zfs/module/zfs/zfs_znode.c

1670 lines
40 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/* Portions Copyright 2007 Jeremy Teo */
#ifdef _KERNEL
#include <sys/types.h>
#include <sys/param.h>
#include <sys/time.h>
#include <sys/systm.h>
#include <sys/sysmacros.h>
#include <sys/resource.h>
#include <sys/mntent.h>
#include <sys/mkdev.h>
#include <sys/u8_textprep.h>
#include <sys/dsl_dataset.h>
#include <sys/vfs.h>
#include <sys/vfs_opreg.h>
#include <sys/vnode.h>
#include <sys/file.h>
#include <sys/kmem.h>
#include <sys/errno.h>
#include <sys/unistd.h>
#include <sys/mode.h>
#include <sys/atomic.h>
#include <vm/pvn.h>
#include "fs/fs_subr.h"
#include <sys/zfs_dir.h>
#include <sys/zfs_acl.h>
#include <sys/zfs_ioctl.h>
#include <sys/zfs_rlock.h>
#include <sys/zfs_fuid.h>
#include <sys/fs/zfs.h>
#include <sys/kidmap.h>
#endif /* _KERNEL */
#include <sys/dmu.h>
#include <sys/refcount.h>
#include <sys/stat.h>
#include <sys/zap.h>
#include <sys/zfs_znode.h>
#include "zfs_prop.h"
/*
* Define ZNODE_STATS to turn on statistic gathering. By default, it is only
* turned on when DEBUG is also defined.
*/
#ifdef DEBUG
#define ZNODE_STATS
#endif /* DEBUG */
#ifdef ZNODE_STATS
#define ZNODE_STAT_ADD(stat) ((stat)++)
#else
#define ZNODE_STAT_ADD(stat) /* nothing */
#endif /* ZNODE_STATS */
#define POINTER_IS_VALID(p) (!((uintptr_t)(p) & 0x3))
#define POINTER_INVALIDATE(pp) (*(pp) = (void *)((uintptr_t)(*(pp)) | 0x1))
/*
* Functions needed for userland (ie: libzpool) are not put under
* #ifdef_KERNEL; the rest of the functions have dependencies
* (such as VFS logic) that will not compile easily in userland.
*/
#ifdef _KERNEL
static kmem_cache_t *znode_cache = NULL;
/*ARGSUSED*/
static void
znode_evict_error(dmu_buf_t *dbuf, void *user_ptr)
{
/*
* We should never drop all dbuf refs without first clearing
* the eviction callback.
*/
panic("evicting znode %p\n", user_ptr);
}
/*ARGSUSED*/
static int
zfs_znode_cache_constructor(void *buf, void *arg, int kmflags)
{
znode_t *zp = buf;
ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs));
zp->z_vnode = vn_alloc(kmflags);
if (zp->z_vnode == NULL) {
return (-1);
}
ZTOV(zp)->v_data = zp;
list_link_init(&zp->z_link_node);
mutex_init(&zp->z_lock, NULL, MUTEX_DEFAULT, NULL);
rw_init(&zp->z_parent_lock, NULL, RW_DEFAULT, NULL);
rw_init(&zp->z_name_lock, NULL, RW_DEFAULT, NULL);
mutex_init(&zp->z_acl_lock, NULL, MUTEX_DEFAULT, NULL);
mutex_init(&zp->z_range_lock, NULL, MUTEX_DEFAULT, NULL);
avl_create(&zp->z_range_avl, zfs_range_compare,
sizeof (rl_t), offsetof(rl_t, r_node));
zp->z_dbuf = NULL;
zp->z_dirlocks = NULL;
return (0);
}
/*ARGSUSED*/
static void
zfs_znode_cache_destructor(void *buf, void *arg)
{
znode_t *zp = buf;
ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs));
ASSERT(ZTOV(zp)->v_data == zp);
vn_free(ZTOV(zp));
ASSERT(!list_link_active(&zp->z_link_node));
mutex_destroy(&zp->z_lock);
rw_destroy(&zp->z_parent_lock);
rw_destroy(&zp->z_name_lock);
mutex_destroy(&zp->z_acl_lock);
avl_destroy(&zp->z_range_avl);
mutex_destroy(&zp->z_range_lock);
ASSERT(zp->z_dbuf == NULL);
ASSERT(zp->z_dirlocks == NULL);
}
#ifdef ZNODE_STATS
static struct {
uint64_t zms_zfsvfs_invalid;
uint64_t zms_zfsvfs_unmounted;
uint64_t zms_zfsvfs_recheck_invalid;
uint64_t zms_obj_held;
uint64_t zms_vnode_locked;
uint64_t zms_not_only_dnlc;
} znode_move_stats;
#endif /* ZNODE_STATS */
static void
zfs_znode_move_impl(znode_t *ozp, znode_t *nzp)
{
vnode_t *vp;
/* Copy fields. */
nzp->z_zfsvfs = ozp->z_zfsvfs;
/* Swap vnodes. */
vp = nzp->z_vnode;
nzp->z_vnode = ozp->z_vnode;
ozp->z_vnode = vp; /* let destructor free the overwritten vnode */
ZTOV(ozp)->v_data = ozp;
ZTOV(nzp)->v_data = nzp;
nzp->z_id = ozp->z_id;
ASSERT(ozp->z_dirlocks == NULL); /* znode not in use */
ASSERT(avl_numnodes(&ozp->z_range_avl) == 0);
nzp->z_unlinked = ozp->z_unlinked;
nzp->z_atime_dirty = ozp->z_atime_dirty;
nzp->z_zn_prefetch = ozp->z_zn_prefetch;
nzp->z_blksz = ozp->z_blksz;
nzp->z_seq = ozp->z_seq;
nzp->z_mapcnt = ozp->z_mapcnt;
nzp->z_last_itx = ozp->z_last_itx;
nzp->z_gen = ozp->z_gen;
nzp->z_sync_cnt = ozp->z_sync_cnt;
nzp->z_phys = ozp->z_phys;
nzp->z_dbuf = ozp->z_dbuf;
/* Update back pointers. */
(void) dmu_buf_update_user(nzp->z_dbuf, ozp, nzp, &nzp->z_phys,
znode_evict_error);
/*
* Invalidate the original znode by clearing fields that provide a
* pointer back to the znode. Set the low bit of the vfs pointer to
* ensure that zfs_znode_move() recognizes the znode as invalid in any
* subsequent callback.
