1697 lines
42 KiB
C
1697 lines
42 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
|
|
* Copyright (c) 2011, 2018 by Delphix. All rights reserved.
|
|
* Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
|
|
* Copyright 2017 Nexenta Systems, Inc.
|
|
*/
|
|
|
|
#include <sys/zio.h>
|
|
#include <sys/spa.h>
|
|
#include <sys/dmu.h>
|
|
#include <sys/zfs_context.h>
|
|
#include <sys/zap.h>
|
|
#include <sys/zap_impl.h>
|
|
#include <sys/zap_leaf.h>
|
|
#include <sys/avl.h>
|
|
#include <sys/arc.h>
|
|
#include <sys/dmu_objset.h>
|
|
|
|
#ifdef _KERNEL
|
|
#include <sys/sunddi.h>
|
|
#endif
|
|
|
|
static int mzap_upgrade(zap_t **zapp,
|
|
void *tag, dmu_tx_t *tx, zap_flags_t flags);
|
|
|
|
uint64_t
|
|
zap_getflags(zap_t *zap)
|
|
{
|
|
if (zap->zap_ismicro)
|
|
return (0);
|
|
return (zap_f_phys(zap)->zap_flags);
|
|
}
|
|
|
|
int
|
|
zap_hashbits(zap_t *zap)
|
|
{
|
|
if (zap_getflags(zap) & ZAP_FLAG_HASH64)
|
|
return (48);
|
|
else
|
|
return (28);
|
|
}
|
|
|
|
uint32_t
|
|
zap_maxcd(zap_t *zap)
|
|
{
|
|
if (zap_getflags(zap) & ZAP_FLAG_HASH64)
|
|
return ((1<<16)-1);
|
|
else
|
|
return (-1U);
|
|
}
|
|
|
|
static uint64_t
|
|
zap_hash(zap_name_t *zn)
|
|
{
|
|
zap_t *zap = zn->zn_zap;
|
|
uint64_t h = 0;
|
|
|
|
if (zap_getflags(zap) & ZAP_FLAG_PRE_HASHED_KEY) {
|
|
ASSERT(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY);
|
|
h = *(uint64_t *)zn->zn_key_orig;
|
|
} else {
|
|
h = zap->zap_salt;
|
|
ASSERT(h != 0);
|
|
ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
|
|
|
|
if (zap_getflags(zap) & ZAP_FLAG_UINT64_KEY) {
|
|
const uint64_t *wp = zn->zn_key_norm;
|
|
|
|
ASSERT(zn->zn_key_intlen == 8);
|
|
for (int i = 0; i < zn->zn_key_norm_numints;
|
|
wp++, i++) {
|
|
uint64_t word = *wp;
|
|
|
|
for (int j = 0; j < zn->zn_key_intlen; j++) {
|
|
h = (h >> 8) ^
|
|
zfs_crc64_table[(h ^ word) & 0xFF];
|
|
word >>= NBBY;
|
|
}
|
|
}
|
|
} else {
|
|
const uint8_t *cp = zn->zn_key_norm;
|
|
|
|
/*
|
|
* We previously stored the terminating null on
|
|
* disk, but didn't hash it, so we need to
|
|
* continue to not hash it. (The
|
|
* zn_key_*_numints includes the terminating
|
|
* null for non-binary keys.)
|
|
*/
|
|
int len = zn->zn_key_norm_numints - 1;
|
|
|
|
ASSERT(zn->zn_key_intlen == 1);
|
|
for (int i = 0; i < len; cp++, i++) {
|
|
h = (h >> 8) ^
|
|
zfs_crc64_table[(h ^ *cp) & 0xFF];
|
|
}
|
|
}
|
|
}
|
|
/*
|
|
* Don't use all 64 bits, since we need some in the cookie for
|
|
* the collision differentiator. We MUST use the high bits,
|
|
* since those are the ones that we first pay attention to when
|
|
* choosing the bucket.
|
|
*/
|
|
h &= ~((1ULL << (64 - zap_hashbits(zap))) - 1);
|
|
|
|
return (h);
|
|
}
|
|
|
|
static int
|
|
zap_normalize(zap_t *zap, const char *name, char *namenorm, int normflags)
|
|
{
|
|
ASSERT(!(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY));
|
|
|
|
size_t inlen = strlen(name) + 1;
|
|
size_t outlen = ZAP_MAXNAMELEN;
|
|
|
|
int err = 0;
|
|
(void) u8_textprep_str((char *)name, &inlen, namenorm, &outlen,
|
|
normflags | U8_TEXTPREP_IGNORE_NULL | U8_TEXTPREP_IGNORE_INVALID,
|
|
U8_UNICODE_LATEST, &err);
|
|
|
|
return (err);
|
|
}
|
|
|
|
boolean_t
|
|
zap_match(zap_name_t *zn, const char *matchname)
|
|
{
|
|
ASSERT(!(zap_getflags(zn->zn_zap) & ZAP_FLAG_UINT64_KEY));
|
|
|
|
if (zn->zn_matchtype & MT_NORMALIZE) {
|
|
char norm[ZAP_MAXNAMELEN];
|
|
|
|
if (zap_normalize(zn->zn_zap, matchname, norm,
|
|
zn->zn_normflags) != 0)
|
|
return (B_FALSE);
|
|
|
|
return (strcmp(zn->zn_key_norm, norm) == 0);
|
|
} else {
|
|
return (strcmp(zn->zn_key_orig, matchname) == 0);
|
|
}
|
|
}
|
|
|
|
void
|
|
zap_name_free(zap_name_t *zn)
|
|
{
|
|
kmem_free(zn, sizeof (zap_name_t));
|
|
}
|
|
|
|
zap_name_t *
|
|
zap_name_alloc(zap_t *zap, const char *key, matchtype_t mt)
|
|
{
|
|
zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP);
|
|
|
|
zn->zn_zap = zap;
|
|
zn->zn_key_intlen = sizeof (*key);
|
|
zn->zn_key_orig = key;
|
|
zn->zn_key_orig_numints = strlen(zn->zn_key_orig) + 1;
|
|
zn->zn_matchtype = mt;
|
|
zn->zn_normflags = zap->zap_normflags;
|
|
|
|
/*
|
|
* If we're dealing with a case sensitive lookup on a mixed or
|
|
* insensitive fs, remove U8_TEXTPREP_TOUPPER or the lookup
|
|
* will fold case to all caps overriding the lookup request.
|
|
*/
|
|
if (mt & MT_MATCH_CASE)
|
|
zn->zn_normflags &= ~U8_TEXTPREP_TOUPPER;
|
|
|
|
if (zap->zap_normflags) {
|
|
/*
|
|
* We *must* use zap_normflags because this normalization is
|
|
* what the hash is computed from.
|
|
*/
|
|
if (zap_normalize(zap, key, zn->zn_normbuf,
|
|
zap->zap_normflags) != 0) {
|
|
zap_name_free(zn);
|
|
return (NULL);
|
|
}
|
|
zn->zn_key_norm = zn->zn_normbuf;
|
|
zn->zn_key_norm_numints = strlen(zn->zn_key_norm) + 1;
|
|
} else {
|
|
if (mt != 0) {
|
|
zap_name_free(zn);
|
|
return (NULL);
|
|
}
|
|
zn->zn_key_norm = zn->zn_key_orig;
|
|
zn->zn_key_norm_numints = zn->zn_key_orig_numints;
|
|
}
|
|
|
|
zn->zn_hash = zap_hash(zn);
|
|
|
|
if (zap->zap_normflags != zn->zn_normflags) {
|
|
/*
|
|
* We *must* use zn_normflags because this normalization is
|
|
* what the matching is based on. (Not the hash!)
