zfs/module/zfs/arc.c

4669 lines
129 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/*
* DVA-based Adjustable Replacement Cache
*
* While much of the theory of operation used here is
* based on the self-tuning, low overhead replacement cache
* presented by Megiddo and Modha at FAST 2003, there are some
* significant differences:
*
* 1. The Megiddo and Modha model assumes any page is evictable.
* Pages in its cache cannot be "locked" into memory. This makes
* the eviction algorithm simple: evict the last page in the list.
* This also make the performance characteristics easy to reason
* about. Our cache is not so simple. At any given moment, some
* subset of the blocks in the cache are un-evictable because we
* have handed out a reference to them. Blocks are only evictable
* when there are no external references active. This makes
* eviction far more problematic: we choose to evict the evictable
* blocks that are the "lowest" in the list.
*
* There are times when it is not possible to evict the requested
* space. In these circumstances we are unable to adjust the cache
* size. To prevent the cache growing unbounded at these times we
* implement a "cache throttle" that slows the flow of new data
* into the cache until we can make space available.
*
* 2. The Megiddo and Modha model assumes a fixed cache size.
* Pages are evicted when the cache is full and there is a cache
* miss. Our model has a variable sized cache. It grows with
* high use, but also tries to react to memory pressure from the
* operating system: decreasing its size when system memory is
* tight.
*
* 3. The Megiddo and Modha model assumes a fixed page size. All
* elements of the cache are therefor exactly the same size. So
* when adjusting the cache size following a cache miss, its simply
* a matter of choosing a single page to evict. In our model, we
* have variable sized cache blocks (rangeing from 512 bytes to
* 128K bytes). We therefor choose a set of blocks to evict to make
* space for a cache miss that approximates as closely as possible
* the space used by the new block.
*
* See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache"
* by N. Megiddo & D. Modha, FAST 2003
*/
/*
* The locking model:
*
* A new reference to a cache buffer can be obtained in two
* ways: 1) via a hash table lookup using the DVA as a key,
* or 2) via one of the ARC lists. The arc_read() interface
* uses method 1, while the internal arc algorithms for
* adjusting the cache use method 2. We therefor provide two
* types of locks: 1) the hash table lock array, and 2) the
* arc list locks.
*
* Buffers do not have their own mutexs, rather they rely on the
* hash table mutexs for the bulk of their protection (i.e. most
* fields in the arc_buf_hdr_t are protected by these mutexs).
*
* buf_hash_find() returns the appropriate mutex (held) when it
* locates the requested buffer in the hash table. It returns
* NULL for the mutex if the buffer was not in the table.
*
* buf_hash_remove() expects the appropriate hash mutex to be
* already held before it is invoked.
*
* Each arc state also has a mutex which is used to protect the
* buffer list associated with the state. When attempting to
* obtain a hash table lock while holding an arc list lock you
* must use: mutex_tryenter() to avoid deadlock. Also note that
* the active state mutex must be held before the ghost state mutex.
*
* Arc buffers may have an associated eviction callback function.
* This function will be invoked prior to removing the buffer (e.g.
* in arc_do_user_evicts()). Note however that the data associated
* with the buffer may be evicted prior to the callback. The callback
* must be made with *no locks held* (to prevent deadlock). Additionally,
* the users of callbacks must ensure that their private data is
* protected from simultaneous callbacks from arc_buf_evict()
* and arc_do_user_evicts().
*
* Note that the majority of the performance stats are manipulated
* with atomic operations.
*
* The L2ARC uses the l2arc_buflist_mtx global mutex for the following:
*
* - L2ARC buflist creation
* - L2ARC buflist eviction
* - L2ARC write completion, which walks L2ARC buflists
* - ARC header destruction, as it removes from L2ARC buflists
* - ARC header release, as it removes from L2ARC buflists
*/
#include <sys/spa.h>
#include <sys/zio.h>
#include <sys/zio_checksum.h>
#include <sys/zfs_context.h>
#include <sys/arc.h>
#include <sys/refcount.h>
#include <sys/vdev.h>
#ifdef _KERNEL
#include <sys/vmsystm.h>
#include <vm/anon.h>
#include <sys/fs/swapnode.h>
#include <sys/dnlc.h>
#endif
#include <sys/callb.h>
#include <sys/kstat.h>
static kmutex_t arc_reclaim_thr_lock;
static kcondvar_t arc_reclaim_thr_cv; /* used to signal reclaim thr */
static uint8_t arc_thread_exit;
extern int zfs_write_limit_shift;
extern uint64_t zfs_write_limit_max;
extern kmutex_t zfs_write_limit_lock;
#define ARC_REDUCE_DNLC_PERCENT 3
uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT;
typedef enum arc_reclaim_strategy {
ARC_RECLAIM_AGGR, /* Aggressive reclaim strategy */
ARC_RECLAIM_CONS /* Conservative reclaim strategy */
} arc_reclaim_strategy_t;
/* number of seconds before growing cache again */
static int arc_grow_retry = 60;
/* shift of arc_c for calculating both min and max arc_p */
static int arc_p_min_shift = 4;
/* log2(fraction of arc to reclaim) */
static int arc_shrink_shift = 5;
/*
* minimum lifespan of a prefetch block in clock ticks
* (initialized in arc_init())
*/
static int arc_min_prefetch_lifespan;
static int arc_dead;
/*
* The arc has filled available memory and has now warmed up.
*/
static boolean_t arc_warm;
/*
* These tunables are for performance analysis.
*/
unsigned long zfs_arc_max = 0;
unsigned long zfs_arc_min = 0;
unsigned long zfs_arc_meta_limit = 0;
int zfs_mdcomp_disable = 0;
int zfs_arc_grow_retry = 0;
int zfs_arc_shrink_shift = 0;
int zfs_arc_p_min_shift = 0;
/*
* Note that buffers can be in one of 6 states:
* ARC_anon - anonymous (discussed below)
* ARC_mru - recently used, currently cached
* ARC_mru_ghost - recentely used, no longer in cache
* ARC_mfu - frequently used, currently cached
* ARC_mfu_ghost - frequently used, no longer in cache
* ARC_l2c_only - exists in L2ARC but not other states
* When there are no active references to the buffer, they are
* are linked onto a list in one of these arc states. These are
* the only buffers that can be evicted or deleted. Within each
* state there are multiple lists, one for meta-data and one for
* non-meta-data. Meta-data (indirect blocks, blocks of dnodes,
* etc.) is tracked separately so that it can be managed more
* explicitly: favored over data, limited explicitly.
*
* Anonymous buffers are buffers that are not associated with
* a DVA. These are buffers that hold dirty block copies
* before they are written to stable storage. By definition,
* they are "ref'd" and are considered part of arc_mru
* that cannot be freed. Generally, they will aquire a DVA
* as they are written and migrate onto the arc_mru list.
*
* The ARC_l2c_only state is for buffers that are in the second
* level ARC but no longer in any of the ARC_m* lists. The second
* level ARC itself may also contain buffers that are in any of
* the ARC_m* states - meaning that a buffer can exist in two
* places. The reason for the ARC_l2c_only state is to keep the
* buffer header in the hash table, so that reads that hit the
* second level ARC benefit from these fast lookups.
*/
typedef struct arc_state {
list_t arcs_list[ARC_BUFC_NUMTYPES]; /* list of evictable buffers */
uint64_t arcs_lsize[ARC_BUFC_NUMTYPES]; /* amount of evictable data */
uint64_t arcs_size; /* total amount of data in this state */
kmutex_t arcs_mtx;
} arc_state_t;
/* The 6 states: */
static arc_state_t ARC_anon;
static arc_state_t ARC_mru;
static arc_state_t ARC_mru_ghost;
static arc_state_t ARC_mfu;
static arc_state_t ARC_mfu_ghost;
static arc_state_t ARC_l2c_only;
typedef struct arc_stats {
kstat_named_t arcstat_hits;
kstat_named_t arcstat_misses;
kstat_named_t arcstat_demand_data_hits;
kstat_named_t arcstat_demand_data_misses;
kstat_named_t arcstat_demand_metadata_hits;
kstat_named_t arcstat_demand_metadata_misses;
kstat_named_t arcstat_prefetch_data_hits;
kstat_named_t arcstat_prefetch_data_misses;
kstat_named_t arcstat_prefetch_metadata_hits;
kstat_named_t arcstat_prefetch_metadata_misses;
kstat_named_t arcstat_mru_hits;
kstat_named_t arcstat_mru_ghost_hits;
kstat_named_t arcstat_mfu_hits;
kstat_named_t arcstat_mfu_ghost_hits;
kstat_named_t arcstat_deleted;
kstat_named_t arcstat_recycle_miss;
kstat_named_t arcstat_mutex_miss;
kstat_named_t arcstat_evict_skip;
kstat_named_t arcstat_hash_elements;
kstat_named_t arcstat_hash_elements_max;
kstat_named_t arcstat_hash_collisions;
kstat_named_t arcstat_hash_chains;
kstat_named_t arcstat_hash_chain_max;
kstat_named_t arcstat_p;
kstat_named_t arcstat_c;
kstat_named_t arcstat_c_min;
kstat_named_t arcstat_c_max;
kstat_named_t arcstat_size;
kstat_named_t arcstat_hdr_size;
kstat_named_t arcstat_data_size;
kstat_named_t arcstat_other_size;
kstat_named_t arcstat_l2_hits;
kstat_named_t arcstat_l2_misses;
kstat_named_t arcstat_l2_feeds;
kstat_named_t arcstat_l2_rw_clash;
kstat_named_t arcstat_l2_read_bytes;
kstat_named_t arcstat_l2_write_bytes;
kstat_named_t arcstat_l2_writes_sent;
kstat_named_t arcstat_l2_writes_done;
kstat_named_t arcstat_l2_writes_error;
kstat_named_t arcstat_l2_writes_hdr_miss;
kstat_named_t arcstat_l2_evict_lock_retry;
kstat_named_t arcstat_l2_evict_reading;
kstat_named_t arcstat_l2_free_on_write;
kstat_named_t arcstat_l2_abort_lowmem;
kstat_named_t arcstat_l2_cksum_bad;
kstat_named_t arcstat_l2_io_error;
kstat_named_t arcstat_l2_size;
kstat_named_t arcstat_l2_hdr_size;
kstat_named_t arcstat_memory_throttle_count;
} arc_stats_t;
static arc_stats_t arc_stats = {
{ "hits", KSTAT_DATA_UINT64 },
{ "misses", KSTAT_DATA_UINT64 },
{ "demand_data_hits", KSTAT_DATA_UINT64 },
{ "demand_data_misses", KSTAT_DATA_UINT64 },
{ "demand_metadata_hits", KSTAT_DATA_UINT64 },
{ "demand_metadata_misses", KSTAT_DATA_UINT64 },
{ "prefetch_data_hits", KSTAT_DATA_UINT64 },
{ "prefetch_data_misses", KSTAT_DATA_UINT64 },
{ "prefetch_metadata_hits", KSTAT_DATA_UINT64 },
{ "prefetch_metadata_misses", KSTAT_DATA_UINT64 },
{ "mru_hits", KSTAT_DATA_UINT64 },
{ "mru_ghost_hits", KSTAT_DATA_UINT64 },
{ "mfu_hits", KSTAT_DATA_UINT64 },
{ "mfu_ghost_hits", KSTAT_DATA_UINT64 },
{ "deleted", KSTAT_DATA_UINT64 },
{ "recycle_miss", KSTAT_DATA_UINT64 },
{ "mutex_miss", KSTAT_DATA_UINT64 },
{ "evict_skip", KSTAT_DATA_UINT64 },
{ "hash_elements", KSTAT_DATA_UINT64 },
{ "hash_elements_max", KSTAT_DATA_UINT64 },
{ "hash_collisions", KSTAT_DATA_UINT64 },
{ "hash_chains", KSTAT_DATA_UINT64 },
{ "hash_chain_max", KSTAT_DATA_UINT64 },
{ "p", KSTAT_DATA_UINT64 },
{ "c", KSTAT_DATA_UINT64 },
{ "c_min", KSTAT_DATA_UINT64 },
{ "c_max", KSTAT_DATA_UINT64 },
{ "size", KSTAT_DATA_UINT64 },
{ "hdr_size", KSTAT_DATA_UINT64 },
{ "data_size", KSTAT_DATA_UINT64 },
{ "other_size", KSTAT_DATA_UINT64 },
{ "l2_hits", KSTAT_DATA_UINT64 },
{ "l2_misses", KSTAT_DATA_UINT64 },
{ "l2_feeds", KSTAT_DATA_UINT64 },
{ "l2_rw_clash", KSTAT_DATA_UINT64 },
{ "l2_read_bytes", KSTAT_DATA_UINT64 },
{ "l2_write_bytes", KSTAT_DATA_UINT64 },
{ "l2_writes_sent", KSTAT_DATA_UINT64 },
{ "l2_writes_done", KSTAT_DATA_UINT64 },
{ "l2_writes_error", KSTAT_DATA_UINT64 },
{ "l2_writes_hdr_miss", KSTAT_DATA_UINT64 },
{ "l2_evict_lock_retry", KSTAT_DATA_UINT64 },
{ "l2_evict_reading", KSTAT_DATA_UINT64 },
{ "l2_free_on_write", KSTAT_DATA_UINT64 },
{ "l2_abort_lowmem", KSTAT_DATA_UINT64 },
{ "l2_cksum_bad", KSTAT_DATA_UINT64 },
{ "l2_io_error", KSTAT_DATA_UINT64 },
{ "l2_size", KSTAT_DATA_UINT64 },
{ "l2_hdr_size", KSTAT_DATA_UINT64 },
{ "memory_throttle_count", KSTAT_DATA_UINT64 }
};
#define ARCSTAT(stat) (arc_stats.stat.value.ui64)
#define ARCSTAT_INCR(stat, val) \
atomic_add_64(&arc_stats.stat.value.ui64, (val));
#define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1)
#define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1)
#define ARCSTAT_MAX(stat, val) { \
uint64_t m; \
while ((val) > (m = arc_stats.stat.value.ui64) && \
(m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \
continue; \
}
#define ARCSTAT_MAXSTAT(stat) \
ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
/*
* We define a macro to allow ARC hits/misses to be easily broken down by
* two separate conditions, giving a total of four different subtypes for
* each of hits and misses (so eight statistics total).
*/
#define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
if (cond1) { \
if (cond2) { \
ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
} else { \
ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
} \
} else { \
if (cond2) { \
ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
} else { \
ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
} \
}
kstat_t *arc_ksp;
static arc_state_t *arc_anon;
static arc_state_t *arc_mru;
static arc_state_t *arc_mru_ghost;
static arc_state_t *arc_mfu;
static arc_state_t *arc_mfu_ghost;
static arc_state_t *arc_l2c_only;
/*
* There are several ARC variables that are critical to export as kstats --
* but we don't want to have to grovel around in the kstat whenever we wish to
* manipulate them. For these variables, we therefore define them to be in
* terms of the statistic variable. This assures that we are not introducing
* the possibility of inconsistency by having shadow copies of the variables,
* while still allowing the code to be readable.
*/
#define arc_size ARCSTAT(arcstat_size) /* actual total arc size */
#define arc_p ARCSTAT(arcstat_p) /* target size of MRU */
#define arc_c ARCSTAT(arcstat_c) /* target size of cache */
#define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */
#define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */
static int arc_no_grow; /* Don't try to grow cache size */
static uint64_t arc_tempreserve;
static uint64_t arc_meta_used;
static uint64_t arc_meta_limit;
static uint64_t arc_meta_max = 0;
typedef struct l2arc_buf_hdr l2arc_buf_hdr_t;
typedef struct arc_callback arc_callback_t;
struct arc_callback {
void *acb_private;
arc_done_func_t *acb_done;
arc_buf_t *acb_buf;
zio_t *acb_zio_dummy;
arc_callback_t *acb_next;
};
typedef struct arc_write_callback arc_write_callback_t;
struct arc_write_callback {
void *awcb_private;
arc_done_func_t *awcb_ready;
arc_done_func_t *awcb_done;
arc_buf_t *awcb_buf;
};
struct arc_buf_hdr {
/* protected by hash lock */
dva_t b_dva;
uint64_t b_birth;
uint64_t b_cksum0;
kmutex_t b_freeze_lock;
zio_cksum_t *b_freeze_cksum;
arc_buf_hdr_t *b_hash_next;
arc_buf_t *b_buf;
uint32_t b_flags;
uint32_t b_datacnt;
arc_callback_t *b_acb;
kcondvar_t b_cv;
/* immutable */
arc_buf_contents_t b_type;
uint64_t b_size;
uint64_t b_spa;
/* protected by arc state mutex */
arc_state_t *b_state;
list_node_t b_arc_node;
/* updated atomically */
clock_t b_arc_access;
/* self protecting */
refcount_t b_refcnt;
l2arc_buf_hdr_t *b_l2hdr;
list_node_t b_l2node;
};
static arc_buf_t *arc_eviction_list;
static kmutex_t arc_eviction_mtx;
static arc_buf_hdr_t arc_eviction_hdr;
static void arc_get_data_buf(arc_buf_t *buf);
static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock);
static int arc_evict_needed(arc_buf_contents_t type);
static void arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes);
#define GHOST_STATE(state) \
((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \
(state) == arc_l2c_only)
/*
* Private ARC flags. These flags are private ARC only flags that will show up
* in b_flags in the arc_hdr_buf_t. Some flags are publicly declared, and can
* be passed in as arc_flags in things like arc_read. However, these flags
* should never be passed and should only be set by ARC code. When adding new
* public flags, make sure not to smash the private ones.