*/
ozp->z_dbuf = NULL;
POINTER_INVALIDATE(&ozp->z_zfsvfs);
}
/*
* Wrapper function for ZFS_ENTER that returns 0 if successful and otherwise
* returns a non-zero error code.
*/
static int
zfs_enter(zfsvfs_t *zfsvfs)
{
ZFS_ENTER(zfsvfs);
return (0);
}
/*ARGSUSED*/
static kmem_cbrc_t
zfs_znode_move(void *buf, void *newbuf, size_t size, void *arg)
{
znode_t *ozp = buf, *nzp = newbuf;
zfsvfs_t *zfsvfs;
vnode_t *vp;
/*
* The znode is on the file system's list of known znodes if the vfs
* pointer is valid. We set the low bit of the vfs pointer when freeing
* the znode to invalidate it, and the memory patterns written by kmem
* (baddcafe and deadbeef) set at least one of the two low bits. A newly
* created znode sets the vfs pointer last of all to indicate that the
* znode is known and in a valid state to be moved by this function.
*/
zfsvfs = ozp->z_zfsvfs;
if (!POINTER_IS_VALID(zfsvfs)) {
ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_invalid);
return (KMEM_CBRC_DONT_KNOW);
}
/*
* Ensure that the filesystem is not unmounted during the move.
*/
if (zfs_enter(zfsvfs) != 0) { /* ZFS_ENTER */
ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_unmounted);
return (KMEM_CBRC_DONT_KNOW);
}
mutex_enter(&zfsvfs->z_znodes_lock);
/*
* Recheck the vfs pointer in case the znode was removed just before
* acquiring the lock.
*/
if (zfsvfs != ozp->z_zfsvfs) {
mutex_exit(&zfsvfs->z_znodes_lock);
ZFS_EXIT(zfsvfs);
ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_recheck_invalid);
return (KMEM_CBRC_DONT_KNOW);
}
/*
* At this point we know that as long as we hold z_znodes_lock, the
* znode cannot be freed and fields within the znode can be safely
* accessed. Now, prevent a race with zfs_zget().
*/
if (ZFS_OBJ_HOLD_TRYENTER(zfsvfs, ozp->z_id) == 0) {
mutex_exit(&zfsvfs->z_znodes_lock);
ZFS_EXIT(zfsvfs);
ZNODE_STAT_ADD(znode_move_stats.zms_obj_held);
return (KMEM_CBRC_LATER);
}
vp = ZTOV(ozp);
if (mutex_tryenter(&vp->v_lock) == 0) {
ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id);
mutex_exit(&zfsvfs->z_znodes_lock);
ZFS_EXIT(zfsvfs);
ZNODE_STAT_ADD(znode_move_stats.zms_vnode_locked);
return (KMEM_CBRC_LATER);
}
/* Only move znodes that are referenced _only_ by the DNLC. */
if (vp->v_count != 1 || !vn_in_dnlc(vp)) {
mutex_exit(&vp->v_lock);
ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id);
mutex_exit(&zfsvfs->z_znodes_lock);
ZFS_EXIT(zfsvfs);
ZNODE_STAT_ADD(znode_move_stats.zms_not_only_dnlc);
return (KMEM_CBRC_LATER);
}
/*
* The znode is known and in a valid state to move. We're holding the
* locks needed to execute the critical section.
*/
zfs_znode_move_impl(ozp, nzp);
mutex_exit(&vp->v_lock);
ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id);
list_link_replace(&ozp->z_link_node, &nzp->z_link_node);
mutex_exit(&zfsvfs->z_znodes_lock);
ZFS_EXIT(zfsvfs);
return (KMEM_CBRC_YES);
}
void
zfs_znode_init(void)
{
/*
* Initialize zcache
*/
ASSERT(znode_cache == NULL);
znode_cache = kmem_cache_create("zfs_znode_cache",
sizeof (znode_t), 0, zfs_znode_cache_constructor,
zfs_znode_cache_destructor, NULL, NULL, NULL, 0);
kmem_cache_set_move(znode_cache, zfs_znode_move);
}
void
zfs_znode_fini(void)
{
/*
* Cleanup vfs & vnode ops
*/
zfs_remove_op_tables();
/*
* Cleanup zcache
*/
if (znode_cache)
kmem_cache_destroy(znode_cache);
znode_cache = NULL;
}
struct vnodeops *zfs_dvnodeops;
struct vnodeops *zfs_fvnodeops;
struct vnodeops *zfs_symvnodeops;
struct vnodeops *zfs_xdvnodeops;
struct vnodeops *zfs_evnodeops;
void
zfs_remove_op_tables()
{
/*
* Remove vfs ops
*/
ASSERT(zfsfstype);
(void) vfs_freevfsops_by_type(zfsfstype);
zfsfstype = 0;
/*
* Remove vnode ops
*/
if (zfs_dvnodeops)
vn_freevnodeops(zfs_dvnodeops);
if (zfs_fvnodeops)
vn_freevnodeops(zfs_fvnodeops);
if (zfs_symvnodeops)
vn_freevnodeops(zfs_symvnodeops);
if (zfs_xdvnodeops)
vn_freevnodeops(zfs_xdvnodeops);
if (zfs_evnodeops)
vn_freevnodeops(zfs_evnodeops);
zfs_dvnodeops = NULL;
zfs_fvnodeops = NULL;
zfs_symvnodeops = NULL;
zfs_xdvnodeops = NULL;
zfs_evnodeops = NULL;
}
extern const fs_operation_def_t zfs_dvnodeops_template[];
extern const fs_operation_def_t zfs_fvnodeops_template[];
extern const fs_operation_def_t zfs_xdvnodeops_template[];
extern const fs_operation_def_t zfs_symvnodeops_template[];
extern const fs_operation_def_t zfs_evnodeops_template[];
int
zfs_create_op_tables()
{
int error;
/*
* zfs_dvnodeops can be set if mod_remove() calls mod_installfs()
* due to a failure to remove the the 2nd modlinkage (zfs_modldrv).
* In this case we just return as the ops vectors are already set up.
