if we notice that
* it's still faulted.
*/
vd->vdev_prevstate = vd->vdev_state;
if (vd->vdev_offline)
vd->vdev_state = VDEV_STATE_OFFLINE;
else
vd->vdev_state = VDEV_STATE_CLOSED;
vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
}
void
vdev_reopen(vdev_t *vd)
{
spa_t *spa = vd->vdev_spa;
ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
vdev_close(vd);
(void) vdev_open(vd);
/*
* Call vdev_validate() here to make sure we have the same device.
* Otherwise, a device with an invalid label could be successfully
* opened in response to vdev_reopen().
*/
if (vd->vdev_aux) {
(void) vdev_validate_aux(vd);
if (vdev_readable(vd) && vdev_writeable(vd) &&
!l2arc_vdev_present(vd)) {
uint64_t size = vdev_get_rsize(vd);
l2arc_add_vdev(spa, vd,
VDEV_LABEL_START_SIZE,
size - VDEV_LABEL_START_SIZE);
}
} else {
(void) vdev_validate(vd);
}
/*
* Reassess parent vdev's health.
*/
vdev_propagate_state(vd);
}
int
vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
{
int error;
/*
* Normally, partial opens (e.g. of a mirror) are allowed.
* For a create, however, we want to fail the request if
* there are any components we can't open.
*/
error = vdev_open(vd);
if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
vdev_close(vd);
return (error ? error : ENXIO);
}
/*
* Recursively initialize all labels.
*/
if ((error = vdev_label_init(vd, txg, isreplacing ?
VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
vdev_close(vd);
return (error);
}
return (0);
}
/*
* The is the latter half of vdev_create(). It is distinct because it
* involves initiating transactions in order to do metaslab creation.
* For creation, we want to try to create all vdevs at once and then undo it
* if anything fails; this is much harder if we have pending transactions.
*/
void
vdev_init(vdev_t *vd, uint64_t txg)
{
/*
* Aim for roughly 200 metaslabs per vdev.
*/
vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
/*
* Initialize the vdev's metaslabs. This can't fail because
* there's nothing to read when creating all new metaslabs.
*/
VERIFY(vdev_metaslab_init(vd, txg) == 0);
}
void
vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
{
ASSERT(vd == vd->vdev_top);
ASSERT(ISP2(flags));
if (flags & VDD_METASLAB)
(void) txg_list_add(&vd->vdev_ms_list, arg, txg);
if (flags & VDD_DTL)
(void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
(void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
}
void
vdev_dtl_dirty(space_map_t *sm, uint64_t txg, uint64_t size)
{
mutex_enter(sm->sm_lock);
if (!space_map_contains(sm, txg, size))
space_map_add(sm, txg, size);
mutex_exit(sm->sm_lock);
}
int
vdev_dtl_contains(space_map_t *sm, uint64_t txg, uint64_t size)
{
int dirty;
/*
* Quick test without the lock -- covers the common case that
* there are no dirty time segments.
*/
if (sm->sm_space == 0)
return (0);
mutex_enter(sm->sm_lock);
dirty = space_map_contains(sm, txg, size);
mutex_exit(sm->sm_lock);
return (dirty);
}
/*
* Reassess DTLs after a config change or scrub completion.
*/
void
vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
{
spa_t *spa = vd->vdev_spa;
int c;
ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
if (vd->vdev_children == 0) {
mutex_enter(&vd->vdev_dtl_lock);
if (scrub_txg != 0 &&
(spa->spa_scrub_started || spa->spa_scrub_errors == 0)) {
/* XXX should check scrub_done? */
/*
* We completed a scrub up to scrub_txg. If we
* did it without rebooting, then the scrub dtl
* will be valid, so excise the old region and
* fold in the scrub dtl. Otherwise, leave the
* dtl as-is if there was an error.
*/
space_map_excise(&vd->vdev_dtl_map, 0, scrub_txg);
space_map_union(&vd->vdev_dtl_map, &vd->vdev_dtl_scrub);
}
if (scrub_done)
space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL);
mutex_exit(&vd->vdev_dtl_lock);
if (txg != 0)
vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
return;
}
/*
* Make sure the DTLs are always correct under the scrub lock.