*/
#define ARC_IN_HASH_TABLE (1 << 9) /* this buffer is hashed */
#define ARC_IO_IN_PROGRESS (1 << 10) /* I/O in progress for buf */
#define ARC_IO_ERROR (1 << 11) /* I/O failed for buf */
#define ARC_FREED_IN_READ (1 << 12) /* buf freed while in read */
#define ARC_BUF_AVAILABLE (1 << 13) /* block not in active use */
#define ARC_INDIRECT (1 << 14) /* this is an indirect block */
#define ARC_FREE_IN_PROGRESS (1 << 15) /* hdr about to be freed */
#define ARC_L2_WRITING (1 << 16) /* L2ARC write in progress */
#define ARC_L2_EVICTED (1 << 17) /* evicted during I/O */
#define ARC_L2_WRITE_HEAD (1 << 18) /* head of write list */
#define ARC_STORED (1 << 19) /* has been store()d to */
#define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_IN_HASH_TABLE)
#define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS)
#define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_IO_ERROR)
#define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_PREFETCH)
#define HDR_FREED_IN_READ(hdr) ((hdr)->b_flags & ARC_FREED_IN_READ)
#define HDR_BUF_AVAILABLE(hdr) ((hdr)->b_flags & ARC_BUF_AVAILABLE)
#define HDR_FREE_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FREE_IN_PROGRESS)
#define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_L2CACHE)
#define HDR_L2_READING(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS && \
(hdr)->b_l2hdr != NULL)
#define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_L2_WRITING)
#define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_L2_EVICTED)
#define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_L2_WRITE_HEAD)
/*
* Other sizes
*/
#define HDR_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
#define L2HDR_SIZE ((int64_t)sizeof (l2arc_buf_hdr_t))
/*
* Hash table routines
*/
#define HT_LOCK_PAD 64
struct ht_lock {
kmutex_t ht_lock;
#ifdef _KERNEL
unsigned char pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
#endif
};
#define BUF_LOCKS 256
typedef struct buf_hash_table {
uint64_t ht_mask;
arc_buf_hdr_t **ht_table;
struct ht_lock ht_locks[BUF_LOCKS];
} buf_hash_table_t;
static buf_hash_table_t buf_hash_table;
#define BUF_HASH_INDEX(spa, dva, birth) \
(buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
#define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
#define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
#define HDR_LOCK(buf) \
(BUF_HASH_LOCK(BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth)))
uint64_t zfs_crc64_table[256];
/*
* Level 2 ARC
*/
#define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */
#define L2ARC_HEADROOM 2 /* num of writes */
#define L2ARC_FEED_SECS 1 /* caching interval secs */
#define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */
#define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent)
#define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done)
/*
* L2ARC Performance Tunables
*/
uint64_t l2arc_write_max = L2ARC_WRITE_SIZE; /* default max write size */
uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra write during warmup */
uint64_t l2arc_headroom = L2ARC_HEADROOM; /* number of dev writes */
uint64_t l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */
uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval milliseconds */
boolean_t l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */
boolean_t l2arc_feed_again = B_TRUE; /* turbo warmup */
boolean_t l2arc_norw = B_TRUE; /* no reads during writes */
/*
* L2ARC Internals
*/
typedef struct l2arc_dev {
vdev_t *l2ad_vdev; /* vdev */
spa_t *l2ad_spa; /* spa */
uint64_t l2ad_hand; /* next write location */
uint64_t l2ad_write; /* desired write size, bytes */
uint64_t l2ad_boost; /* warmup write boost, bytes */
uint64_t l2ad_start; /* first addr on device */
uint64_t l2ad_end; /* last addr on device */
uint64_t l2ad_evict; /* last addr eviction reached */
boolean_t l2ad_first; /* first sweep through */
boolean_t l2ad_writing; /* currently writing */
list_t *l2ad_buflist; /* buffer list */
list_node_t l2ad_node; /* device list node */
} l2arc_dev_t;
static list_t L2ARC_dev_list; /* device list */
static list_t *l2arc_dev_list; /* device list pointer */
static kmutex_t l2arc_dev_mtx; /* device list mutex */
static l2arc_dev_t *l2arc_dev_last; /* last device used */
static kmutex_t l2arc_buflist_mtx; /* mutex for all buflists */
static list_t L2ARC_free_on_write; /* free after write buf list */
static list_t *l2arc_free_on_write; /* free after write list ptr */
static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */
static uint64_t l2arc_ndev; /* number of devices */
typedef struct l2arc_read_callback {
arc_buf_t *l2rcb_buf; /* read buffer */
spa_t *l2rcb_spa; /* spa */
blkptr_t l2rcb_bp; /* original blkptr */
zbookmark_t l2rcb_zb; /* original bookmark */
int l2rcb_flags; /* original flags */
} l2arc_read_callback_t;
typedef struct l2arc_write_callback {
l2arc_dev_t *l2wcb_dev; /* device info */
arc_buf_hdr_t *l2wcb_head; /* head of write buflist */
} l2arc_write_callback_t;
struct l2arc_buf_hdr {
/* protected by arc_buf_hdr mutex */
l2arc_dev_t *b_dev; /* L2ARC device */
daddr_t b_daddr; /* disk address, offset byte */
};
typedef struct l2arc_data_free {
/* protected by l2arc_free_on_write_mtx */
void *l2df_data;
size_t l2df_size;
void (*l2df_func)(void *, size_t);
list_node_t l2df_list_node;
} l2arc_data_free_t;
static kmutex_t l2arc_feed_thr_lock;
static kcondvar_t l2arc_feed_thr_cv;
static uint8_t l2arc_thread_exit;
static void l2arc_read_done(zio_t *zio);
static void l2arc_hdr_stat_add(void);
static void l2arc_hdr_stat_remove(void);
static uint64_t
buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
{
uint8_t *vdva = (uint8_t *)dva;
uint64_t crc = -1ULL;
int i;
ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
for (i = 0; i < sizeof (dva_t); i++)
crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
crc ^= (spa>>8) ^ birth;
return (crc);
}
#define BUF_EMPTY(buf) \
((buf)->b_dva.dva_word[0] == 0 && \
(buf)->b_dva.dva_word[1] == 0 && \
(buf)->b_birth == 0)
#define BUF_EQUAL(spa, dva, birth, buf) \
((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \
((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \
((buf)->b_birth == birth) && ((buf)->b_spa == spa)
static arc_buf_hdr_t *
buf_hash_find(uint64_t spa, const dva_t *dva, uint64_t birth, kmutex_t **lockp)
{
uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
arc_buf_hdr_t *buf;
mutex_enter(hash_lock);
for (buf = buf_hash_table.ht_table[idx]; buf != NULL;
buf = buf->b_hash_next) {
if (BUF_EQUAL(spa, dva, birth, buf)) {
*lockp = hash_lock;
return (buf);
}
}
mutex_exit(hash_lock);
*lockp = NULL;
return (NULL);
}
/*
* Insert an entry into the hash table. If there is already an element
* equal to elem in the hash table, then the already existing element
* will be returned and the new element will not be inserted.
* Otherwise returns NULL.
*/
static arc_buf_hdr_t *
buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp)
{
uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
arc_buf_hdr_t *fbuf;
uint32_t i;
ASSERT(!HDR_IN_HASH_TABLE(buf));
*lockp = hash_lock;
mutex_enter(hash_lock);
for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL;
fbuf = fbuf->b_hash_next, i++) {
if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf))
return (fbuf);
}
buf->b_hash_next = buf_hash_table.ht_table[idx];
buf_hash_table.ht_table[idx] = buf;
buf->b_flags |= ARC_IN_HASH_TABLE;
/* collect some hash table performance data */
if (i > 0) {
ARCSTAT_BUMP(arcstat_hash_collisions);
if (i == 1)
ARCSTAT_BUMP(arcstat_hash_chains);
ARCSTAT_MAX(arcstat_hash_chain_max, i);
}
ARCSTAT_BUMP(arcstat_hash_elements);
ARCSTAT_MAXSTAT(arcstat_hash_elements);
return (NULL);
}
static void
buf_hash_remove(arc_buf_hdr_t *buf)
{
arc_buf_hdr_t *fbuf, **bufp;
uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
ASSERT(HDR_IN_HASH_TABLE(buf));
bufp = &buf_hash_table.ht_table[idx];
while ((fbuf = *bufp) != buf) {
ASSERT(fbuf != NULL);
bufp = &fbuf->b_hash_next;
}
*bufp = buf->b_hash_next;
buf->b_hash_next = NULL;
buf->b_flags &= ~ARC_IN_HASH_TABLE;
/* collect some hash table performance data */
ARCSTAT_BUMPDOWN(arcstat_hash_elements);
if (buf_hash_table.ht_table[idx] &&
buf_hash_table.ht_table[idx]->b_hash_next == NULL)
ARCSTAT_BUMPDOWN(arcstat_hash_chains);
}
/*
* Global data structures and functions for the buf kmem cache.
*/
static kmem_cache_t *hdr_cache;
static kmem_cache_t *buf_cache;
static void
buf_fini(void)
{
int i;
#if defined(_KERNEL) && defined(HAVE_SPL)
/* Large allocations which do not require contiguous pages
* should be using vmem_free() in the linux kernel */
vmem_free(buf_hash_table.ht_table,
(buf_hash_table.ht_mask + 1) * sizeof (void *));
#else
kmem_free(buf_hash_table.ht_table,
(buf_hash_table.ht_mask + 1) * sizeof (void *));
#endif
for (i = 0; i < BUF_LOCKS; i++)
mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
kmem_cache_destroy(hdr_cache);
kmem_cache_destroy(buf_cache);
}
/*
* Constructor callback - called when the cache is empty
* and a new buf is requested.
*/
/* ARGSUSED */
static int
hdr_cons(void *vbuf, void *unused, int kmflag)
{
arc_buf_hdr_t *buf = vbuf;
bzero(buf, sizeof (arc_buf_hdr_t));
refcount_create(&buf->b_refcnt);
cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL);
mutex_init(&buf->b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
list_link_init(&buf->b_arc_node);
list_link_init(&buf->b_l2node);
arc_space_consume(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS);
return (0);
}
/* ARGSUSED */
static int
buf_cons(void *vbuf, void *unused, int kmflag)
{
arc_buf_t *buf = vbuf;
bzero(buf, sizeof (arc_buf_t));
rw_init(&buf->b_lock, NULL, RW_DEFAULT, NULL);
arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
return (0);
}
/*
* Destructor callback - called when a cached buf is
* no longer required.
*/
/* ARGSUSED */
static void
hdr_dest(void *vbuf, void *unused)
{
arc_buf_hdr_t *buf = vbuf;
refcount_destroy(&buf->b_refcnt);
cv_destroy(&buf->b_cv);
mutex_destroy(&buf->b_freeze_lock);
arc_space_return(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS);
}
/* ARGSUSED */
static void
buf_dest(void *vbuf, void *unused)
{
arc_buf_t *buf = vbuf;
rw_destroy(&buf->b_lock);
arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
}
/*
* Reclaim callback -- invoked when memory is low.
*/
/* ARGSUSED */
static void
hdr_recl(void *unused)
{
dprintf("hdr_recl called\n");
/*
* umem calls the reclaim func when we destroy the buf cache,
* which is after we do arc_fini().
*/
if (!arc_dead)
cv_signal(&arc_reclaim_thr_cv);
}
static void
buf_init(void)
{
uint64_t *ct;
uint64_t hsize = 1ULL << 12;
int i, j;
/*
* The hash table is big enough to fill all of physical memory
* with an average 64K block size. The table will take up
* totalmem*sizeof(void*)/64K (eg. 128KB/GB with 8-byte pointers).
*/
while (hsize * 65536 < physmem * PAGESIZE)
hsize <<= 1;
retry:
buf_hash_table.ht_mask = hsize - 1;
#if defined(_KERNEL) && defined(HAVE_SPL)
/* Large allocations which do not require contiguous pages
* should be using vmem_alloc() in the linux kernel */
buf_hash_table.ht_table =
vmem_zalloc(hsize * sizeof (void*), KM_SLEEP);
#else
buf_hash_table.ht_table =
kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
#endif
if (buf_hash_table.ht_table == NULL) {
ASSERT(hsize > (1ULL << 8));
hsize >>= 1;
goto retry;
}
hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t),
0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0);
buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
for (i = 0; i < 256; i++)
for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
*ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
for (i = 0; i < BUF_LOCKS; i++) {
mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
NULL, MUTEX_DEFAULT, NULL);
}
}
#define ARC_MINTIME (hz>>4) /* 62 ms */
static void
arc_cksum_verify(arc_buf_t *buf)
{
zio_cksum_t zc;
if (!(zfs_flags & ZFS_DEBUG_MODIFY))
return;
mutex_enter(&buf->b_hdr->b_freeze_lock);
if (buf->b_hdr->b_freeze_cksum == NULL ||
(buf->b_hdr->b_flags & ARC_IO_ERROR)) {
mutex_exit(&buf->b_hdr->b_freeze_lock);
return;
}
fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc))
panic("buffer modified while frozen!");
mutex_exit(&buf->b_hdr->b_freeze_lock);
}
static int
arc_cksum_equal(arc_buf_t *buf)
{
zio_cksum_t zc;
int equal;
mutex_enter(&buf->b_hdr->b_freeze_lock);
fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc);
mutex_exit(&buf->b_hdr->b_freeze_lock);
return (equal);
}
static void
arc_cksum_compute(arc_buf_t *buf, boolean_t force)
{
if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY))
return;
mutex_enter(&buf->b_hdr->b_freeze_lock);
if (buf->b_hdr->b_freeze_cksum != NULL) {
mutex_exit(&buf->b_hdr->b_freeze_lock);
return;
}
buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP);
fletcher_2_native(buf->b_data, buf->b_hdr->b_size,
buf->b_hdr->b_freeze_cksum);
mutex_exit(&buf->b_hdr->b_freeze_lock);
}
void
arc_buf_thaw(arc_buf_t *buf)
{
if (zfs_flags & ZFS_DEBUG_MODIFY) {
if (buf->b_hdr->b_state != arc_anon)
panic("modifying non-anon buffer!");
if (buf->b_hdr->b_flags & ARC_IO_IN_PROGRESS)
panic("modifying buffer while i/o in progress!");
arc_cksum_verify(buf);
}
mutex_enter(&buf->b_hdr->b_freeze_lock);
if (buf->b_hdr->b_freeze_cksum != NULL) {
kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t));
buf->b_hdr->b_freeze_cksum = NULL;
}
mutex_exit(&buf->b_hdr->b_freeze_lock);
}
void
arc_buf_freeze(arc_buf_t *buf)
{
if (!(zfs_flags & ZFS_DEBUG_MODIFY))
return;
ASSERT(buf->b_hdr->b_freeze_cksum != NULL ||
buf->b_hdr->b_state == arc_anon);
arc_cksum_compute(buf, B_FALSE);
}
static void
add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
{
ASSERT(MUTEX_HELD(hash_lock));
if ((refcount_add(&ab->b_refcnt, tag) == 1) &&
(ab->b_state != arc_anon)) {
uint64_t delta = ab->b_size * ab->b_datacnt;
list_t *list = &ab->b_state->arcs_list[ab->b_type];
uint64_t *size = &ab->b_state->arcs_lsize[ab->b_type];
ASSERT(!MUTEX_HELD(&ab->b_state->arcs_mtx));
mutex_enter(&ab->b_state->arcs_mtx);
ASSERT(list_link_active(&ab->b_arc_node));
list_remove(list, ab);
if (GHOST_STATE(ab->b_state)) {
ASSERT3U(ab->b_datacnt, ==, 0);
ASSERT3P(ab->b_buf, ==, NULL);
delta = ab->b_size;
}
ASSERT(delta > 0);
ASSERT3U(*size, >=, delta);
atomic_add_64(size, -delta);
mutex_exit(&ab->b_state->arcs_mtx);
/* remove the prefetch flag if we get a reference */
if (ab->b_flags & ARC_PREFETCH)
ab->b_flags &= ~ARC_PREFETCH;
}
}
static int
remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
{
int cnt;
arc_state_t *state = ab->b_state;
ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
ASSERT(!GHOST_STATE(state));
if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) &&
(state != arc_anon)) {
uint64_t *size = &state->arcs_lsize[ab->b_type];
ASSERT(!MUTEX_HELD(&state->arcs_mtx));
mutex_enter(&state->arcs_mtx);
ASSERT(!list_link_active(&ab->b_arc_node));
list_insert_head(&state->arcs_list[ab->b_type], ab);
ASSERT(ab->b_datacnt > 0);
atomic_add_64(size, ab->b_size * ab->b_datacnt);
mutex_exit(&state->arcs_mtx);
}
return (cnt);
}
/*
* Move the supplied buffer to the indicated state. The mutex
* for the buffer must be held by the caller.
