zfs/module/zfs/zfs_fm.c

1596 lines
45 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or https://opensource.org/licenses/CDDL-1.0.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/*
* Copyright (c) 2012,2021 by Delphix. All rights reserved.
*/
#include <sys/spa.h>
#include <sys/spa_impl.h>
#include <sys/vdev.h>
#include <sys/vdev_impl.h>
#include <sys/zio.h>
#include <sys/zio_checksum.h>
#include <sys/fm/fs/zfs.h>
#include <sys/fm/protocol.h>
#include <sys/fm/util.h>
#include <sys/sysevent.h>
/*
* This general routine is responsible for generating all the different ZFS
* ereports. The payload is dependent on the class, and which arguments are
* supplied to the function:
*
* EREPORT POOL VDEV IO
* block X X X
* data X X
* device X X
* pool X
*
* If we are in a loading state, all errors are chained together by the same
* SPA-wide ENA (Error Numeric Association).
*
* For isolated I/O requests, we get the ENA from the zio_t. The propagation
* gets very complicated due to RAID-Z, gang blocks, and vdev caching. We want
* to chain together all ereports associated with a logical piece of data. For
* read I/Os, there are basically three 'types' of I/O, which form a roughly
* layered diagram:
*
* +---------------+
* | Aggregate I/O | No associated logical data or device
* +---------------+
* |
* V
* +---------------+ Reads associated with a piece of logical data.
* | Read I/O | This includes reads on behalf of RAID-Z,
* +---------------+ mirrors, gang blocks, retries, etc.
* |
* V
* +---------------+ Reads associated with a particular device, but
* | Physical I/O | no logical data. Issued as part of vdev caching
* +---------------+ and I/O aggregation.
*
* Note that 'physical I/O' here is not the same terminology as used in the rest
* of ZIO. Typically, 'physical I/O' simply means that there is no attached
* blockpointer. But I/O with no associated block pointer can still be related
* to a logical piece of data (i.e. RAID-Z requests).
*
* Purely physical I/O always have unique ENAs. They are not related to a
* particular piece of logical data, and therefore cannot be chained together.
* We still generate an ereport, but the DE doesn't correlate it with any
* logical piece of data. When such an I/O fails, the delegated I/O requests
* will issue a retry, which will trigger the 'real' ereport with the correct
* ENA.
*
* We keep track of the ENA for a ZIO chain through the 'io_logical' member.
* When a new logical I/O is issued, we set this to point to itself. Child I/Os
* then inherit this pointer, so that when it is first set subsequent failures
* will use the same ENA. For vdev cache fill and queue aggregation I/O,
* this pointer is set to NULL, and no ereport will be generated (since it
* doesn't actually correspond to any particular device or piece of data,
* and the caller will always retry without caching or queueing anyway).
*
* For checksum errors, we want to include more information about the actual
* error which occurs. Accordingly, we build an ereport when the error is
* noticed, but instead of sending it in immediately, we hang it off of the
* io_cksum_report field of the logical IO. When the logical IO completes
* (successfully or not), zfs_ereport_finish_checksum() is called with the
* good and bad versions of the buffer (if available), and we annotate the
* ereport with information about the differences.
*/
#ifdef _KERNEL
/*
* Duplicate ereport Detection
*
* Some ereports are retained momentarily for detecting duplicates. These
* are kept in a recent_events_node_t in both a time-ordered list and an AVL
* tree of recent unique ereports.
*
* The lifespan of these recent ereports is bounded (15 mins) and a cleaner
* task is used to purge stale entries.
*/
static list_t recent_events_list;
static avl_tree_t recent_events_tree;
static kmutex_t recent_events_lock;
static taskqid_t recent_events_cleaner_tqid;
/*
* Each node is about 128 bytes so 2,000 would consume 1/4 MiB.
*
* This setting can be changed dynamically and setting it to zero
* disables duplicate detection.
*/
static unsigned int zfs_zevent_retain_max = 2000;
/*
* The lifespan for a recent ereport entry. The default of 15 minutes is
* intended to outlive the zfs diagnosis engine's threshold of 10 errors
* over a period of 10 minutes.
*/
static unsigned int zfs_zevent_retain_expire_secs = 900;
typedef enum zfs_subclass {
ZSC_IO,
ZSC_DATA,
ZSC_CHECKSUM
} zfs_subclass_t;
typedef struct {
/* common criteria */
uint64_t re_pool_guid;
uint64_t re_vdev_guid;
int re_io_error;
uint64_t re_io_size;
uint64_t re_io_offset;
zfs_subclass_t re_subclass;
zio_priority_t re_io_priority;
/* logical zio criteria (optional) */
zbookmark_phys_t re_io_bookmark;
/* internal state */
avl_node_t re_tree_link;
list_node_t re_list_link;
uint64_t re_timestamp;
} recent_events_node_t;
static int
recent_events_compare(const void *a, const void *b)
{
const recent_events_node_t *node1 = a;
const recent_events_node_t *node2 = b;
int cmp;
/*
* The comparison order here is somewhat arbitrary.
* What's important is that if every criteria matches, then it
* is a duplicate (i.e. compare returns 0)
*/
if ((cmp = TREE_CMP(node1->re_subclass, node2->re_subclass)) != 0)
return (cmp);
if ((cmp = TREE_CMP(node1->re_pool_guid, node2->re_pool_guid)) != 0)
return (cmp);
if ((cmp = TREE_CMP(node1->re_vdev_guid, node2->re_vdev_guid)) != 0)
return (cmp);
if ((cmp = TREE_CMP(node1->re_io_error, node2->re_io_error)) != 0)
return (cmp);
if ((cmp = TREE_CMP(node1->re_io_priority, node2->re_io_priority)) != 0)
return (cmp);
if ((cmp = TREE_CMP(node1->re_io_size, node2->re_io_size)) != 0)
return (cmp);
if ((cmp = TREE_CMP(node1->re_io_offset, node2->re_io_offset)) != 0)
return (cmp);
const zbookmark_phys_t *zb1 = &node1->re_io_bookmark;
const zbookmark_phys_t *zb2 = &node2->re_io_bookmark;
if ((cmp = TREE_CMP(zb1->zb_objset, zb2->zb_objset)) != 0)
return (cmp);
if ((cmp = TREE_CMP(zb1->zb_object, zb2->zb_object)) != 0)
return (cmp);
if ((cmp = TREE_CMP(zb1->zb_level, zb2->zb_level)) != 0)
return (cmp);
if ((cmp = TREE_CMP(zb1->zb_blkid, zb2->zb_blkid)) != 0)
return (cmp);
return (0);
}
/*
* workaround: vdev properties don't have inheritance
*/
static uint64_t
vdev_prop_get_inherited(vdev_t *vd, vdev_prop_t prop)
{
uint64_t propdef, propval;
propdef = vdev_prop_default_numeric(prop);
switch (prop) {
case VDEV_PROP_CHECKSUM_N:
propval = vd->vdev_checksum_n;
break;
case VDEV_PROP_CHECKSUM_T:
propval = vd->vdev_checksum_t;
break;
case VDEV_PROP_IO_N:
propval = vd->vdev_io_n;
break;
case VDEV_PROP_IO_T:
propval = vd->vdev_io_t;
break;
case VDEV_PROP_SLOW_IO_N:
propval = vd->vdev_slow_io_n;
break;
case VDEV_PROP_SLOW_IO_T:
propval = vd->vdev_slow_io_t;
break;
default:
propval = propdef;
break;
}
if (propval != propdef)
return (propval);
if (vd->vdev_parent == NULL)
return (propdef);
return (vdev_prop_get_inherited(vd->vdev_parent, prop));
}
static void zfs_ereport_schedule_cleaner(void);
/*
* background task to clean stale recent event nodes.