*/
if (vd == spa->spa_root_vdev)
mutex_enter(&spa->spa_scrub_lock);
mutex_enter(&vd->vdev_dtl_lock);
space_map_vacate(&vd->vdev_dtl_map, NULL, NULL);
space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL);
mutex_exit(&vd->vdev_dtl_lock);
for (c = 0; c < vd->vdev_children; c++) {
vdev_t *cvd = vd->vdev_child[c];
vdev_dtl_reassess(cvd, txg, scrub_txg, scrub_done);
mutex_enter(&vd->vdev_dtl_lock);
space_map_union(&vd->vdev_dtl_map, &cvd->vdev_dtl_map);
space_map_union(&vd->vdev_dtl_scrub, &cvd->vdev_dtl_scrub);
mutex_exit(&vd->vdev_dtl_lock);
}
if (vd == spa->spa_root_vdev)
mutex_exit(&spa->spa_scrub_lock);
}
static int
vdev_dtl_load(vdev_t *vd)
{
spa_t *spa = vd->vdev_spa;
space_map_obj_t *smo = &vd->vdev_dtl;
objset_t *mos = spa->spa_meta_objset;
dmu_buf_t *db;
int error;
ASSERT(vd->vdev_children == 0);
if (smo->smo_object == 0)
return (0);
if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
return (error);
ASSERT3U(db->db_size, >=, sizeof (*smo));
bcopy(db->db_data, smo, sizeof (*smo));
dmu_buf_rele(db, FTAG);
mutex_enter(&vd->vdev_dtl_lock);
error = space_map_load(&vd->vdev_dtl_map, NULL, SM_ALLOC, smo, mos);
mutex_exit(&vd->vdev_dtl_lock);
return (error);
}
void
vdev_dtl_sync(vdev_t *vd, uint64_t txg)
{
spa_t *spa = vd->vdev_spa;
space_map_obj_t *smo = &vd->vdev_dtl;
space_map_t *sm = &vd->vdev_dtl_map;
objset_t *mos = spa->spa_meta_objset;
space_map_t smsync;
kmutex_t smlock;
dmu_buf_t *db;
dmu_tx_t *tx;
tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
if (vd->vdev_detached) {
if (smo->smo_object != 0) {
VERIFY(0 == dmu_object_free(mos, smo->smo_object, tx));
smo->smo_object = 0;
}
dmu_tx_commit(tx);
return;
}
if (smo->smo_object == 0) {
ASSERT(smo->smo_objsize == 0);
ASSERT(smo->smo_alloc == 0);
smo->smo_object = dmu_object_alloc(mos,
DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
ASSERT(smo->smo_object != 0);
vdev_config_dirty(vd->vdev_top);
}
mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);
space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
&smlock);
mutex_enter(&smlock);
mutex_enter(&vd->vdev_dtl_lock);
space_map_walk(sm, space_map_add, &smsync);
mutex_exit(&vd->vdev_dtl_lock);
space_map_truncate(smo, mos, tx);
space_map_sync(&smsync, SM_ALLOC, smo, mos, tx);
space_map_destroy(&smsync);
mutex_exit(&smlock);
mutex_destroy(&smlock);
VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
dmu_buf_will_dirty(db, tx);
ASSERT3U(db->db_size, >=, sizeof (*smo));
bcopy(smo, db->db_data, sizeof (*smo));
dmu_buf_rele(db, FTAG);
dmu_tx_commit(tx);
}
/*
* Determine if resilver is needed, and if so the txg range.
*/
boolean_t
vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
{
boolean_t needed = B_FALSE;
uint64_t thismin = UINT64_MAX;
uint64_t thismax = 0;
if (vd->vdev_children == 0) {
mutex_enter(&vd->vdev_dtl_lock);
if (vd->vdev_dtl_map.sm_space != 0 && vdev_writeable(vd)) {
space_seg_t *ss;
ss = avl_first(&vd->vdev_dtl_map.sm_root);
thismin = ss->ss_start - 1;
ss = avl_last(&vd->vdev_dtl_map.sm_root);
thismax = ss->ss_end;
needed = B_TRUE;
}
mutex_exit(&vd->vdev_dtl_lock);
} else {
int c;
for (c = 0; c < vd->vdev_children; c++) {
vdev_t *cvd = vd->vdev_child[c];
uint64_t cmin, cmax;
if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
thismin = MIN(thismin, cmin);
thismax = MAX(thismax, cmax);
needed = B_TRUE;
}
}
}
if (needed && minp) {
*minp = thismin;
*maxp = thismax;
}
return (needed);
}
void
vdev_load(vdev_t *vd)
{
int c;
/*
* Recursively load all children.