*/
static void
arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock)
{
arc_state_t *old_state = ab->b_state;
int64_t refcnt = refcount_count(&ab->b_refcnt);
uint64_t from_delta, to_delta;
ASSERT(MUTEX_HELD(hash_lock));
ASSERT(new_state != old_state);
ASSERT(refcnt == 0 || ab->b_datacnt > 0);
ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state));
from_delta = to_delta = ab->b_datacnt * ab->b_size;
/*
* If this buffer is evictable, transfer it from the
* old state list to the new state list.
*/
if (refcnt == 0) {
if (old_state != arc_anon) {
int use_mutex = !MUTEX_HELD(&old_state->arcs_mtx);
uint64_t *size = &old_state->arcs_lsize[ab->b_type];
if (use_mutex)
mutex_enter(&old_state->arcs_mtx);
ASSERT(list_link_active(&ab->b_arc_node));
list_remove(&old_state->arcs_list[ab->b_type], ab);
/*
* If prefetching out of the ghost cache,
* we will have a non-null datacnt.
*/
if (GHOST_STATE(old_state) && ab->b_datacnt == 0) {
/* ghost elements have a ghost size */
ASSERT(ab->b_buf == NULL);
from_delta = ab->b_size;
}
ASSERT3U(*size, >=, from_delta);
atomic_add_64(size, -from_delta);
if (use_mutex)
mutex_exit(&old_state->arcs_mtx);
}
if (new_state != arc_anon) {
int use_mutex = !MUTEX_HELD(&new_state->arcs_mtx);
uint64_t *size = &new_state->arcs_lsize[ab->b_type];
if (use_mutex)
mutex_enter(&new_state->arcs_mtx);
list_insert_head(&new_state->arcs_list[ab->b_type], ab);
/* ghost elements have a ghost size */
if (GHOST_STATE(new_state)) {
ASSERT(ab->b_datacnt == 0);
ASSERT(ab->b_buf == NULL);
to_delta = ab->b_size;
}
atomic_add_64(size, to_delta);
if (use_mutex)
mutex_exit(&new_state->arcs_mtx);
}
}
ASSERT(!BUF_EMPTY(ab));
if (new_state == arc_anon) {
buf_hash_remove(ab);
}
/* adjust state sizes */
if (to_delta)
atomic_add_64(&new_state->arcs_size, to_delta);
if (from_delta) {
ASSERT3U(old_state->arcs_size, >=, from_delta);
atomic_add_64(&old_state->arcs_size, -from_delta);
}
ab->b_state = new_state;
/* adjust l2arc hdr stats */
if (new_state == arc_l2c_only)
l2arc_hdr_stat_add();
else if (old_state == arc_l2c_only)
l2arc_hdr_stat_remove();
}
void
arc_space_consume(uint64_t space, arc_space_type_t type)
{
ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
switch (type) {
case ARC_SPACE_DATA:
ARCSTAT_INCR(arcstat_data_size, space);
break;
case ARC_SPACE_OTHER:
ARCSTAT_INCR(arcstat_other_size, space);
break;
case ARC_SPACE_HDRS:
ARCSTAT_INCR(arcstat_hdr_size, space);
break;
case ARC_SPACE_L2HDRS:
ARCSTAT_INCR(arcstat_l2_hdr_size, space);
break;
}
atomic_add_64(&arc_meta_used, space);
atomic_add_64(&arc_size, space);
}
void
arc_space_return(uint64_t space, arc_space_type_t type)
{
ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
switch (type) {
case ARC_SPACE_DATA:
ARCSTAT_INCR(arcstat_data_size, -space);
break;
case ARC_SPACE_OTHER:
ARCSTAT_INCR(arcstat_other_size, -space);
break;
case ARC_SPACE_HDRS:
ARCSTAT_INCR(arcstat_hdr_size, -space);
break;
case ARC_SPACE_L2HDRS:
ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
break;
}
ASSERT(arc_meta_used >= space);
if (arc_meta_max < arc_meta_used)
arc_meta_max = arc_meta_used;
atomic_add_64(&arc_meta_used, -space);
ASSERT(arc_size >= space);
atomic_add_64(&arc_size, -space);
}
void *
arc_data_buf_alloc(uint64_t size)
{
if (arc_evict_needed(ARC_BUFC_DATA))
cv_signal(&arc_reclaim_thr_cv);
atomic_add_64(&arc_size, size);
return (zio_data_buf_alloc(size));
}
void
arc_data_buf_free(void *buf, uint64_t size)
{
zio_data_buf_free(buf, size);
ASSERT(arc_size >= size);
atomic_add_64(&arc_size, -size);
}
arc_buf_t *
arc_buf_alloc(spa_t *spa, int size, void *tag, arc_buf_contents_t type)
{
arc_buf_hdr_t *hdr;
arc_buf_t *buf;
ASSERT3U(size, >, 0);
hdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
ASSERT(BUF_EMPTY(hdr));
hdr->b_size = size;
hdr->b_type = type;
hdr->b_spa = spa_guid(spa);
hdr->b_state = arc_anon;
hdr->b_arc_access = 0;
buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
buf->b_hdr = hdr;
buf->b_data = NULL;
buf->b_efunc = NULL;
buf->b_private = NULL;
buf->b_next = NULL;
hdr->b_buf = buf;
arc_get_data_buf(buf);
hdr->b_datacnt = 1;
hdr->b_flags = 0;
ASSERT(refcount_is_zero(&hdr->b_refcnt));
(void) refcount_add(&hdr->b_refcnt, tag);
return (buf);
}
static arc_buf_t *
arc_buf_clone(arc_buf_t *from)
{
arc_buf_t *buf;
arc_buf_hdr_t *hdr = from->b_hdr;
uint64_t size = hdr->b_size;
buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
buf->b_hdr = hdr;
buf->b_data = NULL;
buf->b_efunc = NULL;
buf->b_private = NULL;
buf->b_next = hdr->b_buf;
hdr->b_buf = buf;
arc_get_data_buf(buf);
bcopy(from->b_data, buf->b_data, size);
hdr->b_datacnt += 1;
return (buf);
}
void
arc_buf_add_ref(arc_buf_t *buf, void* tag)
{
arc_buf_hdr_t *hdr;
kmutex_t *hash_lock;
/*
* Check to see if this buffer is evicted. Callers
* must verify b_data != NULL to know if the add_ref
* was successful.
*/
rw_enter(&buf->b_lock, RW_READER);
if (buf->b_data == NULL) {
rw_exit(&buf->b_lock);
return;
}
hdr = buf->b_hdr;
ASSERT(hdr != NULL);
hash_lock = HDR_LOCK(hdr);
mutex_enter(hash_lock);
rw_exit(&buf->b_lock);
ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
add_reference(hdr, hash_lock, tag);
DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
arc_access(hdr, hash_lock);
mutex_exit(hash_lock);
ARCSTAT_BUMP(arcstat_hits);
ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
data, metadata, hits);
}
/*
* Free the arc data buffer. If it is an l2arc write in progress,
* the buffer is placed on l2arc_free_on_write to be freed later.
*/
static void
arc_buf_data_free(arc_buf_hdr_t *hdr, void (*free_func)(void *, size_t),
void *data, size_t size)
{
if (HDR_L2_WRITING(hdr)) {
l2arc_data_free_t *df;
df = kmem_alloc(sizeof (l2arc_data_free_t), KM_SLEEP);
df->l2df_data = data;
df->l2df_size = size;
df->l2df_func = free_func;
mutex_enter(&l2arc_free_on_write_mtx);
list_insert_head(l2arc_free_on_write, df);
mutex_exit(&l2arc_free_on_write_mtx);
ARCSTAT_BUMP(arcstat_l2_free_on_write);
} else {
free_func(data, size);
}
}
static void
arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t all)
{
arc_buf_t **bufp;
/* free up data associated with the buf */
if (buf->b_data) {
arc_state_t *state = buf->b_hdr->b_state;
uint64_t size = buf->b_hdr->b_size;
arc_buf_contents_t type = buf->b_hdr->b_type;
arc_cksum_verify(buf);
if (!recycle) {
if (type == ARC_BUFC_METADATA) {
arc_buf_data_free(buf->b_hdr, zio_buf_free,
buf->b_data, size);
arc_space_return(size, ARC_SPACE_DATA);
} else {
ASSERT(type == ARC_BUFC_DATA);
arc_buf_data_free(buf->b_hdr,
zio_data_buf_free, buf->b_data, size);
ARCSTAT_INCR(arcstat_data_size, -size);
atomic_add_64(&arc_size, -size);
}
}
if (list_link_active(&buf->b_hdr->b_arc_node)) {
uint64_t *cnt = &state->arcs_lsize[type];
ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt));
ASSERT(state != arc_anon);
ASSERT3U(*cnt, >=, size);
atomic_add_64(cnt, -size);
}
ASSERT3U(state->arcs_size, >=, size);
atomic_add_64(&state->arcs_size, -size);
buf->b_data = NULL;
ASSERT(buf->b_hdr->b_datacnt > 0);
buf->b_hdr->b_datacnt -= 1;
}
/* only remove the buf if requested */
if (!all)
return;
/* remove the buf from the hdr list */
for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next)
continue;
*bufp = buf->b_next;
ASSERT(buf->b_efunc == NULL);
/* clean up the buf */
buf->b_hdr = NULL;
kmem_cache_free(buf_cache, buf);
}
static void
arc_hdr_destroy(arc_buf_hdr_t *hdr)
{
ASSERT(refcount_is_zero(&hdr->b_refcnt));
ASSERT3P(hdr->b_state, ==, arc_anon);
ASSERT(!HDR_IO_IN_PROGRESS(hdr));
ASSERT(!(hdr->b_flags & ARC_STORED));
if (hdr->b_l2hdr != NULL) {
if (!MUTEX_HELD(&l2arc_buflist_mtx)) {
/*
* To prevent arc_free() and l2arc_evict() from
* attempting to free the same buffer at the same time,
* a FREE_IN_PROGRESS flag is given to arc_free() to
* give it priority. l2arc_evict() can't destroy this
* header while we are waiting on l2arc_buflist_mtx.
*
* The hdr may be removed from l2ad_buflist before we
* grab l2arc_buflist_mtx, so b_l2hdr is rechecked.
*/
mutex_enter(&l2arc_buflist_mtx);
if (hdr->b_l2hdr != NULL) {
list_remove(hdr->b_l2hdr->b_dev->l2ad_buflist,
hdr);
}
mutex_exit(&l2arc_buflist_mtx);
} else {
list_remove(hdr->b_l2hdr->b_dev->l2ad_buflist, hdr);
}
ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
kmem_free(hdr->b_l2hdr, sizeof (l2arc_buf_hdr_t));
if (hdr->b_state == arc_l2c_only)
l2arc_hdr_stat_remove();
hdr->b_l2hdr = NULL;
}
if (!BUF_EMPTY(hdr)) {
ASSERT(!HDR_IN_HASH_TABLE(hdr));
bzero(&hdr->b_dva, sizeof (dva_t));
hdr->b_birth = 0;
hdr->b_cksum0 = 0;
}
while (hdr->b_buf) {
arc_buf_t *buf = hdr->b_buf;
if (buf->b_efunc) {
mutex_enter(&arc_eviction_mtx);
rw_enter(&buf->b_lock, RW_WRITER);
ASSERT(buf->b_hdr != NULL);
arc_buf_destroy(hdr->b_buf, FALSE, FALSE);
hdr->b_buf = buf->b_next;
buf->b_hdr = &arc_eviction_hdr;
buf->b_next = arc_eviction_list;
arc_eviction_list = buf;
rw_exit(&buf->b_lock);
mutex_exit(&arc_eviction_mtx);
} else {
arc_buf_destroy(hdr->b_buf, FALSE, TRUE);
}
}
if (hdr->b_freeze_cksum != NULL) {
kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
hdr->b_freeze_cksum = NULL;
}
ASSERT(!list_link_active(&hdr->b_arc_node));
ASSERT3P(hdr->b_hash_next, ==, NULL);
ASSERT3P(hdr->b_acb, ==, NULL);
kmem_cache_free(hdr_cache, hdr);
}
void
arc_buf_free(arc_buf_t *buf, void *tag)
{
arc_buf_hdr_t *hdr = buf->b_hdr;
int hashed = hdr->b_state != arc_anon;
ASSERT(buf->b_efunc == NULL);
ASSERT(buf->b_data != NULL);
if (hashed) {
kmutex_t *hash_lock = HDR_LOCK(hdr);
mutex_enter(hash_lock);
(void) remove_reference(hdr, hash_lock, tag);
if (hdr->b_datacnt > 1)
arc_buf_destroy(buf, FALSE, TRUE);
else
hdr->b_flags |= ARC_BUF_AVAILABLE;
mutex_exit(hash_lock);
} else if (HDR_IO_IN_PROGRESS(hdr)) {
int destroy_hdr;
/*
* We are in the middle of an async write. Don't destroy
* this buffer unless the write completes before we finish
* decrementing the reference count.
*/
mutex_enter(&arc_eviction_mtx);
(void) remove_reference(hdr, NULL, tag);
ASSERT(refcount_is_zero(&hdr->b_refcnt));
destroy_hdr = !HDR_IO_IN_PROGRESS(hdr);
mutex_exit(&arc_eviction_mtx);
if (destroy_hdr)
arc_hdr_destroy(hdr);
} else {
if (remove_reference(hdr, NULL, tag) > 0) {
ASSERT(HDR_IO_ERROR(hdr));
arc_buf_destroy(buf, FALSE, TRUE);
} else {
arc_hdr_destroy(hdr);
}
}
}
int
arc_buf_remove_ref(arc_buf_t *buf, void* tag)
{
arc_buf_hdr_t *hdr = buf->b_hdr;
kmutex_t *hash_lock = HDR_LOCK(hdr);
int no_callback = (buf->b_efunc == NULL);
if (hdr->b_state == arc_anon) {
arc_buf_free(buf, tag);
return (no_callback);
}
mutex_enter(hash_lock);
ASSERT(hdr->b_state != arc_anon);
ASSERT(buf->b_data != NULL);
(void) remove_reference(hdr, hash_lock, tag);
if (hdr->b_datacnt > 1) {
if (no_callback)
arc_buf_destroy(buf, FALSE, TRUE);
} else if (no_callback) {
ASSERT(hdr->b_buf == buf && buf->b_next == NULL);
hdr->b_flags |= ARC_BUF_AVAILABLE;
}
ASSERT(no_callback || hdr->b_datacnt > 1 ||
refcount_is_zero(&hdr->b_refcnt));
mutex_exit(hash_lock);
return (no_callback);
}
int
arc_buf_size(arc_buf_t *buf)
{
return (buf->b_hdr->b_size);
}
/*
* Evict buffers from list until we've removed the specified number of
* bytes. Move the removed buffers to the appropriate evict state.
* If the recycle flag is set, then attempt to "recycle" a buffer:
* - look for a buffer to evict that is `bytes' long.
* - return the data block from this buffer rather than freeing it.
* This flag is used by callers that are trying to make space for a
* new buffer in a full arc cache.
*
* This function makes a "best effort". It skips over any buffers
* it can't get a hash_lock on, and so may not catch all candidates.
* It may also return without evicting as much space as requested.