*/
static void
zfs_ereport_cleaner(void *arg)
{
recent_events_node_t *entry;
uint64_t now = gethrtime();
/*
* purge expired entries
*/
mutex_enter(&recent_events_lock);
while ((entry = list_tail(&recent_events_list)) != NULL) {
uint64_t age = NSEC2SEC(now - entry->re_timestamp);
if (age <= zfs_zevent_retain_expire_secs)
break;
/* remove expired node */
avl_remove(&recent_events_tree, entry);
list_remove(&recent_events_list, entry);
kmem_free(entry, sizeof (*entry));
}
/* Restart the cleaner if more entries remain */
recent_events_cleaner_tqid = 0;
if (!list_is_empty(&recent_events_list))
zfs_ereport_schedule_cleaner();
mutex_exit(&recent_events_lock);
}
static void
zfs_ereport_schedule_cleaner(void)
{
ASSERT(MUTEX_HELD(&recent_events_lock));
uint64_t timeout = SEC2NSEC(zfs_zevent_retain_expire_secs + 1);
recent_events_cleaner_tqid = taskq_dispatch_delay(
system_delay_taskq, zfs_ereport_cleaner, NULL, TQ_SLEEP,
ddi_get_lbolt() + NSEC_TO_TICK(timeout));
}
/*
* Clear entries for a given vdev or all vdevs in a pool when vdev == NULL
*/
void
zfs_ereport_clear(spa_t *spa, vdev_t *vd)
{
uint64_t vdev_guid, pool_guid;
ASSERT(vd != NULL || spa != NULL);
if (vd == NULL) {
vdev_guid = 0;
pool_guid = spa_guid(spa);
} else {
vdev_guid = vd->vdev_guid;
pool_guid = 0;
}
mutex_enter(&recent_events_lock);
recent_events_node_t *next = list_head(&recent_events_list);
while (next != NULL) {
recent_events_node_t *entry = next;
next = list_next(&recent_events_list, next);
if (entry->re_vdev_guid == vdev_guid ||
entry->re_pool_guid == pool_guid) {
avl_remove(&recent_events_tree, entry);
list_remove(&recent_events_list, entry);
kmem_free(entry, sizeof (*entry));
}
}
mutex_exit(&recent_events_lock);
}
/*
* Check if an ereport would be a duplicate of one recently posted.
*
* An ereport is considered a duplicate if the set of criteria in
* recent_events_node_t all match.
*
* Only FM_EREPORT_ZFS_IO, FM_EREPORT_ZFS_DATA, and FM_EREPORT_ZFS_CHECKSUM
* are candidates for duplicate checking.
*/
static boolean_t
zfs_ereport_is_duplicate(const char *subclass, spa_t *spa, vdev_t *vd,
const zbookmark_phys_t *zb, zio_t *zio, uint64_t offset, uint64_t size)
{
recent_events_node_t search = {0}, *entry;
if (vd == NULL || zio == NULL)
return (B_FALSE);
if (zfs_zevent_retain_max == 0)
return (B_FALSE);
if (strcmp(subclass, FM_EREPORT_ZFS_IO) == 0)
search.re_subclass = ZSC_IO;
else if (strcmp(subclass, FM_EREPORT_ZFS_DATA) == 0)
search.re_subclass = ZSC_DATA;
else if (strcmp(subclass, FM_EREPORT_ZFS_CHECKSUM) == 0)
search.re_subclass = ZSC_CHECKSUM;
else
return (B_FALSE);
search.re_pool_guid = spa_guid(spa);
search.re_vdev_guid = vd->vdev_guid;
search.re_io_error = zio->io_error;
search.re_io_priority = zio->io_priority;
/* if size is supplied use it over what's in zio */
if (size) {
search.re_io_size = size;
search.re_io_offset = offset;
} else {
search.re_io_size = zio->io_size;
search.re_io_offset = zio->io_offset;
}
/* grab optional logical zio criteria */
if (zb != NULL) {
search.re_io_bookmark.zb_objset = zb->zb_objset;
search.re_io_bookmark.zb_object = zb->zb_object;
search.re_io_bookmark.zb_level = zb->zb_level;
search.re_io_bookmark.zb_blkid = zb->zb_blkid;
}
uint64_t now = gethrtime();
mutex_enter(&recent_events_lock);
/* check if we have seen this one recently */
entry = avl_find(&recent_events_tree, &search, NULL);
if (entry != NULL) {
uint64_t age = NSEC2SEC(now - entry->re_timestamp);
/*
* There is still an active cleaner (since we're here).
* Reset the last seen time for this duplicate entry
* so that its lifespand gets extended.
*/
list_remove(&recent_events_list, entry);
list_insert_head(&recent_events_list, entry);
entry->re_timestamp = now;
zfs_zevent_track_duplicate();
mutex_exit(&recent_events_lock);
return (age <= zfs_zevent_retain_expire_secs);
}
if (avl_numnodes(&recent_events_tree) >= zfs_zevent_retain_max) {
/* recycle oldest node */
entry = list_tail(&recent_events_list);
ASSERT(entry != NULL);
list_remove(&recent_events_list, entry);
avl_remove(&recent_events_tree, entry);
} else {
entry = kmem_alloc(sizeof (recent_events_node_t), KM_SLEEP);
}
/* record this as a recent ereport */
*entry = search;
avl_add(&recent_events_tree, entry);
list_insert_head(&recent_events_list, entry);
entry->re_timestamp = now;
/* Start a cleaner if not already scheduled */
if (recent_events_cleaner_tqid == 0)
zfs_ereport_schedule_cleaner();
mutex_exit(&recent_events_lock);
return (B_FALSE);
}
void
zfs_zevent_post_cb(nvlist_t *nvl, nvlist_t *detector)
{
if (nvl)
fm_nvlist_destroy(nvl, FM_NVA_FREE);
if (detector)
fm_nvlist_destroy(detector, FM_NVA_FREE);
}
/*
* We want to rate limit ZIO delay, deadman, and checksum events so as to not
* flood zevent consumers when a disk is acting up.
*
* Returns 1 if we're ratelimiting, 0 if not.
*/
static int
zfs_is_ratelimiting_event(const char *subclass, vdev_t *vd)
{
int rc = 0;
/*
* zfs_ratelimit() returns 1 if we're *not* ratelimiting and 0 if we
* are. Invert it to get our return value.