|
|
*/
|
|
if (zap_normalize(zap, key, zn->zn_normbuf,
|
|
zn->zn_normflags) != 0) {
|
|
zap_name_free(zn);
|
|
return (NULL);
|
|
}
|
|
zn->zn_key_norm_numints = strlen(zn->zn_key_norm) + 1;
|
|
}
|
|
|
|
return (zn);
|
|
}
|
|
|
|
static zap_name_t *
|
|
zap_name_alloc_uint64(zap_t *zap, const uint64_t *key, int numints)
|
|
{
|
|
zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP);
|
|
|
|
ASSERT(zap->zap_normflags == 0);
|
|
zn->zn_zap = zap;
|
|
zn->zn_key_intlen = sizeof (*key);
|
|
zn->zn_key_orig = zn->zn_key_norm = key;
|
|
zn->zn_key_orig_numints = zn->zn_key_norm_numints = numints;
|
|
zn->zn_matchtype = 0;
|
|
|
|
zn->zn_hash = zap_hash(zn);
|
|
return (zn);
|
|
}
|
|
|
|
static void
|
|
mzap_byteswap(mzap_phys_t *buf, size_t size)
|
|
{
|
|
buf->mz_block_type = BSWAP_64(buf->mz_block_type);
|
|
buf->mz_salt = BSWAP_64(buf->mz_salt);
|
|
buf->mz_normflags = BSWAP_64(buf->mz_normflags);
|
|
int max = (size / MZAP_ENT_LEN) - 1;
|
|
for (int i = 0; i < max; i++) {
|
|
buf->mz_chunk[i].mze_value =
|
|
BSWAP_64(buf->mz_chunk[i].mze_value);
|
|
buf->mz_chunk[i].mze_cd =
|
|
BSWAP_32(buf->mz_chunk[i].mze_cd);
|
|
}
|
|
}
|
|
|
|
void
|
|
zap_byteswap(void *buf, size_t size)
|
|
{
|
|
uint64_t block_type = *(uint64_t *)buf;
|
|
|
|
if (block_type == ZBT_MICRO || block_type == BSWAP_64(ZBT_MICRO)) {
|
|
/* ASSERT(magic == ZAP_LEAF_MAGIC); */
|
|
mzap_byteswap(buf, size);
|
|
} else {
|
|
fzap_byteswap(buf, size);
|
|
}
|
|
}
|
|
|
|
static int
|
|
mze_compare(const void *arg1, const void *arg2)
|
|
{
|
|
const mzap_ent_t *mze1 = arg1;
|
|
const mzap_ent_t *mze2 = arg2;
|
|
|
|
int cmp = TREE_CMP(mze1->mze_hash, mze2->mze_hash);
|
|
if (likely(cmp))
|
|
return (cmp);
|
|
|
|
return (TREE_CMP(mze1->mze_cd, mze2->mze_cd));
|
|
}
|
|
|
|
static void
|
|
mze_insert(zap_t *zap, int chunkid, uint64_t hash)
|
|
{
|
|
ASSERT(zap->zap_ismicro);
|
|
ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
|
|
|
|
mzap_ent_t *mze = kmem_alloc(sizeof (mzap_ent_t), KM_SLEEP);
|
|
mze->mze_chunkid = chunkid;
|
|
mze->mze_hash = hash;
|
|
mze->mze_cd = MZE_PHYS(zap, mze)->mze_cd;
|
|
ASSERT(MZE_PHYS(zap, mze)->mze_name[0] != 0);
|
|
avl_add(&zap->zap_m.zap_avl, mze);
|
|
}
|
|
|
|
static mzap_ent_t *
|
|
mze_find(zap_name_t *zn)
|
|
{
|
|
mzap_ent_t mze_tofind;
|
|
mzap_ent_t *mze;
|
|
avl_index_t idx;
|
|
avl_tree_t *avl = &zn->zn_zap->zap_m.zap_avl;
|
|
|
|
ASSERT(zn->zn_zap->zap_ismicro);
|
|
ASSERT(RW_LOCK_HELD(&zn->zn_zap->zap_rwlock));
|
|
|
|
mze_tofind.mze_hash = zn->zn_hash;
|
|
mze_tofind.mze_cd = 0;
|
|
|
|
mze = avl_find(avl, &mze_tofind, &idx);
|
|
if (mze == NULL)
|
|
mze = avl_nearest(avl, idx, AVL_AFTER);
|
|
for (; mze && mze->mze_hash == zn->zn_hash; mze = AVL_NEXT(avl, mze)) {
|
|
ASSERT3U(mze->mze_cd, ==, MZE_PHYS(zn->zn_zap, mze)->mze_cd);
|
|
if (zap_match(zn, MZE_PHYS(zn->zn_zap, mze)->mze_name))
|
|
return (mze);
|
|
}
|
|
|
|
return (NULL);
|
|
}
|
|
|
|
static uint32_t
|
|
mze_find_unused_cd(zap_t *zap, uint64_t hash)
|
|
{
|
|
mzap_ent_t mze_tofind;
|
|
avl_index_t idx;
|
|
avl_tree_t *avl = &zap->zap_m.zap_avl;
|
|
|
|
ASSERT(zap->zap_ismicro);
|
|
ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
|
|
|
|
mze_tofind.mze_hash = hash;
|
|
mze_tofind.mze_cd = 0;
|
|
|
|
uint32_t cd = 0;
|
|
for (mzap_ent_t *mze = avl_find(avl, &mze_tofind, &idx);
|
|
mze && mze->mze_hash == hash; mze = AVL_NEXT(avl, mze)) {
|
|
if (mze->mze_cd != cd)
|
|
break;
|
|
cd++;
|
|
}
|
|
|
|
return (cd);
|
|
}
|
|
|
|
/*
|
|
* Each mzap entry requires at max : 4 chunks
|
|
* 3 chunks for names + 1 chunk for value.
|
|
*/
|
|
#define MZAP_ENT_CHUNKS (1 + ZAP_LEAF_ARRAY_NCHUNKS(MZAP_NAME_LEN) + \
|
|
ZAP_LEAF_ARRAY_NCHUNKS(sizeof (uint64_t)))
|
|
|
|
/*
|
|
* Check if the current entry keeps the colliding entries under the fatzap leaf
|
|
* size.
|
|
*/
|
|
static boolean_t
|
|
mze_canfit_fzap_leaf(zap_name_t *zn, uint64_t hash)
|
|
{
|
|
zap_t *zap = zn->zn_zap;
|
|
mzap_ent_t mze_tofind;
|
|
mzap_ent_t *mze;
|
|
avl_index_t idx;
|
|
avl_tree_t *avl = &zap->zap_m.zap_avl;
|
|
uint32_t mzap_ents = 0;
|
|
|
|
mze_tofind.mze_hash = hash;
|
|
mze_tofind.mze_cd = 0;
|
|
|
|
for (mze = avl_find(avl, &mze_tofind, &idx);
|
|
mze && mze->mze_hash == hash; mze = AVL_NEXT(avl, mze)) {
|
|
mzap_ents++;
|
|
}
|
|
|
|
/* Include the new entry being added */
|
|
mzap_ents++;
|
|
|
|
return (ZAP_LEAF_NUMCHUNKS_DEF > (mzap_ents * MZAP_ENT_CHUNKS));
|
|
}
|
|
|
|
static void
|
|
mze_remove(zap_t *zap, mzap_ent_t *mze)
|
|
{
|
|
ASSERT(zap->zap_ismicro);
|
|
ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
|
|
|
|
avl_remove(&zap->zap_m.zap_avl, mze);
|
|
kmem_free(mze, sizeof (mzap_ent_t));
|
|
}
|
|
|
|
static void
|
|
mze_destroy(zap_t *zap)
|
|
{
|
|
mzap_ent_t *mze;
|
|
void *avlcookie = NULL;
|
|
|
|
while ((mze = avl_destroy_nodes(&zap->zap_m.zap_avl, &avlcookie)))
|
|
kmem_free(mze, sizeof (mzap_ent_t));
|
|
avl_destroy(&zap->zap_m.zap_avl);
|
|
}
|
|
|
|
static zap_t *
|
|
mzap_open(objset_t *os, uint64_t obj, dmu_buf_t *db)
|
|
{
|
|
zap_t *winner;
|
|
uint64_t *zap_hdr = (uint64_t *)db->db_data;
|
|
uint64_t zap_block_type = zap_hdr[0];
|
|
uint64_t zap_magic = zap_hdr[1];
|
|
|
|
ASSERT3U(MZAP_ENT_LEN, ==, sizeof (mzap_ent_phys_t));
|
|
|
|
zap_t *zap = kmem_zalloc(sizeof (zap_t), KM_SLEEP);
|
|
rw_init(&zap->zap_rwlock, NULL, RW_DEFAULT, NULL);
|
|
rw_enter(&zap->zap_rwlock, RW_WRITER);
|
|
zap->zap_objset = os;
|
|
zap->zap_object = obj;
|
|
zap->zap_dbuf = db;
|
|
|
|
if (zap_block_type != ZBT_MICRO) {
|
|
mutex_init(&zap->zap_f.zap_num_entries_mtx, 0, MUTEX_DEFAULT,
|
|
0);
|
|
zap->zap_f.zap_block_shift = highbit64(db->db_size) - 1;
|
|
if (zap_block_type != ZBT_HEADER || zap_magic != ZAP_MAGIC) {
|
|
winner = NULL; /* No actual winner here... */
|
|
goto handle_winner;
|
|
}
|
|
} else {
|
|
zap->zap_ismicro = TRUE;
|
|
}
|
|
|
|
/*
|
|
* Make sure that zap_ismicro is set before we let others see
|
|
* it, because zap_lockdir() checks zap_ismicro without the lock
|
|
* held.