*/
static void *
arc_evict(arc_state_t *state, uint64_t spa, int64_t bytes, boolean_t recycle,
arc_buf_contents_t type)
{
arc_state_t *evicted_state;
uint64_t bytes_evicted = 0, skipped = 0, missed = 0;
arc_buf_hdr_t *ab, *ab_prev = NULL;
list_t *list = &state->arcs_list[type];
kmutex_t *hash_lock;
boolean_t have_lock;
void *stolen = NULL;
ASSERT(state == arc_mru || state == arc_mfu);
evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
mutex_enter(&state->arcs_mtx);
mutex_enter(&evicted_state->arcs_mtx);
for (ab = list_tail(list); ab; ab = ab_prev) {
ab_prev = list_prev(list, ab);
/* prefetch buffers have a minimum lifespan */
if (HDR_IO_IN_PROGRESS(ab) ||
(spa && ab->b_spa != spa) ||
(ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) &&
lbolt - ab->b_arc_access < arc_min_prefetch_lifespan)) {
skipped++;
continue;
}
/* "lookahead" for better eviction candidate */
if (recycle && ab->b_size != bytes &&
ab_prev && ab_prev->b_size == bytes)
continue;
hash_lock = HDR_LOCK(ab);
have_lock = MUTEX_HELD(hash_lock);
if (have_lock || mutex_tryenter(hash_lock)) {
ASSERT3U(refcount_count(&ab->b_refcnt), ==, 0);
ASSERT(ab->b_datacnt > 0);
while (ab->b_buf) {
arc_buf_t *buf = ab->b_buf;
if (!rw_tryenter(&buf->b_lock, RW_WRITER)) {
missed += 1;
break;
}
if (buf->b_data) {
bytes_evicted += ab->b_size;
if (recycle && ab->b_type == type &&
ab->b_size == bytes &&
!HDR_L2_WRITING(ab)) {
stolen = buf->b_data;
recycle = FALSE;
}
}
if (buf->b_efunc) {
mutex_enter(&arc_eviction_mtx);
arc_buf_destroy(buf,
buf->b_data == stolen, FALSE);
ab->b_buf = buf->b_next;
buf->b_hdr = &arc_eviction_hdr;
buf->b_next = arc_eviction_list;
arc_eviction_list = buf;
mutex_exit(&arc_eviction_mtx);
rw_exit(&buf->b_lock);
} else {
rw_exit(&buf->b_lock);
arc_buf_destroy(buf,
buf->b_data == stolen, TRUE);
}
}
if (ab->b_datacnt == 0) {
arc_change_state(evicted_state, ab, hash_lock);
ASSERT(HDR_IN_HASH_TABLE(ab));
ab->b_flags |= ARC_IN_HASH_TABLE;
ab->b_flags &= ~ARC_BUF_AVAILABLE;
DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab);
}
if (!have_lock)
mutex_exit(hash_lock);
if (bytes >= 0 && bytes_evicted >= bytes)
break;
} else {
missed += 1;
}
}
mutex_exit(&evicted_state->arcs_mtx);
mutex_exit(&state->arcs_mtx);
if (bytes_evicted < bytes)
dprintf("only evicted %lld bytes from %x\n",
(longlong_t)bytes_evicted, state);
if (skipped)
ARCSTAT_INCR(arcstat_evict_skip, skipped);
if (missed)
ARCSTAT_INCR(arcstat_mutex_miss, missed);
/*
* We have just evicted some date into the ghost state, make
* sure we also adjust the ghost state size if necessary.
*/
if (arc_no_grow &&
arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size > arc_c) {
int64_t mru_over = arc_anon->arcs_size + arc_mru->arcs_size +
arc_mru_ghost->arcs_size - arc_c;
if (mru_over > 0 && arc_mru_ghost->arcs_lsize[type] > 0) {
int64_t todelete =
MIN(arc_mru_ghost->arcs_lsize[type], mru_over);
arc_evict_ghost(arc_mru_ghost, 0, todelete);
} else if (arc_mfu_ghost->arcs_lsize[type] > 0) {
int64_t todelete = MIN(arc_mfu_ghost->arcs_lsize[type],
arc_mru_ghost->arcs_size +
arc_mfu_ghost->arcs_size - arc_c);
arc_evict_ghost(arc_mfu_ghost, 0, todelete);
}
}
return (stolen);
}
/*
* Remove buffers from list until we've removed the specified number of
* bytes. Destroy the buffers that are removed.
*/
static void
arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes)
{
arc_buf_hdr_t *ab, *ab_prev;
list_t *list = &state->arcs_list[ARC_BUFC_DATA];
kmutex_t *hash_lock;
uint64_t bytes_deleted = 0;
uint64_t bufs_skipped = 0;
ASSERT(GHOST_STATE(state));
top:
mutex_enter(&state->arcs_mtx);
for (ab = list_tail(list); ab; ab = ab_prev) {
ab_prev = list_prev(list, ab);
if (spa && ab->b_spa != spa)
continue;
hash_lock = HDR_LOCK(ab);
if (mutex_tryenter(hash_lock)) {
ASSERT(!HDR_IO_IN_PROGRESS(ab));
ASSERT(ab->b_buf == NULL);
ARCSTAT_BUMP(arcstat_deleted);
bytes_deleted += ab->b_size;
if (ab->b_l2hdr != NULL) {
/*
* This buffer is cached on the 2nd Level ARC;
* don't destroy the header.
*/
arc_change_state(arc_l2c_only, ab, hash_lock);
mutex_exit(hash_lock);
} else {
arc_change_state(arc_anon, ab, hash_lock);
mutex_exit(hash_lock);
arc_hdr_destroy(ab);
}
DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab);
if (bytes >= 0 && bytes_deleted >= bytes)
break;
} else {
if (bytes < 0) {
mutex_exit(&state->arcs_mtx);
mutex_enter(hash_lock);
mutex_exit(hash_lock);
goto top;
}
bufs_skipped += 1;
}
}
mutex_exit(&state->arcs_mtx);
if (list == &state->arcs_list[ARC_BUFC_DATA] &&
(bytes < 0 || bytes_deleted < bytes)) {
list = &state->arcs_list[ARC_BUFC_METADATA];
goto top;
}
if (bufs_skipped) {
ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped);
ASSERT(bytes >= 0);
}
if (bytes_deleted < bytes)
dprintf("only deleted %lld bytes from %p\n",
(longlong_t)bytes_deleted, state);
}
static void
arc_adjust(void)
{
int64_t adjustment, delta;
/*
* Adjust MRU size
*/
adjustment = MIN(arc_size - arc_c,
arc_anon->arcs_size + arc_mru->arcs_size + arc_meta_used - arc_p);
if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_DATA] > 0) {
delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_DATA], adjustment);
(void) arc_evict(arc_mru, 0, delta, FALSE, ARC_BUFC_DATA);
adjustment -= delta;
}
if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) {
delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], adjustment);
(void) arc_evict(arc_mru, 0, delta, FALSE,
ARC_BUFC_METADATA);
}
/*
* Adjust MFU size
*/
adjustment = arc_size - arc_c;
if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_DATA] > 0) {
delta = MIN(adjustment, arc_mfu->arcs_lsize[ARC_BUFC_DATA]);
(void) arc_evict(arc_mfu, 0, delta, FALSE, ARC_BUFC_DATA);
adjustment -= delta;
}
if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) {
int64_t delta = MIN(adjustment,
arc_mfu->arcs_lsize[ARC_BUFC_METADATA]);
(void) arc_evict(arc_mfu, 0, delta, FALSE,
ARC_BUFC_METADATA);
}
/*
* Adjust ghost lists
*/
adjustment = arc_mru->arcs_size + arc_mru_ghost->arcs_size - arc_c;
if (adjustment > 0 && arc_mru_ghost->arcs_size > 0) {
delta = MIN(arc_mru_ghost->arcs_size, adjustment);
arc_evict_ghost(arc_mru_ghost, 0, delta);
}
adjustment =
arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size - arc_c;
if (adjustment > 0 && arc_mfu_ghost->arcs_size > 0) {
delta = MIN(arc_mfu_ghost->arcs_size, adjustment);
arc_evict_ghost(arc_mfu_ghost, 0, delta);
}
}
static void
arc_do_user_evicts(void)
{
mutex_enter(&arc_eviction_mtx);
while (arc_eviction_list != NULL) {
arc_buf_t *buf = arc_eviction_list;
arc_eviction_list = buf->b_next;
rw_enter(&buf->b_lock, RW_WRITER);
buf->b_hdr = NULL;
rw_exit(&buf->b_lock);
mutex_exit(&arc_eviction_mtx);
if (buf->b_efunc != NULL)
VERIFY(buf->b_efunc(buf) == 0);
buf->b_efunc = NULL;
buf->b_private = NULL;
kmem_cache_free(buf_cache, buf);
mutex_enter(&arc_eviction_mtx);
}
mutex_exit(&arc_eviction_mtx);
}
/*
* Flush all *evictable* data from the cache for the given spa.
* NOTE: this will not touch "active" (i.e. referenced) data.
*/
void
arc_flush(spa_t *spa)
{
uint64_t guid = 0;
if (spa)
guid = spa_guid(spa);
while (list_head(&arc_mru->arcs_list[ARC_BUFC_DATA])) {
(void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_DATA);
if (spa)
break;
}
while (list_head(&arc_mru->arcs_list[ARC_BUFC_METADATA])) {
(void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_METADATA);
if (spa)
break;
}
while (list_head(&arc_mfu->arcs_list[ARC_BUFC_DATA])) {
(void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_DATA);
if (spa)
break;
}
while (list_head(&arc_mfu->arcs_list[ARC_BUFC_METADATA])) {
(void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_METADATA);
if (spa)
break;
}
arc_evict_ghost(arc_mru_ghost, guid, -1);
arc_evict_ghost(arc_mfu_ghost, guid, -1);
mutex_enter(&arc_reclaim_thr_lock);
arc_do_user_evicts();
mutex_exit(&arc_reclaim_thr_lock);
ASSERT(spa || arc_eviction_list == NULL);
}
void
arc_shrink(void)
{
if (arc_c > arc_c_min) {
uint64_t to_free;
#ifdef _KERNEL
to_free = MAX(arc_c >> arc_shrink_shift, ptob(needfree));
#else
to_free = arc_c >> arc_shrink_shift;
#endif
if (arc_c > arc_c_min + to_free)
atomic_add_64(&arc_c, -to_free);
else
arc_c = arc_c_min;
atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
if (arc_c > arc_size)
arc_c = MAX(arc_size, arc_c_min);
if (arc_p > arc_c)
arc_p = (arc_c >> 1);
ASSERT(arc_c >= arc_c_min);
ASSERT((int64_t)arc_p >= 0);
}
if (arc_size > arc_c)
arc_adjust();
}
static int
arc_reclaim_needed(void)
{
#ifdef _KERNEL
uint64_t extra;
if (needfree)
return (1);
/*
* take 'desfree' extra pages, so we reclaim sooner, rather than later
*/
extra = desfree;
/*
* check that we're out of range of the pageout scanner. It starts to
* schedule paging if freemem is less than lotsfree and needfree.
* lotsfree is the high-water mark for pageout, and needfree is the
* number of needed free pages. We add extra pages here to make sure
* the scanner doesn't start up while we're freeing memory.
*/
if (freemem < lotsfree + needfree + extra)
return (1);
/*
* check to make sure that swapfs has enough space so that anon
* reservations can still succeed. anon_resvmem() checks that the
* availrmem is greater than swapfs_minfree, and the number of reserved
* swap pages. We also add a bit of extra here just to prevent
* circumstances from getting really dire.
*/
if (availrmem < swapfs_minfree + swapfs_reserve + extra)
return (1);
#if defined(__i386)
/*
* If we're on an i386 platform, it's possible that we'll exhaust the
* kernel heap space before we ever run out of available physical
* memory. Most checks of the size of the heap_area compare against
* tune.t_minarmem, which is the minimum available real memory that we
* can have in the system. However, this is generally fixed at 25 pages
* which is so low that it's useless. In this comparison, we seek to
* calculate the total heap-size, and reclaim if more than 3/4ths of the
* heap is allocated. (Or, in the calculation, if less than 1/4th is
* free)
*/
if (btop(vmem_size(heap_arena, VMEM_FREE)) <
(btop(vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC)) >> 2))
return (1);
#endif
#else
if (spa_get_random(100) == 0)
return (1);
#endif
return (0);
}
static void
arc_kmem_reap_now(arc_reclaim_strategy_t strat)
{
size_t i;
kmem_cache_t *prev_cache = NULL;
kmem_cache_t *prev_data_cache = NULL;
extern kmem_cache_t *zio_buf_cache[];
extern kmem_cache_t *zio_data_buf_cache[];
#ifdef _KERNEL
if (arc_meta_used >= arc_meta_limit) {
/*
* We are exceeding our meta-data cache limit.
* Purge some DNLC entries to release holds on meta-data.
*/
dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
}
#if defined(__i386)
/*
* Reclaim unused memory from all kmem caches.
*/
kmem_reap();
#endif
#endif
/*
* An aggressive reclamation will shrink the cache size as well as
* reap free buffers from the arc kmem caches.
*/
if (strat == ARC_RECLAIM_AGGR)
arc_shrink();
for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
if (zio_buf_cache[i] != prev_cache) {
prev_cache = zio_buf_cache[i];
kmem_cache_reap_now(zio_buf_cache[i]);
}
if (zio_data_buf_cache[i] != prev_data_cache) {
prev_data_cache = zio_data_buf_cache[i];
kmem_cache_reap_now(zio_data_buf_cache[i]);
}
}
kmem_cache_reap_now(buf_cache);
kmem_cache_reap_now(hdr_cache);
}
static void
arc_reclaim_thread(void)
{
int64_t growtime = 0;
arc_reclaim_strategy_t last_reclaim = ARC_RECLAIM_CONS;
callb_cpr_t cpr;
CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG);
mutex_enter(&arc_reclaim_thr_lock);
while (arc_thread_exit == 0) {
if (arc_reclaim_needed()) {
if (arc_no_grow) {
if (last_reclaim == ARC_RECLAIM_CONS) {
last_reclaim = ARC_RECLAIM_AGGR;
} else {
last_reclaim = ARC_RECLAIM_CONS;
}
} else {
arc_no_grow = TRUE;
last_reclaim = ARC_RECLAIM_AGGR;
membar_producer();
}
/* reset the growth delay for every reclaim */
growtime = lbolt64 + (arc_grow_retry * hz);
arc_kmem_reap_now(last_reclaim);
arc_warm = B_TRUE;
} else if (arc_no_grow && lbolt64 >= growtime) {
arc_no_grow = FALSE;
}
if (2 * arc_c < arc_size +
arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size)
arc_adjust();
if (arc_eviction_list != NULL)
arc_do_user_evicts();
/* block until needed, or one second, whichever is shorter */
CALLB_CPR_SAFE_BEGIN(&cpr);
(void) cv_timedwait(&arc_reclaim_thr_cv,
&arc_reclaim_thr_lock, (lbolt + hz));
CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock);
}
arc_thread_exit = 0;
cv_broadcast(&arc_reclaim_thr_cv);
CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_thr_lock */
thread_exit();
}
/*
* Adapt arc info given the number of bytes we are trying to add and
* the state that we are comming from. This function is only called
* when we are adding new content to the cache.
*/
static void
arc_adapt(int bytes, arc_state_t *state)
{
int mult;
uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
if (state == arc_l2c_only)
return;
ASSERT(bytes > 0);
/*
* Adapt the target size of the MRU list:
* - if we just hit in the MRU ghost list, then increase
* the target size of the MRU list.
* - if we just hit in the MFU ghost list, then increase
* the target size of the MFU list by decreasing the
* target size of the MRU list.
*/
if (state == arc_mru_ghost) {
mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ?
1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size));
arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
} else if (state == arc_mfu_ghost) {
uint64_t delta;
mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ?
1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size));
delta = MIN(bytes * mult, arc_p);
arc_p = MAX(arc_p_min, arc_p - delta);
}
ASSERT((int64_t)arc_p >= 0);
if (arc_reclaim_needed()) {
cv_signal(&arc_reclaim_thr_cv);
return;
}
if (arc_no_grow)
return;
if (arc_c >= arc_c_max)
return;
/*
* If we're within (2 * maxblocksize) bytes of the target
* cache size, increment the target cache size
*/
if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
atomic_add_64(&arc_c, (int64_t)bytes);
if (arc_c > arc_c_max)
arc_c = arc_c_max;
else if (state == arc_anon)
atomic_add_64(&arc_p, (int64_t)bytes);
if (arc_p > arc_c)
arc_p = arc_c;
}
ASSERT((int64_t)arc_p >= 0);
}
/*
* Check if the cache has reached its limits and eviction is required
* prior to insert.
*/
static int
arc_evict_needed(arc_buf_contents_t type)
{
if (type == ARC_BUFC_METADATA && arc_meta_used >= arc_meta_limit)
return (1);
#ifdef _KERNEL
/*
* If zio data pages are being allocated out of a separate heap segment,
* then enforce that the size of available vmem for this area remains
* above about 1/32nd free.
*/
if (type == ARC_BUFC_DATA && zio_arena != NULL &&
vmem_size(zio_arena, VMEM_FREE) <
(vmem_size(zio_arena, VMEM_ALLOC) >> 5))
return (1);
#endif
if (arc_reclaim_needed())
return (1);
return (arc_size > arc_c);
}
/*
* The buffer, supplied as the first argument, needs a data block.
* So, if we are at cache max, determine which cache should be victimized.
* We have the following cases:
*
* 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) ->
* In this situation if we're out of space, but the resident size of the MFU is
* under the limit, victimize the MFU cache to satisfy this insertion request.
*
* 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) ->
* Here, we've used up all of the available space for the MRU, so we need to
* evict from our own cache instead. Evict from the set of resident MRU
* entries.
*
* 3. Insert for MFU (c - p) > sizeof(arc_mfu) ->
* c minus p represents the MFU space in the cache, since p is the size of the
* cache that is dedicated to the MRU. In this situation there's still space on
* the MFU side, so the MRU side needs to be victimized.
*
* 4. Insert for MFU (c - p) < sizeof(arc_mfu) ->
* MFU's resident set is consuming more space than it has been allotted. In
* this situation, we must victimize our own cache, the MFU, for this insertion.