*/
if (strcmp(subclass, FM_EREPORT_ZFS_DELAY) == 0) {
rc = !zfs_ratelimit(&vd->vdev_delay_rl);
} else if (strcmp(subclass, FM_EREPORT_ZFS_DEADMAN) == 0) {
rc = !zfs_ratelimit(&vd->vdev_deadman_rl);
} else if (strcmp(subclass, FM_EREPORT_ZFS_CHECKSUM) == 0) {
rc = !zfs_ratelimit(&vd->vdev_checksum_rl);
}
if (rc) {
/* We're rate limiting */
fm_erpt_dropped_increment();
}
return (rc);
}
/*
* Return B_TRUE if the event actually posted, B_FALSE if not.
*/
static boolean_t
zfs_ereport_start(nvlist_t **ereport_out, nvlist_t **detector_out,
const char *subclass, spa_t *spa, vdev_t *vd, const zbookmark_phys_t *zb,
zio_t *zio, uint64_t stateoroffset, uint64_t size)
{
nvlist_t *ereport, *detector;
uint64_t ena;
char class[64];
if ((ereport = fm_nvlist_create(NULL)) == NULL)
return (B_FALSE);
if ((detector = fm_nvlist_create(NULL)) == NULL) {
fm_nvlist_destroy(ereport, FM_NVA_FREE);
return (B_FALSE);
}
/*
* Serialize ereport generation
*/
mutex_enter(&spa->spa_errlist_lock);
/*
* Determine the ENA to use for this event. If we are in a loading
* state, use a SPA-wide ENA. Otherwise, if we are in an I/O state, use
* a root zio-wide ENA. Otherwise, simply use a unique ENA.
*/
if (spa_load_state(spa) != SPA_LOAD_NONE) {
if (spa->spa_ena == 0)
spa->spa_ena = fm_ena_generate(0, FM_ENA_FMT1);
ena = spa->spa_ena;
} else if (zio != NULL && zio->io_logical != NULL) {
if (zio->io_logical->io_ena == 0)
zio->io_logical->io_ena =
fm_ena_generate(0, FM_ENA_FMT1);
ena = zio->io_logical->io_ena;
} else {
ena = fm_ena_generate(0, FM_ENA_FMT1);
}
/*
* Construct the full class, detector, and other standard FMA fields.
*/
(void) snprintf(class, sizeof (class), "%s.%s",
ZFS_ERROR_CLASS, subclass);
fm_fmri_zfs_set(detector, FM_ZFS_SCHEME_VERSION, spa_guid(spa),
vd != NULL ? vd->vdev_guid : 0);
fm_ereport_set(ereport, FM_EREPORT_VERSION, class, ena, detector, NULL);
/*
* Construct the per-ereport payload, depending on which parameters are
* passed in.
*/
/*
* Generic payload members common to all ereports.
*/
fm_payload_set(ereport,
FM_EREPORT_PAYLOAD_ZFS_POOL, DATA_TYPE_STRING, spa_name(spa),
FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, DATA_TYPE_UINT64, spa_guid(spa),
FM_EREPORT_PAYLOAD_ZFS_POOL_STATE, DATA_TYPE_UINT64,
(uint64_t)spa_state(spa),
FM_EREPORT_PAYLOAD_ZFS_POOL_CONTEXT, DATA_TYPE_INT32,
(int32_t)spa_load_state(spa), NULL);
fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_POOL_FAILMODE,
DATA_TYPE_STRING,
spa_get_failmode(spa) == ZIO_FAILURE_MODE_WAIT ?
FM_EREPORT_FAILMODE_WAIT :
spa_get_failmode(spa) == ZIO_FAILURE_MODE_CONTINUE ?
FM_EREPORT_FAILMODE_CONTINUE : FM_EREPORT_FAILMODE_PANIC,
NULL);
if (vd != NULL) {
vdev_t *pvd = vd->vdev_parent;
vdev_queue_t *vq = &vd->vdev_queue;
vdev_stat_t *vs = &vd->vdev_stat;
vdev_t *spare_vd;
uint64_t *spare_guids;
char **spare_paths;
int i, spare_count;
fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID,
DATA_TYPE_UINT64, vd->vdev_guid,
FM_EREPORT_PAYLOAD_ZFS_VDEV_TYPE,
DATA_TYPE_STRING, vd->vdev_ops->vdev_op_type, NULL);
if (vd->vdev_path != NULL)
fm_payload_set(ereport,
FM_EREPORT_PAYLOAD_ZFS_VDEV_PATH,
DATA_TYPE_STRING, vd->vdev_path, NULL);
if (vd->vdev_devid != NULL)
fm_payload_set(ereport,
FM_EREPORT_PAYLOAD_ZFS_VDEV_DEVID,
DATA_TYPE_STRING, vd->vdev_devid, NULL);
if (vd->vdev_fru != NULL)
fm_payload_set(ereport,
FM_EREPORT_PAYLOAD_ZFS_VDEV_FRU,
DATA_TYPE_STRING, vd->vdev_fru, NULL);
if (vd->vdev_enc_sysfs_path != NULL)
fm_payload_set(ereport,
FM_EREPORT_PAYLOAD_ZFS_VDEV_ENC_SYSFS_PATH,
DATA_TYPE_STRING, vd->vdev_enc_sysfs_path, NULL);
if (vd->vdev_ashift)
fm_payload_set(ereport,
FM_EREPORT_PAYLOAD_ZFS_VDEV_ASHIFT,
DATA_TYPE_UINT64, vd->vdev_ashift, NULL);
if (vq != NULL) {
fm_payload_set(ereport,
FM_EREPORT_PAYLOAD_ZFS_VDEV_COMP_TS,
DATA_TYPE_UINT64, vq->vq_io_complete_ts, NULL);
fm_payload_set(ereport,
FM_EREPORT_PAYLOAD_ZFS_VDEV_DELTA_TS,
DATA_TYPE_UINT64, vq->vq_io_delta_ts, NULL);
}
if (vs != NULL) {
fm_payload_set(ereport,
FM_EREPORT_PAYLOAD_ZFS_VDEV_READ_ERRORS,
DATA_TYPE_UINT64, vs->vs_read_errors,
FM_EREPORT_PAYLOAD_ZFS_VDEV_WRITE_ERRORS,
DATA_TYPE_UINT64, vs->vs_write_errors,
FM_EREPORT_PAYLOAD_ZFS_VDEV_CKSUM_ERRORS,
DATA_TYPE_UINT64, vs->vs_checksum_errors,
FM_EREPORT_PAYLOAD_ZFS_VDEV_DELAYS,
DATA_TYPE_UINT64, vs->vs_slow_ios,
NULL);
}
if (pvd != NULL) {
fm_payload_set(ereport,
FM_EREPORT_PAYLOAD_ZFS_PARENT_GUID,
DATA_TYPE_UINT64, pvd->vdev_guid,
FM_EREPORT_PAYLOAD_ZFS_PARENT_TYPE,
DATA_TYPE_STRING, pvd->vdev_ops->vdev_op_type,
NULL);
if (pvd->vdev_path)
fm_payload_set(ereport,
FM_EREPORT_PAYLOAD_ZFS_PARENT_PATH,
DATA_TYPE_STRING, pvd->vdev_path, NULL);
if (pvd->vdev_devid)
fm_payload_set(ereport,
FM_EREPORT_PAYLOAD_ZFS_PARENT_DEVID,
DATA_TYPE_STRING, pvd->vdev_devid, NULL);
}
spare_count = spa->spa_spares.sav_count;
spare_paths = kmem_zalloc(sizeof (char *) * spare_count,
KM_SLEEP);
spare_guids = kmem_zalloc(sizeof (uint64_t) * spare_count,
KM_SLEEP);
for (i = 0; i < spare_count; i++) {
spare_vd = spa->spa_spares.sav_vdevs[i];
if (spare_vd) {
spare_paths[i] = spare_vd->vdev_path;
spare_guids[i] = spare_vd->vdev_guid;
}
}
fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_VDEV_SPARE_PATHS,
DATA_TYPE_STRING_ARRAY, spare_count, spare_paths,
FM_EREPORT_PAYLOAD_ZFS_VDEV_SPARE_GUIDS,
DATA_TYPE_UINT64_ARRAY, spare_count, spare_guids, NULL);
kmem_free(spare_guids, sizeof (uint64_t) * spare_count);
kmem_free(spare_paths, sizeof (char *) * spare_count);
}
if (zio != NULL) {
/*
* Payload common to all I/Os.