*/
for (c = 0; c < vd->vdev_children; c++)
vdev_load(vd->vdev_child[c]);
/*
* If this is a top-level vdev, initialize its metaslabs.
*/
if (vd == vd->vdev_top &&
(vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
vdev_metaslab_init(vd, 0) != 0))
vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
VDEV_AUX_CORRUPT_DATA);
/*
* If this is a leaf vdev, load its DTL.
*/
if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
VDEV_AUX_CORRUPT_DATA);
}
/*
* The special vdev case is used for hot spares and l2cache devices. Its
* sole purpose it to set the vdev state for the associated vdev. To do this,
* we make sure that we can open the underlying device, then try to read the
* label, and make sure that the label is sane and that it hasn't been
* repurposed to another pool.
*/
int
vdev_validate_aux(vdev_t *vd)
{
nvlist_t *label;
uint64_t guid, version;
uint64_t state;
if (!vdev_readable(vd))
return (0);
if ((label = vdev_label_read_config(vd)) == NULL) {
vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
VDEV_AUX_CORRUPT_DATA);
return (-1);
}
if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
version > SPA_VERSION ||
nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
guid != vd->vdev_guid ||
nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
VDEV_AUX_CORRUPT_DATA);
nvlist_free(label);
return (-1);
}
/*
* We don't actually check the pool state here. If it's in fact in
* use by another pool, we update this fact on the fly when requested.
*/
nvlist_free(label);
return (0);
}
void
vdev_sync_done(vdev_t *vd, uint64_t txg)
{
metaslab_t *msp;
while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))))
metaslab_sync_done(msp, txg);
}
void
vdev_sync(vdev_t *vd, uint64_t txg)
{
spa_t *spa = vd->vdev_spa;
vdev_t *lvd;
metaslab_t *msp;
dmu_tx_t *tx;
if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
ASSERT(vd == vd->vdev_top);
tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
ASSERT(vd->vdev_ms_array != 0);
vdev_config_dirty(vd);
dmu_tx_commit(tx);
}
while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
metaslab_sync(msp, txg);
(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
}
while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
vdev_dtl_sync(lvd, txg);
(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
}
uint64_t
vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
{
return (vd->vdev_ops->vdev_op_asize(vd, psize));
}
/*
* Mark the given vdev faulted. A faulted vdev behaves as if the device could
* not be opened, and no I/O is attempted.
*/
int
vdev_fault(spa_t *spa, uint64_t guid)
{
vdev_t *vd;
spa_vdev_state_enter(spa);
if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
return (spa_vdev_state_exit(spa, NULL, ENODEV));
if (!vd->vdev_ops->vdev_op_leaf)
return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
/*
* Faulted state takes precedence over degraded.
*/
vd->vdev_faulted = 1ULL;
vd->vdev_degraded = 0ULL;
vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, VDEV_AUX_ERR_EXCEEDED);
/*
* If marking the vdev as faulted cause the top-level vdev to become
* unavailable, then back off and simply mark the vdev as degraded
* instead.
*/
if (vdev_is_dead(vd->vdev_top) && vd->vdev_aux == NULL) {
vd->vdev_degraded = 1ULL;
vd->vdev_faulted = 0ULL;
/*
* If we reopen the device and it's not dead, only then do we
* mark it degraded.
*/
vdev_reopen(vd);
if (vdev_readable(vd)) {
vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
VDEV_AUX_ERR_EXCEEDED);
}
}
return (spa_vdev_state_exit(spa, vd, 0));
}
/*
* Mark the given vdev degraded. A degraded vdev is purely an indication to the
* user that something is wrong. The vdev continues to operate as normal as far
* as I/O is concerned.
*/
int
vdev_degrade(spa_t *spa, uint64_t guid)
{
vdev_t *vd;
spa_vdev_state_enter(spa);
if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
return (spa_vdev_state_exit(spa, NULL, ENODEV));
if (!vd->vdev_ops->vdev_op_leaf)
return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
/*
* If the vdev is already faulted, then don't do anything.
