zfs/include/sys/dmu.h

1102 lines
40 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or https://opensource.org/licenses/CDDL-1.0.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2011, 2020 by Delphix. All rights reserved.
* Copyright 2011 Nexenta Systems, Inc. All rights reserved.
* Copyright (c) 2012, Joyent, Inc. All rights reserved.
* Copyright 2014 HybridCluster. All rights reserved.
* Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
* Copyright 2013 Saso Kiselkov. All rights reserved.
* Copyright (c) 2017, Intel Corporation.
* Copyright (c) 2022 Hewlett Packard Enterprise Development LP.
*/
/* Portions Copyright 2010 Robert Milkowski */
#ifndef _SYS_DMU_H
#define _SYS_DMU_H
/*
* This file describes the interface that the DMU provides for its
* consumers.
*
* The DMU also interacts with the SPA. That interface is described in
* dmu_spa.h.
*/
#include <sys/zfs_context.h>
#include <sys/inttypes.h>
#include <sys/cred.h>
#include <sys/fs/zfs.h>
#include <sys/zio_compress.h>
#include <sys/zio_priority.h>
#include <sys/uio.h>
#include <sys/zfs_file.h>
#ifdef __cplusplus
extern "C" {
#endif
struct page;
struct vnode;
struct spa;
struct zilog;
struct zio;
struct blkptr;
struct zap_cursor;
struct dsl_dataset;
struct dsl_pool;
struct dnode;
struct drr_begin;
struct drr_end;
struct zbookmark_phys;
struct spa;
struct nvlist;
struct arc_buf;
struct zio_prop;
struct sa_handle;
struct dsl_crypto_params;
struct locked_range;
typedef struct objset objset_t;
typedef struct dmu_tx dmu_tx_t;
typedef struct dsl_dir dsl_dir_t;
typedef struct dnode dnode_t;
typedef enum dmu_object_byteswap {
DMU_BSWAP_UINT8,
DMU_BSWAP_UINT16,
DMU_BSWAP_UINT32,
DMU_BSWAP_UINT64,
DMU_BSWAP_ZAP,
DMU_BSWAP_DNODE,
DMU_BSWAP_OBJSET,
DMU_BSWAP_ZNODE,
DMU_BSWAP_OLDACL,
DMU_BSWAP_ACL,
/*
* Allocating a new byteswap type number makes the on-disk format
* incompatible with any other format that uses the same number.
*
* Data can usually be structured to work with one of the
* DMU_BSWAP_UINT* or DMU_BSWAP_ZAP types.
*/
DMU_BSWAP_NUMFUNCS
} dmu_object_byteswap_t;
#define DMU_OT_NEWTYPE 0x80
#define DMU_OT_METADATA 0x40
#define DMU_OT_ENCRYPTED 0x20
#define DMU_OT_BYTESWAP_MASK 0x1f
/*
* Defines a uint8_t object type. Object types specify if the data
* in the object is metadata (boolean) and how to byteswap the data
* (dmu_object_byteswap_t). All of the types created by this method
* are cached in the dbuf metadata cache.
*/
#define DMU_OT(byteswap, metadata, encrypted) \
(DMU_OT_NEWTYPE | \
((metadata) ? DMU_OT_METADATA : 0) | \
((encrypted) ? DMU_OT_ENCRYPTED : 0) | \
((byteswap) & DMU_OT_BYTESWAP_MASK))
#define DMU_OT_IS_VALID(ot) (((ot) & DMU_OT_NEWTYPE) ? \
((ot) & DMU_OT_BYTESWAP_MASK) < DMU_BSWAP_NUMFUNCS : \
(ot) < DMU_OT_NUMTYPES)
#define DMU_OT_IS_METADATA_CACHED(ot) (((ot) & DMU_OT_NEWTYPE) ? \
B_TRUE : dmu_ot[(ot)].ot_dbuf_metadata_cache)
/*
* MDB doesn't have dmu_ot; it defines these macros itself.
*/
#ifndef ZFS_MDB
#define DMU_OT_IS_METADATA_IMPL(ot) (dmu_ot[ot].ot_metadata)
#define DMU_OT_IS_ENCRYPTED_IMPL(ot) (dmu_ot[ot].ot_encrypt)
#define DMU_OT_BYTESWAP_IMPL(ot) (dmu_ot[ot].ot_byteswap)
#endif
#define DMU_OT_IS_METADATA(ot) (((ot) & DMU_OT_NEWTYPE) ? \
(((ot) & DMU_OT_METADATA) != 0) : \
DMU_OT_IS_METADATA_IMPL(ot))
#define DMU_OT_IS_DDT(ot) \
((ot) == DMU_OT_DDT_ZAP)
#define DMU_OT_IS_CRITICAL(ot) \
(DMU_OT_IS_METADATA(ot) && \
(ot) != DMU_OT_DNODE && \
(ot) != DMU_OT_DIRECTORY_CONTENTS && \
(ot) != DMU_OT_SA)
/* Note: ztest uses DMU_OT_UINT64_OTHER as a proxy for file blocks */
#define DMU_OT_IS_FILE(ot) \
((ot) == DMU_OT_PLAIN_FILE_CONTENTS || (ot) == DMU_OT_UINT64_OTHER)
#define DMU_OT_IS_ENCRYPTED(ot) (((ot) & DMU_OT_NEWTYPE) ? \
(((ot) & DMU_OT_ENCRYPTED) != 0) : \
DMU_OT_IS_ENCRYPTED_IMPL(ot))
/*
* These object types use bp_fill != 1 for their L0 bp's. Therefore they can't
* have their data embedded (i.e. use a BP_IS_EMBEDDED() bp), because bp_fill
* is repurposed for embedded BPs.