*/
if (zfs_dvnodeops)
return (0);
error = vn_make_ops(MNTTYPE_ZFS, zfs_dvnodeops_template,
&zfs_dvnodeops);
if (error)
return (error);
error = vn_make_ops(MNTTYPE_ZFS, zfs_fvnodeops_template,
&zfs_fvnodeops);
if (error)
return (error);
error = vn_make_ops(MNTTYPE_ZFS, zfs_symvnodeops_template,
&zfs_symvnodeops);
if (error)
return (error);
error = vn_make_ops(MNTTYPE_ZFS, zfs_xdvnodeops_template,
&zfs_xdvnodeops);
if (error)
return (error);
error = vn_make_ops(MNTTYPE_ZFS, zfs_evnodeops_template,
&zfs_evnodeops);
return (error);
}
/*
* zfs_init_fs - Initialize the zfsvfs struct and the file system
* incore "master" object. Verify version compatibility.
*/
int
zfs_init_fs(zfsvfs_t *zfsvfs, znode_t **zpp)
{
extern int zfsfstype;
objset_t *os = zfsvfs->z_os;
int i, error;
uint64_t fsid_guid;
uint64_t zval;
*zpp = NULL;
error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version);
if (error) {
return (error);
} else if (zfsvfs->z_version > ZPL_VERSION) {
(void) printf("Mismatched versions: File system "
"is version %llu on-disk format, which is "
"incompatible with this software version %lld!",
(u_longlong_t)zfsvfs->z_version, ZPL_VERSION);
return (ENOTSUP);
}
if ((error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &zval)) != 0)
return (error);
zfsvfs->z_norm = (int)zval;
if ((error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &zval)) != 0)
return (error);
zfsvfs->z_utf8 = (zval != 0);
if ((error = zfs_get_zplprop(os, ZFS_PROP_CASE, &zval)) != 0)
return (error);
zfsvfs->z_case = (uint_t)zval;
/*
* Fold case on file systems that are always or sometimes case
* insensitive.
*/
if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
zfsvfs->z_case == ZFS_CASE_MIXED)
zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;
/*
* The fsid is 64 bits, composed of an 8-bit fs type, which
* separates our fsid from any other filesystem types, and a
* 56-bit objset unique ID. The objset unique ID is unique to
* all objsets open on this system, provided by unique_create().
* The 8-bit fs type must be put in the low bits of fsid[1]
* because that's where other Solaris filesystems put it.
*/
fsid_guid = dmu_objset_fsid_guid(os);
ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0);
zfsvfs->z_vfs->vfs_fsid.val[0] = fsid_guid;
zfsvfs->z_vfs->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) |
zfsfstype & 0xFF;
error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1,
&zfsvfs->z_root);
if (error)
return (error);
ASSERT(zfsvfs->z_root != 0);
error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
&zfsvfs->z_unlinkedobj);
if (error)
return (error);
/*
* Initialize zget mutex's
*/
for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL);
error = zfs_zget(zfsvfs, zfsvfs->z_root, zpp);
if (error) {
/*
* On error, we destroy the mutexes here since it's not
* possible for the caller to determine if the mutexes were
* initialized properly.
*/
for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
mutex_destroy(&zfsvfs->z_hold_mtx[i]);
return (error);
}
ASSERT3U((*zpp)->z_id, ==, zfsvfs->z_root);
error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1,
&zfsvfs->z_fuid_obj);
if (error == ENOENT)
error = 0;
return (0);
}
/*
* define a couple of values we need available
* for both 64 and 32 bit environments.
*/
#ifndef NBITSMINOR64
#define NBITSMINOR64 32
#endif
#ifndef MAXMAJ64
#define MAXMAJ64 0xffffffffUL
#endif
#ifndef MAXMIN64
#define MAXMIN64 0xffffffffUL
#endif
/*
* Create special expldev for ZFS private use.
* Can't use standard expldev since it doesn't do
* what we want. The standard expldev() takes a
* dev32_t in LP64 and expands it to a long dev_t.
* We need an interface that takes a dev32_t in ILP32
* and expands it to a long dev_t.
*/
static uint64_t
zfs_expldev(dev_t dev)
{
#ifndef _LP64
major_t major = (major_t)dev >> NBITSMINOR32 & MAXMAJ32;
return (((uint64_t)major << NBITSMINOR64) |
((minor_t)dev & MAXMIN32));
#else
return (dev);
#endif
}
/*
* Special cmpldev for ZFS private use.
* Can't use standard cmpldev since it takes
* a long dev_t and compresses it to dev32_t in
* LP64. We need to do a compaction of a long dev_t
* to a dev32_t in ILP32.
*/
dev_t
zfs_cmpldev(uint64_t dev)
{
#ifndef _LP64
minor_t minor = (minor_t)dev & MAXMIN64;
major_t major = (major_t)(dev >> NBITSMINOR64) & MAXMAJ64;
if (major > MAXMAJ32 || minor > MAXMIN32)
return (NODEV32);
return (((dev32_t)major << NBITSMINOR32) | minor);
#else
return (dev);
#endif
}
static void
zfs_znode_dmu_init(zfsvfs_t *zfsvfs, znode_t *zp, dmu_buf_t *db)
{
znode_t *nzp;
ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs) || (zfsvfs == zp->z_zfsvfs));
ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zfsvfs, zp->z_id)));
mutex_enter(&zp->z_lock);
ASSERT(zp->z_dbuf == NULL);
zp->z_dbuf = db;
nzp = dmu_buf_set_user_ie(db, zp, &zp->z_phys, znode_evict_error);
/*
* there should be no
* concurrent zgets on this object.
*/
if (nzp != NULL)
panic("existing znode %p for dbuf %p", (void *)nzp, (void *)db);
/*
* Slap on VROOT if we are the root znode
*/
if (zp->z_id == zfsvfs->z_root)
ZTOV(zp)->v_flag |= VROOT;
mutex_exit(&zp->z_lock);
vn_exists(ZTOV(zp));
}
void
zfs_znode_dmu_fini(znode_t *zp)
{
dmu_buf_t *db = zp->z_dbuf;
ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zp->z_zfsvfs, zp->z_id)) ||
zp->z_unlinked ||
RW_WRITE_HELD(&zp->z_zfsvfs->z_teardown_inactive_lock));
ASSERT(zp->z_dbuf != NULL);
zp->z_dbuf = NULL;
VERIFY(zp == dmu_buf_update_user(db, zp, NULL, NULL, NULL));
dmu_buf_rele(db, NULL);
}
/*
* Construct a new znode/vnode and intialize.