*/
if (vd->vdev_faulted || vd->vdev_degraded)
return (spa_vdev_state_exit(spa, NULL, 0));
vd->vdev_degraded = 1ULL;
if (!vdev_is_dead(vd))
vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
VDEV_AUX_ERR_EXCEEDED);
return (spa_vdev_state_exit(spa, vd, 0));
}
/*
* Online the given vdev. If 'unspare' is set, it implies two things. First,
* any attached spare device should be detached when the device finishes
* resilvering. Second, the online should be treated like a 'test' online case,
* so no FMA events are generated if the device fails to open.
*/
int
vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
{
vdev_t *vd;
spa_vdev_state_enter(spa);
if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
return (spa_vdev_state_exit(spa, NULL, ENODEV));
if (!vd->vdev_ops->vdev_op_leaf)
return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
vd->vdev_offline = B_FALSE;
vd->vdev_tmpoffline = B_FALSE;
vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
vdev_reopen(vd->vdev_top);
vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
if (newstate)
*newstate = vd->vdev_state;
if ((flags & ZFS_ONLINE_UNSPARE) &&
!vdev_is_dead(vd) && vd->vdev_parent &&
vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
vd->vdev_parent->vdev_child[0] == vd)
vd->vdev_unspare = B_TRUE;
(void) spa_vdev_state_exit(spa, vd, 0);
VERIFY3U(spa_scrub(spa, POOL_SCRUB_RESILVER), ==, 0);
return (0);
}
int
vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
{
vdev_t *vd;
spa_vdev_state_enter(spa);
if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
return (spa_vdev_state_exit(spa, NULL, ENODEV));
if (!vd->vdev_ops->vdev_op_leaf)
return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
/*
* If the device isn't already offline, try to offline it.
*/
if (!vd->vdev_offline) {
/*
* If this device's top-level vdev has a non-empty DTL,
* don't allow the device to be offlined.
*
* XXX -- make this more precise by allowing the offline
* as long as the remaining devices don't have any DTL holes.
*/
if (vd->vdev_top->vdev_dtl_map.sm_space != 0)
return (spa_vdev_state_exit(spa, NULL, EBUSY));
/*
* Offline this device and reopen its top-level vdev.
* If this action results in the top-level vdev becoming
* unusable, undo it and fail the request.
*/
vd->vdev_offline = B_TRUE;
vdev_reopen(vd->vdev_top);
if (vdev_is_dead(vd->vdev_top) && vd->vdev_aux == NULL) {
vd->vdev_offline = B_FALSE;
vdev_reopen(vd->vdev_top);
return (spa_vdev_state_exit(spa, NULL, EBUSY));
}
}
vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
return (spa_vdev_state_exit(spa, vd, 0));
}
/*
* Clear the error counts associated with this vdev. Unlike vdev_online() and
* vdev_offline(), we assume the spa config is locked. We also clear all
* children. If 'vd' is NULL, then the user wants to clear all vdevs.
*/
void
vdev_clear(spa_t *spa, vdev_t *vd)
{
vdev_t *rvd = spa->spa_root_vdev;
ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
if (vd == NULL)
vd = rvd;
vd->vdev_stat.vs_read_errors = 0;
vd->vdev_stat.vs_write_errors = 0;
vd->vdev_stat.vs_checksum_errors = 0;
for (int c = 0; c < vd->vdev_children; c++)
vdev_clear(spa, vd->vdev_child[c]);
/*
* If we're in the FAULTED state or have experienced failed I/O, then
* clear the persistent state and attempt to reopen the device. We
* also mark the vdev config dirty, so that the new faulted state is
* written out to disk.
*/
if (vd->vdev_faulted || vd->vdev_degraded ||
!vdev_readable(vd) || !vdev_writeable(vd)) {
vd->vdev_faulted = vd->vdev_degraded = 0;
vd->vdev_cant_read = B_FALSE;
vd->vdev_cant_write = B_FALSE;
vdev_reopen(vd);
if (vd != rvd)
vdev_state_dirty(vd->vdev_top);
if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
spa_async_request(spa, SPA_ASYNC_RESILVER);
spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
}
}
boolean_t
vdev_is_dead(vdev_t *vd)
{
return (vd->vdev_state < VDEV_STATE_DEGRADED);
}
boolean_t
vdev_readable(vdev_t *vd)
{
return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
}
boolean_t
vdev_writeable(vdev_t *vd)
{
return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
}
boolean_t
vdev_allocatable(vdev_t *vd)
{
/*
* We currently allow allocations from vdevs which maybe in the
* process of reopening (i.e. VDEV_STATE_CLOSED). If the device
* fails to reopen then we'll catch it later when we're holding
* the proper locks.