*/
fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_ERR,
DATA_TYPE_INT32, zio->io_error, NULL);
fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_FLAGS,
DATA_TYPE_INT32, zio->io_flags, NULL);
fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_STAGE,
DATA_TYPE_UINT32, zio->io_stage, NULL);
fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_PIPELINE,
DATA_TYPE_UINT32, zio->io_pipeline, NULL);
fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_DELAY,
DATA_TYPE_UINT64, zio->io_delay, NULL);
fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_TIMESTAMP,
DATA_TYPE_UINT64, zio->io_timestamp, NULL);
fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_DELTA,
DATA_TYPE_UINT64, zio->io_delta, NULL);
fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_PRIORITY,
DATA_TYPE_UINT32, zio->io_priority, NULL);
/*
* If the 'size' parameter is non-zero, it indicates this is a
* RAID-Z or other I/O where the physical offset and length are
* provided for us, instead of within the zio_t.
*/
if (vd != NULL) {
if (size)
fm_payload_set(ereport,
FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET,
DATA_TYPE_UINT64, stateoroffset,
FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE,
DATA_TYPE_UINT64, size, NULL);
else
fm_payload_set(ereport,
FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET,
DATA_TYPE_UINT64, zio->io_offset,
FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE,
DATA_TYPE_UINT64, zio->io_size, NULL);
}
} else if (vd != NULL) {
/*
* If we have a vdev but no zio, this is a device fault, and the
* 'stateoroffset' parameter indicates the previous state of the
* vdev.
*/
fm_payload_set(ereport,
FM_EREPORT_PAYLOAD_ZFS_PREV_STATE,
DATA_TYPE_UINT64, stateoroffset, NULL);
}
/*
* Payload for I/Os with corresponding logical information.
*/
if (zb != NULL && (zio == NULL || zio->io_logical != NULL)) {
fm_payload_set(ereport,
FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJSET,
DATA_TYPE_UINT64, zb->zb_objset,
FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJECT,
DATA_TYPE_UINT64, zb->zb_object,
FM_EREPORT_PAYLOAD_ZFS_ZIO_LEVEL,
DATA_TYPE_INT64, zb->zb_level,
FM_EREPORT_PAYLOAD_ZFS_ZIO_BLKID,
DATA_TYPE_UINT64, zb->zb_blkid, NULL);
}
/*
* Payload for tuning the zed
*/
if (vd != NULL && strcmp(subclass, FM_EREPORT_ZFS_CHECKSUM) == 0) {
uint64_t cksum_n, cksum_t;
cksum_n = vdev_prop_get_inherited(vd, VDEV_PROP_CHECKSUM_N);
if (cksum_n != vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_N))
fm_payload_set(ereport,
FM_EREPORT_PAYLOAD_ZFS_VDEV_CKSUM_N,
DATA_TYPE_UINT64,
cksum_n,
NULL);
cksum_t = vdev_prop_get_inherited(vd, VDEV_PROP_CHECKSUM_T);
if (cksum_t != vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_T))
fm_payload_set(ereport,
FM_EREPORT_PAYLOAD_ZFS_VDEV_CKSUM_T,
DATA_TYPE_UINT64,
cksum_t,
NULL);
}
if (vd != NULL && strcmp(subclass, FM_EREPORT_ZFS_IO) == 0) {
uint64_t io_n, io_t;
io_n = vdev_prop_get_inherited(vd, VDEV_PROP_IO_N);
if (io_n != vdev_prop_default_numeric(VDEV_PROP_IO_N))
fm_payload_set(ereport,
FM_EREPORT_PAYLOAD_ZFS_VDEV_IO_N,
DATA_TYPE_UINT64,
io_n,
NULL);
io_t = vdev_prop_get_inherited(vd, VDEV_PROP_IO_T);
if (io_t != vdev_prop_default_numeric(VDEV_PROP_IO_T))
fm_payload_set(ereport,
FM_EREPORT_PAYLOAD_ZFS_VDEV_IO_T,
DATA_TYPE_UINT64,
io_t,
NULL);
}
if (vd != NULL && strcmp(subclass, FM_EREPORT_ZFS_DELAY) == 0) {
uint64_t slow_io_n, slow_io_t;
slow_io_n = vdev_prop_get_inherited(vd, VDEV_PROP_SLOW_IO_N);
if (slow_io_n != vdev_prop_default_numeric(VDEV_PROP_SLOW_IO_N))
fm_payload_set(ereport,
FM_EREPORT_PAYLOAD_ZFS_VDEV_SLOW_IO_N,
DATA_TYPE_UINT64,
slow_io_n,
NULL);
slow_io_t = vdev_prop_get_inherited(vd, VDEV_PROP_SLOW_IO_T);
if (slow_io_t != vdev_prop_default_numeric(VDEV_PROP_SLOW_IO_T))
fm_payload_set(ereport,
FM_EREPORT_PAYLOAD_ZFS_VDEV_SLOW_IO_T,
DATA_TYPE_UINT64,
slow_io_t,
NULL);
}
mutex_exit(&spa->spa_errlist_lock);
*ereport_out = ereport;
*detector_out = detector;
return (B_TRUE);
}
/* if it's <= 128 bytes, save the corruption directly */
#define ZFM_MAX_INLINE (128 / sizeof (uint64_t))
#define MAX_RANGES 16
typedef struct zfs_ecksum_info {
/* inline arrays of bits set and cleared. */
uint64_t zei_bits_set[ZFM_MAX_INLINE];
uint64_t zei_bits_cleared[ZFM_MAX_INLINE];
/*
* for each range, the number of bits set and cleared. The Hamming
* distance between the good and bad buffers is the sum of them all.