*
* This does not do a call to dmu_set_user() that is
* up to the caller to do, in case you don't want to
* return the znode
*/
static znode_t *
zfs_znode_alloc(zfsvfs_t *zfsvfs, dmu_buf_t *db, int blksz)
{
znode_t *zp;
vnode_t *vp;
zp = kmem_cache_alloc(znode_cache, KM_SLEEP);
ASSERT(zp->z_dirlocks == NULL);
ASSERT(zp->z_dbuf == NULL);
ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs));
/*
* Defer setting z_zfsvfs until the znode is ready to be a candidate for
* the zfs_znode_move() callback.
*/
zp->z_phys = NULL;
zp->z_unlinked = 0;
zp->z_atime_dirty = 0;
zp->z_mapcnt = 0;
zp->z_last_itx = 0;
zp->z_id = db->db_object;
zp->z_blksz = blksz;
zp->z_seq = 0x7A4653;
zp->z_sync_cnt = 0;
vp = ZTOV(zp);
vn_reinit(vp);
zfs_znode_dmu_init(zfsvfs, zp, db);
zp->z_gen = zp->z_phys->zp_gen;
vp->v_vfsp = zfsvfs->z_parent->z_vfs;
vp->v_type = IFTOVT((mode_t)zp->z_phys->zp_mode);
switch (vp->v_type) {
case VDIR:
if (zp->z_phys->zp_flags & ZFS_XATTR) {
vn_setops(vp, zfs_xdvnodeops);
vp->v_flag |= V_XATTRDIR;
} else {
vn_setops(vp, zfs_dvnodeops);
}
zp->z_zn_prefetch = B_TRUE; /* z_prefetch default is enabled */
break;
case VBLK:
case VCHR:
vp->v_rdev = zfs_cmpldev(zp->z_phys->zp_rdev);
/*FALLTHROUGH*/
case VFIFO:
case VSOCK:
case VDOOR:
vn_setops(vp, zfs_fvnodeops);
break;
case VREG:
vp->v_flag |= VMODSORT;
vn_setops(vp, zfs_fvnodeops);
break;
case VLNK:
vn_setops(vp, zfs_symvnodeops);
break;
default:
vn_setops(vp, zfs_evnodeops);
break;
}
mutex_enter(&zfsvfs->z_znodes_lock);
list_insert_tail(&zfsvfs->z_all_znodes, zp);
membar_producer();
/*
* Everything else must be valid before assigning z_zfsvfs makes the
* znode eligible for zfs_znode_move().
*/
zp->z_zfsvfs = zfsvfs;
mutex_exit(&zfsvfs->z_znodes_lock);
VFS_HOLD(zfsvfs->z_vfs);
return (zp);
}
/*
* Create a new DMU object to hold a zfs znode.
*
* IN: dzp - parent directory for new znode
* vap - file attributes for new znode
* tx - dmu transaction id for zap operations
* cr - credentials of caller
* flag - flags:
* IS_ROOT_NODE - new object will be root
* IS_XATTR - new object is an attribute
* IS_REPLAY - intent log replay
* bonuslen - length of bonus buffer
* setaclp - File/Dir initial ACL
* fuidp - Tracks fuid allocation.
*
* OUT: zpp - allocated znode
*
*/
void
zfs_mknode(znode_t *dzp, vattr_t *vap, dmu_tx_t *tx, cred_t *cr,
uint_t flag, znode_t **zpp, int bonuslen, zfs_acl_t *setaclp,
zfs_fuid_info_t **fuidp)
{
dmu_buf_t *db;
znode_phys_t *pzp;
zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
timestruc_t now;
uint64_t gen, obj;
int err;
ASSERT(vap && (vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE));
if (zfsvfs->z_replay) {
obj = vap->va_nodeid;
flag |= IS_REPLAY;
now = vap->va_ctime; /* see zfs_replay_create() */
gen = vap->va_nblocks; /* ditto */
} else {
obj = 0;
gethrestime(&now);
gen = dmu_tx_get_txg(tx);
}
/*
* Create a new DMU object.
*/
/*
* There's currently no mechanism for pre-reading the blocks that will
* be to needed allocate a new object, so we accept the small chance
* that there will be an i/o error and we will fail one of the
* assertions below.
*/
if (vap->va_type == VDIR) {
if (flag & IS_REPLAY) {
err = zap_create_claim_norm(zfsvfs->z_os, obj,
zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS,
DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx);
ASSERT3U(err, ==, 0);
} else {
obj = zap_create_norm(zfsvfs->z_os,
zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS,
DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx);
}
} else {
if (flag & IS_REPLAY) {
err = dmu_object_claim(zfsvfs->z_os, obj,
DMU_OT_PLAIN_FILE_CONTENTS, 0,
DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx);
ASSERT3U(err, ==, 0);
} else {
obj = dmu_object_alloc(zfsvfs->z_os,
DMU_OT_PLAIN_FILE_CONTENTS, 0,
DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx);
}
}
VERIFY(0 == dmu_bonus_hold(zfsvfs->z_os, obj, NULL, &db));
dmu_buf_will_dirty(db, tx);
/*
* Initialize the znode physical data to zero.
*/
ASSERT(db->db_size >= sizeof (znode_phys_t));
bzero(db->db_data, db->db_size);
pzp = db->db_data;
/*
* If this is the root, fix up the half-initialized parent pointer
* to reference the just-allocated physical data area.
*/
if (flag & IS_ROOT_NODE) {
dzp->z_dbuf = db;
dzp->z_phys = pzp;
dzp->z_id = obj;
}
/*
* If parent is an xattr, so am I.
*/
if (dzp->z_phys->zp_flags & ZFS_XATTR)
flag |= IS_XATTR;
if (vap->va_type == VBLK || vap->va_type == VCHR) {
pzp->zp_rdev = zfs_expldev(vap->va_rdev);
}
if (zfsvfs->z_use_fuids)
pzp->zp_flags = ZFS_ARCHIVE | ZFS_AV_MODIFIED;
if (vap->va_type == VDIR) {
pzp->zp_size = 2; /* contents ("." and "..") */
pzp->zp_links = (flag & (IS_ROOT_NODE | IS_XATTR)) ? 2 : 1;
}
pzp->zp_parent = dzp->z_id;
if (flag & IS_XATTR)
pzp->zp_flags |= ZFS_XATTR;
pzp->zp_gen = gen;
ZFS_TIME_ENCODE(&now, pzp->zp_crtime);
ZFS_TIME_ENCODE(&now, pzp->zp_ctime);
if (vap->va_mask & AT_ATIME) {
ZFS_TIME_ENCODE(&vap->va_atime, pzp->zp_atime);
} else {
ZFS_TIME_ENCODE(&now, pzp->zp_atime);
}
if (vap->va_mask & AT_MTIME) {
ZFS_TIME_ENCODE(&vap->va_mtime, pzp->zp_mtime);
} else {
ZFS_TIME_ENCODE(&now, pzp->zp_mtime);
}
pzp->zp_mode = MAKEIMODE(vap->va_type, vap->va_mode);
if (!(flag & IS_ROOT_NODE)) {
ZFS_OBJ_HOLD_ENTER(zfsvfs, obj);
*zpp = zfs_znode_alloc(zfsvfs, db, 0);
ZFS_OBJ_HOLD_EXIT(zfsvfs, obj);
} else {
/*
* If we are creating the root node, the "parent" we
* passed in is the znode for the root.