*/
return (!(vdev_is_dead(vd) && vd->vdev_state != VDEV_STATE_CLOSED) &&
!vd->vdev_cant_write);
}
boolean_t
vdev_accessible(vdev_t *vd, zio_t *zio)
{
ASSERT(zio->io_vd == vd);
if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
return (B_FALSE);
if (zio->io_type == ZIO_TYPE_READ)
return (!vd->vdev_cant_read);
if (zio->io_type == ZIO_TYPE_WRITE)
return (!vd->vdev_cant_write);
return (B_TRUE);
}
/*
* Get statistics for the given vdev.
*/
void
vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
{
vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
mutex_enter(&vd->vdev_stat_lock);
bcopy(&vd->vdev_stat, vs, sizeof (*vs));
vs->vs_scrub_errors = vd->vdev_spa->spa_scrub_errors;
vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
vs->vs_state = vd->vdev_state;
vs->vs_rsize = vdev_get_rsize(vd);
mutex_exit(&vd->vdev_stat_lock);
/*
* If we're getting stats on the root vdev, aggregate the I/O counts
* over all top-level vdevs (i.e. the direct children of the root).
*/
if (vd == rvd) {
for (int c = 0; c < rvd->vdev_children; c++) {
vdev_t *cvd = rvd->vdev_child[c];
vdev_stat_t *cvs = &cvd->vdev_stat;
mutex_enter(&vd->vdev_stat_lock);
for (int t = 0; t < ZIO_TYPES; t++) {
vs->vs_ops[t] += cvs->vs_ops[t];
vs->vs_bytes[t] += cvs->vs_bytes[t];
}
vs->vs_scrub_examined += cvs->vs_scrub_examined;
mutex_exit(&vd->vdev_stat_lock);
}
}
}
void
vdev_clear_stats(vdev_t *vd)
{
mutex_enter(&vd->vdev_stat_lock);
vd->vdev_stat.vs_space = 0;
vd->vdev_stat.vs_dspace = 0;
vd->vdev_stat.vs_alloc = 0;
mutex_exit(&vd->vdev_stat_lock);
}
void
vdev_stat_update(zio_t *zio, uint64_t psize)
{
vdev_t *rvd = zio->io_spa->spa_root_vdev;
vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
vdev_t *pvd;
uint64_t txg = zio->io_txg;
vdev_stat_t *vs = &vd->vdev_stat;
zio_type_t type = zio->io_type;
int flags = zio->io_flags;
/*
* If this i/o is a gang leader, it didn't do any actual work.
*/
if (zio->io_gang_tree)
return;
if (zio->io_error == 0) {
/*
* If this is a root i/o, don't count it -- we've already
* counted the top-level vdevs, and vdev_get_stats() will
* aggregate them when asked. This reduces contention on
* the root vdev_stat_lock and implicitly handles blocks
* that compress away to holes, for which there is no i/o.
* (Holes never create vdev children, so all the counters
* remain zero, which is what we want.)
*
* Note: this only applies to successful i/o (io_error == 0)
* because unlike i/o counts, errors are not additive.
* When reading a ditto block, for example, failure of
* one top-level vdev does not imply a root-level error.