*/
uint32_t zei_range_sets[MAX_RANGES];
uint32_t zei_range_clears[MAX_RANGES];
struct zei_ranges {
uint32_t zr_start;
uint32_t zr_end;
} zei_ranges[MAX_RANGES];
size_t zei_range_count;
uint32_t zei_mingap;
uint32_t zei_allowed_mingap;
} zfs_ecksum_info_t;
static void
update_bad_bits(uint64_t value_arg, uint32_t *count)
{
size_t i;
size_t bits = 0;
uint64_t value = BE_64(value_arg);
/* We store the bits in big-endian (largest-first) order */
for (i = 0; i < 64; i++) {
if (value & (1ull << i))
++bits;
}
/* update the count of bits changed */
*count += bits;
}
/*
* We've now filled up the range array, and need to increase "mingap" and
* shrink the range list accordingly. zei_mingap is always the smallest
* distance between array entries, so we set the new_allowed_gap to be
* one greater than that. We then go through the list, joining together
* any ranges which are closer than the new_allowed_gap.
*
* By construction, there will be at least one. We also update zei_mingap
* to the new smallest gap, to prepare for our next invocation.
*/
static void
zei_shrink_ranges(zfs_ecksum_info_t *eip)
{
uint32_t mingap = UINT32_MAX;
uint32_t new_allowed_gap = eip->zei_mingap + 1;
size_t idx, output;
size_t max = eip->zei_range_count;
struct zei_ranges *r = eip->zei_ranges;
ASSERT3U(eip->zei_range_count, >, 0);
ASSERT3U(eip->zei_range_count, <=, MAX_RANGES);
output = idx = 0;
while (idx < max - 1) {
uint32_t start = r[idx].zr_start;
uint32_t end = r[idx].zr_end;
while (idx < max - 1) {
idx++;
uint32_t nstart = r[idx].zr_start;
uint32_t nend = r[idx].zr_end;
uint32_t gap = nstart - end;
if (gap < new_allowed_gap) {
end = nend;
continue;
}
if (gap < mingap)
mingap = gap;
break;
}
r[output].zr_start = start;
r[output].zr_end = end;
output++;
}
ASSERT3U(output, <, eip->zei_range_count);
eip->zei_range_count = output;
eip->zei_mingap = mingap;
eip->zei_allowed_mingap = new_allowed_gap;
}
static void
zei_add_range(zfs_ecksum_info_t *eip, int start, int end)
{
struct zei_ranges *r = eip->zei_ranges;
size_t count = eip->zei_range_count;
if (count >= MAX_RANGES) {
zei_shrink_ranges(eip);
count = eip->zei_range_count;
}
if (count == 0) {
eip->zei_mingap = UINT32_MAX;
eip->zei_allowed_mingap = 1;
} else {
int gap = start - r[count - 1].zr_end;
if (gap < eip->zei_allowed_mingap) {
r[count - 1].zr_end = end;
return;
}
if (gap < eip->zei_mingap)
eip->zei_mingap = gap;
}
r[count].zr_start = start;
r[count].zr_end = end;
eip->zei_range_count++;
}
static size_t
zei_range_total_size(zfs_ecksum_info_t *eip)
{
struct zei_ranges *r = eip->zei_ranges;
size_t count = eip->zei_range_count;
size_t result = 0;
size_t idx;
for (idx = 0; idx < count; idx++)
result += (r[idx].zr_end - r[idx].zr_start);
return (result);
}
static zfs_ecksum_info_t *
annotate_ecksum(nvlist_t *ereport, zio_bad_cksum_t *info,
const abd_t *goodabd, const abd_t *badabd, size_t size,
boolean_t drop_if_identical)
{
const uint64_t *good;
const uint64_t *bad;
size_t nui64s = size / sizeof (uint64_t);
size_t inline_size;
int no_inline = 0;
size_t idx;
size_t range;
size_t offset = 0;
ssize_t start = -1;
zfs_ecksum_info_t *eip = kmem_zalloc(sizeof (*eip), KM_SLEEP);
/* don't do any annotation for injected checksum errors */
if (info != NULL && info->zbc_injected)
return (eip);
if (info != NULL && info->zbc_has_cksum) {
fm_payload_set(ereport,
FM_EREPORT_PAYLOAD_ZFS_CKSUM_ALGO,
DATA_TYPE_STRING,
info->zbc_checksum_name,
NULL);
if (info->zbc_byteswapped) {
fm_payload_set(ereport,
FM_EREPORT_PAYLOAD_ZFS_CKSUM_BYTESWAP,
DATA_TYPE_BOOLEAN, 1,
NULL);
}
}
if (badabd == NULL || goodabd == NULL)
return (eip);
ASSERT3U(nui64s, <=, UINT32_MAX);
ASSERT3U(size, ==, nui64s * sizeof (uint64_t));
ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
ASSERT3U(size, <=, UINT32_MAX);
good = (const uint64_t *) abd_borrow_buf_copy((abd_t *)goodabd, size);
bad = (const uint64_t *) abd_borrow_buf_copy((abd_t *)badabd, size);
/* build up the range list by comparing the two buffers. */
for (idx = 0; idx < nui64s; idx++) {
if (good[idx] == bad[idx]) {
if (start == -1)
continue;
zei_add_range(eip, start, idx);
start = -1;
} else {
if (start != -1)
continue;
start = idx;
}
}
if (start != -1)
zei_add_range(eip, start, idx);
/* See if it will fit in our inline buffers */
inline_size = zei_range_total_size(eip);
if (inline_size > ZFM_MAX_INLINE)
no_inline = 1;
/*
* If there is no change and we want to drop if the buffers are
* identical, do so.
*/
if (inline_size == 0 && drop_if_identical) {
kmem_free(eip, sizeof (*eip));
abd_return_buf((abd_t *)goodabd, (void *)good, size);
abd_return_buf((abd_t *)badabd, (void *)bad, size);
return (NULL);
}
/*
* Now walk through the ranges, filling in the details of the
* differences. Also convert our uint64_t-array offsets to byte
* offsets.