*/
*zpp = dzp;
}
zfs_perm_init(*zpp, dzp, flag, vap, tx, cr, setaclp, fuidp);
}
void
zfs_xvattr_set(znode_t *zp, xvattr_t *xvap)
{
xoptattr_t *xoap;
xoap = xva_getxoptattr(xvap);
ASSERT(xoap);
if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
ZFS_TIME_ENCODE(&xoap->xoa_createtime, zp->z_phys->zp_crtime);
XVA_SET_RTN(xvap, XAT_CREATETIME);
}
if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
ZFS_ATTR_SET(zp, ZFS_READONLY, xoap->xoa_readonly);
XVA_SET_RTN(xvap, XAT_READONLY);
}
if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
ZFS_ATTR_SET(zp, ZFS_HIDDEN, xoap->xoa_hidden);
XVA_SET_RTN(xvap, XAT_HIDDEN);
}
if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
ZFS_ATTR_SET(zp, ZFS_SYSTEM, xoap->xoa_system);
XVA_SET_RTN(xvap, XAT_SYSTEM);
}
if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
ZFS_ATTR_SET(zp, ZFS_ARCHIVE, xoap->xoa_archive);
XVA_SET_RTN(xvap, XAT_ARCHIVE);
}
if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
ZFS_ATTR_SET(zp, ZFS_IMMUTABLE, xoap->xoa_immutable);
XVA_SET_RTN(xvap, XAT_IMMUTABLE);
}
if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
ZFS_ATTR_SET(zp, ZFS_NOUNLINK, xoap->xoa_nounlink);
XVA_SET_RTN(xvap, XAT_NOUNLINK);
}
if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
ZFS_ATTR_SET(zp, ZFS_APPENDONLY, xoap->xoa_appendonly);
XVA_SET_RTN(xvap, XAT_APPENDONLY);
}
if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
ZFS_ATTR_SET(zp, ZFS_NODUMP, xoap->xoa_nodump);
XVA_SET_RTN(xvap, XAT_NODUMP);
}
if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
ZFS_ATTR_SET(zp, ZFS_OPAQUE, xoap->xoa_opaque);
XVA_SET_RTN(xvap, XAT_OPAQUE);
}
if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
ZFS_ATTR_SET(zp, ZFS_AV_QUARANTINED,
xoap->xoa_av_quarantined);
XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
}
if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
ZFS_ATTR_SET(zp, ZFS_AV_MODIFIED, xoap->xoa_av_modified);
XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
}
if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) {
(void) memcpy(zp->z_phys + 1, xoap->xoa_av_scanstamp,
sizeof (xoap->xoa_av_scanstamp));
zp->z_phys->zp_flags |= ZFS_BONUS_SCANSTAMP;
XVA_SET_RTN(xvap, XAT_AV_SCANSTAMP);
}
}
int
zfs_zget(zfsvfs_t *zfsvfs, uint64_t obj_num, znode_t **zpp)
{
dmu_object_info_t doi;
dmu_buf_t *db;
znode_t *zp;
int err;
*zpp = NULL;
ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num);
err = dmu_bonus_hold(zfsvfs->z_os, obj_num, NULL, &db);
if (err) {
ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
return (err);
}
dmu_object_info_from_db(db, &doi);
if (doi.doi_bonus_type != DMU_OT_ZNODE ||
doi.doi_bonus_size < sizeof (znode_phys_t)) {
dmu_buf_rele(db, NULL);
ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
return (EINVAL);
}
zp = dmu_buf_get_user(db);
if (zp != NULL) {
mutex_enter(&zp->z_lock);
/*
* Since we do immediate eviction of the z_dbuf, we
* should never find a dbuf with a znode that doesn't
* know about the dbuf.
*/
ASSERT3P(zp->z_dbuf, ==, db);
ASSERT3U(zp->z_id, ==, obj_num);
if (zp->z_unlinked) {
err = ENOENT;
} else {
VN_HOLD(ZTOV(zp));
*zpp = zp;
err = 0;
}
dmu_buf_rele(db, NULL);
mutex_exit(&zp->z_lock);
ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
return (err);
}
/*
* Not found create new znode/vnode
*/
zp = zfs_znode_alloc(zfsvfs, db, doi.doi_data_block_size);
ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
*zpp = zp;
return (0);
}
int
zfs_rezget(znode_t *zp)
{
zfsvfs_t *zfsvfs = zp->z_zfsvfs;
dmu_object_info_t doi;
dmu_buf_t *db;
uint64_t obj_num = zp->z_id;
int err;
ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num);
err = dmu_bonus_hold(zfsvfs->z_os, obj_num, NULL, &db);
if (err) {
ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
return (err);
}
dmu_object_info_from_db(db, &doi);
if (doi.doi_bonus_type != DMU_OT_ZNODE ||
doi.doi_bonus_size < sizeof (znode_phys_t)) {
dmu_buf_rele(db, NULL);
ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
return (EINVAL);
}
if (((znode_phys_t *)db->db_data)->zp_gen != zp->z_gen) {
dmu_buf_rele(db, NULL);
ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
return (EIO);
}
zfs_znode_dmu_init(zfsvfs, zp, db);
zp->z_unlinked = (zp->z_phys->zp_links == 0);
zp->z_blksz = doi.doi_data_block_size;
ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
return (0);
}
void
zfs_znode_delete(znode_t *zp, dmu_tx_t *tx)
{
zfsvfs_t *zfsvfs = zp->z_zfsvfs;
objset_t *os = zfsvfs->z_os;
uint64_t obj = zp->z_id;
uint64_t acl_obj = zp->z_phys->zp_acl.z_acl_extern_obj;
ZFS_OBJ_HOLD_ENTER(zfsvfs, obj);
if (acl_obj)
VERIFY(0 == dmu_object_free(os, acl_obj, tx));
VERIFY(0 == dmu_object_free(os, obj, tx));
zfs_znode_dmu_fini(zp);
ZFS_OBJ_HOLD_EXIT(zfsvfs, obj);
zfs_znode_free(zp);
}
void
zfs_zinactive(znode_t *zp)
{
vnode_t *vp = ZTOV(zp);
zfsvfs_t *zfsvfs = zp->z_zfsvfs;
uint64_t z_id = zp->z_id;
ASSERT(zp->z_dbuf && zp->z_phys);
/*
* Don't allow a zfs_zget() while were trying to release this znode
*/
ZFS_OBJ_HOLD_ENTER(zfsvfs, z_id);
mutex_enter(&zp->z_lock);
mutex_enter(&vp->v_lock);
vp->v_count--;
if (vp->v_count > 0 || vn_has_cached_data(vp)) {
/*
* If the hold count is greater than zero, somebody has
* obtained a new reference on this znode while we were
* processing it here, so we are done. If we still have
* mapped pages then we are also done, since we don't
* want to inactivate the znode until the pages get pushed.