*/
#define DMU_OT_HAS_FILL(ot) \
((ot) == DMU_OT_DNODE || (ot) == DMU_OT_OBJSET)
#define DMU_OT_BYTESWAP(ot) (((ot) & DMU_OT_NEWTYPE) ? \
((ot) & DMU_OT_BYTESWAP_MASK) : \
DMU_OT_BYTESWAP_IMPL(ot))
typedef enum dmu_object_type {
DMU_OT_NONE,
/* general: */
DMU_OT_OBJECT_DIRECTORY, /* ZAP */
DMU_OT_OBJECT_ARRAY, /* UINT64 */
DMU_OT_PACKED_NVLIST, /* UINT8 (XDR by nvlist_pack/unpack) */
DMU_OT_PACKED_NVLIST_SIZE, /* UINT64 */
DMU_OT_BPOBJ, /* UINT64 */
DMU_OT_BPOBJ_HDR, /* UINT64 */
/* spa: */
DMU_OT_SPACE_MAP_HEADER, /* UINT64 */
DMU_OT_SPACE_MAP, /* UINT64 */
/* zil: */
DMU_OT_INTENT_LOG, /* UINT64 */
/* dmu: */
DMU_OT_DNODE, /* DNODE */
DMU_OT_OBJSET, /* OBJSET */
/* dsl: */
DMU_OT_DSL_DIR, /* UINT64 */
DMU_OT_DSL_DIR_CHILD_MAP, /* ZAP */
DMU_OT_DSL_DS_SNAP_MAP, /* ZAP */
DMU_OT_DSL_PROPS, /* ZAP */
DMU_OT_DSL_DATASET, /* UINT64 */
/* zpl: */
DMU_OT_ZNODE, /* ZNODE */
DMU_OT_OLDACL, /* Old ACL */
DMU_OT_PLAIN_FILE_CONTENTS, /* UINT8 */
DMU_OT_DIRECTORY_CONTENTS, /* ZAP */
DMU_OT_MASTER_NODE, /* ZAP */
DMU_OT_UNLINKED_SET, /* ZAP */
/* zvol: */
DMU_OT_ZVOL, /* UINT8 */
DMU_OT_ZVOL_PROP, /* ZAP */
/* other; for testing only! */
DMU_OT_PLAIN_OTHER, /* UINT8 */
DMU_OT_UINT64_OTHER, /* UINT64 */
DMU_OT_ZAP_OTHER, /* ZAP */
/* new object types: */
DMU_OT_ERROR_LOG, /* ZAP */
DMU_OT_SPA_HISTORY, /* UINT8 */
DMU_OT_SPA_HISTORY_OFFSETS, /* spa_his_phys_t */
DMU_OT_POOL_PROPS, /* ZAP */
DMU_OT_DSL_PERMS, /* ZAP */
DMU_OT_ACL, /* ACL */
DMU_OT_SYSACL, /* SYSACL */
DMU_OT_FUID, /* FUID table (Packed NVLIST UINT8) */
DMU_OT_FUID_SIZE, /* FUID table size UINT64 */
DMU_OT_NEXT_CLONES, /* ZAP */
DMU_OT_SCAN_QUEUE, /* ZAP */
DMU_OT_USERGROUP_USED, /* ZAP */
DMU_OT_USERGROUP_QUOTA, /* ZAP */
DMU_OT_USERREFS, /* ZAP */
DMU_OT_DDT_ZAP, /* ZAP */
DMU_OT_DDT_STATS, /* ZAP */
DMU_OT_SA, /* System attr */
DMU_OT_SA_MASTER_NODE, /* ZAP */
DMU_OT_SA_ATTR_REGISTRATION, /* ZAP */
DMU_OT_SA_ATTR_LAYOUTS, /* ZAP */
DMU_OT_SCAN_XLATE, /* ZAP */
DMU_OT_DEDUP, /* fake dedup BP from ddt_bp_create() */
DMU_OT_DEADLIST, /* ZAP */
DMU_OT_DEADLIST_HDR, /* UINT64 */
DMU_OT_DSL_CLONES, /* ZAP */
DMU_OT_BPOBJ_SUBOBJ, /* UINT64 */
/*
* Do not allocate new object types here. Doing so makes the on-disk
* format incompatible with any other format that uses the same object
* type number.
*
* When creating an object which does not have one of the above types
* use the DMU_OTN_* type with the correct byteswap and metadata
* values.
*
* The DMU_OTN_* types do not have entries in the dmu_ot table,
* use the DMU_OT_IS_METADATA() and DMU_OT_BYTESWAP() macros instead
* of indexing into dmu_ot directly (this works for both DMU_OT_* types
* and DMU_OTN_* types).
*/
DMU_OT_NUMTYPES,
/*
* Names for valid types declared with DMU_OT().
*/
DMU_OTN_UINT8_DATA = DMU_OT(DMU_BSWAP_UINT8, B_FALSE, B_FALSE),
DMU_OTN_UINT8_METADATA = DMU_OT(DMU_BSWAP_UINT8, B_TRUE, B_FALSE),
DMU_OTN_UINT16_DATA = DMU_OT(DMU_BSWAP_UINT16, B_FALSE, B_FALSE),
DMU_OTN_UINT16_METADATA = DMU_OT(DMU_BSWAP_UINT16, B_TRUE, B_FALSE),
DMU_OTN_UINT32_DATA = DMU_OT(DMU_BSWAP_UINT32, B_FALSE, B_FALSE),
DMU_OTN_UINT32_METADATA = DMU_OT(DMU_BSWAP_UINT32, B_TRUE, B_FALSE),
DMU_OTN_UINT64_DATA = DMU_OT(DMU_BSWAP_UINT64, B_FALSE, B_FALSE),
DMU_OTN_UINT64_METADATA = DMU_OT(DMU_BSWAP_UINT64, B_TRUE, B_FALSE),
DMU_OTN_ZAP_DATA = DMU_OT(DMU_BSWAP_ZAP, B_FALSE, B_FALSE),
DMU_OTN_ZAP_METADATA = DMU_OT(DMU_BSWAP_ZAP, B_TRUE, B_FALSE),
DMU_OTN_UINT8_ENC_DATA = DMU_OT(DMU_BSWAP_UINT8, B_FALSE, B_TRUE),
DMU_OTN_UINT8_ENC_METADATA = DMU_OT(DMU_BSWAP_UINT8, B_TRUE, B_TRUE),
DMU_OTN_UINT16_ENC_DATA = DMU_OT(DMU_BSWAP_UINT16, B_FALSE, B_TRUE),
DMU_OTN_UINT16_ENC_METADATA = DMU_OT(DMU_BSWAP_UINT16, B_TRUE, B_TRUE),
DMU_OTN_UINT32_ENC_DATA = DMU_OT(DMU_BSWAP_UINT32, B_FALSE, B_TRUE),
DMU_OTN_UINT32_ENC_METADATA = DMU_OT(DMU_BSWAP_UINT32, B_TRUE, B_TRUE),
DMU_OTN_UINT64_ENC_DATA = DMU_OT(DMU_BSWAP_UINT64, B_FALSE, B_TRUE),
DMU_OTN_UINT64_ENC_METADATA = DMU_OT(DMU_BSWAP_UINT64, B_TRUE, B_TRUE),
DMU_OTN_ZAP_ENC_DATA = DMU_OT(DMU_BSWAP_ZAP, B_FALSE, B_TRUE),
DMU_OTN_ZAP_ENC_METADATA = DMU_OT(DMU_BSWAP_ZAP, B_TRUE, B_TRUE),
} dmu_object_type_t;
/*
* These flags are intended to be used to specify the "txg_how"
* parameter when calling the dmu_tx_assign() function. See the comment
* above dmu_tx_assign() for more details on the meaning of these flags.