*/
for (range = 0; range < eip->zei_range_count; range++) {
size_t start = eip->zei_ranges[range].zr_start;
size_t end = eip->zei_ranges[range].zr_end;
for (idx = start; idx < end; idx++) {
uint64_t set, cleared;
// bits set in bad, but not in good
set = ((~good[idx]) & bad[idx]);
// bits set in good, but not in bad
cleared = (good[idx] & (~bad[idx]));
if (!no_inline) {
ASSERT3U(offset, <, inline_size);
eip->zei_bits_set[offset] = set;
eip->zei_bits_cleared[offset] = cleared;
offset++;
}
update_bad_bits(set, &eip->zei_range_sets[range]);
update_bad_bits(cleared, &eip->zei_range_clears[range]);
}
/* convert to byte offsets */
eip->zei_ranges[range].zr_start *= sizeof (uint64_t);
eip->zei_ranges[range].zr_end *= sizeof (uint64_t);
}
abd_return_buf((abd_t *)goodabd, (void *)good, size);
abd_return_buf((abd_t *)badabd, (void *)bad, size);
eip->zei_allowed_mingap *= sizeof (uint64_t);
inline_size *= sizeof (uint64_t);
/* fill in ereport */
fm_payload_set(ereport,
FM_EREPORT_PAYLOAD_ZFS_BAD_OFFSET_RANGES,
DATA_TYPE_UINT32_ARRAY, 2 * eip->zei_range_count,
(uint32_t *)eip->zei_ranges,
FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_MIN_GAP,
DATA_TYPE_UINT32, eip->zei_allowed_mingap,
FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_SETS,
DATA_TYPE_UINT32_ARRAY, eip->zei_range_count, eip->zei_range_sets,
FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_CLEARS,
DATA_TYPE_UINT32_ARRAY, eip->zei_range_count, eip->zei_range_clears,
NULL);
if (!no_inline) {
fm_payload_set(ereport,
FM_EREPORT_PAYLOAD_ZFS_BAD_SET_BITS,
DATA_TYPE_UINT8_ARRAY,
inline_size, (uint8_t *)eip->zei_bits_set,
FM_EREPORT_PAYLOAD_ZFS_BAD_CLEARED_BITS,
DATA_TYPE_UINT8_ARRAY,
inline_size, (uint8_t *)eip->zei_bits_cleared,
NULL);
}
return (eip);
}
#else
void
zfs_ereport_clear(spa_t *spa, vdev_t *vd)
{
(void) spa, (void) vd;
}
#endif
/*
* Make sure our event is still valid for the given zio/vdev/pool. For example,
* we don't want to keep logging events for a faulted or missing vdev.
*/
boolean_t
zfs_ereport_is_valid(const char *subclass, spa_t *spa, vdev_t *vd, zio_t *zio)
{
#ifdef _KERNEL
/*
* If we are doing a spa_tryimport() or in recovery mode,
* ignore errors.
*/
if (spa_load_state(spa) == SPA_LOAD_TRYIMPORT ||
spa_load_state(spa) == SPA_LOAD_RECOVER)
return (B_FALSE);
/*
* If we are in the middle of opening a pool, and the previous attempt
* failed, don't bother logging any new ereports - we're just going to
* get the same diagnosis anyway.
*/
if (spa_load_state(spa) != SPA_LOAD_NONE &&
spa->spa_last_open_failed)
return (B_FALSE);
if (zio != NULL) {
/* If this is not a read or write zio, ignore the error */
if (zio->io_type != ZIO_TYPE_READ &&
zio->io_type != ZIO_TYPE_WRITE)
return (B_FALSE);
if (vd != NULL) {
/*
* If the vdev has already been marked as failing due
* to a failed probe, then ignore any subsequent I/O
* errors, as the DE will automatically fault the vdev
* on the first such failure. This also catches cases
* where vdev_remove_wanted is set and the device has
* not yet been asynchronously placed into the REMOVED
* state.
*/
if (zio->io_vd == vd && !vdev_accessible(vd, zio))
return (B_FALSE);
/*
* Ignore checksum errors for reads from DTL regions of
* leaf vdevs.
*/
if (zio->io_type == ZIO_TYPE_READ &&
zio->io_error == ECKSUM &&
vd->vdev_ops->vdev_op_leaf &&
vdev_dtl_contains(vd, DTL_MISSING, zio->io_txg, 1))
return (B_FALSE);
}
}
/*
* For probe failure, we want to avoid posting ereports if we've
* already removed the device in the meantime.
*/
if (vd != NULL &&
strcmp(subclass, FM_EREPORT_ZFS_PROBE_FAILURE) == 0 &&
(vd->vdev_remove_wanted || vd->vdev_state == VDEV_STATE_REMOVED))
return (B_FALSE);
/* Ignore bogus delay events (like from ioctls or unqueued IOs) */
if ((strcmp(subclass, FM_EREPORT_ZFS_DELAY) == 0) &&
(zio != NULL) && (!zio->io_timestamp)) {
return (B_FALSE);
}
#else
(void) subclass, (void) spa, (void) vd, (void) zio;
#endif
return (B_TRUE);
}
/*
* Post an ereport for the given subclass
*
* Returns
* - 0 if an event was posted
* - EINVAL if there was a problem posting event
* - EBUSY if the event was rate limited
* - EALREADY if the event was already posted (duplicate)
*/
int
zfs_ereport_post(const char *subclass, spa_t *spa, vdev_t *vd,
const zbookmark_phys_t *zb, zio_t *zio, uint64_t state)
{
int rc = 0;
#ifdef _KERNEL
nvlist_t *ereport = NULL;
nvlist_t *detector = NULL;
if (!zfs_ereport_is_valid(subclass, spa, vd, zio))
return (EINVAL);
if (zfs_ereport_is_duplicate(subclass, spa, vd, zb, zio, 0, 0))
return (SET_ERROR(EALREADY));
if (zfs_is_ratelimiting_event(subclass, vd))
return (SET_ERROR(EBUSY));
if (!zfs_ereport_start(&ereport, &detector, subclass, spa, vd,
zb, zio, state, 0))
return (SET_ERROR(EINVAL)); /* couldn't post event */
if (ereport == NULL)
return (SET_ERROR(EINVAL));
/* Cleanup is handled by the callback function */
rc = zfs_zevent_post(ereport, detector, zfs_zevent_post_cb);
#else
(void) subclass, (void) spa, (void) vd, (void) zb, (void) zio,
(void) state;
#endif
return (rc);
}
/*
* Prepare a checksum ereport
*
* Returns
* - 0 if an event was posted
* - EINVAL if there was a problem posting event
* - EBUSY if the event was rate limited
* - EALREADY if the event was already posted (duplicate)
*/
int
zfs_ereport_start_checksum(spa_t *spa, vdev_t *vd, const zbookmark_phys_t *zb,
struct zio *zio, uint64_t offset, uint64_t length, zio_bad_cksum_t *info)
{
zio_cksum_report_t *report;
#ifdef _KERNEL
if (!zfs_ereport_is_valid(FM_EREPORT_ZFS_CHECKSUM, spa, vd, zio))
return (SET_ERROR(EINVAL));
if (zfs_ereport_is_duplicate(FM_EREPORT_ZFS_CHECKSUM, spa, vd, zb, zio,
offset, length))
return (SET_ERROR(EALREADY));
if (zfs_is_ratelimiting_event(FM_EREPORT_ZFS_CHECKSUM, vd))
return (SET_ERROR(EBUSY));
#else
(void) zb, (void) offset;
#endif
report = kmem_zalloc(sizeof (*report), KM_SLEEP);
zio_vsd_default_cksum_report(zio, report);