*/
if (vd == rvd)
return;
ASSERT(vd == zio->io_vd);
if (!(flags & ZIO_FLAG_IO_BYPASS)) {
mutex_enter(&vd->vdev_stat_lock);
vs->vs_ops[type]++;
vs->vs_bytes[type] += psize;
mutex_exit(&vd->vdev_stat_lock);
}
if (flags & ZIO_FLAG_IO_REPAIR) {
ASSERT(zio->io_delegate_list == NULL);
mutex_enter(&vd->vdev_stat_lock);
if (flags & ZIO_FLAG_SCRUB_THREAD)
vs->vs_scrub_repaired += psize;
else
vs->vs_self_healed += psize;
mutex_exit(&vd->vdev_stat_lock);
}
return;
}
if (flags & ZIO_FLAG_SPECULATIVE)
return;
mutex_enter(&vd->vdev_stat_lock);
if (type == ZIO_TYPE_READ) {
if (zio->io_error == ECKSUM)
vs->vs_checksum_errors++;
else
vs->vs_read_errors++;
}
if (type == ZIO_TYPE_WRITE)
vs->vs_write_errors++;
mutex_exit(&vd->vdev_stat_lock);
if (type == ZIO_TYPE_WRITE && txg != 0 && vd->vdev_children == 0) {
if (flags & ZIO_FLAG_SCRUB_THREAD) {
ASSERT(flags & ZIO_FLAG_IO_REPAIR);
for (pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
vdev_dtl_dirty(&pvd->vdev_dtl_scrub, txg, 1);
}
if (!(flags & ZIO_FLAG_IO_REPAIR)) {
if (vdev_dtl_contains(&vd->vdev_dtl_map, txg, 1))
return;
vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
for (pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
vdev_dtl_dirty(&pvd->vdev_dtl_map, txg, 1);
}
}
}
void
vdev_scrub_stat_update(vdev_t *vd, pool_scrub_type_t type, boolean_t complete)
{
int c;
vdev_stat_t *vs = &vd->vdev_stat;
for (c = 0; c < vd->vdev_children; c++)
vdev_scrub_stat_update(vd->vdev_child[c], type, complete);
mutex_enter(&vd->vdev_stat_lock);
if (type == POOL_SCRUB_NONE) {
/*
* Update completion and end time. Leave everything else alone
* so we can report what happened during the previous scrub.
*/
vs->vs_scrub_complete = complete;
vs->vs_scrub_end = gethrestime_sec();
} else {
vs->vs_scrub_type = type;
vs->vs_scrub_complete = 0;
vs->vs_scrub_examined = 0;
vs->vs_scrub_repaired = 0;
vs->vs_scrub_start = gethrestime_sec();
vs->vs_scrub_end = 0;
}
mutex_exit(&vd->vdev_stat_lock);
}
/*
* Update the in-core space usage stats for this vdev and the root vdev.
*/
void
vdev_space_update(vdev_t *vd, int64_t space_delta, int64_t alloc_delta,
boolean_t update_root)
{
int64_t dspace_delta = space_delta;
spa_t *spa = vd->vdev_spa;
vdev_t *rvd = spa->spa_root_vdev;
ASSERT(vd == vd->vdev_top);
/*
* Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
* factor. We must calculate this here and not at the root vdev
* because the root vdev's psize-to-asize is simply the max of its
* childrens', thus not accurate enough for us.
*/
ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
vd->vdev_deflate_ratio;
mutex_enter(&vd->vdev_stat_lock);
vd->vdev_stat.vs_space += space_delta;
vd->vdev_stat.vs_alloc += alloc_delta;
vd->vdev_stat.vs_dspace += dspace_delta;
mutex_exit(&vd->vdev_stat_lock);
if (update_root) {
ASSERT(rvd == vd->vdev_parent);
ASSERT(vd->vdev_ms_count != 0);
/*
* Don't count non-normal (e.g. intent log) space as part of
* the pool's capacity.
*/
if (vd->vdev_mg->mg_class != spa->spa_normal_class)
return;
mutex_enter(&rvd->vdev_stat_lock);
rvd->vdev_stat.vs_space += space_delta;
rvd->vdev_stat.vs_alloc += alloc_delta;
rvd->vdev_stat.vs_dspace += dspace_delta;
mutex_exit(&rvd->vdev_stat_lock);
}
}
/*
* Mark a top-level vdev's config as dirty, placing it on the dirty list
* so that it will be written out next time the vdev configuration is synced.
* If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
*/
void
vdev_config_dirty(vdev_t *vd)
{
spa_t *spa = vd->vdev_spa;
vdev_t *rvd = spa->spa_root_vdev;
int c;
/*
* If this is an aux vdev (as with l2cache devices), then we update the
* vdev config manually and set the sync flag.
*/
if (vd->vdev_aux != NULL) {
spa_aux_vdev_t *sav = vd->vdev_aux;
nvlist_t **aux;
uint_t naux;
for (c = 0; c < sav->sav_count; c++) {
if (sav->sav_vdevs[c] == vd)
break;
}
if (c == sav->sav_count) {
/*
* We're being removed. There's nothing more to do.
*/
ASSERT(sav->sav_sync == B_TRUE);
return;
}
sav->sav_sync = B_TRUE;
VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
ZPOOL_CONFIG_L2CACHE, &aux, &naux) == 0);
ASSERT(c < naux);
/*
* Setting the nvlist in the middle if the array is a little
* sketchy, but it will work.