*/
#define TXG_NOWAIT (0ULL)
#define TXG_WAIT (1ULL<<0)
#define TXG_NOTHROTTLE (1ULL<<1)
void byteswap_uint64_array(void *buf, size_t size);
void byteswap_uint32_array(void *buf, size_t size);
void byteswap_uint16_array(void *buf, size_t size);
void byteswap_uint8_array(void *buf, size_t size);
void zap_byteswap(void *buf, size_t size);
void zfs_oldacl_byteswap(void *buf, size_t size);
void zfs_acl_byteswap(void *buf, size_t size);
void zfs_znode_byteswap(void *buf, size_t size);
#define DS_FIND_SNAPSHOTS (1<<0)
#define DS_FIND_CHILDREN (1<<1)
#define DS_FIND_SERIALIZE (1<<2)
/*
* The maximum number of bytes that can be accessed as part of one
* operation, including metadata.
*/
#define DMU_MAX_ACCESS (64 * 1024 * 1024) /* 64MB */
#define DMU_MAX_DELETEBLKCNT (20480) /* ~5MB of indirect blocks */
#define DMU_USERUSED_OBJECT (-1ULL)
#define DMU_GROUPUSED_OBJECT (-2ULL)
#define DMU_PROJECTUSED_OBJECT (-3ULL)
/*
* Zap prefix for object accounting in DMU_{USER,GROUP,PROJECT}USED_OBJECT.
*/
#define DMU_OBJACCT_PREFIX "obj-"
#define DMU_OBJACCT_PREFIX_LEN 4
/*
* artificial blkids for bonus buffer and spill blocks
*/
#define DMU_BONUS_BLKID (-1ULL)
#define DMU_SPILL_BLKID (-2ULL)
/*
* Public routines to create, destroy, open, and close objsets.
*/
typedef void dmu_objset_create_sync_func_t(objset_t *os, void *arg,
cred_t *cr, dmu_tx_t *tx);
int dmu_objset_hold(const char *name, const void *tag, objset_t **osp);
int dmu_objset_own(const char *name, dmu_objset_type_t type,
boolean_t readonly, boolean_t key_required, const void *tag,
objset_t **osp);
void dmu_objset_rele(objset_t *os, const void *tag);
void dmu_objset_disown(objset_t *os, boolean_t key_required, const void *tag);
int dmu_objset_open_ds(struct dsl_dataset *ds, objset_t **osp);
void dmu_objset_evict_dbufs(objset_t *os);
int dmu_objset_create(const char *name, dmu_objset_type_t type, uint64_t flags,
struct dsl_crypto_params *dcp, dmu_objset_create_sync_func_t func,
void *arg);
int dmu_objset_clone(const char *name, const char *origin);
int dsl_destroy_snapshots_nvl(struct nvlist *snaps, boolean_t defer,
struct nvlist *errlist);
int dmu_objset_snapshot_one(const char *fsname, const char *snapname);
int dmu_objset_find(const char *name, int func(const char *, void *), void *arg,
int flags);
void dmu_objset_byteswap(void *buf, size_t size);
int dsl_dataset_rename_snapshot(const char *fsname,
const char *oldsnapname, const char *newsnapname, boolean_t recursive);
typedef struct dmu_buf {
uint64_t db_object; /* object that this buffer is part of */
uint64_t db_offset; /* byte offset in this object */
uint64_t db_size; /* size of buffer in bytes */
void *db_data; /* data in buffer */
} dmu_buf_t;
/*
* The names of zap entries in the DIRECTORY_OBJECT of the MOS.