*/
static void
arc_get_data_buf(arc_buf_t *buf)
{
arc_state_t *state = buf->b_hdr->b_state;
uint64_t size = buf->b_hdr->b_size;
arc_buf_contents_t type = buf->b_hdr->b_type;
arc_adapt(size, state);
/*
* We have not yet reached cache maximum size,
* just allocate a new buffer.
*/
if (!arc_evict_needed(type)) {
if (type == ARC_BUFC_METADATA) {
buf->b_data = zio_buf_alloc(size);
arc_space_consume(size, ARC_SPACE_DATA);
} else {
ASSERT(type == ARC_BUFC_DATA);
buf->b_data = zio_data_buf_alloc(size);
ARCSTAT_INCR(arcstat_data_size, size);
atomic_add_64(&arc_size, size);
}
goto out;
}
/*
* If we are prefetching from the mfu ghost list, this buffer
* will end up on the mru list; so steal space from there.
*/
if (state == arc_mfu_ghost)
state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc_mru : arc_mfu;
else if (state == arc_mru_ghost)
state = arc_mru;
if (state == arc_mru || state == arc_anon) {
uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size;
state = (arc_mfu->arcs_lsize[type] >= size &&
arc_p > mru_used) ? arc_mfu : arc_mru;
} else {
/* MFU cases */
uint64_t mfu_space = arc_c - arc_p;
state = (arc_mru->arcs_lsize[type] >= size &&
mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu;
}
if ((buf->b_data = arc_evict(state, 0, size, TRUE, type)) == NULL) {
if (type == ARC_BUFC_METADATA) {
buf->b_data = zio_buf_alloc(size);
arc_space_consume(size, ARC_SPACE_DATA);
} else {
ASSERT(type == ARC_BUFC_DATA);
buf->b_data = zio_data_buf_alloc(size);
ARCSTAT_INCR(arcstat_data_size, size);
atomic_add_64(&arc_size, size);
}
ARCSTAT_BUMP(arcstat_recycle_miss);
}
ASSERT(buf->b_data != NULL);
out:
/*
* Update the state size. Note that ghost states have a
* "ghost size" and so don't need to be updated.
*/
if (!GHOST_STATE(buf->b_hdr->b_state)) {
arc_buf_hdr_t *hdr = buf->b_hdr;
atomic_add_64(&hdr->b_state->arcs_size, size);
if (list_link_active(&hdr->b_arc_node)) {
ASSERT(refcount_is_zero(&hdr->b_refcnt));
atomic_add_64(&hdr->b_state->arcs_lsize[type], size);
}
/*
* If we are growing the cache, and we are adding anonymous
* data, and we have outgrown arc_p, update arc_p
*/
if (arc_size < arc_c && hdr->b_state == arc_anon &&
arc_anon->arcs_size + arc_mru->arcs_size > arc_p)
arc_p = MIN(arc_c, arc_p + size);
}
}
/*
* This routine is called whenever a buffer is accessed.
* NOTE: the hash lock is dropped in this function.
*/
static void
arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock)
{
ASSERT(MUTEX_HELD(hash_lock));
if (buf->b_state == arc_anon) {
/*
* This buffer is not in the cache, and does not
* appear in our "ghost" list. Add the new buffer
* to the MRU state.
*/
ASSERT(buf->b_arc_access == 0);
buf->b_arc_access = lbolt;
DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
arc_change_state(arc_mru, buf, hash_lock);
} else if (buf->b_state == arc_mru) {
/*
* If this buffer is here because of a prefetch, then either:
* - clear the flag if this is a "referencing" read
* (any subsequent access will bump this into the MFU state).
* or
* - move the buffer to the head of the list if this is
* another prefetch (to make it less likely to be evicted).
*/
if ((buf->b_flags & ARC_PREFETCH) != 0) {
if (refcount_count(&buf->b_refcnt) == 0) {
ASSERT(list_link_active(&buf->b_arc_node));
} else {
buf->b_flags &= ~ARC_PREFETCH;
ARCSTAT_BUMP(arcstat_mru_hits);
}
buf->b_arc_access = lbolt;
return;
}
/*
* This buffer has been "accessed" only once so far,
* but it is still in the cache. Move it to the MFU
* state.
*/
if (lbolt > buf->b_arc_access + ARC_MINTIME) {
/*
* More than 125ms have passed since we
* instantiated this buffer. Move it to the
* most frequently used state.
*/
buf->b_arc_access = lbolt;
DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
arc_change_state(arc_mfu, buf, hash_lock);
}
ARCSTAT_BUMP(arcstat_mru_hits);
} else if (buf->b_state == arc_mru_ghost) {
arc_state_t *new_state;
/*
* This buffer has been "accessed" recently, but
* was evicted from the cache. Move it to the
* MFU state.
*/
if (buf->b_flags & ARC_PREFETCH) {
new_state = arc_mru;
if (refcount_count(&buf->b_refcnt) > 0)
buf->b_flags &= ~ARC_PREFETCH;
DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
} else {
new_state = arc_mfu;
DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
}
buf->b_arc_access = lbolt;
arc_change_state(new_state, buf, hash_lock);
ARCSTAT_BUMP(arcstat_mru_ghost_hits);
} else if (buf->b_state == arc_mfu) {
/*
* This buffer has been accessed more than once and is
* still in the cache. Keep it in the MFU state.
*
* NOTE: an add_reference() that occurred when we did
* the arc_read() will have kicked this off the list.
* If it was a prefetch, we will explicitly move it to
* the head of the list now.
*/
if ((buf->b_flags & ARC_PREFETCH) != 0) {
ASSERT(refcount_count(&buf->b_refcnt) == 0);
ASSERT(list_link_active(&buf->b_arc_node));
}
ARCSTAT_BUMP(arcstat_mfu_hits);
buf->b_arc_access = lbolt;
} else if (buf->b_state == arc_mfu_ghost) {
arc_state_t *new_state = arc_mfu;
/*
* This buffer has been accessed more than once but has
* been evicted from the cache. Move it back to the
* MFU state.
*/
if (buf->b_flags & ARC_PREFETCH) {
/*
* This is a prefetch access...
* move this block back to the MRU state.
*/
ASSERT3U(refcount_count(&buf->b_refcnt), ==, 0);
new_state = arc_mru;
}
buf->b_arc_access = lbolt;
DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
arc_change_state(new_state, buf, hash_lock);
ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
} else if (buf->b_state == arc_l2c_only) {
/*
* This buffer is on the 2nd Level ARC.
*/
buf->b_arc_access = lbolt;
DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
arc_change_state(arc_mfu, buf, hash_lock);
} else {
ASSERT(!"invalid arc state");
}
}
/* a generic arc_done_func_t which you can use */
/* ARGSUSED */
void
arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
{
bcopy(buf->b_data, arg, buf->b_hdr->b_size);
VERIFY(arc_buf_remove_ref(buf, arg) == 1);
}
/* a generic arc_done_func_t */
void
arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
{
arc_buf_t **bufp = arg;
if (zio && zio->io_error) {
VERIFY(arc_buf_remove_ref(buf, arg) == 1);
*bufp = NULL;
} else {
*bufp = buf;
}
}
static void
arc_read_done(zio_t *zio)
{
arc_buf_hdr_t *hdr, *found;
arc_buf_t *buf;
arc_buf_t *abuf; /* buffer we're assigning to callback */
kmutex_t *hash_lock;
arc_callback_t *callback_list, *acb;
int freeable = FALSE;
buf = zio->io_private;
hdr = buf->b_hdr;
/*
* The hdr was inserted into hash-table and removed from lists
* prior to starting I/O. We should find this header, since
* it's in the hash table, and it should be legit since it's
* not possible to evict it during the I/O. The only possible
* reason for it not to be found is if we were freed during the
* read.
*/
found = buf_hash_find(hdr->b_spa, &hdr->b_dva, hdr->b_birth,
&hash_lock);
ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && hash_lock == NULL) ||
(found == hdr && DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
(found == hdr && HDR_L2_READING(hdr)));
hdr->b_flags &= ~ARC_L2_EVICTED;
if (l2arc_noprefetch && (hdr->b_flags & ARC_PREFETCH))
hdr->b_flags &= ~ARC_L2CACHE;
/* byteswap if necessary */
callback_list = hdr->b_acb;
ASSERT(callback_list != NULL);
if (BP_SHOULD_BYTESWAP(zio->io_bp)) {
arc_byteswap_func_t *func = BP_GET_LEVEL(zio->io_bp) > 0 ?
byteswap_uint64_array :
dmu_ot[BP_GET_TYPE(zio->io_bp)].ot_byteswap;
func(buf->b_data, hdr->b_size);
}
arc_cksum_compute(buf, B_FALSE);
/* create copies of the data buffer for the callers */
abuf = buf;
for (acb = callback_list; acb; acb = acb->acb_next) {
if (acb->acb_done) {
if (abuf == NULL)
abuf = arc_buf_clone(buf);
acb->acb_buf = abuf;
abuf = NULL;
}
}
hdr->b_acb = NULL;
hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
ASSERT(!HDR_BUF_AVAILABLE(hdr));
if (abuf == buf)
hdr->b_flags |= ARC_BUF_AVAILABLE;
ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL);
if (zio->io_error != 0) {
hdr->b_flags |= ARC_IO_ERROR;
if (hdr->b_state != arc_anon)
arc_change_state(arc_anon, hdr, hash_lock);
if (HDR_IN_HASH_TABLE(hdr))
buf_hash_remove(hdr);
freeable = refcount_is_zero(&hdr->b_refcnt);
}
/*
* Broadcast before we drop the hash_lock to avoid the possibility
* that the hdr (and hence the cv) might be freed before we get to
* the cv_broadcast().
*/
cv_broadcast(&hdr->b_cv);
if (hash_lock) {
/*
* Only call arc_access on anonymous buffers. This is because
* if we've issued an I/O for an evicted buffer, we've already
* called arc_access (to prevent any simultaneous readers from
* getting confused).
*/
if (zio->io_error == 0 && hdr->b_state == arc_anon)
arc_access(hdr, hash_lock);
mutex_exit(hash_lock);
} else {
/*
* This block was freed while we waited for the read to
* complete. It has been removed from the hash table and
* moved to the anonymous state (so that it won't show up
* in the cache).
*/
ASSERT3P(hdr->b_state, ==, arc_anon);
freeable = refcount_is_zero(&hdr->b_refcnt);
}
/* execute each callback and free its structure */
while ((acb = callback_list) != NULL) {
if (acb->acb_done)
acb->acb_done(zio, acb->acb_buf, acb->acb_private);
if (acb->acb_zio_dummy != NULL) {
acb->acb_zio_dummy->io_error = zio->io_error;
zio_nowait(acb->acb_zio_dummy);
}
callback_list = acb->acb_next;
kmem_free(acb, sizeof (arc_callback_t));
}
if (freeable)
arc_hdr_destroy(hdr);
}
/*
* "Read" the block block at the specified DVA (in bp) via the
* cache. If the block is found in the cache, invoke the provided
* callback immediately and return. Note that the `zio' parameter
* in the callback will be NULL in this case, since no IO was
* required. If the block is not in the cache pass the read request
* on to the spa with a substitute callback function, so that the
* requested block will be added to the cache.
*
* If a read request arrives for a block that has a read in-progress,
* either wait for the in-progress read to complete (and return the
* results); or, if this is a read with a "done" func, add a record
* to the read to invoke the "done" func when the read completes,
* and return; or just return.
*
* arc_read_done() will invoke all the requested "done" functions
* for readers of this block.
*
* Normal callers should use arc_read and pass the arc buffer and offset
* for the bp. But if you know you don't need locking, you can use
* arc_read_bp.
*/
int
arc_read(zio_t *pio, spa_t *spa, blkptr_t *bp, arc_buf_t *pbuf,
arc_done_func_t *done, void *private, int priority, int zio_flags,
uint32_t *arc_flags, const zbookmark_t *zb)
{
int err;
arc_buf_hdr_t *hdr = pbuf->b_hdr;
ASSERT(!refcount_is_zero(&pbuf->b_hdr->b_refcnt));
ASSERT3U((char *)bp - (char *)pbuf->b_data, <, pbuf->b_hdr->b_size);
rw_enter(&pbuf->b_lock, RW_READER);
err = arc_read_nolock(pio, spa, bp, done, private, priority,
zio_flags, arc_flags, zb);
VERIFY3P(hdr, ==, pbuf->b_hdr);
rw_exit(&pbuf->b_lock);
return (err);
}
int
arc_read_nolock(zio_t *pio, spa_t *spa, blkptr_t *bp,
arc_done_func_t *done, void *private, int priority, int zio_flags,
uint32_t *arc_flags, const zbookmark_t *zb)
{
arc_buf_hdr_t *hdr;
arc_buf_t *buf = NULL;
kmutex_t *hash_lock;
zio_t *rzio;
uint64_t guid = spa_guid(spa);
top:
hdr = buf_hash_find(guid, BP_IDENTITY(bp), bp->blk_birth, &hash_lock);
if (hdr && hdr->b_datacnt > 0) {
*arc_flags |= ARC_CACHED;
if (HDR_IO_IN_PROGRESS(hdr)) {
if (*arc_flags & ARC_WAIT) {
cv_wait(&hdr->b_cv, hash_lock);
mutex_exit(hash_lock);
goto top;
}
ASSERT(*arc_flags & ARC_NOWAIT);
if (done) {
arc_callback_t *acb = NULL;
acb = kmem_zalloc(sizeof (arc_callback_t),
KM_SLEEP);
acb->acb_done = done;
acb->acb_private = private;
if (pio != NULL)
acb->acb_zio_dummy = zio_null(pio,
spa, NULL, NULL, NULL, zio_flags);
ASSERT(acb->acb_done != NULL);
acb->acb_next = hdr->b_acb;
hdr->b_acb = acb;
add_reference(hdr, hash_lock, private);
mutex_exit(hash_lock);
return (0);
}
mutex_exit(hash_lock);
return (0);
}
ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
if (done) {
add_reference(hdr, hash_lock, private);
/*
* If this block is already in use, create a new
* copy of the data so that we will be guaranteed
* that arc_release() will always succeed.
*/
buf = hdr->b_buf;
ASSERT(buf);
ASSERT(buf->b_data);
if (HDR_BUF_AVAILABLE(hdr)) {
ASSERT(buf->b_efunc == NULL);
hdr->b_flags &= ~ARC_BUF_AVAILABLE;
} else {
buf = arc_buf_clone(buf);
}
} else if (*arc_flags & ARC_PREFETCH &&
refcount_count(&hdr->b_refcnt) == 0) {
hdr->b_flags |= ARC_PREFETCH;
}
DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
arc_access(hdr, hash_lock);
if (*arc_flags & ARC_L2CACHE)
hdr->b_flags |= ARC_L2CACHE;
mutex_exit(hash_lock);
ARCSTAT_BUMP(arcstat_hits);
ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
data, metadata, hits);
if (done)
done(NULL, buf, private);
} else {
uint64_t size = BP_GET_LSIZE(bp);
arc_callback_t *acb;
vdev_t *vd = NULL;
daddr_t addr;
boolean_t devw = B_FALSE;
if (hdr == NULL) {
/* this block is not in the cache */
arc_buf_hdr_t *exists;
arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
buf = arc_buf_alloc(spa, size, private, type);
hdr = buf->b_hdr;
hdr->b_dva = *BP_IDENTITY(bp);
hdr->b_birth = bp->blk_birth;
hdr->b_cksum0 = bp->blk_cksum.zc_word[0];
exists = buf_hash_insert(hdr, &hash_lock);
if (exists) {
/* somebody beat us to the hash insert */
mutex_exit(hash_lock);
bzero(&hdr->b_dva, sizeof (dva_t));
hdr->b_birth = 0;
hdr->b_cksum0 = 0;
(void) arc_buf_remove_ref(buf, private);
goto top; /* restart the IO request */
}
/* if this is a prefetch, we don't have a reference */
if (*arc_flags & ARC_PREFETCH) {
(void) remove_reference(hdr, hash_lock,
private);
hdr->b_flags |= ARC_PREFETCH;
}
if (*arc_flags & ARC_L2CACHE)
hdr->b_flags |= ARC_L2CACHE;
if (BP_GET_LEVEL(bp) > 0)
hdr->b_flags |= ARC_INDIRECT;
} else {
/* this block is in the ghost cache */
ASSERT(GHOST_STATE(hdr->b_state));
ASSERT(!HDR_IO_IN_PROGRESS(hdr));
ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 0);
ASSERT(hdr->b_buf == NULL);
/* if this is a prefetch, we don't have a reference */
if (*arc_flags & ARC_PREFETCH)
hdr->b_flags |= ARC_PREFETCH;
else
add_reference(hdr, hash_lock, private);
if (*arc_flags & ARC_L2CACHE)
hdr->b_flags |= ARC_L2CACHE;
buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
buf->b_hdr = hdr;
buf->b_data = NULL;
buf->b_efunc = NULL;
buf->b_private = NULL;
buf->b_next = NULL;
hdr->b_buf = buf;
arc_get_data_buf(buf);
ASSERT(hdr->b_datacnt == 0);
hdr->b_datacnt = 1;
}
acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
acb->acb_done = done;
acb->acb_private = private;
ASSERT(hdr->b_acb == NULL);
hdr->b_acb = acb;
hdr->b_flags |= ARC_IO_IN_PROGRESS;
/*
* If the buffer has been evicted, migrate it to a present state
* before issuing the I/O. Once we drop the hash-table lock,
* the header will be marked as I/O in progress and have an
* attached buffer. At this point, anybody who finds this
* buffer ought to notice that it's legit but has a pending I/O.