*
* XXX - if vn_has_cached_data(vp) is true, but count == 0,
* this seems like it would leave the znode hanging with
* no chance to go inactive...
*/
mutex_exit(&vp->v_lock);
mutex_exit(&zp->z_lock);
ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id);
return;
}
mutex_exit(&vp->v_lock);
/*
* If this was the last reference to a file with no links,
* remove the file from the file system.
*/
if (zp->z_unlinked) {
mutex_exit(&zp->z_lock);
ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id);
zfs_rmnode(zp);
return;
}
mutex_exit(&zp->z_lock);
zfs_znode_dmu_fini(zp);
ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id);
zfs_znode_free(zp);
}
void
zfs_znode_free(znode_t *zp)
{
zfsvfs_t *zfsvfs = zp->z_zfsvfs;
vn_invalid(ZTOV(zp));
ASSERT(ZTOV(zp)->v_count == 0);
mutex_enter(&zfsvfs->z_znodes_lock);
POINTER_INVALIDATE(&zp->z_zfsvfs);
list_remove(&zfsvfs->z_all_znodes, zp);
mutex_exit(&zfsvfs->z_znodes_lock);
kmem_cache_free(znode_cache, zp);
VFS_RELE(zfsvfs->z_vfs);
}
void
zfs_time_stamper_locked(znode_t *zp, uint_t flag, dmu_tx_t *tx)
{
timestruc_t now;
ASSERT(MUTEX_HELD(&zp->z_lock));
gethrestime(&now);
if (tx) {
dmu_buf_will_dirty(zp->z_dbuf, tx);
zp->z_atime_dirty = 0;
zp->z_seq++;
} else {
zp->z_atime_dirty = 1;
}
if (flag & AT_ATIME)
ZFS_TIME_ENCODE(&now, zp->z_phys->zp_atime);
if (flag & AT_MTIME) {
ZFS_TIME_ENCODE(&now, zp->z_phys->zp_mtime);
if (zp->z_zfsvfs->z_use_fuids)
zp->z_phys->zp_flags |= (ZFS_ARCHIVE | ZFS_AV_MODIFIED);
}
if (flag & AT_CTIME) {
ZFS_TIME_ENCODE(&now, zp->z_phys->zp_ctime);
if (zp->z_zfsvfs->z_use_fuids)
zp->z_phys->zp_flags |= ZFS_ARCHIVE;
}
}
/*
* Update the requested znode timestamps with the current time.
* If we are in a transaction, then go ahead and mark the znode
* dirty in the transaction so the timestamps will go to disk.
* Otherwise, we will get pushed next time the znode is updated
* in a transaction, or when this znode eventually goes inactive.
*
* Why is this OK?
* 1 - Only the ACCESS time is ever updated outside of a transaction.
* 2 - Multiple consecutive updates will be collapsed into a single
* znode update by the transaction grouping semantics of the DMU.
*/
void
zfs_time_stamper(znode_t *zp, uint_t flag, dmu_tx_t *tx)
{
mutex_enter(&zp->z_lock);
zfs_time_stamper_locked(zp, flag, tx);
mutex_exit(&zp->z_lock);
}
/*
* Grow the block size for a file.
*
* IN: zp - znode of file to free data in.
* size - requested block size
* tx - open transaction.
*
* NOTE: this function assumes that the znode is write locked.
*/
void
zfs_grow_blocksize(znode_t *zp, uint64_t size, dmu_tx_t *tx)
{
int error;
u_longlong_t dummy;
if (size <= zp->z_blksz)
return;
/*
* If the file size is already greater than the current blocksize,
* we will not grow. If there is more than one block in a file,
* the blocksize cannot change.
*/
if (zp->z_blksz && zp->z_phys->zp_size > zp->z_blksz)
return;
error = dmu_object_set_blocksize(zp->z_zfsvfs->z_os, zp->z_id,
size, 0, tx);
if (error == ENOTSUP)
return;
ASSERT3U(error, ==, 0);
/* What blocksize did we actually get? */
dmu_object_size_from_db(zp->z_dbuf, &zp->z_blksz, &dummy);
}
/*
* This is a dummy interface used when pvn_vplist_dirty() should *not*
* be calling back into the fs for a putpage(). E.g.: when truncating
* a file, the pages being "thrown away* don't need to be written out.
*/
/* ARGSUSED */
static int
zfs_no_putpage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp,
int flags, cred_t *cr)
{
ASSERT(0);
return (0);
}
/*
* Increase the file length
*
* IN: zp - znode of file to free data in.
* end - new end-of-file
*
* RETURN: 0 if success
* error code if failure
*/
static int
zfs_extend(znode_t *zp, uint64_t end)
{
zfsvfs_t *zfsvfs = zp->z_zfsvfs;
dmu_tx_t *tx;
rl_t *rl;
uint64_t newblksz;
int error;
/*
* We will change zp_size, lock the whole file.
*/
rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER);
/*
* Nothing to do if file already at desired length.