*/
#define DMU_POOL_DIRECTORY_OBJECT 1
#define DMU_POOL_CONFIG "config"
#define DMU_POOL_FEATURES_FOR_WRITE "features_for_write"
#define DMU_POOL_FEATURES_FOR_READ "features_for_read"
#define DMU_POOL_FEATURE_DESCRIPTIONS "feature_descriptions"
#define DMU_POOL_FEATURE_ENABLED_TXG "feature_enabled_txg"
#define DMU_POOL_ROOT_DATASET "root_dataset"
#define DMU_POOL_SYNC_BPOBJ "sync_bplist"
#define DMU_POOL_ERRLOG_SCRUB "errlog_scrub"
#define DMU_POOL_ERRLOG_LAST "errlog_last"
#define DMU_POOL_SPARES "spares"
#define DMU_POOL_DEFLATE "deflate"
#define DMU_POOL_HISTORY "history"
#define DMU_POOL_PROPS "pool_props"
#define DMU_POOL_L2CACHE "l2cache"
#define DMU_POOL_TMP_USERREFS "tmp_userrefs"
#define DMU_POOL_DDT "DDT-%s-%s-%s"
#define DMU_POOL_DDT_STATS "DDT-statistics"
#define DMU_POOL_CREATION_VERSION "creation_version"
#define DMU_POOL_SCAN "scan"
#define DMU_POOL_ERRORSCRUB "error_scrub"
#define DMU_POOL_FREE_BPOBJ "free_bpobj"
#define DMU_POOL_BPTREE_OBJ "bptree_obj"
#define DMU_POOL_EMPTY_BPOBJ "empty_bpobj"
#define DMU_POOL_CHECKSUM_SALT "org.illumos:checksum_salt"
#define DMU_POOL_VDEV_ZAP_MAP "com.delphix:vdev_zap_map"
#define DMU_POOL_REMOVING "com.delphix:removing"
#define DMU_POOL_OBSOLETE_BPOBJ "com.delphix:obsolete_bpobj"
#define DMU_POOL_CONDENSING_INDIRECT "com.delphix:condensing_indirect"
#define DMU_POOL_ZPOOL_CHECKPOINT "com.delphix:zpool_checkpoint"
#define DMU_POOL_LOG_SPACEMAP_ZAP "com.delphix:log_spacemap_zap"
#define DMU_POOL_DELETED_CLONES "com.delphix:deleted_clones"
/*
* Allocate an object from this objset. The range of object numbers
* available is (0, DN_MAX_OBJECT). Object 0 is the meta-dnode.
*
* The transaction must be assigned to a txg. The newly allocated
* object will be "held" in the transaction (ie. you can modify the
* newly allocated object in this transaction).
*
* dmu_object_alloc() chooses an object and returns it in *objectp.
*
* dmu_object_claim() allocates a specific object number. If that
* number is already allocated, it fails and returns EEXIST.
*
* Return 0 on success, or ENOSPC or EEXIST as specified above.
*/
uint64_t dmu_object_alloc(objset_t *os, dmu_object_type_t ot,
int blocksize, dmu_object_type_t bonus_type, int bonus_len, dmu_tx_t *tx);
uint64_t dmu_object_alloc_ibs(objset_t *os, dmu_object_type_t ot, int blocksize,
int indirect_blockshift,
dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx);
uint64_t dmu_object_alloc_dnsize(objset_t *os, dmu_object_type_t ot,
int blocksize, dmu_object_type_t bonus_type, int bonus_len,
int dnodesize, dmu_tx_t *tx);
uint64_t dmu_object_alloc_hold(objset_t *os, dmu_object_type_t ot,
int blocksize, int indirect_blockshift, dmu_object_type_t bonustype,
int bonuslen, int dnodesize, dnode_t **allocated_dnode, const void *tag,
dmu_tx_t *tx);
int dmu_object_claim(objset_t *os, uint64_t object, dmu_object_type_t ot,
int blocksize, dmu_object_type_t bonus_type, int bonus_len, dmu_tx_t *tx);
int dmu_object_claim_dnsize(objset_t *os, uint64_t object, dmu_object_type_t ot,
int blocksize, dmu_object_type_t bonus_type, int bonus_len,
int dnodesize, dmu_tx_t *tx);
int dmu_object_reclaim(objset_t *os, uint64_t object, dmu_object_type_t ot,
int blocksize, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *txp);
int dmu_object_reclaim_dnsize(objset_t *os, uint64_t object,
dmu_object_type_t ot, int blocksize, dmu_object_type_t bonustype,
int bonuslen, int dnodesize, boolean_t keep_spill, dmu_tx_t *tx);
int dmu_object_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx);
/*
* Free an object from this objset.
*
* The object's data will be freed as well (ie. you don't need to call
* dmu_free(object, 0, -1, tx)).
*
* The object need not be held in the transaction.
*
* If there are any holds on this object's buffers (via dmu_buf_hold()),
* or tx holds on the object (via dmu_tx_hold_object()), you can not
* free it; it fails and returns EBUSY.
*
* If the object is not allocated, it fails and returns ENOENT.
*
* Return 0 on success, or EBUSY or ENOENT as specified above.
*/
int dmu_object_free(objset_t *os, uint64_t object, dmu_tx_t *tx);
/*
* Find the next allocated or free object.
*
* The objectp parameter is in-out. It will be updated to be the next
* object which is allocated. Ignore objects which have not been
* modified since txg.
*
* XXX Can only be called on a objset with no dirty data.
*
* Returns 0 on success, or ENOENT if there are no more objects.
*/
int dmu_object_next(objset_t *os, uint64_t *objectp,
boolean_t hole, uint64_t txg);
/*
* Set the number of levels on a dnode. nlevels must be greater than the
* current number of levels or an EINVAL will be returned.
*/
int dmu_object_set_nlevels(objset_t *os, uint64_t object, int nlevels,
dmu_tx_t *tx);
/*
* Set the data blocksize for an object.
*
* The object cannot have any blocks allocated beyond the first. If
* the first block is allocated already, the new size must be greater
* than the current block size. If these conditions are not met,
* ENOTSUP will be returned.
*
* Returns 0 on success, or EBUSY if there are any holds on the object
* contents, or ENOTSUP as described above.
*/
int dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size,
int ibs, dmu_tx_t *tx);
/*
* Manually set the maxblkid on a dnode. This will adjust nlevels accordingly
* to accommodate the change. When calling this function, the caller must
* ensure that the object's nlevels can sufficiently support the new maxblkid.
*/
int dmu_object_set_maxblkid(objset_t *os, uint64_t object, uint64_t maxblkid,
dmu_tx_t *tx);
/*
* Set the checksum property on a dnode. The new checksum algorithm will
* apply to all newly written blocks; existing blocks will not be affected.
*/
void dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
dmu_tx_t *tx);
/*
* Set the compress property on a dnode. The new compression algorithm will
* apply to all newly written blocks; existing blocks will not be affected.
*/
void dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
dmu_tx_t *tx);
void dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
int compressed_size, int byteorder, dmu_tx_t *tx);
void dmu_redact(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
dmu_tx_t *tx);
/*
* Decide how to write a block: checksum, compression, number of copies, etc.