*/
if (GHOST_STATE(hdr->b_state))
arc_access(hdr, hash_lock);
if (HDR_L2CACHE(hdr) && hdr->b_l2hdr != NULL &&
(vd = hdr->b_l2hdr->b_dev->l2ad_vdev) != NULL) {
devw = hdr->b_l2hdr->b_dev->l2ad_writing;
addr = hdr->b_l2hdr->b_daddr;
/*
* Lock out device removal.
*/
if (vdev_is_dead(vd) ||
!spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
vd = NULL;
}
mutex_exit(hash_lock);
ASSERT3U(hdr->b_size, ==, size);
DTRACE_PROBE3(arc__miss, blkptr_t *, bp, uint64_t, size,
zbookmark_t *, zb);
ARCSTAT_BUMP(arcstat_misses);
ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
data, metadata, misses);
if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
/*
* Read from the L2ARC if the following are true:
* 1. The L2ARC vdev was previously cached.
* 2. This buffer still has L2ARC metadata.
* 3. This buffer isn't currently writing to the L2ARC.
* 4. The L2ARC entry wasn't evicted, which may
* also have invalidated the vdev.
* 5. This isn't prefetch and l2arc_noprefetch is set.
*/
if (hdr->b_l2hdr != NULL &&
!HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
!(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
l2arc_read_callback_t *cb;
DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
ARCSTAT_BUMP(arcstat_l2_hits);
cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
KM_SLEEP);
cb->l2rcb_buf = buf;
cb->l2rcb_spa = spa;
cb->l2rcb_bp = *bp;
cb->l2rcb_zb = *zb;
cb->l2rcb_flags = zio_flags;
/*
* l2arc read. The SCL_L2ARC lock will be
* released by l2arc_read_done().
*/
rzio = zio_read_phys(pio, vd, addr, size,
buf->b_data, ZIO_CHECKSUM_OFF,
l2arc_read_done, cb, priority, zio_flags |
ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL |
ZIO_FLAG_DONT_PROPAGATE |
ZIO_FLAG_DONT_RETRY, B_FALSE);
DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
zio_t *, rzio);
ARCSTAT_INCR(arcstat_l2_read_bytes, size);
if (*arc_flags & ARC_NOWAIT) {
zio_nowait(rzio);
return (0);
}
ASSERT(*arc_flags & ARC_WAIT);
if (zio_wait(rzio) == 0)
return (0);
/* l2arc read error; goto zio_read() */
} else {
DTRACE_PROBE1(l2arc__miss,
arc_buf_hdr_t *, hdr);
ARCSTAT_BUMP(arcstat_l2_misses);
if (HDR_L2_WRITING(hdr))
ARCSTAT_BUMP(arcstat_l2_rw_clash);
spa_config_exit(spa, SCL_L2ARC, vd);
}
} else {
if (vd != NULL)
spa_config_exit(spa, SCL_L2ARC, vd);
if (l2arc_ndev != 0) {
DTRACE_PROBE1(l2arc__miss,
arc_buf_hdr_t *, hdr);
ARCSTAT_BUMP(arcstat_l2_misses);
}
}
rzio = zio_read(pio, spa, bp, buf->b_data, size,
arc_read_done, buf, priority, zio_flags, zb);
if (*arc_flags & ARC_WAIT)
return (zio_wait(rzio));
ASSERT(*arc_flags & ARC_NOWAIT);
zio_nowait(rzio);
}
return (0);
}
/*
* arc_read() variant to support pool traversal. If the block is already
* in the ARC, make a copy of it; otherwise, the caller will do the I/O.
* The idea is that we don't want pool traversal filling up memory, but
* if the ARC already has the data anyway, we shouldn't pay for the I/O.
*/
int
arc_tryread(spa_t *spa, blkptr_t *bp, void *data)
{
arc_buf_hdr_t *hdr;
kmutex_t *hash_mtx;
uint64_t guid = spa_guid(spa);
int rc = 0;
hdr = buf_hash_find(guid, BP_IDENTITY(bp), bp->blk_birth, &hash_mtx);
if (hdr && hdr->b_datacnt > 0 && !HDR_IO_IN_PROGRESS(hdr)) {
arc_buf_t *buf = hdr->b_buf;
ASSERT(buf);
while (buf->b_data == NULL) {
buf = buf->b_next;
ASSERT(buf);
}
bcopy(buf->b_data, data, hdr->b_size);
} else {
rc = ENOENT;
}
if (hash_mtx)
mutex_exit(hash_mtx);
return (rc);
}
void
arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private)
{
ASSERT(buf->b_hdr != NULL);
ASSERT(buf->b_hdr->b_state != arc_anon);
ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL);
buf->b_efunc = func;
buf->b_private = private;
}
/*
* This is used by the DMU to let the ARC know that a buffer is
* being evicted, so the ARC should clean up. If this arc buf
* is not yet in the evicted state, it will be put there.
*/
int
arc_buf_evict(arc_buf_t *buf)
{
arc_buf_hdr_t *hdr;
kmutex_t *hash_lock;
arc_buf_t **bufp;
rw_enter(&buf->b_lock, RW_WRITER);
hdr = buf->b_hdr;
if (hdr == NULL) {
/*
* We are in arc_do_user_evicts().
*/
ASSERT(buf->b_data == NULL);
rw_exit(&buf->b_lock);
return (0);
} else if (buf->b_data == NULL) {
arc_buf_t copy = *buf; /* structure assignment */
/*
* We are on the eviction list; process this buffer now
* but let arc_do_user_evicts() do the reaping.
*/
buf->b_efunc = NULL;
rw_exit(&buf->b_lock);
VERIFY(copy.b_efunc(&copy) == 0);
return (1);
}
hash_lock = HDR_LOCK(hdr);
mutex_enter(hash_lock);
ASSERT(buf->b_hdr == hdr);
ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt);
ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
/*
* Pull this buffer off of the hdr
*/
bufp = &hdr->b_buf;
while (*bufp != buf)
bufp = &(*bufp)->b_next;
*bufp = buf->b_next;
ASSERT(buf->b_data != NULL);
arc_buf_destroy(buf, FALSE, FALSE);
if (hdr->b_datacnt == 0) {
arc_state_t *old_state = hdr->b_state;
arc_state_t *evicted_state;
ASSERT(refcount_is_zero(&hdr->b_refcnt));
evicted_state =
(old_state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
mutex_enter(&old_state->arcs_mtx);
mutex_enter(&evicted_state->arcs_mtx);
arc_change_state(evicted_state, hdr, hash_lock);
ASSERT(HDR_IN_HASH_TABLE(hdr));
hdr->b_flags |= ARC_IN_HASH_TABLE;
hdr->b_flags &= ~ARC_BUF_AVAILABLE;
mutex_exit(&evicted_state->arcs_mtx);
mutex_exit(&old_state->arcs_mtx);
}
mutex_exit(hash_lock);
rw_exit(&buf->b_lock);
VERIFY(buf->b_efunc(buf) == 0);
buf->b_efunc = NULL;
buf->b_private = NULL;
buf->b_hdr = NULL;
kmem_cache_free(buf_cache, buf);
return (1);
}
/*
* Release this buffer from the cache. This must be done
* after a read and prior to modifying the buffer contents.
* If the buffer has more than one reference, we must make
* a new hdr for the buffer.
*/
void
arc_release(arc_buf_t *buf, void *tag)
{
arc_buf_hdr_t *hdr;
kmutex_t *hash_lock;
l2arc_buf_hdr_t *l2hdr;
uint64_t buf_size = 0;
rw_enter(&buf->b_lock, RW_WRITER);
hdr = buf->b_hdr;
/* this buffer is not on any list */
ASSERT(refcount_count(&hdr->b_refcnt) > 0);
ASSERT(!(hdr->b_flags & ARC_STORED));
if (hdr->b_state == arc_anon) {
/* this buffer is already released */
ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 1);
ASSERT(BUF_EMPTY(hdr));
ASSERT(buf->b_efunc == NULL);
arc_buf_thaw(buf);
rw_exit(&buf->b_lock);
return;
}
hash_lock = HDR_LOCK(hdr);
mutex_enter(hash_lock);
l2hdr = hdr->b_l2hdr;
if (l2hdr) {
mutex_enter(&l2arc_buflist_mtx);
hdr->b_l2hdr = NULL;
buf_size = hdr->b_size;
}
/*
* Do we have more than one buf?
*/
if (hdr->b_datacnt > 1) {
arc_buf_hdr_t *nhdr;
arc_buf_t **bufp;
uint64_t blksz = hdr->b_size;
uint64_t spa = hdr->b_spa;
arc_buf_contents_t type = hdr->b_type;
uint32_t flags = hdr->b_flags;
ASSERT(hdr->b_buf != buf || buf->b_next != NULL);
/*
* Pull the data off of this buf and attach it to
* a new anonymous buf.
*/
(void) remove_reference(hdr, hash_lock, tag);
bufp = &hdr->b_buf;
while (*bufp != buf)
bufp = &(*bufp)->b_next;
*bufp = (*bufp)->b_next;
buf->b_next = NULL;
ASSERT3U(hdr->b_state->arcs_size, >=, hdr->b_size);
atomic_add_64(&hdr->b_state->arcs_size, -hdr->b_size);
if (refcount_is_zero(&hdr->b_refcnt)) {
uint64_t *size = &hdr->b_state->arcs_lsize[hdr->b_type];
ASSERT3U(*size, >=, hdr->b_size);
atomic_add_64(size, -hdr->b_size);
}
hdr->b_datacnt -= 1;
arc_cksum_verify(buf);
mutex_exit(hash_lock);
nhdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
nhdr->b_size = blksz;
nhdr->b_spa = spa;
nhdr->b_type = type;
nhdr->b_buf = buf;
nhdr->b_state = arc_anon;
nhdr->b_arc_access = 0;
nhdr->b_flags = flags & ARC_L2_WRITING;
nhdr->b_l2hdr = NULL;
nhdr->b_datacnt = 1;
nhdr->b_freeze_cksum = NULL;
(void) refcount_add(&nhdr->b_refcnt, tag);
buf->b_hdr = nhdr;
rw_exit(&buf->b_lock);
atomic_add_64(&arc_anon->arcs_size, blksz);
} else {
rw_exit(&buf->b_lock);
ASSERT(refcount_count(&hdr->b_refcnt) == 1);
ASSERT(!list_link_active(&hdr->b_arc_node));
ASSERT(!HDR_IO_IN_PROGRESS(hdr));
arc_change_state(arc_anon, hdr, hash_lock);
hdr->b_arc_access = 0;
mutex_exit(hash_lock);
bzero(&hdr->b_dva, sizeof (dva_t));
hdr->b_birth = 0;
hdr->b_cksum0 = 0;
arc_buf_thaw(buf);
}
buf->b_efunc = NULL;
buf->b_private = NULL;
if (l2hdr) {
list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t));
ARCSTAT_INCR(arcstat_l2_size, -buf_size);
mutex_exit(&l2arc_buflist_mtx);
}
}
int
arc_released(arc_buf_t *buf)
{
int released;
rw_enter(&buf->b_lock, RW_READER);
released = (buf->b_data != NULL && buf->b_hdr->b_state == arc_anon);
rw_exit(&buf->b_lock);
return (released);
}
int
arc_has_callback(arc_buf_t *buf)
{
int callback;
rw_enter(&buf->b_lock, RW_READER);
callback = (buf->b_efunc != NULL);
rw_exit(&buf->b_lock);
return (callback);
}
#ifdef ZFS_DEBUG
int
arc_referenced(arc_buf_t *buf)
{
int referenced;
rw_enter(&buf->b_lock, RW_READER);
referenced = (refcount_count(&buf->b_hdr->b_refcnt));
rw_exit(&buf->b_lock);
return (referenced);
}
#endif
static void
arc_write_ready(zio_t *zio)
{
arc_write_callback_t *callback = zio->io_private;
arc_buf_t *buf = callback->awcb_buf;
arc_buf_hdr_t *hdr = buf->b_hdr;
ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt));
callback->awcb_ready(zio, buf, callback->awcb_private);
/*
* If the IO is already in progress, then this is a re-write
* attempt, so we need to thaw and re-compute the cksum.
* It is the responsibility of the callback to handle the
* accounting for any re-write attempt.
*/
if (HDR_IO_IN_PROGRESS(hdr)) {
mutex_enter(&hdr->b_freeze_lock);
if (hdr->b_freeze_cksum != NULL) {
kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
hdr->b_freeze_cksum = NULL;
}
mutex_exit(&hdr->b_freeze_lock);
}
arc_cksum_compute(buf, B_FALSE);
hdr->b_flags |= ARC_IO_IN_PROGRESS;
}
static void
arc_write_done(zio_t *zio)
{
arc_write_callback_t *callback = zio->io_private;
arc_buf_t *buf = callback->awcb_buf;
arc_buf_hdr_t *hdr = buf->b_hdr;
hdr->b_acb = NULL;
hdr->b_dva = *BP_IDENTITY(zio->io_bp);
hdr->b_birth = zio->io_bp->blk_birth;
hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0];
/*
* If the block to be written was all-zero, we may have
* compressed it away. In this case no write was performed
* so there will be no dva/birth-date/checksum. The buffer
* must therefor remain anonymous (and uncached).
*/
if (!BUF_EMPTY(hdr)) {
arc_buf_hdr_t *exists;
kmutex_t *hash_lock;
arc_cksum_verify(buf);
exists = buf_hash_insert(hdr, &hash_lock);
if (exists) {
/*
* This can only happen if we overwrite for
* sync-to-convergence, because we remove
* buffers from the hash table when we arc_free().
*/
ASSERT(zio->io_flags & ZIO_FLAG_IO_REWRITE);
ASSERT(DVA_EQUAL(BP_IDENTITY(&zio->io_bp_orig),
BP_IDENTITY(zio->io_bp)));
ASSERT3U(zio->io_bp_orig.blk_birth, ==,
zio->io_bp->blk_birth);
ASSERT(refcount_is_zero(&exists->b_refcnt));
arc_change_state(arc_anon, exists, hash_lock);
mutex_exit(hash_lock);
arc_hdr_destroy(exists);
exists = buf_hash_insert(hdr, &hash_lock);
ASSERT3P(exists, ==, NULL);
}
hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
/* if it's not anon, we are doing a scrub */
if (hdr->b_state == arc_anon)
arc_access(hdr, hash_lock);
mutex_exit(hash_lock);
} else if (callback->awcb_done == NULL) {
int destroy_hdr;
/*
* This is an anonymous buffer with no user callback,
* destroy it if there are no active references.
*/
mutex_enter(&arc_eviction_mtx);
destroy_hdr = refcount_is_zero(&hdr->b_refcnt);
hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
mutex_exit(&arc_eviction_mtx);
if (destroy_hdr)
arc_hdr_destroy(hdr);
} else {
hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
}
hdr->b_flags &= ~ARC_STORED;
if (callback->awcb_done) {
ASSERT(!refcount_is_zero(&hdr->b_refcnt));
callback->awcb_done(zio, buf, callback->awcb_private);
}
kmem_free(callback, sizeof (arc_write_callback_t));
}
void
write_policy(spa_t *spa, const writeprops_t *wp, zio_prop_t *zp)
{
boolean_t ismd = (wp->wp_level > 0 || dmu_ot[wp->wp_type].ot_metadata);
/* Determine checksum setting */
if (ismd) {
/*
* Metadata always gets checksummed. If the data
* checksum is multi-bit correctable, and it's not a
* ZBT-style checksum, then it's suitable for metadata
* as well. Otherwise, the metadata checksum defaults
* to fletcher4.
*/
if (zio_checksum_table[wp->wp_oschecksum].ci_correctable &&
!zio_checksum_table[wp->wp_oschecksum].ci_zbt)
zp->zp_checksum = wp->wp_oschecksum;
else
zp->zp_checksum = ZIO_CHECKSUM_FLETCHER_4;
} else {
zp->zp_checksum = zio_checksum_select(wp->wp_dnchecksum,
wp->wp_oschecksum);
}
/* Determine compression setting */
if (ismd) {
/*
* XXX -- we should design a compression algorithm
* that specializes in arrays of bps.