|
|
*/
|
|
dmu_buf_init_user(&zap->zap_dbu, zap_evict_sync, NULL, &zap->zap_dbuf);
|
|
winner = dmu_buf_set_user(db, &zap->zap_dbu);
|
|
|
|
if (winner != NULL)
|
|
goto handle_winner;
|
|
|
|
if (zap->zap_ismicro) {
|
|
zap->zap_salt = zap_m_phys(zap)->mz_salt;
|
|
zap->zap_normflags = zap_m_phys(zap)->mz_normflags;
|
|
zap->zap_m.zap_num_chunks = db->db_size / MZAP_ENT_LEN - 1;
|
|
avl_create(&zap->zap_m.zap_avl, mze_compare,
|
|
sizeof (mzap_ent_t), offsetof(mzap_ent_t, mze_node));
|
|
|
|
for (int i = 0; i < zap->zap_m.zap_num_chunks; i++) {
|
|
mzap_ent_phys_t *mze =
|
|
&zap_m_phys(zap)->mz_chunk[i];
|
|
if (mze->mze_name[0]) {
|
|
zap_name_t *zn;
|
|
|
|
zap->zap_m.zap_num_entries++;
|
|
zn = zap_name_alloc(zap, mze->mze_name, 0);
|
|
mze_insert(zap, i, zn->zn_hash);
|
|
zap_name_free(zn);
|
|
}
|
|
}
|
|
} else {
|
|
zap->zap_salt = zap_f_phys(zap)->zap_salt;
|
|
zap->zap_normflags = zap_f_phys(zap)->zap_normflags;
|
|
|
|
ASSERT3U(sizeof (struct zap_leaf_header), ==,
|
|
2*ZAP_LEAF_CHUNKSIZE);
|
|
|
|
/*
|
|
* The embedded pointer table should not overlap the
|
|
* other members.
|
|
*/
|
|
ASSERT3P(&ZAP_EMBEDDED_PTRTBL_ENT(zap, 0), >,
|
|
&zap_f_phys(zap)->zap_salt);
|
|
|
|
/*
|
|
* The embedded pointer table should end at the end of
|
|
* the block
|
|
*/
|
|
ASSERT3U((uintptr_t)&ZAP_EMBEDDED_PTRTBL_ENT(zap,
|
|
1<<ZAP_EMBEDDED_PTRTBL_SHIFT(zap)) -
|
|
(uintptr_t)zap_f_phys(zap), ==,
|
|
zap->zap_dbuf->db_size);
|
|
}
|
|
rw_exit(&zap->zap_rwlock);
|
|
return (zap);
|
|
|
|
handle_winner:
|
|
rw_exit(&zap->zap_rwlock);
|
|
rw_destroy(&zap->zap_rwlock);
|
|
if (!zap->zap_ismicro)
|
|
mutex_destroy(&zap->zap_f.zap_num_entries_mtx);
|
|
kmem_free(zap, sizeof (zap_t));
|
|
return (winner);
|
|
}
|
|
|
|
/*
|
|
* This routine "consumes" the caller's hold on the dbuf, which must
|
|
* have the specified tag.
|
|
*/
|
|
static int
|
|
zap_lockdir_impl(dmu_buf_t *db, void *tag, dmu_tx_t *tx,
|
|
krw_t lti, boolean_t fatreader, boolean_t adding, zap_t **zapp)
|
|
{
|
|
ASSERT0(db->db_offset);
|
|
objset_t *os = dmu_buf_get_objset(db);
|
|
uint64_t obj = db->db_object;
|
|
dmu_object_info_t doi;
|
|
|
|
*zapp = NULL;
|
|
|
|
dmu_object_info_from_db(db, &doi);
|
|
if (DMU_OT_BYTESWAP(doi.doi_type) != DMU_BSWAP_ZAP)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
zap_t *zap = dmu_buf_get_user(db);
|
|
if (zap == NULL) {
|
|
zap = mzap_open(os, obj, db);
|
|
if (zap == NULL) {
|
|
/*
|
|
* mzap_open() didn't like what it saw on-disk.
|
|
* Check for corruption!
|
|
*/
|
|
return (SET_ERROR(EIO));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We're checking zap_ismicro without the lock held, in order to
|
|
* tell what type of lock we want. Once we have some sort of
|
|
* lock, see if it really is the right type. In practice this
|
|
* can only be different if it was upgraded from micro to fat,
|
|
* and micro wanted WRITER but fat only needs READER.
|
|
*/
|
|
krw_t lt = (!zap->zap_ismicro && fatreader) ? RW_READER : lti;
|
|
rw_enter(&zap->zap_rwlock, lt);
|
|
if (lt != ((!zap->zap_ismicro && fatreader) ? RW_READER : lti)) {
|
|
/* it was upgraded, now we only need reader */
|
|
ASSERT(lt == RW_WRITER);
|
|
ASSERT(RW_READER ==
|
|
((!zap->zap_ismicro && fatreader) ? RW_READER : lti));
|
|
rw_downgrade(&zap->zap_rwlock);
|
|
lt = RW_READER;
|
|
}
|
|
|
|
zap->zap_objset = os;
|
|
|
|
if (lt == RW_WRITER)
|
|
dmu_buf_will_dirty(db, tx);
|
|
|
|
ASSERT3P(zap->zap_dbuf, ==, db);
|
|
|
|
ASSERT(!zap->zap_ismicro ||
|
|
zap->zap_m.zap_num_entries <= zap->zap_m.zap_num_chunks);
|
|
if (zap->zap_ismicro && tx && adding &&
|
|
zap->zap_m.zap_num_entries == zap->zap_m.zap_num_chunks) {
|
|
uint64_t newsz = db->db_size + SPA_MINBLOCKSIZE;
|
|
if (newsz > MZAP_MAX_BLKSZ) {
|
|
dprintf("upgrading obj %llu: num_entries=%u\n",
|
|
(u_longlong_t)obj, zap->zap_m.zap_num_entries);
|
|
*zapp = zap;
|
|
int err = mzap_upgrade(zapp, tag, tx, 0);
|
|
if (err != 0)
|
|
rw_exit(&zap->zap_rwlock);
|
|
return (err);
|
|
}
|
|
VERIFY0(dmu_object_set_blocksize(os, obj, newsz, 0, tx));
|
|
zap->zap_m.zap_num_chunks =
|
|
db->db_size / MZAP_ENT_LEN - 1;
|
|
}
|
|
|
|
*zapp = zap;
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
zap_lockdir_by_dnode(dnode_t *dn, dmu_tx_t *tx,
|
|
krw_t lti, boolean_t fatreader, boolean_t adding, void *tag, zap_t **zapp)
|
|
{
|
|
dmu_buf_t *db;
|
|
|
|
int err = dmu_buf_hold_by_dnode(dn, 0, tag, &db, DMU_READ_NO_PREFETCH);
|
|
if (err != 0) {
|
|
return (err);
|
|
}
|
|
#ifdef ZFS_DEBUG
|
|
{
|
|
dmu_object_info_t doi;
|
|
dmu_object_info_from_db(db, &doi);
|
|
ASSERT3U(DMU_OT_BYTESWAP(doi.doi_type), ==, DMU_BSWAP_ZAP);
|
|
}
|
|
#endif
|
|
|
|
err = zap_lockdir_impl(db, tag, tx, lti, fatreader, adding, zapp);
|
|
if (err != 0) {
|
|
dmu_buf_rele(db, tag);
|
|
}
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
zap_lockdir(objset_t *os, uint64_t obj, dmu_tx_t *tx,
|
|
krw_t lti, boolean_t fatreader, boolean_t adding, void *tag, zap_t **zapp)
|
|
{
|
|
dmu_buf_t *db;
|
|
|
|
int err = dmu_buf_hold(os, obj, 0, tag, &db, DMU_READ_NO_PREFETCH);
|
|
if (err != 0)
|
|
return (err);
|
|
#ifdef ZFS_DEBUG
|
|
{
|
|
dmu_object_info_t doi;
|
|
dmu_object_info_from_db(db, &doi);
|
|
ASSERT3U(DMU_OT_BYTESWAP(doi.doi_type), ==, DMU_BSWAP_ZAP);
|
|
}
|
|
#endif
|
|
err = zap_lockdir_impl(db, tag, tx, lti, fatreader, adding, zapp);
|
|
if (err != 0)
|
|
dmu_buf_rele(db, tag);
|
|
return (err);
|
|
}
|
|
|
|
void
|
|
zap_unlockdir(zap_t *zap, void *tag)
|
|
{
|
|
rw_exit(&zap->zap_rwlock);
|
|
dmu_buf_rele(zap->zap_dbuf, tag);
|
|
}
|
|
|
|
static int
|
|
mzap_upgrade(zap_t **zapp, void *tag, dmu_tx_t *tx, zap_flags_t flags)
|
|
{
|
|
int err = 0;
|
|
zap_t *zap = *zapp;
|
|
|
|
ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
|
|
|
|
int sz = zap->zap_dbuf->db_size;
|
|
mzap_phys_t *mzp = vmem_alloc(sz, KM_SLEEP);
|
|
memcpy(mzp, zap->zap_dbuf->db_data, sz);
|
|
int nchunks = zap->zap_m.zap_num_chunks;
|
|
|
|
if (!flags) {
|
|
err = dmu_object_set_blocksize(zap->zap_objset, zap->zap_object,
|
|
1ULL << fzap_default_block_shift, 0, tx);
|
|
if (err != 0) {
|
|
vmem_free(mzp, sz);
|
|
return (err);
|
|
}
|
|
}
|
|
|
|
dprintf("upgrading obj=%llu with %u chunks\n",
|
|
(u_longlong_t)zap->zap_object, nchunks);
|
|
/* XXX destroy the avl later, so we can use the stored hash value */