*/
#define WP_NOFILL 0x1
#define WP_DMU_SYNC 0x2
#define WP_SPILL 0x4
void dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp,
struct zio_prop *zp);
/*
* The bonus data is accessed more or less like a regular buffer.
* You must dmu_bonus_hold() to get the buffer, which will give you a
* dmu_buf_t with db_offset==-1ULL, and db_size = the size of the bonus
* data. As with any normal buffer, you must call dmu_buf_will_dirty()
* before modifying it, and the
* object must be held in an assigned transaction before calling
* dmu_buf_will_dirty. You may use dmu_buf_set_user() on the bonus
* buffer as well. You must release what you hold with dmu_buf_rele().
*
* Returns ENOENT, EIO, or 0.
*/
int dmu_bonus_hold(objset_t *os, uint64_t object, const void *tag,
dmu_buf_t **dbp);
int dmu_bonus_hold_by_dnode(dnode_t *dn, const void *tag, dmu_buf_t **dbp,
uint32_t flags);
int dmu_bonus_max(void);
int dmu_set_bonus(dmu_buf_t *, int, dmu_tx_t *);
int dmu_set_bonustype(dmu_buf_t *, dmu_object_type_t, dmu_tx_t *);
dmu_object_type_t dmu_get_bonustype(dmu_buf_t *);
int dmu_rm_spill(objset_t *, uint64_t, dmu_tx_t *);
/*
* Special spill buffer support used by "SA" framework
*/
int dmu_spill_hold_by_bonus(dmu_buf_t *bonus, uint32_t flags, const void *tag,
dmu_buf_t **dbp);
int dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags,
const void *tag, dmu_buf_t **dbp);
int dmu_spill_hold_existing(dmu_buf_t *bonus, const void *tag, dmu_buf_t **dbp);
/*
* Obtain the DMU buffer from the specified object which contains the
* specified offset. dmu_buf_hold() puts a "hold" on the buffer, so
* that it will remain in memory. You must release the hold with
* dmu_buf_rele(). You must not access the dmu_buf_t after releasing
* what you hold. You must have a hold on any dmu_buf_t* you pass to the DMU.
*
* You must call dmu_buf_read, dmu_buf_will_dirty, or dmu_buf_will_fill
* on the returned buffer before reading or writing the buffer's
* db_data. The comments for those routines describe what particular
* operations are valid after calling them.
*
* The object number must be a valid, allocated object number.
*/
int dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
const void *tag, dmu_buf_t **, int flags);
int dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset,
uint64_t length, int read, const void *tag, int *numbufsp,
dmu_buf_t ***dbpp);
int dmu_buf_hold_noread(objset_t *os, uint64_t object, uint64_t offset,
const void *tag, dmu_buf_t **dbp);
int dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset,
const void *tag, dmu_buf_t **dbp, int flags);
int dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset,
uint64_t length, boolean_t read, const void *tag, int *numbufsp,
dmu_buf_t ***dbpp, uint32_t flags);
int dmu_buf_hold_noread_by_dnode(dnode_t *dn, uint64_t offset, const void *tag,
dmu_buf_t **dbp);
/*
* Add a reference to a dmu buffer that has already been held via
* dmu_buf_hold() in the current context.
*/
void dmu_buf_add_ref(dmu_buf_t *db, const void *tag);
/*
* Attempt to add a reference to a dmu buffer that is in an unknown state,
* using a pointer that may have been invalidated by eviction processing.
* The request will succeed if the passed in dbuf still represents the
* same os/object/blkid, is ineligible for eviction, and has at least
* one hold by a user other than the syncer.
*/
boolean_t dmu_buf_try_add_ref(dmu_buf_t *, objset_t *os, uint64_t object,
uint64_t blkid, const void *tag);
void dmu_buf_rele(dmu_buf_t *db, const void *tag);
uint64_t dmu_buf_refcount(dmu_buf_t *db);
uint64_t dmu_buf_user_refcount(dmu_buf_t *db);
/*
* dmu_buf_hold_array holds the DMU buffers which contain all bytes in a
* range of an object. A pointer to an array of dmu_buf_t*'s is
* returned (in *dbpp).
*
* dmu_buf_rele_array releases the hold on an array of dmu_buf_t*'s, and
* frees the array. The hold on the array of buffers MUST be released
* with dmu_buf_rele_array. You can NOT release the hold on each buffer
* individually with dmu_buf_rele.
*/
int dmu_buf_hold_array_by_bonus(dmu_buf_t *db, uint64_t offset,
uint64_t length, boolean_t read, const void *tag,
int *numbufsp, dmu_buf_t ***dbpp);
void dmu_buf_rele_array(dmu_buf_t **, int numbufs, const void *tag);
typedef void dmu_buf_evict_func_t(void *user_ptr);
/*
* A DMU buffer user object may be associated with a dbuf for the
* duration of its lifetime. This allows the user of a dbuf (client)
* to attach private data to a dbuf (e.g. in-core only data such as a
* dnode_children_t, zap_t, or zap_leaf_t) and be optionally notified
* when that dbuf has been evicted. Clients typically respond to the
* eviction notification by freeing their private data, thus ensuring
* the same lifetime for both dbuf and private data.
*
* The mapping from a dmu_buf_user_t to any client private data is the
* client's responsibility. All current consumers of the API with private
* data embed a dmu_buf_user_t as the first member of the structure for
* their private data. This allows conversions between the two types
* with a simple cast. Since the DMU buf user API never needs access
* to the private data, other strategies can be employed if necessary
* or convenient for the client (e.g. using container_of() to do the
* conversion for private data that cannot have the dmu_buf_user_t as
* its first member).
*
* Eviction callbacks are executed without the dbuf mutex held or any
* other type of mechanism to guarantee that the dbuf is still available.
* For this reason, users must assume the dbuf has already been freed
* and not reference the dbuf from the callback context.
*
* Users requesting "immediate eviction" are notified as soon as the dbuf
* is only referenced by dirty records (dirties == holds). Otherwise the
* notification occurs after eviction processing for the dbuf begins.
*/
typedef struct dmu_buf_user {
/*
* Asynchronous user eviction callback state.
*/
taskq_ent_t dbu_tqent;
/*
* This instance's eviction function pointers.