*/
zp->zp_compress = zfs_mdcomp_disable ? ZIO_COMPRESS_EMPTY :
ZIO_COMPRESS_LZJB;
} else {
zp->zp_compress = zio_compress_select(wp->wp_dncompress,
wp->wp_oscompress);
}
zp->zp_type = wp->wp_type;
zp->zp_level = wp->wp_level;
zp->zp_ndvas = MIN(wp->wp_copies + ismd, spa_max_replication(spa));
}
zio_t *
arc_write(zio_t *pio, spa_t *spa, const writeprops_t *wp,
boolean_t l2arc, uint64_t txg, blkptr_t *bp, arc_buf_t *buf,
arc_done_func_t *ready, arc_done_func_t *done, void *private, int priority,
int zio_flags, const zbookmark_t *zb)
{
arc_buf_hdr_t *hdr = buf->b_hdr;
arc_write_callback_t *callback;
zio_t *zio;
zio_prop_t zp;
ASSERT(ready != NULL);
ASSERT(!HDR_IO_ERROR(hdr));
ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0);
ASSERT(hdr->b_acb == 0);
if (l2arc)
hdr->b_flags |= ARC_L2CACHE;
callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
callback->awcb_ready = ready;
callback->awcb_done = done;
callback->awcb_private = private;
callback->awcb_buf = buf;
write_policy(spa, wp, &zp);
zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, &zp,
arc_write_ready, arc_write_done, callback, priority, zio_flags, zb);
return (zio);
}
int
arc_free(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
zio_done_func_t *done, void *private, uint32_t arc_flags)
{
arc_buf_hdr_t *ab;
kmutex_t *hash_lock;
zio_t *zio;
uint64_t guid = spa_guid(spa);
/*
* If this buffer is in the cache, release it, so it
* can be re-used.
*/
ab = buf_hash_find(guid, BP_IDENTITY(bp), bp->blk_birth, &hash_lock);
if (ab != NULL) {
/*
* The checksum of blocks to free is not always
* preserved (eg. on the deadlist). However, if it is
* nonzero, it should match what we have in the cache.
*/
ASSERT(bp->blk_cksum.zc_word[0] == 0 ||
bp->blk_cksum.zc_word[0] == ab->b_cksum0 ||
bp->blk_fill == BLK_FILL_ALREADY_FREED);
if (ab->b_state != arc_anon)
arc_change_state(arc_anon, ab, hash_lock);
if (HDR_IO_IN_PROGRESS(ab)) {
/*
* This should only happen when we prefetch.
*/
ASSERT(ab->b_flags & ARC_PREFETCH);
ASSERT3U(ab->b_datacnt, ==, 1);
ab->b_flags |= ARC_FREED_IN_READ;
if (HDR_IN_HASH_TABLE(ab))
buf_hash_remove(ab);
ab->b_arc_access = 0;
bzero(&ab->b_dva, sizeof (dva_t));
ab->b_birth = 0;
ab->b_cksum0 = 0;
ab->b_buf->b_efunc = NULL;
ab->b_buf->b_private = NULL;
mutex_exit(hash_lock);
} else if (refcount_is_zero(&ab->b_refcnt)) {
ab->b_flags |= ARC_FREE_IN_PROGRESS;
mutex_exit(hash_lock);
arc_hdr_destroy(ab);
ARCSTAT_BUMP(arcstat_deleted);
} else {
/*
* We still have an active reference on this
* buffer. This can happen, e.g., from
* dbuf_unoverride().
*/
ASSERT(!HDR_IN_HASH_TABLE(ab));
ab->b_arc_access = 0;
bzero(&ab->b_dva, sizeof (dva_t));
ab->b_birth = 0;
ab->b_cksum0 = 0;
ab->b_buf->b_efunc = NULL;
ab->b_buf->b_private = NULL;
mutex_exit(hash_lock);
}
}
zio = zio_free(pio, spa, txg, bp, done, private, ZIO_FLAG_MUSTSUCCEED);
if (arc_flags & ARC_WAIT)
return (zio_wait(zio));
ASSERT(arc_flags & ARC_NOWAIT);
zio_nowait(zio);
return (0);
}
static int
arc_memory_throttle(uint64_t reserve, uint64_t txg)
{
#ifdef _KERNEL
uint64_t inflight_data = arc_anon->arcs_size;
uint64_t available_memory = ptob(freemem);
static uint64_t page_load = 0;
static uint64_t last_txg = 0;
#if defined(__i386)
available_memory =
MIN(available_memory, vmem_size(heap_arena, VMEM_FREE));
#endif
if (available_memory >= zfs_write_limit_max)
return (0);
if (txg > last_txg) {
last_txg = txg;
page_load = 0;
}
/*
* If we are in pageout, we know that memory is already tight,
* the arc is already going to be evicting, so we just want to
* continue to let page writes occur as quickly as possible.
*/
if (curproc == proc_pageout) {
if (page_load > MAX(ptob(minfree), available_memory) / 4)
return (ERESTART);
/* Note: reserve is inflated, so we deflate */
page_load += reserve / 8;
return (0);
} else if (page_load > 0 && arc_reclaim_needed()) {
/* memory is low, delay before restarting */
ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
return (EAGAIN);
}
page_load = 0;
if (arc_size > arc_c_min) {
uint64_t evictable_memory =
arc_mru->arcs_lsize[ARC_BUFC_DATA] +
arc_mru->arcs_lsize[ARC_BUFC_METADATA] +
arc_mfu->arcs_lsize[ARC_BUFC_DATA] +
arc_mfu->arcs_lsize[ARC_BUFC_METADATA];
available_memory += MIN(evictable_memory, arc_size - arc_c_min);
}
if (inflight_data > available_memory / 4) {
ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
return (ERESTART);
}
#endif
return (0);
}
void
arc_tempreserve_clear(uint64_t reserve)
{
atomic_add_64(&arc_tempreserve, -reserve);
ASSERT((int64_t)arc_tempreserve >= 0);
}
int
arc_tempreserve_space(uint64_t reserve, uint64_t txg)
{
int error;
#ifdef ZFS_DEBUG
/*
* Once in a while, fail for no reason. Everything should cope.
*/
if (spa_get_random(10000) == 0) {
dprintf("forcing random failure\n");
return (ERESTART);
}
#endif
if (reserve > arc_c/4 && !arc_no_grow)
arc_c = MIN(arc_c_max, reserve * 4);
if (reserve > arc_c)
return (ENOMEM);
/*
* Writes will, almost always, require additional memory allocations
* in order to compress/encrypt/etc the data. We therefor need to
* make sure that there is sufficient available memory for this.
*/
if ((error = arc_memory_throttle(reserve, txg)))
return (error);
/*
* Throttle writes when the amount of dirty data in the cache
* gets too large. We try to keep the cache less than half full
* of dirty blocks so that our sync times don't grow too large.
* Note: if two requests come in concurrently, we might let them
* both succeed, when one of them should fail. Not a huge deal.
*/
if (reserve + arc_tempreserve + arc_anon->arcs_size > arc_c / 2 &&
arc_anon->arcs_size > arc_c / 4) {
dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
"anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
arc_tempreserve>>10,
arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10,
arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10,
reserve>>10, arc_c>>10);
return (ERESTART);
}
atomic_add_64(&arc_tempreserve, reserve);
return (0);
}
void
arc_init(void)
{
mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL);
cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL);
/* Convert seconds to clock ticks */
arc_min_prefetch_lifespan = 1 * hz;
/* Start out with 1/8 of all memory */
arc_c = physmem * PAGESIZE / 8;
#if defined(__i386)
/*
* On architectures where the physical memory can be larger
* than the addressable space (intel in 32-bit mode), we may
* need to limit the cache to 1/8 of VM size.
*/
arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8);
#endif
/* set min cache to 1/32 of all memory, or 64MB, whichever is more */
arc_c_min = MAX(arc_c / 4, 64<<20);
/* set max to 3/4 of all memory, or all but 1GB, whichever is more */
if (arc_c * 8 >= 1<<30)
arc_c_max = (arc_c * 8) - (1<<30);
else
arc_c_max = arc_c_min;
arc_c_max = MAX(arc_c * 6, arc_c_max);
/*
* Allow the tunables to override our calculations if they are
* reasonable (ie. over 64MB)
*/
if (zfs_arc_max > 64<<20 && zfs_arc_max < physmem * PAGESIZE)
arc_c_max = zfs_arc_max;
if (zfs_arc_min > 64<<20 && zfs_arc_min <= arc_c_max)
arc_c_min = zfs_arc_min;
arc_c = arc_c_max;
arc_p = (arc_c >> 1);
/* limit meta-data to 1/4 of the arc capacity */
arc_meta_limit = arc_c_max / 4;
/* Allow the tunable to override if it is reasonable */
if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
arc_meta_limit = zfs_arc_meta_limit;
if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0)
arc_c_min = arc_meta_limit / 2;
if (zfs_arc_grow_retry > 0)
arc_grow_retry = zfs_arc_grow_retry;
if (zfs_arc_shrink_shift > 0)
arc_shrink_shift = zfs_arc_shrink_shift;
if (zfs_arc_p_min_shift > 0)
arc_p_min_shift = zfs_arc_p_min_shift;
/* if kmem_flags are set, lets try to use less memory */
if (kmem_debugging())
arc_c = arc_c / 2;
if (arc_c < arc_c_min)
arc_c = arc_c_min;
arc_anon = &ARC_anon;
arc_mru = &ARC_mru;
arc_mru_ghost = &ARC_mru_ghost;
arc_mfu = &ARC_mfu;
arc_mfu_ghost = &ARC_mfu_ghost;
arc_l2c_only = &ARC_l2c_only;
arc_size = 0;
mutex_init(&arc_anon->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
mutex_init(&arc_mru->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
mutex_init(&arc_mru_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
mutex_init(&arc_mfu->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
mutex_init(&arc_mfu_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
mutex_init(&arc_l2c_only->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
list_create(&arc_mru->arcs_list[ARC_BUFC_METADATA],
sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
list_create(&arc_mru->arcs_list[ARC_BUFC_DATA],
sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
list_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
list_create(&arc_mfu->arcs_list[ARC_BUFC_DATA],
sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
list_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
list_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
buf_init();
arc_thread_exit = 0;
arc_eviction_list = NULL;
mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL);
bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t));
arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
if (arc_ksp != NULL) {
arc_ksp->ks_data = &arc_stats;
kstat_install(arc_ksp);
}
(void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
TS_RUN, minclsyspri);
arc_dead = FALSE;
arc_warm = B_FALSE;
if (zfs_write_limit_max == 0)
zfs_write_limit_max = ptob(physmem) >> zfs_write_limit_shift;
else
zfs_write_limit_shift = 0;
mutex_init(&zfs_write_limit_lock, NULL, MUTEX_DEFAULT, NULL);
}
void
arc_fini(void)
{
mutex_enter(&arc_reclaim_thr_lock);
arc_thread_exit = 1;
while (arc_thread_exit != 0)
cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock);
mutex_exit(&arc_reclaim_thr_lock);
arc_flush(NULL);
arc_dead = TRUE;
if (arc_ksp != NULL) {
kstat_delete(arc_ksp);
arc_ksp = NULL;
}
mutex_destroy(&arc_eviction_mtx);
mutex_destroy(&arc_reclaim_thr_lock);
cv_destroy(&arc_reclaim_thr_cv);
list_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
list_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
list_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
list_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
mutex_destroy(&arc_anon->arcs_mtx);
mutex_destroy(&arc_mru->arcs_mtx);
mutex_destroy(&arc_mru_ghost->arcs_mtx);
mutex_destroy(&arc_mfu->arcs_mtx);
mutex_destroy(&arc_mfu_ghost->arcs_mtx);
mutex_destroy(&arc_l2c_only->arcs_mtx);
mutex_destroy(&zfs_write_limit_lock);
buf_fini();
}
/*
* Level 2 ARC
*
* The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
* It uses dedicated storage devices to hold cached data, which are populated
* using large infrequent writes. The main role of this cache is to boost
* the performance of random read workloads. The intended L2ARC devices
* include short-stroked disks, solid state disks, and other media with
* substantially faster read latency than disk.
*
* +-----------------------+
* | ARC |
* +-----------------------+
* | ^ ^
* | | |
* l2arc_feed_thread() arc_read()
* | | |
* | l2arc read |
* V | |
* +---------------+ |
* | L2ARC | |
* +---------------+ |
* | ^ |
* l2arc_write() | |
* | | |
* V | |
* +-------+ +-------+
* | vdev | | vdev |
* | cache | | cache |
* +-------+ +-------+
* +=========+ .-----.
* : L2ARC : |-_____-|
* : devices : | Disks |
* +=========+ `-_____-'
*
* Read requests are satisfied from the following sources, in order:
*
* 1) ARC
* 2) vdev cache of L2ARC devices
* 3) L2ARC devices
* 4) vdev cache of disks
* 5) disks
*
* Some L2ARC device types exhibit extremely slow write performance.
* To accommodate for this there are some significant differences between
* the L2ARC and traditional cache design:
*
* 1. There is no eviction path from the ARC to the L2ARC. Evictions from
* the ARC behave as usual, freeing buffers and placing headers on ghost
* lists. The ARC does not send buffers to the L2ARC during eviction as
* this would add inflated write latencies for all ARC memory pressure.
*
* 2. The L2ARC attempts to cache data from the ARC before it is evicted.
* It does this by periodically scanning buffers from the eviction-end of
* the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
* not already there. It scans until a headroom of buffers is satisfied,
* which itself is a buffer for ARC eviction. The thread that does this is
* l2arc_feed_thread(), illustrated below; example sizes are included to
* provide a better sense of ratio than this diagram:
*
* head --> tail
* +---------------------+----------+
* ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC
* +---------------------+----------+ | o L2ARC eligible
* ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer
* +---------------------+----------+ |
* 15.9 Gbytes ^ 32 Mbytes |
* headroom |
* l2arc_feed_thread()
* |
* l2arc write hand <--[oooo]--'
* | 8 Mbyte
* | write max
* V
* +==============================+
* L2ARC dev |####|#|###|###| |####| ... |
* +==============================+
* 32 Gbytes
*
* 3. If an ARC buffer is copied to the L2ARC but then hit instead of
* evicted, then the L2ARC has cached a buffer much sooner than it probably
* needed to, potentially wasting L2ARC device bandwidth and storage. It is
* safe to say that this is an uncommon case, since buffers at the end of
* the ARC lists have moved there due to inactivity.
*
* 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
* then the L2ARC simply misses copying some buffers. This serves as a
* pressure valve to prevent heavy read workloads from both stalling the ARC
* with waits and clogging the L2ARC with writes. This also helps prevent
* the potential for the L2ARC to churn if it attempts to cache content too
* quickly, such as during backups of the entire pool.
*
* 5. After system boot and before the ARC has filled main memory, there are
* no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
* lists can remain mostly static. Instead of searching from tail of these
* lists as pictured, the l2arc_feed_thread() will search from the list heads
* for eligible buffers, greatly increasing its chance of finding them.
*
* The L2ARC device write speed is also boosted during this time so that
* the L2ARC warms up faster. Since there have been no ARC evictions yet,
* there are no L2ARC reads, and no fear of degrading read performance
* through increased writes.
*
* 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
* the vdev queue can aggregate them into larger and fewer writes. Each
* device is written to in a rotor fashion, sweeping writes through
* available space then repeating.
*
* 7. The L2ARC does not store dirty content. It never needs to flush
* write buffers back to disk based storage.
*
* 8. If an ARC buffer is written (and dirtied) which also exists in the
* L2ARC, the now stale L2ARC buffer is immediately dropped.
*
* The performance of the L2ARC can be tweaked by a number of tunables, which
* may be necessary for different workloads:
*
* l2arc_write_max max write bytes per interval
* l2arc_write_boost extra write bytes during device warmup
* l2arc_noprefetch skip caching prefetched buffers
* l2arc_headroom number of max device writes to precache
* l2arc_feed_secs seconds between L2ARC writing
*
* Tunables may be removed or added as future performance improvements are
* integrated, and also may become zpool properties.
*
* There are three key functions that control how the L2ARC warms up:
*
* l2arc_write_eligible() check if a buffer is eligible to cache
* l2arc_write_size() calculate how much to write
* l2arc_write_interval() calculate sleep delay between writes
*
* These three functions determine what to write, how much, and how quickly
* to send writes.
*/
static boolean_t
l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab)
{
/*
* A buffer is *not* eligible for the L2ARC if it:
* 1. belongs to a different spa.
* 2. has no attached buffer.
* 3. is already cached on the L2ARC.
* 4. has an I/O in progress (it may be an incomplete read).
* 5. is flagged not eligible (zfs property).
*/
if (ab->b_spa != spa_guid || ab->b_buf == NULL || ab->b_l2hdr != NULL ||
HDR_IO_IN_PROGRESS(ab) || !HDR_L2CACHE(ab))
return (B_FALSE);
return (B_TRUE);
}
static uint64_t
l2arc_write_size(l2arc_dev_t *dev)
{
uint64_t size;
size = dev->l2ad_write;
if (arc_warm == B_FALSE)
size += dev->l2ad_boost;
return (size);
}
static clock_t
l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
{
clock_t interval, next;
/*
* If the ARC lists are busy, increase our write rate; if the
* lists are stale, idle back. This is achieved by checking
* how much we previously wrote - if it was more than half of
* what we wanted, schedule the next write much sooner.