|
|
mze_destroy(zap);
|
|
|
|
fzap_upgrade(zap, tx, flags);
|
|
|
|
for (int i = 0; i < nchunks; i++) {
|
|
mzap_ent_phys_t *mze = &mzp->mz_chunk[i];
|
|
if (mze->mze_name[0] == 0)
|
|
continue;
|
|
dprintf("adding %s=%llu\n",
|
|
mze->mze_name, (u_longlong_t)mze->mze_value);
|
|
zap_name_t *zn = zap_name_alloc(zap, mze->mze_name, 0);
|
|
/* If we fail here, we would end up losing entries */
|
|
VERIFY0(fzap_add_cd(zn, 8, 1, &mze->mze_value, mze->mze_cd,
|
|
tag, tx));
|
|
zap = zn->zn_zap; /* fzap_add_cd() may change zap */
|
|
zap_name_free(zn);
|
|
}
|
|
vmem_free(mzp, sz);
|
|
*zapp = zap;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* The "normflags" determine the behavior of the matchtype_t which is
|
|
* passed to zap_lookup_norm(). Names which have the same normalized
|
|
* version will be stored with the same hash value, and therefore we can
|
|
* perform normalization-insensitive lookups. We can be Unicode form-
|
|
* insensitive and/or case-insensitive. The following flags are valid for
|
|
* "normflags":
|
|
*
|
|
* U8_TEXTPREP_NFC
|
|
* U8_TEXTPREP_NFD
|
|
* U8_TEXTPREP_NFKC
|
|
* U8_TEXTPREP_NFKD
|
|
* U8_TEXTPREP_TOUPPER
|
|
*
|
|
* The *_NF* (Normalization Form) flags are mutually exclusive; at most one
|
|
* of them may be supplied.
|
|
*/
|
|
void
|
|
mzap_create_impl(dnode_t *dn, int normflags, zap_flags_t flags, dmu_tx_t *tx)
|
|
{
|
|
dmu_buf_t *db;
|
|
|
|
VERIFY0(dmu_buf_hold_by_dnode(dn, 0, FTAG, &db, DMU_READ_NO_PREFETCH));
|
|
|
|
dmu_buf_will_dirty(db, tx);
|
|
mzap_phys_t *zp = db->db_data;
|
|
zp->mz_block_type = ZBT_MICRO;
|
|
zp->mz_salt =
|
|
((uintptr_t)db ^ (uintptr_t)tx ^ (dn->dn_object << 1)) | 1ULL;
|
|
zp->mz_normflags = normflags;
|
|
|
|
if (flags != 0) {
|
|
zap_t *zap;
|
|
/* Only fat zap supports flags; upgrade immediately. */
|
|
VERIFY0(zap_lockdir_impl(db, FTAG, tx, RW_WRITER,
|
|
B_FALSE, B_FALSE, &zap));
|
|
VERIFY0(mzap_upgrade(&zap, FTAG, tx, flags));
|
|
zap_unlockdir(zap, FTAG);
|
|
} else {
|
|
dmu_buf_rele(db, FTAG);
|
|
}
|
|
}
|
|
|
|
static uint64_t
|
|
zap_create_impl(objset_t *os, int normflags, zap_flags_t flags,
|
|
dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift,
|
|
dmu_object_type_t bonustype, int bonuslen, int dnodesize,
|
|
dnode_t **allocated_dnode, void *tag, dmu_tx_t *tx)
|
|
{
|
|
uint64_t obj;
|
|
|
|
ASSERT3U(DMU_OT_BYTESWAP(ot), ==, DMU_BSWAP_ZAP);
|
|
|
|
if (allocated_dnode == NULL) {
|
|
dnode_t *dn;
|
|
obj = dmu_object_alloc_hold(os, ot, 1ULL << leaf_blockshift,
|
|
indirect_blockshift, bonustype, bonuslen, dnodesize,
|
|
&dn, FTAG, tx);
|
|
mzap_create_impl(dn, normflags, flags, tx);
|
|
dnode_rele(dn, FTAG);
|
|
} else {
|
|
obj = dmu_object_alloc_hold(os, ot, 1ULL << leaf_blockshift,
|
|
indirect_blockshift, bonustype, bonuslen, dnodesize,
|
|
allocated_dnode, tag, tx);
|
|
mzap_create_impl(*allocated_dnode, normflags, flags, tx);
|
|
}
|
|
|
|
return (obj);
|
|
}
|
|
|
|
int
|
|
zap_create_claim(objset_t *os, uint64_t obj, dmu_object_type_t ot,
|
|
dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
|
|
{
|
|
return (zap_create_claim_dnsize(os, obj, ot, bonustype, bonuslen,
|
|
0, tx));
|
|
}
|
|
|
|
int
|
|
zap_create_claim_dnsize(objset_t *os, uint64_t obj, dmu_object_type_t ot,
|
|
dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx)
|
|
{
|
|
return (zap_create_claim_norm_dnsize(os, obj,
|
|
0, ot, bonustype, bonuslen, dnodesize, tx));
|
|
}
|
|
|
|
int
|
|
zap_create_claim_norm(objset_t *os, uint64_t obj, int normflags,
|
|
dmu_object_type_t ot,
|
|
dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
|
|
{
|
|
return (zap_create_claim_norm_dnsize(os, obj, normflags, ot, bonustype,
|
|
bonuslen, 0, tx));
|
|
}
|
|
|
|
int
|
|
zap_create_claim_norm_dnsize(objset_t *os, uint64_t obj, int normflags,
|
|
dmu_object_type_t ot, dmu_object_type_t bonustype, int bonuslen,
|
|
int dnodesize, dmu_tx_t *tx)
|
|
{
|
|
dnode_t *dn;
|
|
int error;
|
|
|
|
ASSERT3U(DMU_OT_BYTESWAP(ot), ==, DMU_BSWAP_ZAP);
|
|
error = dmu_object_claim_dnsize(os, obj, ot, 0, bonustype, bonuslen,
|
|
dnodesize, tx);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
error = dnode_hold(os, obj, FTAG, &dn);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
mzap_create_impl(dn, normflags, 0, tx);
|
|
|
|
dnode_rele(dn, FTAG);
|
|
|
|
return (0);
|
|
}
|
|
|
|
uint64_t
|
|
zap_create(objset_t *os, dmu_object_type_t ot,
|
|
dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
|
|
{
|
|
return (zap_create_norm(os, 0, ot, bonustype, bonuslen, tx));
|
|
}
|
|
|
|
uint64_t
|
|
zap_create_dnsize(objset_t *os, dmu_object_type_t ot,
|
|
dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx)
|
|
{
|
|
return (zap_create_norm_dnsize(os, 0, ot, bonustype, bonuslen,
|
|
dnodesize, tx));
|
|
}
|
|
|
|
uint64_t
|
|
zap_create_norm(objset_t *os, int normflags, dmu_object_type_t ot,
|
|
dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
|
|
{
|
|
return (zap_create_norm_dnsize(os, normflags, ot, bonustype, bonuslen,
|
|
0, tx));
|
|
}
|
|
|
|
uint64_t
|
|
zap_create_norm_dnsize(objset_t *os, int normflags, dmu_object_type_t ot,
|
|
dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx)
|
|
{
|
|
return (zap_create_impl(os, normflags, 0, ot, 0, 0,
|
|
bonustype, bonuslen, dnodesize, NULL, NULL, tx));
|
|
}
|
|
|
|
uint64_t
|
|
zap_create_flags(objset_t *os, int normflags, zap_flags_t flags,
|
|
dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift,
|
|
dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
|
|
{
|
|
return (zap_create_flags_dnsize(os, normflags, flags, ot,
|
|
leaf_blockshift, indirect_blockshift, bonustype, bonuslen, 0, tx));
|
|
}
|
|
|
|
uint64_t
|
|
zap_create_flags_dnsize(objset_t *os, int normflags, zap_flags_t flags,
|
|
dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift,
|
|
dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx)
|
|
{
|
|
return (zap_create_impl(os, normflags, flags, ot, leaf_blockshift,
|
|
indirect_blockshift, bonustype, bonuslen, dnodesize, NULL, NULL,
|
|
tx));
|
|
}
|
|
|
|
/*
|
|
* Create a zap object and return a pointer to the newly allocated dnode via
|
|
* the allocated_dnode argument. The returned dnode will be held and the
|
|
* caller is responsible for releasing the hold by calling dnode_rele().
