zfs/module/icp/io/aes.c

498 lines
13 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or https://opensource.org/licenses/CDDL-1.0.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
*/
/*
* AES provider for the Kernel Cryptographic Framework (KCF)
*/
#include <sys/zfs_context.h>
#include <sys/crypto/common.h>
#include <sys/crypto/impl.h>
#include <sys/crypto/spi.h>
#include <sys/crypto/icp.h>
#include <modes/modes.h>
#define _AES_IMPL
#include <aes/aes_impl.h>
#include <modes/gcm_impl.h>
/*
* Mechanism info structure passed to KCF during registration.
*/
static const crypto_mech_info_t aes_mech_info_tab[] = {
/* AES_CCM */
{SUN_CKM_AES_CCM, AES_CCM_MECH_INFO_TYPE,
CRYPTO_FG_ENCRYPT_ATOMIC | CRYPTO_FG_DECRYPT_ATOMIC},
/* AES_GCM */
{SUN_CKM_AES_GCM, AES_GCM_MECH_INFO_TYPE,
CRYPTO_FG_ENCRYPT_ATOMIC | CRYPTO_FG_DECRYPT_ATOMIC},
};
static int aes_common_init_ctx(aes_ctx_t *, crypto_spi_ctx_template_t *,
crypto_mechanism_t *, crypto_key_t *, int, boolean_t);
static int aes_encrypt_atomic(crypto_mechanism_t *, crypto_key_t *,
crypto_data_t *, crypto_data_t *, crypto_spi_ctx_template_t);
static int aes_decrypt_atomic(crypto_mechanism_t *, crypto_key_t *,
crypto_data_t *, crypto_data_t *, crypto_spi_ctx_template_t);
static const crypto_cipher_ops_t aes_cipher_ops = {
.encrypt_atomic = aes_encrypt_atomic,
.decrypt_atomic = aes_decrypt_atomic
};
static int aes_create_ctx_template(crypto_mechanism_t *, crypto_key_t *,
crypto_spi_ctx_template_t *, size_t *);
static int aes_free_context(crypto_ctx_t *);
static const crypto_ctx_ops_t aes_ctx_ops = {
.create_ctx_template = aes_create_ctx_template,
.free_context = aes_free_context
};
static const crypto_ops_t aes_crypto_ops = {
&aes_cipher_ops,
NULL,
&aes_ctx_ops,
};
static const crypto_provider_info_t aes_prov_info = {
"AES Software Provider",
&aes_crypto_ops,
sizeof (aes_mech_info_tab) / sizeof (crypto_mech_info_t),
aes_mech_info_tab
};
static crypto_kcf_provider_handle_t aes_prov_handle = 0;
int
aes_mod_init(void)
{
/* Determine the fastest available implementation. */
aes_impl_init();
gcm_impl_init();
/* Register with KCF. If the registration fails, remove the module. */
if (crypto_register_provider(&aes_prov_info, &aes_prov_handle))
return (EACCES);
return (0);
}
int
aes_mod_fini(void)
{
/* Unregister from KCF if module is registered */
if (aes_prov_handle != 0) {
if (crypto_unregister_provider(aes_prov_handle))
return (EBUSY);
aes_prov_handle = 0;
}
return (0);
}
static int
aes_check_mech_param(crypto_mechanism_t *mechanism, aes_ctx_t **ctx)
{
void *p = NULL;
boolean_t param_required = B_TRUE;
size_t param_len;
void *(*alloc_fun)(int);
int rv = CRYPTO_SUCCESS;
switch (mechanism->cm_type) {
case AES_CCM_MECH_INFO_TYPE:
param_len = sizeof (CK_AES_CCM_PARAMS);
alloc_fun = ccm_alloc_ctx;
break;
case AES_GCM_MECH_INFO_TYPE:
param_len = sizeof (CK_AES_GCM_PARAMS);
alloc_fun = gcm_alloc_ctx;
break;
default:
__builtin_unreachable();
}
if (param_required && mechanism->cm_param != NULL &&
mechanism->cm_param_len != param_len) {
rv = CRYPTO_MECHANISM_PARAM_INVALID;
}
if (ctx != NULL) {
p = (alloc_fun)(KM_SLEEP);
*ctx = p;
}
return (rv);
}
/*
* Initialize key schedules for AES
*/
static int
init_keysched(crypto_key_t *key, void *newbie)
{
if (key->ck_length < AES_MINBITS ||
key->ck_length > AES_MAXBITS) {
return (CRYPTO_KEY_SIZE_RANGE);
}
/* key length must be either 128, 192, or 256 */
if ((key->ck_length & 63) != 0)
return (CRYPTO_KEY_SIZE_RANGE);
aes_init_keysched(key->ck_data, key->ck_length, newbie);
return (CRYPTO_SUCCESS);
}
/*
* KCF software provider encrypt entry points.