*
* dbu_evict_func_sync is called synchronously and then
* dbu_evict_func_async is executed asynchronously on a taskq.
*/
dmu_buf_evict_func_t *dbu_evict_func_sync;
dmu_buf_evict_func_t *dbu_evict_func_async;
#ifdef ZFS_DEBUG
/*
* Pointer to user's dbuf pointer. NULL for clients that do
* not associate a dbuf with their user data.
*
* The dbuf pointer is cleared upon eviction so as to catch
* use-after-evict bugs in clients.
*/
dmu_buf_t **dbu_clear_on_evict_dbufp;
#endif
} dmu_buf_user_t;
/*
* Initialize the given dmu_buf_user_t instance with the eviction function
* evict_func, to be called when the user is evicted.
*
* NOTE: This function should only be called once on a given dmu_buf_user_t.
* To allow enforcement of this, dbu must already be zeroed on entry.
*/
static inline void
dmu_buf_init_user(dmu_buf_user_t *dbu, dmu_buf_evict_func_t *evict_func_sync,
dmu_buf_evict_func_t *evict_func_async,
dmu_buf_t **clear_on_evict_dbufp __maybe_unused)
{
ASSERT(dbu->dbu_evict_func_sync == NULL);
ASSERT(dbu->dbu_evict_func_async == NULL);
/* must have at least one evict func */
IMPLY(evict_func_sync == NULL, evict_func_async != NULL);
dbu->dbu_evict_func_sync = evict_func_sync;
dbu->dbu_evict_func_async = evict_func_async;
taskq_init_ent(&dbu->dbu_tqent);
#ifdef ZFS_DEBUG
dbu->dbu_clear_on_evict_dbufp = clear_on_evict_dbufp;
#endif
}
/*
* Attach user data to a dbuf and mark it for normal (when the dbuf's
* data is cleared or its reference count goes to zero) eviction processing.
*
* Returns NULL on success, or the existing user if another user currently
* owns the buffer.
*/
void *dmu_buf_set_user(dmu_buf_t *db, dmu_buf_user_t *user);
/*
* Attach user data to a dbuf and mark it for immediate (its dirty and
* reference counts are equal) eviction processing.
*
* Returns NULL on success, or the existing user if another user currently
* owns the buffer.
*/
void *dmu_buf_set_user_ie(dmu_buf_t *db, dmu_buf_user_t *user);
/*
* Replace the current user of a dbuf.
*
* If given the current user of a dbuf, replaces the dbuf's user with
* "new_user" and returns the user data pointer that was replaced.
* Otherwise returns the current, and unmodified, dbuf user pointer.
*/
void *dmu_buf_replace_user(dmu_buf_t *db,
dmu_buf_user_t *old_user, dmu_buf_user_t *new_user);
/*
* Remove the specified user data for a DMU buffer.
*
* Returns the user that was removed on success, or the current user if
* another user currently owns the buffer.
*/
void *dmu_buf_remove_user(dmu_buf_t *db, dmu_buf_user_t *user);
/*
* Returns the user data (dmu_buf_user_t *) associated with this dbuf.
*/
void *dmu_buf_get_user(dmu_buf_t *db);
objset_t *dmu_buf_get_objset(dmu_buf_t *db);
dnode_t *dmu_buf_dnode_enter(dmu_buf_t *db);
void dmu_buf_dnode_exit(dmu_buf_t *db);
/* Block until any in-progress dmu buf user evictions complete. */
void dmu_buf_user_evict_wait(void);
/*
* Returns the blkptr associated with this dbuf, or NULL if not set.
*/
struct blkptr *dmu_buf_get_blkptr(dmu_buf_t *db);
/*
* Indicate that you are going to modify the buffer's data (db_data).
*
* The transaction (tx) must be assigned to a txg (ie. you've called
* dmu_tx_assign()). The buffer's object must be held in the tx
* (ie. you've called dmu_tx_hold_object(tx, db->db_object)).
*/
void dmu_buf_will_dirty(dmu_buf_t *db, dmu_tx_t *tx);
boolean_t dmu_buf_is_dirty(dmu_buf_t *db, dmu_tx_t *tx);
void dmu_buf_set_crypt_params(dmu_buf_t *db_fake, boolean_t byteorder,
const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, dmu_tx_t *tx);
/*
* You must create a transaction, then hold the objects which you will
* (or might) modify as part of this transaction. Then you must assign
* the transaction to a transaction group. Once the transaction has
* been assigned, you can modify buffers which belong to held objects as
* part of this transaction. You can't modify buffers before the
* transaction has been assigned; you can't modify buffers which don't
* belong to objects which this transaction holds; you can't hold
* objects once the transaction has been assigned. You may hold an
* object which you are going to free (with dmu_object_free()), but you
* don't have to.
*
* You can abort the transaction before it has been assigned.
*
* Note that you may hold buffers (with dmu_buf_hold) at any time,
* regardless of transaction state.
*/
#define DMU_NEW_OBJECT (-1ULL)
#define DMU_OBJECT_END (-1ULL)
dmu_tx_t *dmu_tx_create(objset_t *os);
void dmu_tx_hold_write(dmu_tx_t *tx, uint64_t object, uint64_t off, int len);
void dmu_tx_hold_write_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off,
int len);
void dmu_tx_hold_append(dmu_tx_t *tx, uint64_t object, uint64_t off, int len);
void dmu_tx_hold_append_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off,
int len);
void dmu_tx_hold_clone_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off,
int len);
void dmu_tx_hold_free(dmu_tx_t *tx, uint64_t object, uint64_t off,
uint64_t len);
void dmu_tx_hold_free_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off,
uint64_t len);
void dmu_tx_hold_zap(dmu_tx_t *tx, uint64_t object, int add, const char *name);
void dmu_tx_hold_zap_by_dnode(dmu_tx_t *tx, dnode_t *dn, int add,
const char *name);
void dmu_tx_hold_bonus(dmu_tx_t *tx, uint64_t object);
void dmu_tx_hold_bonus_by_dnode(dmu_tx_t *tx, dnode_t *dn);
void dmu_tx_hold_spill(dmu_tx_t *tx, uint64_t object);
void dmu_tx_hold_sa(dmu_tx_t *tx, struct sa_handle *hdl, boolean_t may_grow);
void dmu_tx_hold_sa_create(dmu_tx_t *tx, int total_size);
void dmu_tx_abort(dmu_tx_t *tx);
int dmu_tx_assign(dmu_tx_t *tx, uint64_t txg_how);
void dmu_tx_wait(dmu_tx_t *tx);
void dmu_tx_commit(dmu_tx_t *tx);
void dmu_tx_mark_netfree(dmu_tx_t *tx);
/*
* To register a commit callback, dmu_tx_callback_register() must be called.