|
|
*/
|
|
uint64_t
|
|
zap_create_hold(objset_t *os, int normflags, zap_flags_t flags,
|
|
dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift,
|
|
dmu_object_type_t bonustype, int bonuslen, int dnodesize,
|
|
dnode_t **allocated_dnode, void *tag, dmu_tx_t *tx)
|
|
{
|
|
return (zap_create_impl(os, normflags, flags, ot, leaf_blockshift,
|
|
indirect_blockshift, bonustype, bonuslen, dnodesize,
|
|
allocated_dnode, tag, tx));
|
|
}
|
|
|
|
int
|
|
zap_destroy(objset_t *os, uint64_t zapobj, dmu_tx_t *tx)
|
|
{
|
|
/*
|
|
* dmu_object_free will free the object number and free the
|
|
* data. Freeing the data will cause our pageout function to be
|
|
* called, which will destroy our data (zap_leaf_t's and zap_t).
|
|
*/
|
|
|
|
return (dmu_object_free(os, zapobj, tx));
|
|
}
|
|
|
|
void
|
|
zap_evict_sync(void *dbu)
|
|
{
|
|
zap_t *zap = dbu;
|
|
|
|
rw_destroy(&zap->zap_rwlock);
|
|
|
|
if (zap->zap_ismicro)
|
|
mze_destroy(zap);
|
|
else
|
|
mutex_destroy(&zap->zap_f.zap_num_entries_mtx);
|
|
|
|
kmem_free(zap, sizeof (zap_t));
|
|
}
|
|
|
|
int
|
|
zap_count(objset_t *os, uint64_t zapobj, uint64_t *count)
|
|
{
|
|
zap_t *zap;
|
|
|
|
int err =
|
|
zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
|
|
if (err != 0)
|
|
return (err);
|
|
if (!zap->zap_ismicro) {
|
|
err = fzap_count(zap, count);
|
|
} else {
|
|
*count = zap->zap_m.zap_num_entries;
|
|
}
|
|
zap_unlockdir(zap, FTAG);
|
|
return (err);
|
|
}
|
|
|
|
/*
|
|
* zn may be NULL; if not specified, it will be computed if needed.
|
|
* See also the comment above zap_entry_normalization_conflict().
|
|
*/
|
|
static boolean_t
|
|
mzap_normalization_conflict(zap_t *zap, zap_name_t *zn, mzap_ent_t *mze)
|
|
{
|
|
int direction = AVL_BEFORE;
|
|
boolean_t allocdzn = B_FALSE;
|
|
|
|
if (zap->zap_normflags == 0)
|
|
return (B_FALSE);
|
|
|
|
again:
|
|
for (mzap_ent_t *other = avl_walk(&zap->zap_m.zap_avl, mze, direction);
|
|
other && other->mze_hash == mze->mze_hash;
|
|
other = avl_walk(&zap->zap_m.zap_avl, other, direction)) {
|
|
|
|
if (zn == NULL) {
|
|
zn = zap_name_alloc(zap, MZE_PHYS(zap, mze)->mze_name,
|
|
MT_NORMALIZE);
|
|
allocdzn = B_TRUE;
|
|
}
|
|
if (zap_match(zn, MZE_PHYS(zap, other)->mze_name)) {
|
|
if (allocdzn)
|
|
zap_name_free(zn);
|
|
return (B_TRUE);
|
|
}
|
|
}
|
|
|
|
if (direction == AVL_BEFORE) {
|
|
direction = AVL_AFTER;
|
|
goto again;
|
|
}
|
|
|
|
if (allocdzn)
|
|
zap_name_free(zn);
|
|
return (B_FALSE);
|
|
}
|
|
|
|
/*
|
|
* Routines for manipulating attributes.
|
|
*/
|
|
|
|
int
|
|
zap_lookup(objset_t *os, uint64_t zapobj, const char *name,
|
|
uint64_t integer_size, uint64_t num_integers, void *buf)
|
|
{
|
|
return (zap_lookup_norm(os, zapobj, name, integer_size,
|
|
num_integers, buf, 0, NULL, 0, NULL));
|
|
}
|
|
|
|
static int
|
|
zap_lookup_impl(zap_t *zap, const char *name,
|
|
uint64_t integer_size, uint64_t num_integers, void *buf,
|
|
matchtype_t mt, char *realname, int rn_len,
|
|
boolean_t *ncp)
|
|
{
|
|
int err = 0;
|
|
|
|
zap_name_t *zn = zap_name_alloc(zap, name, mt);
|
|
if (zn == NULL)
|
|
return (SET_ERROR(ENOTSUP));
|
|
|
|
if (!zap->zap_ismicro) {
|
|
err = fzap_lookup(zn, integer_size, num_integers, buf,
|
|
realname, rn_len, ncp);
|
|
} else {
|
|
mzap_ent_t *mze = mze_find(zn);
|
|
if (mze == NULL) {
|
|
err = SET_ERROR(ENOENT);
|
|
} else {
|
|
if (num_integers < 1) {
|
|
err = SET_ERROR(EOVERFLOW);
|
|
} else if (integer_size != 8) {
|
|
err = SET_ERROR(EINVAL);
|
|
} else {
|
|
*(uint64_t *)buf =
|
|
MZE_PHYS(zap, mze)->mze_value;
|
|
(void) strlcpy(realname,
|
|
MZE_PHYS(zap, mze)->mze_name, rn_len);
|
|
if (ncp) {
|
|
*ncp = mzap_normalization_conflict(zap,
|
|
zn, mze);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
zap_name_free(zn);
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
zap_lookup_norm(objset_t *os, uint64_t zapobj, const char *name,
|
|
uint64_t integer_size, uint64_t num_integers, void *buf,
|
|
matchtype_t mt, char *realname, int rn_len,
|
|
boolean_t *ncp)
|
|
{
|
|
zap_t *zap;
|
|
|
|
int err =
|
|
zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
|
|
if (err != 0)
|
|
return (err);
|
|
err = zap_lookup_impl(zap, name, integer_size,
|
|
num_integers, buf, mt, realname, rn_len, ncp);
|
|
zap_unlockdir(zap, FTAG);
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
zap_prefetch(objset_t *os, uint64_t zapobj, const char *name)
|
|
{
|
|
zap_t *zap;
|
|
int err;
|
|
zap_name_t *zn;
|
|
|
|
err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
|
|
if (err)
|
|
return (err);
|
|
zn = zap_name_alloc(zap, name, 0);
|
|
if (zn == NULL) {
|
|
zap_unlockdir(zap, FTAG);
|
|
return (SET_ERROR(ENOTSUP));
|
|
}
|
|
|
|
fzap_prefetch(zn);
|
|
zap_name_free(zn);
|
|
zap_unlockdir(zap, FTAG);
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
zap_lookup_by_dnode(dnode_t *dn, const char *name,
|
|
uint64_t integer_size, uint64_t num_integers, void *buf)
|
|
{
|
|
return (zap_lookup_norm_by_dnode(dn, name, integer_size,
|
|
num_integers, buf, 0, NULL, 0, NULL));
|
|
}
|
|
|
|
int
|
|
zap_lookup_norm_by_dnode(dnode_t *dn, const char *name,
|
|
uint64_t integer_size, uint64_t num_integers, void *buf,
|
|
matchtype_t mt, char *realname, int rn_len,
|
|
boolean_t *ncp)
|
|
{
|
|
zap_t *zap;
|
|
|
|
int err = zap_lockdir_by_dnode(dn, NULL, RW_READER, TRUE, FALSE,
|
|
FTAG, &zap);
|
|
if (err != 0)
|
|
return (err);
|
|
err = zap_lookup_impl(zap, name, integer_size,
|
|
num_integers, buf, mt, realname, rn_len, ncp);
|
|
zap_unlockdir(zap, FTAG);
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
zap_prefetch_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
|
|
int key_numints)
|
|
{
|
|
zap_t *zap;
|
|
|
|
int err =
|
|
zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
|
|
if (err != 0)
|
|
return (err);
|
|
zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints);
|
|
if (zn == NULL) {