*/
nvlist_free(aux[c]);
aux[c] = vdev_config_generate(spa, vd, B_TRUE, B_FALSE, B_TRUE);
return;
}
/*
* The dirty list is protected by the SCL_CONFIG lock. The caller
* must either hold SCL_CONFIG as writer, or must be the sync thread
* (which holds SCL_CONFIG as reader). There's only one sync thread,
* so this is sufficient to ensure mutual exclusion.
*/
ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
(dsl_pool_sync_context(spa_get_dsl(spa)) &&
spa_config_held(spa, SCL_CONFIG, RW_READER)));
if (vd == rvd) {
for (c = 0; c < rvd->vdev_children; c++)
vdev_config_dirty(rvd->vdev_child[c]);
} else {
ASSERT(vd == vd->vdev_top);
if (!list_link_active(&vd->vdev_config_dirty_node))
list_insert_head(&spa->spa_config_dirty_list, vd);
}
}
void
vdev_config_clean(vdev_t *vd)
{
spa_t *spa = vd->vdev_spa;
ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
(dsl_pool_sync_context(spa_get_dsl(spa)) &&
spa_config_held(spa, SCL_CONFIG, RW_READER)));
ASSERT(list_link_active(&vd->vdev_config_dirty_node));
list_remove(&spa->spa_config_dirty_list, vd);
}
/*
* Mark a top-level vdev's state as dirty, so that the next pass of
* spa_sync() can convert this into vdev_config_dirty(). We distinguish
* the state changes from larger config changes because they require
* much less locking, and are often needed for administrative actions.
*/
void
vdev_state_dirty(vdev_t *vd)
{
spa_t *spa = vd->vdev_spa;
ASSERT(vd == vd->vdev_top);
/*
* The state list is protected by the SCL_STATE lock. The caller
* must either hold SCL_STATE as writer, or must be the sync thread
* (which holds SCL_STATE as reader). There's only one sync thread,
* so this is sufficient to ensure mutual exclusion.
*/
ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
(dsl_pool_sync_context(spa_get_dsl(spa)) &&
spa_config_held(spa, SCL_STATE, RW_READER)));
if (!list_link_active(&vd->vdev_state_dirty_node))
list_insert_head(&spa->spa_state_dirty_list, vd);
}
void
vdev_state_clean(vdev_t *vd)
{
spa_t *spa = vd->vdev_spa;
ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
(dsl_pool_sync_context(spa_get_dsl(spa)) &&
spa_config_held(spa, SCL_STATE, RW_READER)));
ASSERT(list_link_active(&vd->vdev_state_dirty_node));
list_remove(&spa->spa_state_dirty_list, vd);
}
/*
* Propagate vdev state up from children to parent.
*/
void
vdev_propagate_state(vdev_t *vd)
{
vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
int degraded = 0, faulted = 0;
int corrupted = 0;
int c;
vdev_t *child;
if (vd->vdev_children > 0) {
for (c = 0; c < vd->vdev_children; c++) {
child = vd->vdev_child[c];
if (!vdev_readable(child) ||
(!vdev_writeable(child) && (spa_mode & FWRITE))) {
/*
* Root special: if there is a top-level log
* device, treat the root vdev as if it were
* degraded.
*/
if (child->vdev_islog && vd == rvd)
degraded++;
else
faulted++;
} else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
degraded++;
}
if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
corrupted++;
}
vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
/*
* Root special: if there is a top-level vdev that cannot be
* opened due to corrupted metadata, then propagate the root
* vdev's aux state as 'corrupt' rather than 'insufficient
* replicas'.
*/
if (corrupted && vd == rvd &&
rvd->vdev_state == VDEV_STATE_CANT_OPEN)
vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
VDEV_AUX_CORRUPT_DATA);
}
if (vd->vdev_parent)
vdev_propagate_state(vd->vdev_parent);
}
/*
* Set a vdev's state. If this is during an open, we don't update the parent
* state, because we're in the process of opening children depth-first.
* Otherwise, we propagate the change to the parent.
*
* If this routine places a device in a faulted state, an appropriate ereport is
* generated.
*/
void
vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
{
uint64_t save_state;
spa_t *spa = vd->vdev_spa;
if (state == vd->vdev_state) {
vd->vdev_stat.vs_aux = aux;
return;
}
save_state = vd->vdev_state;
vd->vdev_state = state;
vd->vdev_stat.vs_aux = aux;
/*
* If we are setting the vdev state to anything but an open state, then
* always close the underlying device. Otherwise, we keep accessible
* but invalid devices open forever. We don't call vdev_close() itself,
* because that implies some extra checks (offline, etc) that we don't
* want here. This is limited to leaf devices, because otherwise
* closing the device will affect other children.