*
* dcb_data is a pointer to caller private data that is passed on as a
* callback parameter. The caller is responsible for properly allocating and
* freeing it.
*
* When registering a callback, the transaction must be already created, but
* it cannot be committed or aborted. It can be assigned to a txg or not.
*
* The callback will be called after the transaction has been safely written
* to stable storage and will also be called if the dmu_tx is aborted.
* If there is any error which prevents the transaction from being committed to
* disk, the callback will be called with a value of error != 0.
*
* When multiple callbacks are registered to the transaction, the callbacks
* will be called in reverse order to let Lustre, the only user of commit
* callback currently, take the fast path of its commit callback handling.
*/
typedef void dmu_tx_callback_func_t(void *dcb_data, int error);
void dmu_tx_callback_register(dmu_tx_t *tx, dmu_tx_callback_func_t *dcb_func,
void *dcb_data);
void dmu_tx_do_callbacks(list_t *cb_list, int error);
/*
* Free up the data blocks for a defined range of a file. If size is
* -1, the range from offset to end-of-file is freed.
*/
int dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
uint64_t size, dmu_tx_t *tx);
int dmu_free_long_range(objset_t *os, uint64_t object, uint64_t offset,
uint64_t size);
int dmu_free_long_object(objset_t *os, uint64_t object);
/*
* Convenience functions.
*
* Canfail routines will return 0 on success, or an errno if there is a
* nonrecoverable I/O error.
*/
#define DMU_READ_PREFETCH 0 /* prefetch */
#define DMU_READ_NO_PREFETCH 1 /* don't prefetch */
#define DMU_READ_NO_DECRYPT 2 /* don't decrypt */
int dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
void *buf, uint32_t flags);
int dmu_read_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, void *buf,
uint32_t flags);
void dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
const void *buf, dmu_tx_t *tx);
void dmu_write_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size,
const void *buf, dmu_tx_t *tx);
void dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
dmu_tx_t *tx);
#ifdef _KERNEL
int dmu_read_uio(objset_t *os, uint64_t object, zfs_uio_t *uio, uint64_t size);
int dmu_read_uio_dbuf(dmu_buf_t *zdb, zfs_uio_t *uio, uint64_t size);
int dmu_read_uio_dnode(dnode_t *dn, zfs_uio_t *uio, uint64_t size);
int dmu_write_uio(objset_t *os, uint64_t object, zfs_uio_t *uio, uint64_t size,
dmu_tx_t *tx);
int dmu_write_uio_dbuf(dmu_buf_t *zdb, zfs_uio_t *uio, uint64_t size,
dmu_tx_t *tx);
int dmu_write_uio_dnode(dnode_t *dn, zfs_uio_t *uio, uint64_t size,
dmu_tx_t *tx);
#endif
struct arc_buf *dmu_request_arcbuf(dmu_buf_t *handle, int size);
void dmu_return_arcbuf(struct arc_buf *buf);
int dmu_assign_arcbuf_by_dnode(dnode_t *dn, uint64_t offset,
struct arc_buf *buf, dmu_tx_t *tx);
int dmu_assign_arcbuf_by_dbuf(dmu_buf_t *handle, uint64_t offset,
struct arc_buf *buf, dmu_tx_t *tx);
#define dmu_assign_arcbuf dmu_assign_arcbuf_by_dbuf
extern uint_t zfs_max_recordsize;
/*
* Asynchronously try to read in the data.
*/
void dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset,
uint64_t len, enum zio_priority pri);
typedef struct dmu_object_info {
/* All sizes are in bytes unless otherwise indicated. */
uint32_t doi_data_block_size;
uint32_t doi_metadata_block_size;
dmu_object_type_t doi_type;
dmu_object_type_t doi_bonus_type;
uint64_t doi_bonus_size;
uint8_t doi_indirection; /* 2 = dnode->indirect->data */
uint8_t doi_checksum;
uint8_t doi_compress;
uint8_t doi_nblkptr;
uint8_t doi_pad[4];
uint64_t doi_dnodesize;
uint64_t doi_physical_blocks_512; /* data + metadata, 512b blks */
uint64_t doi_max_offset;
uint64_t doi_fill_count; /* number of non-empty blocks */
} dmu_object_info_t;
typedef void (*const arc_byteswap_func_t)(void *buf, size_t size);
typedef struct dmu_object_type_info {
dmu_object_byteswap_t ot_byteswap;
boolean_t ot_metadata;
boolean_t ot_dbuf_metadata_cache;
boolean_t ot_encrypt;
const char *ot_name;
} dmu_object_type_info_t;
typedef const struct dmu_object_byteswap_info {
arc_byteswap_func_t ob_func;
const char *ob_name;
} dmu_object_byteswap_info_t;
extern const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES];
extern dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS];
/*
* Get information on a DMU object.
*
* Return 0 on success or ENOENT if object is not allocated.
*
* If doi is NULL, just indicates whether the object exists.
*/
int dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi);
void __dmu_object_info_from_dnode(struct dnode *dn, dmu_object_info_t *doi);
/* Like dmu_object_info, but faster if you have a held dnode in hand. */
void dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi);
/* Like dmu_object_info, but faster if you have a held dbuf in hand. */
void dmu_object_info_from_db(dmu_buf_t *db, dmu_object_info_t *doi);
/*
* Like dmu_object_info_from_db, but faster still when you only care about
* the size.