|
|
zap_unlockdir(zap, FTAG);
|
|
return (SET_ERROR(ENOTSUP));
|
|
}
|
|
|
|
fzap_prefetch(zn);
|
|
zap_name_free(zn);
|
|
zap_unlockdir(zap, FTAG);
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
zap_lookup_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
|
|
int key_numints, uint64_t integer_size, uint64_t num_integers, void *buf)
|
|
{
|
|
zap_t *zap;
|
|
|
|
int err =
|
|
zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
|
|
if (err != 0)
|
|
return (err);
|
|
zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints);
|
|
if (zn == NULL) {
|
|
zap_unlockdir(zap, FTAG);
|
|
return (SET_ERROR(ENOTSUP));
|
|
}
|
|
|
|
err = fzap_lookup(zn, integer_size, num_integers, buf,
|
|
NULL, 0, NULL);
|
|
zap_name_free(zn);
|
|
zap_unlockdir(zap, FTAG);
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
zap_contains(objset_t *os, uint64_t zapobj, const char *name)
|
|
{
|
|
int err = zap_lookup_norm(os, zapobj, name, 0,
|
|
0, NULL, 0, NULL, 0, NULL);
|
|
if (err == EOVERFLOW || err == EINVAL)
|
|
err = 0; /* found, but skipped reading the value */
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
zap_length(objset_t *os, uint64_t zapobj, const char *name,
|
|
uint64_t *integer_size, uint64_t *num_integers)
|
|
{
|
|
zap_t *zap;
|
|
|
|
int err =
|
|
zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
|
|
if (err != 0)
|
|
return (err);
|
|
zap_name_t *zn = zap_name_alloc(zap, name, 0);
|
|
if (zn == NULL) {
|
|
zap_unlockdir(zap, FTAG);
|
|
return (SET_ERROR(ENOTSUP));
|
|
}
|
|
if (!zap->zap_ismicro) {
|
|
err = fzap_length(zn, integer_size, num_integers);
|
|
} else {
|
|
mzap_ent_t *mze = mze_find(zn);
|
|
if (mze == NULL) {
|
|
err = SET_ERROR(ENOENT);
|
|
} else {
|
|
if (integer_size)
|
|
*integer_size = 8;
|
|
if (num_integers)
|
|
*num_integers = 1;
|
|
}
|
|
}
|
|
zap_name_free(zn);
|
|
zap_unlockdir(zap, FTAG);
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
zap_length_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
|
|
int key_numints, uint64_t *integer_size, uint64_t *num_integers)
|
|
{
|
|
zap_t *zap;
|
|
|
|
int err =
|
|
zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
|
|
if (err != 0)
|
|
return (err);
|
|
zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints);
|
|
if (zn == NULL) {
|
|
zap_unlockdir(zap, FTAG);
|
|
return (SET_ERROR(ENOTSUP));
|
|
}
|
|
err = fzap_length(zn, integer_size, num_integers);
|
|
zap_name_free(zn);
|
|
zap_unlockdir(zap, FTAG);
|
|
return (err);
|
|
}
|
|
|
|
static void
|
|
mzap_addent(zap_name_t *zn, uint64_t value)
|
|
{
|
|
zap_t *zap = zn->zn_zap;
|
|
int start = zap->zap_m.zap_alloc_next;
|
|
|
|
ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
|
|
|
|
#ifdef ZFS_DEBUG
|
|
for (int i = 0; i < zap->zap_m.zap_num_chunks; i++) {
|
|
mzap_ent_phys_t *mze = &zap_m_phys(zap)->mz_chunk[i];
|
|
ASSERT(strcmp(zn->zn_key_orig, mze->mze_name) != 0);
|
|
}
|
|
#endif
|
|
|
|
uint32_t cd = mze_find_unused_cd(zap, zn->zn_hash);
|
|
/* given the limited size of the microzap, this can't happen */
|
|
ASSERT(cd < zap_maxcd(zap));
|
|
|
|
again:
|
|
for (int i = start; i < zap->zap_m.zap_num_chunks; i++) {
|
|
mzap_ent_phys_t *mze = &zap_m_phys(zap)->mz_chunk[i];
|
|
if (mze->mze_name[0] == 0) {
|
|
mze->mze_value = value;
|
|
mze->mze_cd = cd;
|
|
(void) strlcpy(mze->mze_name, zn->zn_key_orig,
|
|
sizeof (mze->mze_name));
|
|
zap->zap_m.zap_num_entries++;
|
|
zap->zap_m.zap_alloc_next = i+1;
|
|
if (zap->zap_m.zap_alloc_next ==
|
|
zap->zap_m.zap_num_chunks)
|
|
zap->zap_m.zap_alloc_next = 0;
|
|
mze_insert(zap, i, zn->zn_hash);
|
|
return;
|
|
}
|
|
}
|
|
if (start != 0) {
|
|
start = 0;
|
|
goto again;
|
|
}
|
|
cmn_err(CE_PANIC, "out of entries!");
|
|
}
|
|
|
|
static int
|
|
zap_add_impl(zap_t *zap, const char *key,
|
|
int integer_size, uint64_t num_integers,
|
|
const void *val, dmu_tx_t *tx, void *tag)
|
|
{
|
|
const uint64_t *intval = val;
|
|
int err = 0;
|
|
|
|
zap_name_t *zn = zap_name_alloc(zap, key, 0);
|
|
if (zn == NULL) {
|
|
zap_unlockdir(zap, tag);
|
|
return (SET_ERROR(ENOTSUP));
|
|
}
|
|
if (!zap->zap_ismicro) {
|
|
err = fzap_add(zn, integer_size, num_integers, val, tag, tx);
|
|
zap = zn->zn_zap; /* fzap_add() may change zap */
|
|
} else if (integer_size != 8 || num_integers != 1 ||
|
|
strlen(key) >= MZAP_NAME_LEN ||
|
|
!mze_canfit_fzap_leaf(zn, zn->zn_hash)) {
|
|
err = mzap_upgrade(&zn->zn_zap, tag, tx, 0);
|
|
if (err == 0) {
|
|
err = fzap_add(zn, integer_size, num_integers, val,
|
|
tag, tx);
|
|
}
|
|
zap = zn->zn_zap; /* fzap_add() may change zap */
|
|
} else {
|
|
if (mze_find(zn) != NULL) {
|
|
err = SET_ERROR(EEXIST);
|
|
} else {
|
|
mzap_addent(zn, *intval);
|
|
}
|
|
}
|
|
ASSERT(zap == zn->zn_zap);
|
|
zap_name_free(zn);
|
|
if (zap != NULL) /* may be NULL if fzap_add() failed */
|
|
zap_unlockdir(zap, tag);
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
zap_add(objset_t *os, uint64_t zapobj, const char *key,
|
|
int integer_size, uint64_t num_integers,
|
|
const void *val, dmu_tx_t *tx)
|
|
{
|
|
zap_t *zap;
|
|
int err;
|
|
|
|
err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap);
|
|
if (err != 0)
|
|
return (err);
|
|
err = zap_add_impl(zap, key, integer_size, num_integers, val, tx, FTAG);
|
|
/* zap_add_impl() calls zap_unlockdir() */
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
zap_add_by_dnode(dnode_t *dn, const char *key,
|
|
int integer_size, uint64_t num_integers,
|
|
const void *val, dmu_tx_t *tx)
|
|
{
|
|
zap_t *zap;
|
|
int err;
|
|
|
|
err = zap_lockdir_by_dnode(dn, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap);
|
|
if (err != 0)
|
|
return (err);
|
|
err = zap_add_impl(zap, key, integer_size, num_integers, val, tx, FTAG);
|
|
/* zap_add_impl() calls zap_unlockdir() */
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
zap_add_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