*/
static int
aes_encrypt_atomic(crypto_mechanism_t *mechanism,
crypto_key_t *key, crypto_data_t *plaintext, crypto_data_t *ciphertext,
crypto_spi_ctx_template_t template)
{
aes_ctx_t aes_ctx;
off_t saved_offset;
size_t saved_length;
size_t length_needed;
int ret;
memset(&aes_ctx, 0, sizeof (aes_ctx_t));
ASSERT(ciphertext != NULL);
if ((ret = aes_check_mech_param(mechanism, NULL)) != CRYPTO_SUCCESS)
return (ret);
ret = aes_common_init_ctx(&aes_ctx, template, mechanism, key,
KM_SLEEP, B_TRUE);
if (ret != CRYPTO_SUCCESS)
return (ret);
switch (mechanism->cm_type) {
case AES_CCM_MECH_INFO_TYPE:
length_needed = plaintext->cd_length + aes_ctx.ac_mac_len;
break;
case AES_GCM_MECH_INFO_TYPE:
length_needed = plaintext->cd_length + aes_ctx.ac_tag_len;
break;
default:
__builtin_unreachable();
}
/* return size of buffer needed to store output */
if (ciphertext->cd_length < length_needed) {
ciphertext->cd_length = length_needed;
ret = CRYPTO_BUFFER_TOO_SMALL;
goto out;
}
saved_offset = ciphertext->cd_offset;
saved_length = ciphertext->cd_length;
/*
* Do an update on the specified input data.
*/
switch (plaintext->cd_format) {
case CRYPTO_DATA_RAW:
ret = crypto_update_iov(&aes_ctx, plaintext, ciphertext,
aes_encrypt_contiguous_blocks);
break;
case CRYPTO_DATA_UIO:
ret = crypto_update_uio(&aes_ctx, plaintext, ciphertext,
aes_encrypt_contiguous_blocks);
break;
default:
ret = CRYPTO_ARGUMENTS_BAD;
}
if (ret == CRYPTO_SUCCESS) {
if (mechanism->cm_type == AES_CCM_MECH_INFO_TYPE) {
ret = ccm_encrypt_final((ccm_ctx_t *)&aes_ctx,
ciphertext, AES_BLOCK_LEN, aes_encrypt_block,
aes_xor_block);
if (ret != CRYPTO_SUCCESS)
goto out;
ASSERT(aes_ctx.ac_remainder_len == 0);
} else if (mechanism->cm_type == AES_GCM_MECH_INFO_TYPE) {
ret = gcm_encrypt_final((gcm_ctx_t *)&aes_ctx,
ciphertext, AES_BLOCK_LEN, aes_encrypt_block,
aes_copy_block, aes_xor_block);
if (ret != CRYPTO_SUCCESS)
goto out;
ASSERT(aes_ctx.ac_remainder_len == 0);
} else {
ASSERT(aes_ctx.ac_remainder_len == 0);
}
if (plaintext != ciphertext) {
ciphertext->cd_length =
ciphertext->cd_offset - saved_offset;
}
} else {
ciphertext->cd_length = saved_length;
}
ciphertext->cd_offset = saved_offset;
out:
if (aes_ctx.ac_flags & PROVIDER_OWNS_KEY_SCHEDULE) {
memset(aes_ctx.ac_keysched, 0, aes_ctx.ac_keysched_len);
kmem_free(aes_ctx.ac_keysched, aes_ctx.ac_keysched_len);
}
if (aes_ctx.ac_flags & GCM_MODE) {
gcm_clear_ctx((gcm_ctx_t *)&aes_ctx);
}
return (ret);
}
static int
aes_decrypt_atomic(crypto_mechanism_t *mechanism,
crypto_key_t *key, crypto_data_t *ciphertext, crypto_data_t *plaintext,
crypto_spi_ctx_template_t template)
{
aes_ctx_t aes_ctx;
off_t saved_offset;