*/
if (end <= zp->z_phys->zp_size) {
zfs_range_unlock(rl);
return (0);
}
top:
tx = dmu_tx_create(zfsvfs->z_os);
dmu_tx_hold_bonus(tx, zp->z_id);
if (end > zp->z_blksz &&
(!ISP2(zp->z_blksz) || zp->z_blksz < zfsvfs->z_max_blksz)) {
/*
* We are growing the file past the current block size.
*/
if (zp->z_blksz > zp->z_zfsvfs->z_max_blksz) {
ASSERT(!ISP2(zp->z_blksz));
newblksz = MIN(end, SPA_MAXBLOCKSIZE);
} else {
newblksz = MIN(end, zp->z_zfsvfs->z_max_blksz);
}
dmu_tx_hold_write(tx, zp->z_id, 0, newblksz);
} else {
newblksz = 0;
}
error = dmu_tx_assign(tx, TXG_NOWAIT);
if (error) {
if (error == ERESTART) {
dmu_tx_wait(tx);
dmu_tx_abort(tx);
goto top;
}
dmu_tx_abort(tx);
zfs_range_unlock(rl);
return (error);
}
dmu_buf_will_dirty(zp->z_dbuf, tx);
if (newblksz)
zfs_grow_blocksize(zp, newblksz, tx);
zp->z_phys->zp_size = end;
zfs_range_unlock(rl);
dmu_tx_commit(tx);
return (0);
}
/*
* Free space in a file.
*
* IN: zp - znode of file to free data in.
* off - start of section to free.
* len - length of section to free.
*
* RETURN: 0 if success
* error code if failure
*/
static int
zfs_free_range(znode_t *zp, uint64_t off, uint64_t len)
{
zfsvfs_t *zfsvfs = zp->z_zfsvfs;
rl_t *rl;
int error;
/*
* Lock the range being freed.
*/
rl = zfs_range_lock(zp, off, len, RL_WRITER);
/*
* Nothing to do if file already at desired length.
*/
if (off >= zp->z_phys->zp_size) {
zfs_range_unlock(rl);
return (0);
}
if (off + len > zp->z_phys->zp_size)
len = zp->z_phys->zp_size - off;
error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, off, len);
zfs_range_unlock(rl);
return (error);
}
/*
* Truncate a file
*
* IN: zp - znode of file to free data in.
* end - new end-of-file.
*
* RETURN: 0 if success
* error code if failure
*/
static int
zfs_trunc(znode_t *zp, uint64_t end)
{
zfsvfs_t *zfsvfs = zp->z_zfsvfs;
vnode_t *vp = ZTOV(zp);
dmu_tx_t *tx;
rl_t *rl;
int error;
/*
* We will change zp_size, lock the whole file.
*/
rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER);
/*
* Nothing to do if file already at desired length.
*/
if (end >= zp->z_phys->zp_size) {
zfs_range_unlock(rl);
return (0);
}
error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, end, -1);
if (error) {
zfs_range_unlock(rl);
return (error);
}
top:
tx = dmu_tx_create(zfsvfs->z_os);
dmu_tx_hold_bonus(tx, zp->z_id);
error = dmu_tx_assign(tx, TXG_NOWAIT);
if (error) {
if (error == ERESTART) {
dmu_tx_wait(tx);
dmu_tx_abort(tx);
goto top;
}
dmu_tx_abort(tx);
zfs_range_unlock(rl);
return (error);
}
dmu_buf_will_dirty(zp->z_dbuf, tx);
zp->z_phys->zp_size = end;
dmu_tx_commit(tx);
/*
* Clear any mapped pages in the truncated region. This has to
* happen outside of the transaction to avoid the possibility of
* a deadlock with someone trying to push a page that we are
* about to invalidate.
*/
if (vn_has_cached_data(vp)) {
page_t *pp;
uint64_t start = end & PAGEMASK;
int poff = end & PAGEOFFSET;
if (poff != 0 && (pp = page_lookup(vp, start, SE_SHARED))) {
/*
* We need to zero a partial page.
*/
pagezero(pp, poff, PAGESIZE - poff);
start += PAGESIZE;
page_unlock(pp);
}
error = pvn_vplist_dirty(vp, start, zfs_no_putpage,
B_INVAL | B_TRUNC, NULL);
ASSERT(error == 0);
}
zfs_range_unlock(rl);
return (0);
}
/*
* Free space in a file
*
* IN: zp - znode of file to free data in.
* off - start of range
* len - end of range (0 => EOF)
* flag - current file open mode flags.
* log - TRUE if this action should be logged
*
* RETURN: 0 if success
* error code if failure
*/
int
zfs_freesp(znode_t *zp, uint64_t off, uint64_t len, int flag, boolean_t log)
{
vnode_t *vp = ZTOV(zp);
dmu_tx_t *tx;
zfsvfs_t *zfsvfs = zp->z_zfsvfs;
zilog_t *zilog = zfsvfs->z_log;
int error;
if (off > zp->z_phys->zp_size) {
error = zfs_extend(zp, off+len);
if (error == 0 && log)
goto log;
else
return (error);
}
/*
* Check for any locks in the region to be freed.
*/
if (MANDLOCK(vp, (mode_t)zp->z_phys->zp_mode)) {
uint64_t length = (len ? len : zp->z_phys->zp_size - off);
if (error = chklock(vp, FWRITE, off, length, flag, NULL))
return (error);
}
if (len == 0) {
error = zfs_trunc(zp, off);
} else {
if ((error = zfs_free_range(zp, off, len)) == 0 &&
off + len > zp->z_phys->zp_size)
error = zfs_extend(zp, off+len);
}
if (error || !log)
return (error);
log:
tx = dmu_tx_create(zfsvfs->z_os);
dmu_tx_hold_bonus(tx, zp->z_id);
error = dmu_tx_assign(tx, TXG_NOWAIT);
if (error) {
if (error == ERESTART) {
dmu_tx_wait(tx);
dmu_tx_abort(tx);
goto log;
}
dmu_tx_abort(tx);
return (error);
}
zfs_time_stamper(zp, CONTENT_MODIFIED, tx);
zfs_log_truncate(zilog, tx, TX_TRUNCATE, zp, off, len);
dmu_tx_commit(tx);
return (0);
}
void
zfs_create_fs(objset_t *os, cred_t *cr, nvlist_t *zplprops, dmu_tx_t *tx)
{
zfsvfs_t zfsvfs;
uint64_t moid, doid, version;
uint64_t sense = ZFS_CASE_SENSITIVE;
uint64_t norm = 0;
nvpair_t *elem;
int error;
znode_t *rootzp = NULL;
vnode_t *vp;
vattr_t vattr;
znode_t *zp;
/*
* First attempt to create master node.