|
|
int key_numints, int integer_size, uint64_t num_integers,
|
|
const void *val, dmu_tx_t *tx)
|
|
{
|
|
zap_t *zap;
|
|
|
|
int err =
|
|
zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap);
|
|
if (err != 0)
|
|
return (err);
|
|
zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints);
|
|
if (zn == NULL) {
|
|
zap_unlockdir(zap, FTAG);
|
|
return (SET_ERROR(ENOTSUP));
|
|
}
|
|
err = fzap_add(zn, integer_size, num_integers, val, FTAG, tx);
|
|
zap = zn->zn_zap; /* fzap_add() may change zap */
|
|
zap_name_free(zn);
|
|
if (zap != NULL) /* may be NULL if fzap_add() failed */
|
|
zap_unlockdir(zap, FTAG);
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
zap_update(objset_t *os, uint64_t zapobj, const char *name,
|
|
int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx)
|
|
{
|
|
zap_t *zap;
|
|
const uint64_t *intval = val;
|
|
|
|
int err =
|
|
zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap);
|
|
if (err != 0)
|
|
return (err);
|
|
zap_name_t *zn = zap_name_alloc(zap, name, 0);
|
|
if (zn == NULL) {
|
|
zap_unlockdir(zap, FTAG);
|
|
return (SET_ERROR(ENOTSUP));
|
|
}
|
|
if (!zap->zap_ismicro) {
|
|
err = fzap_update(zn, integer_size, num_integers, val,
|
|
FTAG, tx);
|
|
zap = zn->zn_zap; /* fzap_update() may change zap */
|
|
} else if (integer_size != 8 || num_integers != 1 ||
|
|
strlen(name) >= MZAP_NAME_LEN) {
|
|
dprintf("upgrading obj %llu: intsz=%u numint=%llu name=%s\n",
|
|
(u_longlong_t)zapobj, integer_size,
|
|
(u_longlong_t)num_integers, name);
|
|
err = mzap_upgrade(&zn->zn_zap, FTAG, tx, 0);
|
|
if (err == 0) {
|
|
err = fzap_update(zn, integer_size, num_integers,
|
|
val, FTAG, tx);
|
|
}
|
|
zap = zn->zn_zap; /* fzap_update() may change zap */
|
|
} else {
|
|
mzap_ent_t *mze = mze_find(zn);
|
|
if (mze != NULL) {
|
|
MZE_PHYS(zap, mze)->mze_value = *intval;
|
|
} else {
|
|
mzap_addent(zn, *intval);
|
|
}
|
|
}
|
|
ASSERT(zap == zn->zn_zap);
|
|
zap_name_free(zn);
|
|
if (zap != NULL) /* may be NULL if fzap_upgrade() failed */
|
|
zap_unlockdir(zap, FTAG);
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
zap_update_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
|
|
int key_numints,
|
|
int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx)
|
|
{
|
|
zap_t *zap;
|
|
|
|
int err =
|
|
zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap);
|
|
if (err != 0)
|
|
return (err);
|
|
zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints);
|
|
if (zn == NULL) {
|
|
zap_unlockdir(zap, FTAG);
|
|
return (SET_ERROR(ENOTSUP));
|
|
}
|
|
err = fzap_update(zn, integer_size, num_integers, val, FTAG, tx);
|
|
zap = zn->zn_zap; /* fzap_update() may change zap */
|
|
zap_name_free(zn);
|
|
if (zap != NULL) /* may be NULL if fzap_upgrade() failed */
|
|
zap_unlockdir(zap, FTAG);
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
zap_remove(objset_t *os, uint64_t zapobj, const char *name, dmu_tx_t *tx)
|
|
{
|
|
return (zap_remove_norm(os, zapobj, name, 0, tx));
|
|
}
|
|
|
|
static int
|
|
zap_remove_impl(zap_t *zap, const char *name,
|
|
matchtype_t mt, dmu_tx_t *tx)
|
|
{
|
|
int err = 0;
|
|
|
|
zap_name_t *zn = zap_name_alloc(zap, name, mt);
|
|
if (zn == NULL)
|
|
return (SET_ERROR(ENOTSUP));
|
|
if (!zap->zap_ismicro) {
|
|
err = fzap_remove(zn, tx);
|
|
} else {
|
|
mzap_ent_t *mze = mze_find(zn);
|
|
if (mze == NULL) {
|
|
err = SET_ERROR(ENOENT);
|
|
} else {
|
|
zap->zap_m.zap_num_entries--;
|
|
memset(&zap_m_phys(zap)->mz_chunk[mze->mze_chunkid], 0,
|
|
sizeof (mzap_ent_phys_t));
|
|
mze_remove(zap, mze);
|
|
}
|
|
}
|
|
zap_name_free(zn);
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
zap_remove_norm(objset_t *os, uint64_t zapobj, const char *name,
|
|
matchtype_t mt, dmu_tx_t *tx)
|
|
{
|
|
zap_t *zap;
|
|
int err;
|
|
|
|
err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, FTAG, &zap);
|
|
if (err)
|
|
return (err);
|
|
err = zap_remove_impl(zap, name, mt, tx);
|
|
zap_unlockdir(zap, FTAG);
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
zap_remove_by_dnode(dnode_t *dn, const char *name, dmu_tx_t *tx)
|
|
{
|
|
zap_t *zap;
|
|
int err;
|
|
|
|
err = zap_lockdir_by_dnode(dn, tx, RW_WRITER, TRUE, FALSE, FTAG, &zap);
|
|
if (err)
|
|
return (err);
|
|
err = zap_remove_impl(zap, name, 0, tx);
|
|
zap_unlockdir(zap, FTAG);
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
zap_remove_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
|
|
int key_numints, dmu_tx_t *tx)
|
|
{
|
|
zap_t *zap;
|
|
|
|
int err =
|
|
zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, FTAG, &zap);
|
|
if (err != 0)
|
|
return (err);
|
|
zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints);
|
|
if (zn == NULL) {
|
|
zap_unlockdir(zap, FTAG);
|
|
return (SET_ERROR(ENOTSUP));
|
|
}
|
|
err = fzap_remove(zn, tx);
|
|
zap_name_free(zn);
|
|
zap_unlockdir(zap, FTAG);
|
|
return (err);
|
|
}
|
|
|
|
/*
|
|
* Routines for iterating over the attributes.
|
|
*/
|
|
|
|
static void
|
|
zap_cursor_init_impl(zap_cursor_t *zc, objset_t *os, uint64_t zapobj,
|
|
uint64_t serialized, boolean_t prefetch)
|
|
{
|
|
zc->zc_objset = os;
|
|
zc->zc_zap = NULL;
|
|
zc->zc_leaf = NULL;
|
|
zc->zc_zapobj = zapobj;
|
|
zc->zc_serialized = serialized;
|
|
zc->zc_hash = 0;
|
|
zc->zc_cd = 0;
|
|
zc->zc_prefetch = prefetch;
|
|
}
|
|
void
|
|
zap_cursor_init_serialized(zap_cursor_t *zc, objset_t *os, uint64_t zapobj,
|
|
uint64_t serialized)
|
|
{
|
|
zap_cursor_init_impl(zc, os, zapobj, serialized, B_TRUE);
|
|
}
|
|
|
|
/*
|
|
* Initialize a cursor at the beginning of the ZAP object. The entire
|
|
* ZAP object will be prefetched.
|
|
*/
|
|
void
|
|
zap_cursor_init(zap_cursor_t *zc, objset_t *os, uint64_t zapobj)
|
|
{
|
|
zap_cursor_init_impl(zc, os, zapobj, 0, B_TRUE);
|
|
}
|
|
|
|
/*
|
|
* Initialize a cursor at the beginning, but request that we not prefetch
|
|
* the entire ZAP object.