size_t saved_length;
size_t length_needed;
int ret;
memset(&aes_ctx, 0, sizeof (aes_ctx_t));
ASSERT(plaintext != NULL);
if ((ret = aes_check_mech_param(mechanism, NULL)) != CRYPTO_SUCCESS)
return (ret);
ret = aes_common_init_ctx(&aes_ctx, template, mechanism, key,
KM_SLEEP, B_FALSE);
if (ret != CRYPTO_SUCCESS)
return (ret);
switch (mechanism->cm_type) {
case AES_CCM_MECH_INFO_TYPE:
length_needed = aes_ctx.ac_data_len;
break;
case AES_GCM_MECH_INFO_TYPE:
length_needed = ciphertext->cd_length - aes_ctx.ac_tag_len;
break;
default:
__builtin_unreachable();
}
/* return size of buffer needed to store output */
if (plaintext->cd_length < length_needed) {
plaintext->cd_length = length_needed;
ret = CRYPTO_BUFFER_TOO_SMALL;
goto out;
}
saved_offset = plaintext->cd_offset;
saved_length = plaintext->cd_length;
/*
* Do an update on the specified input data.
*/
switch (ciphertext->cd_format) {
case CRYPTO_DATA_RAW:
ret = crypto_update_iov(&aes_ctx, ciphertext, plaintext,
aes_decrypt_contiguous_blocks);
break;
case CRYPTO_DATA_UIO:
ret = crypto_update_uio(&aes_ctx, ciphertext, plaintext,
aes_decrypt_contiguous_blocks);
break;
default:
ret = CRYPTO_ARGUMENTS_BAD;
}
if (ret == CRYPTO_SUCCESS) {
if (mechanism->cm_type == AES_CCM_MECH_INFO_TYPE) {
ASSERT(aes_ctx.ac_processed_data_len
== aes_ctx.ac_data_len);
ASSERT(aes_ctx.ac_processed_mac_len
== aes_ctx.ac_mac_len);
ret = ccm_decrypt_final((ccm_ctx_t *)&aes_ctx,
plaintext, AES_BLOCK_LEN, aes_encrypt_block,
aes_copy_block, aes_xor_block);
ASSERT(aes_ctx.ac_remainder_len == 0);
if ((ret == CRYPTO_SUCCESS) &&
(ciphertext != plaintext)) {
plaintext->cd_length =
plaintext->cd_offset - saved_offset;
} else {
plaintext->cd_length = saved_length;
}
} else if (mechanism->cm_type == AES_GCM_MECH_INFO_TYPE) {
ret = gcm_decrypt_final((gcm_ctx_t *)&aes_ctx,
plaintext, AES_BLOCK_LEN, aes_encrypt_block,
aes_xor_block);
ASSERT(aes_ctx.ac_remainder_len == 0);
if ((ret == CRYPTO_SUCCESS) &&
(ciphertext != plaintext)) {
plaintext->cd_length =
plaintext->cd_offset - saved_offset;
} else {
plaintext->cd_length = saved_length;
}
} else
__builtin_unreachable();
} else {
plaintext->cd_length = saved_length;
}
plaintext->cd_offset = saved_offset;
out:
if (aes_ctx.ac_flags & PROVIDER_OWNS_KEY_SCHEDULE) {
memset(aes_ctx.ac_keysched, 0, aes_ctx.ac_keysched_len);
kmem_free(aes_ctx.ac_keysched, aes_ctx.ac_keysched_len);
}
if (aes_ctx.ac_flags & CCM_MODE) {
if (aes_ctx.ac_pt_buf != NULL) {
vmem_free(aes_ctx.ac_pt_buf, aes_ctx.ac_data_len);
}
} else if (aes_ctx.ac_flags & GCM_MODE) {
gcm_clear_ctx((gcm_ctx_t *)&aes_ctx);
}
return (ret);
}
/*
* KCF software provider context template entry points.