/* copy the checksum failure information if it was provided */
if (info != NULL) {
report->zcr_ckinfo = kmem_zalloc(sizeof (*info), KM_SLEEP);
memcpy(report->zcr_ckinfo, info, sizeof (*info));
}
report->zcr_sector = 1ULL << vd->vdev_top->vdev_ashift;
report->zcr_align =
vdev_psize_to_asize(vd->vdev_top, report->zcr_sector);
report->zcr_length = length;
#ifdef _KERNEL
(void) zfs_ereport_start(&report->zcr_ereport, &report->zcr_detector,
FM_EREPORT_ZFS_CHECKSUM, spa, vd, zb, zio, offset, length);
if (report->zcr_ereport == NULL) {
zfs_ereport_free_checksum(report);
return (0);
}
#endif
mutex_enter(&spa->spa_errlist_lock);
report->zcr_next = zio->io_logical->io_cksum_report;
zio->io_logical->io_cksum_report = report;
mutex_exit(&spa->spa_errlist_lock);
return (0);
}
void
zfs_ereport_finish_checksum(zio_cksum_report_t *report, const abd_t *good_data,
const abd_t *bad_data, boolean_t drop_if_identical)
{
#ifdef _KERNEL
zfs_ecksum_info_t *info;
info = annotate_ecksum(report->zcr_ereport, report->zcr_ckinfo,
good_data, bad_data, report->zcr_length, drop_if_identical);
if (info != NULL)
zfs_zevent_post(report->zcr_ereport,
report->zcr_detector, zfs_zevent_post_cb);
else
zfs_zevent_post_cb(report->zcr_ereport, report->zcr_detector);
report->zcr_ereport = report->zcr_detector = NULL;
if (info != NULL)
kmem_free(info, sizeof (*info));
#else
(void) report, (void) good_data, (void) bad_data,
(void) drop_if_identical;
#endif
}
void
zfs_ereport_free_checksum(zio_cksum_report_t *rpt)
{
#ifdef _KERNEL
if (rpt->zcr_ereport != NULL) {
fm_nvlist_destroy(rpt->zcr_ereport,
FM_NVA_FREE);
fm_nvlist_destroy(rpt->zcr_detector,
FM_NVA_FREE);
}
#endif
rpt->zcr_free(rpt->zcr_cbdata, rpt->zcr_cbinfo);
if (rpt->zcr_ckinfo != NULL)
kmem_free(rpt->zcr_ckinfo, sizeof (*rpt->zcr_ckinfo));
kmem_free(rpt, sizeof (*rpt));
}
/*
* Post a checksum ereport
*
* Returns
* - 0 if an event was posted
* - EINVAL if there was a problem posting event
* - EBUSY if the event was rate limited
* - EALREADY if the event was already posted (duplicate)
*/
int
zfs_ereport_post_checksum(spa_t *spa, vdev_t *vd, const zbookmark_phys_t *zb,
struct zio *zio, uint64_t offset, uint64_t length,
const abd_t *good_data, const abd_t *bad_data, zio_bad_cksum_t *zbc)
{
int rc = 0;
#ifdef _KERNEL
nvlist_t *ereport = NULL;
nvlist_t *detector = NULL;
zfs_ecksum_info_t *info;
if (!zfs_ereport_is_valid(FM_EREPORT_ZFS_CHECKSUM, spa, vd, zio))
return (SET_ERROR(EINVAL));
if (zfs_ereport_is_duplicate(FM_EREPORT_ZFS_CHECKSUM, spa, vd, zb, zio,
offset, length))
return (SET_ERROR(EALREADY));
if (zfs_is_ratelimiting_event(FM_EREPORT_ZFS_CHECKSUM, vd))
return (SET_ERROR(EBUSY));
if (!zfs_ereport_start(&ereport, &detector, FM_EREPORT_ZFS_CHECKSUM,
spa, vd, zb, zio, offset, length) || (ereport == NULL)) {
return (SET_ERROR(EINVAL));
}
info = annotate_ecksum(ereport, zbc, good_data, bad_data, length,
B_FALSE);
if (info != NULL) {
rc = zfs_zevent_post(ereport, detector, zfs_zevent_post_cb);
kmem_free(info, sizeof (*info));
}
#else
(void) spa, (void) vd, (void) zb, (void) zio, (void) offset,
(void) length, (void) good_data, (void) bad_data, (void) zbc;
#endif
return (rc);
}
/*
* The 'sysevent.fs.zfs.*' events are signals posted to notify user space of
* change in the pool. All sysevents are listed in sys/sysevent/eventdefs.h
* and are designed to be consumed by the ZFS Event Daemon (ZED). For
* additional details refer to the zed(8) man page.
*/
nvlist_t *
zfs_event_create(spa_t *spa, vdev_t *vd, const char *type, const char *name,
nvlist_t *aux)
{
nvlist_t *resource = NULL;
#ifdef _KERNEL
char class[64];
if (spa_load_state(spa) == SPA_LOAD_TRYIMPORT)
return (NULL);
if ((resource = fm_nvlist_create(NULL)) == NULL)
return (NULL);
(void) snprintf(class, sizeof (class), "%s.%s.%s", type,
ZFS_ERROR_CLASS, name);
VERIFY0(nvlist_add_uint8(resource, FM_VERSION, FM_RSRC_VERSION));
VERIFY0(nvlist_add_string(resource, FM_CLASS, class));
VERIFY0(nvlist_add_string(resource,
FM_EREPORT_PAYLOAD_ZFS_POOL, spa_name(spa)));
VERIFY0(nvlist_add_uint64(resource,
FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, spa_guid(spa)));
VERIFY0(nvlist_add_uint64(resource,
FM_EREPORT_PAYLOAD_ZFS_POOL_STATE, spa_state(spa)));
VERIFY0(nvlist_add_int32(resource,
FM_EREPORT_PAYLOAD_ZFS_POOL_CONTEXT, spa_load_state(spa)));
if (vd) {
VERIFY0(nvlist_add_uint64(resource,
FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, vd->vdev_guid));
VERIFY0(nvlist_add_uint64(resource,
FM_EREPORT_PAYLOAD_ZFS_VDEV_STATE, vd->vdev_state));
if (vd->vdev_path != NULL)
VERIFY0(nvlist_add_string(resource,
FM_EREPORT_PAYLOAD_ZFS_VDEV_PATH, vd->vdev_path));
if (vd->vdev_devid != NULL)
VERIFY0(nvlist_add_string(resource,
FM_EREPORT_PAYLOAD_ZFS_VDEV_DEVID, vd->vdev_devid));
if (vd->vdev_fru != NULL)
VERIFY0(nvlist_add_string(resource,
FM_EREPORT_PAYLOAD_ZFS_VDEV_FRU, vd->vdev_fru));
if (vd->vdev_enc_sysfs_path != NULL)
VERIFY0(nvlist_add_string(resource,
FM_EREPORT_PAYLOAD_ZFS_VDEV_ENC_SYSFS_PATH,
vd->vdev_enc_sysfs_path));
}
/* also copy any optional payload data */
if (aux) {
nvpair_t *elem = NULL;
while ((elem = nvlist_next_nvpair(aux, elem)) != NULL)
(void) nvlist_add_nvpair(resource, elem);
}
#else
(void) spa, (void) vd, (void) type, (void) name, (void) aux;
#endif
return (resource);
}
static void
zfs_post_common(spa_t *spa, vdev_t *vd, const char *type, const char *name,
nvlist_t *aux)
{
#ifdef _KERNEL
nvlist_t *resource;
resource = zfs_event_create(spa, vd, type, name, aux);
if (resource)
zfs_zevent_post(resource, NULL, zfs_zevent_post_cb);
#else
(void) spa, (void) vd, (void) type, (void) name, (void) aux;
#endif
}
/*
* The 'resource.fs.zfs.removed' event is an internal signal that the given vdev
* has been removed from the system. This will cause the DE to ignore any
* recent I/O errors, inferring that they are due to the asynchronous device
* removal.