|
|
*/
|
|
void
|
|
zap_cursor_init_noprefetch(zap_cursor_t *zc, objset_t *os, uint64_t zapobj)
|
|
{
|
|
zap_cursor_init_impl(zc, os, zapobj, 0, B_FALSE);
|
|
}
|
|
|
|
void
|
|
zap_cursor_fini(zap_cursor_t *zc)
|
|
{
|
|
if (zc->zc_zap) {
|
|
rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
|
|
zap_unlockdir(zc->zc_zap, NULL);
|
|
zc->zc_zap = NULL;
|
|
}
|
|
if (zc->zc_leaf) {
|
|
rw_enter(&zc->zc_leaf->l_rwlock, RW_READER);
|
|
zap_put_leaf(zc->zc_leaf);
|
|
zc->zc_leaf = NULL;
|
|
}
|
|
zc->zc_objset = NULL;
|
|
}
|
|
|
|
uint64_t
|
|
zap_cursor_serialize(zap_cursor_t *zc)
|
|
{
|
|
if (zc->zc_hash == -1ULL)
|
|
return (-1ULL);
|
|
if (zc->zc_zap == NULL)
|
|
return (zc->zc_serialized);
|
|
ASSERT((zc->zc_hash & zap_maxcd(zc->zc_zap)) == 0);
|
|
ASSERT(zc->zc_cd < zap_maxcd(zc->zc_zap));
|
|
|
|
/*
|
|
* We want to keep the high 32 bits of the cursor zero if we can, so
|
|
* that 32-bit programs can access this. So usually use a small
|
|
* (28-bit) hash value so we can fit 4 bits of cd into the low 32-bits
|
|
* of the cursor.
|
|
*
|
|
* [ collision differentiator | zap_hashbits()-bit hash value ]
|
|
*/
|
|
return ((zc->zc_hash >> (64 - zap_hashbits(zc->zc_zap))) |
|
|
((uint64_t)zc->zc_cd << zap_hashbits(zc->zc_zap)));
|
|
}
|
|
|
|
int
|
|
zap_cursor_retrieve(zap_cursor_t *zc, zap_attribute_t *za)
|
|
{
|
|
int err;
|
|
|
|
if (zc->zc_hash == -1ULL)
|
|
return (SET_ERROR(ENOENT));
|
|
|
|
if (zc->zc_zap == NULL) {
|
|
int hb;
|
|
err = zap_lockdir(zc->zc_objset, zc->zc_zapobj, NULL,
|
|
RW_READER, TRUE, FALSE, NULL, &zc->zc_zap);
|
|
if (err != 0)
|
|
return (err);
|
|
|
|
/*
|
|
* To support zap_cursor_init_serialized, advance, retrieve,
|
|
* we must add to the existing zc_cd, which may already
|
|
* be 1 due to the zap_cursor_advance.
|
|
*/
|
|
ASSERT(zc->zc_hash == 0);
|
|
hb = zap_hashbits(zc->zc_zap);
|
|
zc->zc_hash = zc->zc_serialized << (64 - hb);
|
|
zc->zc_cd += zc->zc_serialized >> hb;
|
|
if (zc->zc_cd >= zap_maxcd(zc->zc_zap)) /* corrupt serialized */
|
|
zc->zc_cd = 0;
|
|
} else {
|
|
rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
|
|
}
|
|
if (!zc->zc_zap->zap_ismicro) {
|
|
err = fzap_cursor_retrieve(zc->zc_zap, zc, za);
|
|
} else {
|
|
avl_index_t idx;
|
|
mzap_ent_t mze_tofind;
|
|
|
|
mze_tofind.mze_hash = zc->zc_hash;
|
|
mze_tofind.mze_cd = zc->zc_cd;
|
|
|
|
mzap_ent_t *mze =
|
|
avl_find(&zc->zc_zap->zap_m.zap_avl, &mze_tofind, &idx);
|
|
if (mze == NULL) {
|
|
mze = avl_nearest(&zc->zc_zap->zap_m.zap_avl,
|
|
idx, AVL_AFTER);
|
|
}
|
|
if (mze) {
|
|
mzap_ent_phys_t *mzep = MZE_PHYS(zc->zc_zap, mze);
|
|
ASSERT3U(mze->mze_cd, ==, mzep->mze_cd);
|
|
za->za_normalization_conflict =
|
|
mzap_normalization_conflict(zc->zc_zap, NULL, mze);
|
|
za->za_integer_length = 8;
|
|
za->za_num_integers = 1;
|
|
za->za_first_integer = mzep->mze_value;
|
|
(void) strlcpy(za->za_name, mzep->mze_name,
|
|
sizeof (za->za_name));
|
|
zc->zc_hash = mze->mze_hash;
|
|
zc->zc_cd = mze->mze_cd;
|
|
err = 0;
|
|
} else {
|
|
zc->zc_hash = -1ULL;
|
|
err = SET_ERROR(ENOENT);
|
|
}
|
|
}
|
|
rw_exit(&zc->zc_zap->zap_rwlock);
|
|
return (err);
|
|
}
|
|
|
|
void
|
|
zap_cursor_advance(zap_cursor_t *zc)
|
|
{
|
|
if (zc->zc_hash == -1ULL)
|
|
return;
|
|
zc->zc_cd++;
|
|
}
|
|
|
|
int
|
|
zap_get_stats(objset_t *os, uint64_t zapobj, zap_stats_t *zs)
|
|
{
|
|
zap_t *zap;
|
|
|
|
int err =
|
|
zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
|
|
if (err != 0)
|
|
return (err);
|
|
|
|
memset(zs, 0, sizeof (zap_stats_t));
|
|
|
|
if (zap->zap_ismicro) {
|
|
zs->zs_blocksize = zap->zap_dbuf->db_size;
|
|
zs->zs_num_entries = zap->zap_m.zap_num_entries;
|
|
zs->zs_num_blocks = 1;
|
|
} else {
|
|
fzap_get_stats(zap, zs);
|
|
}
|
|
zap_unlockdir(zap, FTAG);
|
|
return (0);
|
|
}
|
|
|
|
#if defined(_KERNEL)
|
|
EXPORT_SYMBOL(zap_create);
|
|
EXPORT_SYMBOL(zap_create_dnsize);
|
|
EXPORT_SYMBOL(zap_create_norm);
|
|
EXPORT_SYMBOL(zap_create_norm_dnsize);
|
|
EXPORT_SYMBOL(zap_create_flags);
|
|
EXPORT_SYMBOL(zap_create_flags_dnsize);
|
|
EXPORT_SYMBOL(zap_create_claim);
|
|
EXPORT_SYMBOL(zap_create_claim_norm);
|
|
EXPORT_SYMBOL(zap_create_claim_norm_dnsize);
|
|
EXPORT_SYMBOL(zap_create_hold);
|
|
EXPORT_SYMBOL(zap_destroy);
|
|
EXPORT_SYMBOL(zap_lookup);
|
|
EXPORT_SYMBOL(zap_lookup_by_dnode);
|
|
EXPORT_SYMBOL(zap_lookup_norm);
|
|
EXPORT_SYMBOL(zap_lookup_uint64);
|
|
EXPORT_SYMBOL(zap_contains);
|
|
EXPORT_SYMBOL(zap_prefetch);
|
|
EXPORT_SYMBOL(zap_prefetch_uint64);
|
|
EXPORT_SYMBOL(zap_add);
|
|
EXPORT_SYMBOL(zap_add_by_dnode);
|
|
EXPORT_SYMBOL(zap_add_uint64);
|
|
EXPORT_SYMBOL(zap_update);
|
|
EXPORT_SYMBOL(zap_update_uint64);
|
|
EXPORT_SYMBOL(zap_length);
|
|
EXPORT_SYMBOL(zap_length_uint64);
|
|
EXPORT_SYMBOL(zap_remove);
|
|
EXPORT_SYMBOL(zap_remove_by_dnode);
|
|
EXPORT_SYMBOL(zap_remove_norm);
|
|
EXPORT_SYMBOL(zap_remove_uint64);
|
|
EXPORT_SYMBOL(zap_count);
|
|
EXPORT_SYMBOL(zap_value_search);
|
|
EXPORT_SYMBOL(zap_join);
|
|
EXPORT_SYMBOL(zap_join_increment);
|
|
EXPORT_SYMBOL(zap_add_int);
|
|
EXPORT_SYMBOL(zap_remove_int);
|
|
EXPORT_SYMBOL(zap_lookup_int);
|
|
EXPORT_SYMBOL(zap_increment_int);
|
|
EXPORT_SYMBOL(zap_add_int_key);
|
|
EXPORT_SYMBOL(zap_lookup_int_key);
|
|
EXPORT_SYMBOL(zap_increment);
|
|
EXPORT_SYMBOL(zap_cursor_init);
|
|
EXPORT_SYMBOL(zap_cursor_fini);
|
|
EXPORT_SYMBOL(zap_cursor_retrieve);
|
|
EXPORT_SYMBOL(zap_cursor_advance);
|
|
EXPORT_SYMBOL(zap_cursor_serialize);
|
|
EXPORT_SYMBOL(zap_cursor_init_serialized);
|
|
EXPORT_SYMBOL(zap_get_stats);
|
|
#endif
|