*/
static int
aes_create_ctx_template(crypto_mechanism_t *mechanism, crypto_key_t *key,
crypto_spi_ctx_template_t *tmpl, size_t *tmpl_size)
{
void *keysched;
size_t size;
int rv;
if (mechanism->cm_type != AES_CCM_MECH_INFO_TYPE &&
mechanism->cm_type != AES_GCM_MECH_INFO_TYPE)
return (CRYPTO_MECHANISM_INVALID);
if ((keysched = aes_alloc_keysched(&size, KM_SLEEP)) == NULL) {
return (CRYPTO_HOST_MEMORY);
}
/*
* Initialize key schedule. Key length information is stored
* in the key.
*/
if ((rv = init_keysched(key, keysched)) != CRYPTO_SUCCESS) {
memset(keysched, 0, size);
kmem_free(keysched, size);
return (rv);
}
*tmpl = keysched;
*tmpl_size = size;
return (CRYPTO_SUCCESS);
}
static int
aes_free_context(crypto_ctx_t *ctx)
{
aes_ctx_t *aes_ctx = ctx->cc_provider_private;
if (aes_ctx != NULL) {
if (aes_ctx->ac_flags & PROVIDER_OWNS_KEY_SCHEDULE) {
ASSERT(aes_ctx->ac_keysched_len != 0);
memset(aes_ctx->ac_keysched, 0,
aes_ctx->ac_keysched_len);
kmem_free(aes_ctx->ac_keysched,
aes_ctx->ac_keysched_len);
}
crypto_free_mode_ctx(aes_ctx);
ctx->cc_provider_private = NULL;
}
return (CRYPTO_SUCCESS);
}
static int
aes_common_init_ctx(aes_ctx_t *aes_ctx, crypto_spi_ctx_template_t *template,
crypto_mechanism_t *mechanism, crypto_key_t *key, int kmflag,
boolean_t is_encrypt_init)
{
int rv = CRYPTO_SUCCESS;
void *keysched;
size_t size = 0;
if (template == NULL) {
if ((keysched = aes_alloc_keysched(&size, kmflag)) == NULL)
return (CRYPTO_HOST_MEMORY);
/*
* Initialize key schedule.
* Key length is stored in the key.
*/
if ((rv = init_keysched(key, keysched)) != CRYPTO_SUCCESS) {
kmem_free(keysched, size);
return (rv);
}
aes_ctx->ac_flags |= PROVIDER_OWNS_KEY_SCHEDULE;
aes_ctx->ac_keysched_len = size;
} else {
keysched = template;
}
aes_ctx->ac_keysched = keysched;
switch (mechanism->cm_type) {
case AES_CCM_MECH_INFO_TYPE:
if (mechanism->cm_param == NULL ||
mechanism->cm_param_len != sizeof (CK_AES_CCM_PARAMS)) {
return (CRYPTO_MECHANISM_PARAM_INVALID);
}
rv = ccm_init_ctx((ccm_ctx_t *)aes_ctx, mechanism->cm_param,
kmflag, is_encrypt_init, AES_BLOCK_LEN, aes_encrypt_block,
aes_xor_block);
break;
case AES_GCM_MECH_INFO_TYPE:
if (mechanism->cm_param == NULL ||
mechanism->cm_param_len != sizeof (CK_AES_GCM_PARAMS)) {
return (CRYPTO_MECHANISM_PARAM_INVALID);
}
rv = gcm_init_ctx((gcm_ctx_t *)aes_ctx, mechanism->cm_param,
AES_BLOCK_LEN, aes_encrypt_block, aes_copy_block,
aes_xor_block);
break;
}
if (rv != CRYPTO_SUCCESS) {
if (aes_ctx->ac_flags & PROVIDER_OWNS_KEY_SCHEDULE) {
memset(keysched, 0, size);
kmem_free(keysched, size);
}
}
return (rv);
}