*/
void
zfs_post_remove(spa_t *spa, vdev_t *vd)
{
zfs_post_common(spa, vd, FM_RSRC_CLASS, FM_RESOURCE_REMOVED, NULL);
}
/*
* The 'resource.fs.zfs.autoreplace' event is an internal signal that the pool
* has the 'autoreplace' property set, and therefore any broken vdevs will be
* handled by higher level logic, and no vdev fault should be generated.
*/
void
zfs_post_autoreplace(spa_t *spa, vdev_t *vd)
{
zfs_post_common(spa, vd, FM_RSRC_CLASS, FM_RESOURCE_AUTOREPLACE, NULL);
}
/*
* The 'resource.fs.zfs.statechange' event is an internal signal that the
* given vdev has transitioned its state to DEGRADED or HEALTHY. This will
* cause the retire agent to repair any outstanding fault management cases
* open because the device was not found (fault.fs.zfs.device).
*/
void
zfs_post_state_change(spa_t *spa, vdev_t *vd, uint64_t laststate)
{
#ifdef _KERNEL
nvlist_t *aux;
/*
* Add optional supplemental keys to payload
*/
aux = fm_nvlist_create(NULL);
if (vd && aux) {
if (vd->vdev_physpath) {
fnvlist_add_string(aux,
FM_EREPORT_PAYLOAD_ZFS_VDEV_PHYSPATH,
vd->vdev_physpath);
}
if (vd->vdev_enc_sysfs_path) {
fnvlist_add_string(aux,
FM_EREPORT_PAYLOAD_ZFS_VDEV_ENC_SYSFS_PATH,
vd->vdev_enc_sysfs_path);
}
fnvlist_add_uint64(aux,
FM_EREPORT_PAYLOAD_ZFS_VDEV_LASTSTATE, laststate);
}
zfs_post_common(spa, vd, FM_RSRC_CLASS, FM_RESOURCE_STATECHANGE,
aux);
if (aux)
fm_nvlist_destroy(aux, FM_NVA_FREE);
#else
(void) spa, (void) vd, (void) laststate;
#endif
}
#ifdef _KERNEL
void
zfs_ereport_init(void)
{
mutex_init(&recent_events_lock, NULL, MUTEX_DEFAULT, NULL);
list_create(&recent_events_list, sizeof (recent_events_node_t),
offsetof(recent_events_node_t, re_list_link));
avl_create(&recent_events_tree, recent_events_compare,
sizeof (recent_events_node_t), offsetof(recent_events_node_t,
re_tree_link));
}
/*
* This 'early' fini needs to run before zfs_fini() which on Linux waits
* for the system_delay_taskq to drain.
*/
void
zfs_ereport_taskq_fini(void)
{
mutex_enter(&recent_events_lock);
if (recent_events_cleaner_tqid != 0) {
taskq_cancel_id(system_delay_taskq, recent_events_cleaner_tqid);
recent_events_cleaner_tqid = 0;
}
mutex_exit(&recent_events_lock);
}
void
zfs_ereport_fini(void)
{
recent_events_node_t *entry;
while ((entry = list_remove_head(&recent_events_list)) != NULL) {
avl_remove(&recent_events_tree, entry);
kmem_free(entry, sizeof (*entry));
}
avl_destroy(&recent_events_tree);
list_destroy(&recent_events_list);
mutex_destroy(&recent_events_lock);
}
void
zfs_ereport_snapshot_post(const char *subclass, spa_t *spa, const char *name)
{
nvlist_t *aux;
aux = fm_nvlist_create(NULL);
fnvlist_add_string(aux, FM_EREPORT_PAYLOAD_ZFS_SNAPSHOT_NAME, name);
zfs_post_common(spa, NULL, FM_RSRC_CLASS, subclass, aux);
fm_nvlist_destroy(aux, FM_NVA_FREE);
}
/*
* Post when a event when a zvol is created or removed
*
* This is currently only used by macOS, since it uses the event to create
* symlinks between the volume name (mypool/myvol) and the actual /dev
* device (/dev/disk3). For example:
*
* /var/run/zfs/dsk/mypool/myvol -> /dev/disk3
*
* name: The full name of the zvol ("mypool/myvol")
* dev_name: The full /dev name for the zvol ("/dev/disk3")
* raw_name: The raw /dev name for the zvol ("/dev/rdisk3")
*/
void
zfs_ereport_zvol_post(const char *subclass, const char *name,
const char *dev_name, const char *raw_name)
{
nvlist_t *aux;
char *r;
boolean_t locked = mutex_owned(&spa_namespace_lock);
if (!locked) mutex_enter(&spa_namespace_lock);
spa_t *spa = spa_lookup(name);
if (!locked) mutex_exit(&spa_namespace_lock);
if (spa == NULL)
return;
aux = fm_nvlist_create(NULL);
fnvlist_add_string(aux, FM_EREPORT_PAYLOAD_ZFS_DEVICE_NAME, dev_name);
fnvlist_add_string(aux, FM_EREPORT_PAYLOAD_ZFS_RAW_DEVICE_NAME,
raw_name);
r = strchr(name, '/');
if (r && r[1])
fnvlist_add_string(aux, FM_EREPORT_PAYLOAD_ZFS_VOLUME, &r[1]);
zfs_post_common(spa, NULL, FM_RSRC_CLASS, subclass, aux);
fm_nvlist_destroy(aux, FM_NVA_FREE);
}
EXPORT_SYMBOL(zfs_ereport_post);
EXPORT_SYMBOL(zfs_ereport_is_valid);
EXPORT_SYMBOL(zfs_ereport_post_checksum);
EXPORT_SYMBOL(zfs_post_remove);
EXPORT_SYMBOL(zfs_post_autoreplace);
EXPORT_SYMBOL(zfs_post_state_change);
ZFS_MODULE_PARAM(zfs_zevent, zfs_zevent_, retain_max, UINT, ZMOD_RW,
"Maximum recent zevents records to retain for duplicate checking");
ZFS_MODULE_PARAM(zfs_zevent, zfs_zevent_, retain_expire_secs, UINT, ZMOD_RW,
"Expiration time for recent zevents records");
#endif /* _KERNEL */