*/
if (vdev_is_dead(vd) && vd->vdev_ops->vdev_op_leaf)
vd->vdev_ops->vdev_op_close(vd);
if (vd->vdev_removed &&
state == VDEV_STATE_CANT_OPEN &&
(aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
/*
* If the previous state is set to VDEV_STATE_REMOVED, then this
* device was previously marked removed and someone attempted to
* reopen it. If this failed due to a nonexistent device, then
* keep the device in the REMOVED state. We also let this be if
* it is one of our special test online cases, which is only
* attempting to online the device and shouldn't generate an FMA
* fault.
*/
vd->vdev_state = VDEV_STATE_REMOVED;
vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
} else if (state == VDEV_STATE_REMOVED) {
/*
* Indicate to the ZFS DE that this device has been removed, and
* any recent errors should be ignored.
*/
zfs_post_remove(spa, vd);
vd->vdev_removed = B_TRUE;
} else if (state == VDEV_STATE_CANT_OPEN) {
/*
* If we fail to open a vdev during an import, we mark it as
* "not available", which signifies that it was never there to
* begin with. Failure to open such a device is not considered
* an error.
*/
if (spa->spa_load_state == SPA_LOAD_IMPORT &&
!spa->spa_import_faulted &&
vd->vdev_ops->vdev_op_leaf)
vd->vdev_not_present = 1;
/*
* Post the appropriate ereport. If the 'prevstate' field is
* set to something other than VDEV_STATE_UNKNOWN, it indicates
* that this is part of a vdev_reopen(). In this case, we don't
* want to post the ereport if the device was already in the
* CANT_OPEN state beforehand.
*
* If the 'checkremove' flag is set, then this is an attempt to
* online the device in response to an insertion event. If we
* hit this case, then we have detected an insertion event for a
* faulted or offline device that wasn't in the removed state.
* In this scenario, we don't post an ereport because we are
* about to replace the device, or attempt an online with
* vdev_forcefault, which will generate the fault for us.
*/
if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
!vd->vdev_not_present && !vd->vdev_checkremove &&
vd != spa->spa_root_vdev) {
const char *class;
switch (aux) {
case VDEV_AUX_OPEN_FAILED:
class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
break;
case VDEV_AUX_CORRUPT_DATA:
class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
break;
case VDEV_AUX_NO_REPLICAS:
class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
break;
case VDEV_AUX_BAD_GUID_SUM:
class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
break;
case VDEV_AUX_TOO_SMALL:
class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
break;
case VDEV_AUX_BAD_LABEL:
class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
break;
case VDEV_AUX_IO_FAILURE:
class = FM_EREPORT_ZFS_IO_FAILURE;
break;
default:
class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
}
zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
}
/* Erase any notion of persistent removed state */
vd->vdev_removed = B_FALSE;
} else {
vd->vdev_removed = B_FALSE;
}
if (!isopen)
vdev_propagate_state(vd);
}
/*
* Check the vdev configuration to ensure that it's capable of supporting
* a root pool. Currently, we do not support RAID-Z or partial configuration.
* In addition, only a single top-level vdev is allowed and none of the leaves
* can be wholedisks.
*/
boolean_t
vdev_is_bootable(vdev_t *vd)
{
int c;
if (!vd->vdev_ops->vdev_op_leaf) {
char *vdev_type = vd->vdev_ops->vdev_op_type;
if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
vd->vdev_children > 1) {
return (B_FALSE);
} else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
return (B_FALSE);
}
} else if (vd->vdev_wholedisk == 1) {
return (B_FALSE);
}
for (c = 0; c < vd->vdev_children; c++) {
if (!vdev_is_bootable(vd->vdev_child[c]))
return (B_FALSE);
}
return (B_TRUE);
}
#if defined(_KERNEL) && defined(HAVE_SPL)
EXPORT_SYMBOL(vdev_fault);
EXPORT_SYMBOL(vdev_degrade);
EXPORT_SYMBOL(vdev_online);
EXPORT_SYMBOL(vdev_offline);
EXPORT_SYMBOL(vdev_clear);
#endif