*/
void dmu_object_size_from_db(dmu_buf_t *db, uint32_t *blksize,
u_longlong_t *nblk512);
void dmu_object_dnsize_from_db(dmu_buf_t *db, int *dnsize);
typedef struct dmu_objset_stats {
uint64_t dds_num_clones; /* number of clones of this */
uint64_t dds_creation_txg;
uint64_t dds_guid;
dmu_objset_type_t dds_type;
uint8_t dds_is_snapshot;
uint8_t dds_inconsistent;
uint8_t dds_redacted;
char dds_origin[ZFS_MAX_DATASET_NAME_LEN];
} dmu_objset_stats_t;
/*
* Get stats on a dataset.
*/
void dmu_objset_fast_stat(objset_t *os, dmu_objset_stats_t *stat);
/*
* Add entries to the nvlist for all the objset's properties. See
* zfs_prop_table[] and zfs(1m) for details on the properties.
*/
void dmu_objset_stats(objset_t *os, struct nvlist *nv);
/*
* Get the space usage statistics for statvfs().
*
* refdbytes is the amount of space "referenced" by this objset.
* availbytes is the amount of space available to this objset, taking
* into account quotas & reservations, assuming that no other objsets
* use the space first. These values correspond to the 'referenced' and
* 'available' properties, described in the zfs(1m) manpage.
*
* usedobjs and availobjs are the number of objects currently allocated,
* and available.
*/
void dmu_objset_space(objset_t *os, uint64_t *refdbytesp, uint64_t *availbytesp,
uint64_t *usedobjsp, uint64_t *availobjsp);
/*
* The fsid_guid is a 56-bit ID that can change to avoid collisions.
* (Contrast with the ds_guid which is a 64-bit ID that will never
* change, so there is a small probability that it will collide.)
*/
uint64_t dmu_objset_fsid_guid(objset_t *os);
/*
* Get the [cm]time for an objset's snapshot dir
*/
inode_timespec_t dmu_objset_snap_cmtime(objset_t *os);
int dmu_objset_is_snapshot(objset_t *os);
extern struct spa *dmu_objset_spa(objset_t *os);
extern struct zilog *dmu_objset_zil(objset_t *os);
extern struct dsl_pool *dmu_objset_pool(objset_t *os);
extern struct dsl_dataset *dmu_objset_ds(objset_t *os);
extern void dmu_objset_name(objset_t *os, char *buf);
extern dmu_objset_type_t dmu_objset_type(objset_t *os);
extern uint64_t dmu_objset_id(objset_t *os);
extern uint64_t dmu_objset_dnodesize(objset_t *os);
extern zfs_sync_type_t dmu_objset_syncprop(objset_t *os);
extern zfs_logbias_op_t dmu_objset_logbias(objset_t *os);
extern int dmu_objset_blksize(objset_t *os);
extern int dmu_snapshot_list_next(objset_t *os, int namelen, char *name,
uint64_t *id, uint64_t *offp, boolean_t *case_conflict);
extern int dmu_snapshot_lookup(objset_t *os, const char *name, uint64_t *val);
extern int dmu_snapshot_realname(objset_t *os, const char *name, char *real,
int maxlen, boolean_t *conflict);
extern int dmu_dir_list_next(objset_t *os, int namelen, char *name,
uint64_t *idp, uint64_t *offp);
typedef struct zfs_file_info {
uint64_t zfi_user;
uint64_t zfi_group;
uint64_t zfi_project;
uint64_t zfi_generation;
} zfs_file_info_t;
typedef int file_info_cb_t(dmu_object_type_t bonustype, const void *data,
struct zfs_file_info *zoi);
extern void dmu_objset_register_type(dmu_objset_type_t ost,
file_info_cb_t *cb);
extern void dmu_objset_set_user(objset_t *os, void *user_ptr);
extern void *dmu_objset_get_user(objset_t *os);
/*
* Return the txg number for the given assigned transaction.
*/
uint64_t dmu_tx_get_txg(dmu_tx_t *tx);
/*
* Synchronous write.
* If a parent zio is provided this function initiates a write on the
* provided buffer as a child of the parent zio.
* In the absence of a parent zio, the write is completed synchronously.
* At write completion, blk is filled with the bp of the written block.
* Note that while the data covered by this function will be on stable
* storage when the write completes this new data does not become a
* permanent part of the file until the associated transaction commits.
*/
/*
* {zfs,zvol,ztest}_get_done() args
*/
typedef struct zgd {
struct lwb *zgd_lwb;
struct blkptr *zgd_bp;
dmu_buf_t *zgd_db;
struct zfs_locked_range *zgd_lr;
void *zgd_private;
} zgd_t;
typedef void dmu_sync_cb_t(zgd_t *arg, int error);
int dmu_sync(struct zio *zio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd);
/*
* Find the next hole or data block in file starting at *off
* Return found offset in *off. Return ESRCH for end of file.
*/
int dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole,
uint64_t *off);
int dmu_read_l0_bps(objset_t *os, uint64_t object, uint64_t offset,
uint64_t length, struct blkptr *bps, size_t *nbpsp);
int dmu_brt_clone(objset_t *os, uint64_t object, uint64_t offset,
uint64_t length, dmu_tx_t *tx, const struct blkptr *bps, size_t nbps);
/*
* Initial setup and final teardown.
*/
extern void dmu_init(void);
extern void dmu_fini(void);
typedef void (*dmu_traverse_cb_t)(objset_t *os, void *arg, struct blkptr *bp,
uint64_t object, uint64_t offset, int len);
void dmu_traverse_objset(objset_t *os, uint64_t txg_start,
dmu_traverse_cb_t cb, void *arg);
int dmu_diff(const char *tosnap_name, const char *fromsnap_name,
zfs_file_t *fp, offset_t *offp);
/* CRC64 table */
#define ZFS_CRC64_POLY 0xC96C5795D7870F42ULL /* ECMA-182, reflected form */
extern uint64_t zfs_crc64_table[256];
extern uint_t dmu_prefetch_max;
#ifdef __cplusplus
}
#endif
#endif /* _SYS_DMU_H */