*/
/*
* In an empty objset, there are no blocks to read and thus
* there can be no i/o errors (which we assert below).
*/
moid = MASTER_NODE_OBJ;
error = zap_create_claim(os, moid, DMU_OT_MASTER_NODE,
DMU_OT_NONE, 0, tx);
ASSERT(error == 0);
/*
* Set starting attributes.
*/
if (spa_version(dmu_objset_spa(os)) >= SPA_VERSION_FUID)
version = ZPL_VERSION;
else
version = ZPL_VERSION_FUID - 1;
error = zap_update(os, moid, ZPL_VERSION_STR,
8, 1, &version, tx);
elem = NULL;
while ((elem = nvlist_next_nvpair(zplprops, elem)) != NULL) {
/* For the moment we expect all zpl props to be uint64_ts */
uint64_t val;
char *name;
ASSERT(nvpair_type(elem) == DATA_TYPE_UINT64);
VERIFY(nvpair_value_uint64(elem, &val) == 0);
name = nvpair_name(elem);
if (strcmp(name, zfs_prop_to_name(ZFS_PROP_VERSION)) == 0) {
version = val;
error = zap_update(os, moid, ZPL_VERSION_STR,
8, 1, &version, tx);
} else {
error = zap_update(os, moid, name, 8, 1, &val, tx);
}
ASSERT(error == 0);
if (strcmp(name, zfs_prop_to_name(ZFS_PROP_NORMALIZE)) == 0)
norm = val;
else if (strcmp(name, zfs_prop_to_name(ZFS_PROP_CASE)) == 0)
sense = val;
}
ASSERT(version != 0);
/*
* Create a delete queue.
*/
doid = zap_create(os, DMU_OT_UNLINKED_SET, DMU_OT_NONE, 0, tx);
error = zap_add(os, moid, ZFS_UNLINKED_SET, 8, 1, &doid, tx);
ASSERT(error == 0);
/*
* Create root znode. Create minimal znode/vnode/zfsvfs
* to allow zfs_mknode to work.
*/
vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE;
vattr.va_type = VDIR;
vattr.va_mode = S_IFDIR|0755;
vattr.va_uid = crgetuid(cr);
vattr.va_gid = crgetgid(cr);
rootzp = kmem_cache_alloc(znode_cache, KM_SLEEP);
rootzp->z_unlinked = 0;
rootzp->z_atime_dirty = 0;
vp = ZTOV(rootzp);
vn_reinit(vp);
vp->v_type = VDIR;
bzero(&zfsvfs, sizeof (zfsvfs_t));
zfsvfs.z_os = os;
zfsvfs.z_parent = &zfsvfs;
zfsvfs.z_version = version;
zfsvfs.z_use_fuids = USE_FUIDS(version, os);
zfsvfs.z_norm = norm;
/*
* Fold case on file systems that are always or sometimes case
* insensitive.
*/
if (sense == ZFS_CASE_INSENSITIVE || sense == ZFS_CASE_MIXED)
zfsvfs.z_norm |= U8_TEXTPREP_TOUPPER;
/* XXX - This must be destroyed but I'm not quite sure yet so
* I'm just annotating that fact when it's an issue. -Brian */
mutex_init(&zfsvfs.z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
list_create(&zfsvfs.z_all_znodes, sizeof (znode_t),
offsetof(znode_t, z_link_node));
ASSERT(!POINTER_IS_VALID(rootzp->z_zfsvfs));
rootzp->z_zfsvfs = &zfsvfs;
zfs_mknode(rootzp, &vattr, tx, cr, IS_ROOT_NODE, &zp, 0, NULL, NULL);
ASSERT3P(zp, ==, rootzp);
ASSERT(!vn_in_dnlc(ZTOV(rootzp))); /* not valid to move */
error = zap_add(os, moid, ZFS_ROOT_OBJ, 8, 1, &rootzp->z_id, tx);
ASSERT(error == 0);
POINTER_INVALIDATE(&rootzp->z_zfsvfs);
ZTOV(rootzp)->v_count = 0;
dmu_buf_rele(rootzp->z_dbuf, NULL);
rootzp->z_dbuf = NULL;
kmem_cache_free(znode_cache, rootzp);
}
#endif /* _KERNEL */
/*
* Given an object number, return its parent object number and whether
* or not the object is an extended attribute directory.
*/
static int
zfs_obj_to_pobj(objset_t *osp, uint64_t obj, uint64_t *pobjp, int *is_xattrdir)
{
dmu_buf_t *db;
dmu_object_info_t doi;
znode_phys_t *zp;
int error;
if ((error = dmu_bonus_hold(osp, obj, FTAG, &db)) != 0)
return (error);
dmu_object_info_from_db(db, &doi);
if (doi.doi_bonus_type != DMU_OT_ZNODE ||
doi.doi_bonus_size < sizeof (znode_phys_t)) {
dmu_buf_rele(db, FTAG);
return (EINVAL);
}
zp = db->db_data;
*pobjp = zp->zp_parent;
*is_xattrdir = ((zp->zp_flags & ZFS_XATTR) != 0) &&
S_ISDIR(zp->zp_mode);
dmu_buf_rele(db, FTAG);
return (0);
}
int
zfs_obj_to_path(objset_t *osp, uint64_t obj, char *buf, int len)
{
char *path = buf + len - 1;
int error;
*path = '\0';
for (;;) {
uint64_t pobj;
char component[MAXNAMELEN + 2];
size_t complen;
int is_xattrdir;
if ((error = zfs_obj_to_pobj(osp, obj, &pobj,
&is_xattrdir)) != 0)
break;
if (pobj == obj) {
if (path[0] != '/')
*--path = '/';
break;
}
component[0] = '/';
if (is_xattrdir) {
(void) sprintf(component + 1, "<xattrdir>");
} else {
error = zap_value_search(osp, pobj, obj,
ZFS_DIRENT_OBJ(-1ULL), component + 1);
if (error != 0)
break;
}
complen = strlen(component);
path -= complen;
ASSERT(path >= buf);
bcopy(component, path, complen);
obj = pobj;
}
if (error == 0)
(void) memmove(buf, path, buf + len - path);
return (error);
}