*/
if (l2arc_feed_again && wrote > (wanted / 2))
interval = (hz * l2arc_feed_min_ms) / 1000;
else
interval = hz * l2arc_feed_secs;
next = MAX(lbolt, MIN(lbolt + interval, began + interval));
return (next);
}
static void
l2arc_hdr_stat_add(void)
{
ARCSTAT_INCR(arcstat_l2_hdr_size, HDR_SIZE + L2HDR_SIZE);
ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE);
}
static void
l2arc_hdr_stat_remove(void)
{
ARCSTAT_INCR(arcstat_l2_hdr_size, -(HDR_SIZE + L2HDR_SIZE));
ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE);
}
/*
* Cycle through L2ARC devices. This is how L2ARC load balances.
* If a device is returned, this also returns holding the spa config lock.
*/
static l2arc_dev_t *
l2arc_dev_get_next(void)
{
l2arc_dev_t *first, *next = NULL;
/*
* Lock out the removal of spas (spa_namespace_lock), then removal
* of cache devices (l2arc_dev_mtx). Once a device has been selected,
* both locks will be dropped and a spa config lock held instead.
*/
mutex_enter(&spa_namespace_lock);
mutex_enter(&l2arc_dev_mtx);
/* if there are no vdevs, there is nothing to do */
if (l2arc_ndev == 0)
goto out;
first = NULL;
next = l2arc_dev_last;
do {
/* loop around the list looking for a non-faulted vdev */
if (next == NULL) {
next = list_head(l2arc_dev_list);
} else {
next = list_next(l2arc_dev_list, next);
if (next == NULL)
next = list_head(l2arc_dev_list);
}
/* if we have come back to the start, bail out */
if (first == NULL)
first = next;
else if (next == first)
break;
} while (vdev_is_dead(next->l2ad_vdev));
/* if we were unable to find any usable vdevs, return NULL */
if (vdev_is_dead(next->l2ad_vdev))
next = NULL;
l2arc_dev_last = next;
out:
mutex_exit(&l2arc_dev_mtx);
/*
* Grab the config lock to prevent the 'next' device from being
* removed while we are writing to it.
*/
if (next != NULL)
spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
mutex_exit(&spa_namespace_lock);
return (next);
}
/*
* Free buffers that were tagged for destruction.
*/
static void
l2arc_do_free_on_write(void)
{
list_t *buflist;
l2arc_data_free_t *df, *df_prev;
mutex_enter(&l2arc_free_on_write_mtx);
buflist = l2arc_free_on_write;
for (df = list_tail(buflist); df; df = df_prev) {
df_prev = list_prev(buflist, df);
ASSERT(df->l2df_data != NULL);
ASSERT(df->l2df_func != NULL);
df->l2df_func(df->l2df_data, df->l2df_size);
list_remove(buflist, df);
kmem_free(df, sizeof (l2arc_data_free_t));
}
mutex_exit(&l2arc_free_on_write_mtx);
}
/*
* A write to a cache device has completed. Update all headers to allow
* reads from these buffers to begin.
*/
static void
l2arc_write_done(zio_t *zio)
{
l2arc_write_callback_t *cb;
l2arc_dev_t *dev;
list_t *buflist;
arc_buf_hdr_t *head, *ab, *ab_prev;
l2arc_buf_hdr_t *abl2;
kmutex_t *hash_lock;
cb = zio->io_private;
ASSERT(cb != NULL);
dev = cb->l2wcb_dev;
ASSERT(dev != NULL);
head = cb->l2wcb_head;
ASSERT(head != NULL);
buflist = dev->l2ad_buflist;
ASSERT(buflist != NULL);
DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
l2arc_write_callback_t *, cb);
if (zio->io_error != 0)
ARCSTAT_BUMP(arcstat_l2_writes_error);
mutex_enter(&l2arc_buflist_mtx);
/*
* All writes completed, or an error was hit.
*/
for (ab = list_prev(buflist, head); ab; ab = ab_prev) {
ab_prev = list_prev(buflist, ab);
hash_lock = HDR_LOCK(ab);
if (!mutex_tryenter(hash_lock)) {
/*
* This buffer misses out. It may be in a stage
* of eviction. Its ARC_L2_WRITING flag will be
* left set, denying reads to this buffer.
*/
ARCSTAT_BUMP(arcstat_l2_writes_hdr_miss);
continue;
}
if (zio->io_error != 0) {
/*
* Error - drop L2ARC entry.
*/
list_remove(buflist, ab);
abl2 = ab->b_l2hdr;
ab->b_l2hdr = NULL;
kmem_free(abl2, sizeof (l2arc_buf_hdr_t));
ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
}
/*
* Allow ARC to begin reads to this L2ARC entry.
*/
ab->b_flags &= ~ARC_L2_WRITING;
mutex_exit(hash_lock);
}
atomic_inc_64(&l2arc_writes_done);
list_remove(buflist, head);
kmem_cache_free(hdr_cache, head);
mutex_exit(&l2arc_buflist_mtx);
l2arc_do_free_on_write();
kmem_free(cb, sizeof (l2arc_write_callback_t));
}
/*
* A read to a cache device completed. Validate buffer contents before
* handing over to the regular ARC routines.
*/
static void
l2arc_read_done(zio_t *zio)
{
l2arc_read_callback_t *cb;
arc_buf_hdr_t *hdr;
arc_buf_t *buf;
kmutex_t *hash_lock;
int equal;
ASSERT(zio->io_vd != NULL);
ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
cb = zio->io_private;
ASSERT(cb != NULL);
buf = cb->l2rcb_buf;
ASSERT(buf != NULL);
hdr = buf->b_hdr;
ASSERT(hdr != NULL);
hash_lock = HDR_LOCK(hdr);
mutex_enter(hash_lock);
/*
* Check this survived the L2ARC journey.
*/
equal = arc_cksum_equal(buf);
if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
mutex_exit(hash_lock);
zio->io_private = buf;
zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */
zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */
arc_read_done(zio);
} else {
mutex_exit(hash_lock);
/*
* Buffer didn't survive caching. Increment stats and
* reissue to the original storage device.
*/
if (zio->io_error != 0) {
ARCSTAT_BUMP(arcstat_l2_io_error);
} else {
zio->io_error = EIO;
}
if (!equal)
ARCSTAT_BUMP(arcstat_l2_cksum_bad);
/*
* If there's no waiter, issue an async i/o to the primary
* storage now. If there *is* a waiter, the caller must
* issue the i/o in a context where it's OK to block.
*/
if (zio->io_waiter == NULL) {
zio_t *pio = zio_unique_parent(zio);
ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp,
buf->b_data, zio->io_size, arc_read_done, buf,
zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb));
}
}
kmem_free(cb, sizeof (l2arc_read_callback_t));
}
/*
* This is the list priority from which the L2ARC will search for pages to
* cache. This is used within loops (0..3) to cycle through lists in the
* desired order. This order can have a significant effect on cache
* performance.
*
* Currently the metadata lists are hit first, MFU then MRU, followed by
* the data lists. This function returns a locked list, and also returns
* the lock pointer.
*/
static list_t *
l2arc_list_locked(int list_num, kmutex_t **lock)
{
list_t *list = NULL;
ASSERT(list_num >= 0 && list_num <= 3);
switch (list_num) {
case 0:
list = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
*lock = &arc_mfu->arcs_mtx;
break;
case 1:
list = &arc_mru->arcs_list[ARC_BUFC_METADATA];
*lock = &arc_mru->arcs_mtx;
break;
case 2:
list = &arc_mfu->arcs_list[ARC_BUFC_DATA];
*lock = &arc_mfu->arcs_mtx;
break;
case 3:
list = &arc_mru->arcs_list[ARC_BUFC_DATA];
*lock = &arc_mru->arcs_mtx;
break;
}
ASSERT(!(MUTEX_HELD(*lock)));
mutex_enter(*lock);
return (list);
}
/*
* Evict buffers from the device write hand to the distance specified in
* bytes. This distance may span populated buffers, it may span nothing.
* This is clearing a region on the L2ARC device ready for writing.
* If the 'all' boolean is set, every buffer is evicted.
*/
static void
l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
{
list_t *buflist;
l2arc_buf_hdr_t *abl2;
arc_buf_hdr_t *ab, *ab_prev;
kmutex_t *hash_lock;
uint64_t taddr;
buflist = dev->l2ad_buflist;
if (buflist == NULL)
return;
if (!all && dev->l2ad_first) {
/*
* This is the first sweep through the device. There is
* nothing to evict.
*/
return;
}
if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
/*
* When nearing the end of the device, evict to the end
* before the device write hand jumps to the start.
*/
taddr = dev->l2ad_end;
} else {
taddr = dev->l2ad_hand + distance;
}
DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
uint64_t, taddr, boolean_t, all);
top:
mutex_enter(&l2arc_buflist_mtx);
for (ab = list_tail(buflist); ab; ab = ab_prev) {
ab_prev = list_prev(buflist, ab);
hash_lock = HDR_LOCK(ab);
if (!mutex_tryenter(hash_lock)) {
/*
* Missed the hash lock. Retry.
*/
ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
mutex_exit(&l2arc_buflist_mtx);
mutex_enter(hash_lock);
mutex_exit(hash_lock);
goto top;
}
if (HDR_L2_WRITE_HEAD(ab)) {
/*
* We hit a write head node. Leave it for
* l2arc_write_done().
*/
list_remove(buflist, ab);
mutex_exit(hash_lock);
continue;
}
if (!all && ab->b_l2hdr != NULL &&
(ab->b_l2hdr->b_daddr > taddr ||
ab->b_l2hdr->b_daddr < dev->l2ad_hand)) {
/*
* We've evicted to the target address,
* or the end of the device.
*/
mutex_exit(hash_lock);
break;
}
if (HDR_FREE_IN_PROGRESS(ab)) {
/*
* Already on the path to destruction.
*/
mutex_exit(hash_lock);
continue;
}
if (ab->b_state == arc_l2c_only) {
ASSERT(!HDR_L2_READING(ab));
/*
* This doesn't exist in the ARC. Destroy.
* arc_hdr_destroy() will call list_remove()
* and decrement arcstat_l2_size.
*/
arc_change_state(arc_anon, ab, hash_lock);
arc_hdr_destroy(ab);
} else {
/*
* Invalidate issued or about to be issued
* reads, since we may be about to write
* over this location.
*/
if (HDR_L2_READING(ab)) {
ARCSTAT_BUMP(arcstat_l2_evict_reading);
ab->b_flags |= ARC_L2_EVICTED;
}
/*
* Tell ARC this no longer exists in L2ARC.
*/
if (ab->b_l2hdr != NULL) {
abl2 = ab->b_l2hdr;
ab->b_l2hdr = NULL;
kmem_free(abl2, sizeof (l2arc_buf_hdr_t));
ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
}
list_remove(buflist, ab);
/*
* This may have been leftover after a
* failed write.
*/
ab->b_flags &= ~ARC_L2_WRITING;
}
mutex_exit(hash_lock);
}
mutex_exit(&l2arc_buflist_mtx);
spa_l2cache_space_update(dev->l2ad_vdev, 0, -(taddr - dev->l2ad_evict));
dev->l2ad_evict = taddr;
}
/*
* Find and write ARC buffers to the L2ARC device.
*
* An ARC_L2_WRITING flag is set so that the L2ARC buffers are not valid
* for reading until they have completed writing.
*/
static uint64_t
l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz)
{
arc_buf_hdr_t *ab, *ab_prev, *head;
l2arc_buf_hdr_t *hdrl2;
list_t *list;
uint64_t passed_sz, write_sz, buf_sz, headroom;
void *buf_data;
kmutex_t *hash_lock, *list_lock = NULL;
boolean_t have_lock, full;
l2arc_write_callback_t *cb;
zio_t *pio, *wzio;
uint64_t guid = spa_guid(spa);
int try;
ASSERT(dev->l2ad_vdev != NULL);
pio = NULL;
write_sz = 0;
full = B_FALSE;
head = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
head->b_flags |= ARC_L2_WRITE_HEAD;
/*
* Copy buffers for L2ARC writing.
*/
mutex_enter(&l2arc_buflist_mtx);
for (try = 0; try <= 3; try++) {
list = l2arc_list_locked(try, &list_lock);
passed_sz = 0;
/*
* L2ARC fast warmup.
*
* Until the ARC is warm and starts to evict, read from the
* head of the ARC lists rather than the tail.
*/
headroom = target_sz * l2arc_headroom;
if (arc_warm == B_FALSE)
ab = list_head(list);
else
ab = list_tail(list);
for (; ab; ab = ab_prev) {
if (arc_warm == B_FALSE)
ab_prev = list_next(list, ab);
else
ab_prev = list_prev(list, ab);
hash_lock = HDR_LOCK(ab);
have_lock = MUTEX_HELD(hash_lock);
if (!have_lock && !mutex_tryenter(hash_lock)) {
/*
* Skip this buffer rather than waiting.
*/
continue;
}
passed_sz += ab->b_size;
if (passed_sz > headroom) {
/*
* Searched too far.
*/
mutex_exit(hash_lock);
break;
}
if (!l2arc_write_eligible(guid, ab)) {
mutex_exit(hash_lock);
continue;
}
if ((write_sz + ab->b_size) > target_sz) {
full = B_TRUE;
mutex_exit(hash_lock);
break;
}
if (pio == NULL) {
/*
* Insert a dummy header on the buflist so
* l2arc_write_done() can find where the
* write buffers begin without searching.
*/
list_insert_head(dev->l2ad_buflist, head);
cb = kmem_alloc(
sizeof (l2arc_write_callback_t), KM_SLEEP);
cb->l2wcb_dev = dev;
cb->l2wcb_head = head;
pio = zio_root(spa, l2arc_write_done, cb,
ZIO_FLAG_CANFAIL);
}
/*
* Create and add a new L2ARC header.
*/
hdrl2 = kmem_zalloc(sizeof (l2arc_buf_hdr_t), KM_SLEEP);
hdrl2->b_dev = dev;
hdrl2->b_daddr = dev->l2ad_hand;
ab->b_flags |= ARC_L2_WRITING;
ab->b_l2hdr = hdrl2;
list_insert_head(dev->l2ad_buflist, ab);
buf_data = ab->b_buf->b_data;
buf_sz = ab->b_size;
/*
* Compute and store the buffer cksum before
* writing. On debug the cksum is verified first.
*/
arc_cksum_verify(ab->b_buf);
arc_cksum_compute(ab->b_buf, B_TRUE);
mutex_exit(hash_lock);
wzio = zio_write_phys(pio, dev->l2ad_vdev,
dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF,
NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE,
ZIO_FLAG_CANFAIL, B_FALSE);
DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
zio_t *, wzio);
(void) zio_nowait(wzio);
/*
* Keep the clock hand suitably device-aligned.
*/
buf_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz);
write_sz += buf_sz;
dev->l2ad_hand += buf_sz;
}
mutex_exit(list_lock);
if (full == B_TRUE)
break;
}
mutex_exit(&l2arc_buflist_mtx);
if (pio == NULL) {
ASSERT3U(write_sz, ==, 0);
kmem_cache_free(hdr_cache, head);
return (0);
}
ASSERT3U(write_sz, <=, target_sz);
ARCSTAT_BUMP(arcstat_l2_writes_sent);
ARCSTAT_INCR(arcstat_l2_write_bytes, write_sz);
ARCSTAT_INCR(arcstat_l2_size, write_sz);
spa_l2cache_space_update(dev->l2ad_vdev, 0, write_sz);
/*
* Bump device hand to the device start if it is approaching the end.
* l2arc_evict() will already have evicted ahead for this case.
*/
if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
spa_l2cache_space_update(dev->l2ad_vdev, 0,
dev->l2ad_end - dev->l2ad_hand);
dev->l2ad_hand = dev->l2ad_start;
dev->l2ad_evict = dev->l2ad_start;
dev->l2ad_first = B_FALSE;
}
dev->l2ad_writing = B_TRUE;
(void) zio_wait(pio);
dev->l2ad_writing = B_FALSE;
return (write_sz);
}
/*
* This thread feeds the L2ARC at regular intervals. This is the beating
* heart of the L2ARC.
*/
static void
l2arc_feed_thread(void)
{
callb_cpr_t cpr;
l2arc_dev_t *dev;
spa_t *spa;
uint64_t size, wrote;
clock_t begin, next = lbolt;
CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
mutex_enter(&l2arc_feed_thr_lock);
while (l2arc_thread_exit == 0) {
CALLB_CPR_SAFE_BEGIN(&cpr);
(void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock,
next);
CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
next = lbolt + hz;
/*
* Quick check for L2ARC devices.
*/
mutex_enter(&l2arc_dev_mtx);
if (l2arc_ndev == 0) {
mutex_exit(&l2arc_dev_mtx);
continue;
}
mutex_exit(&l2arc_dev_mtx);
begin = lbolt;
/*
* This selects the next l2arc device to write to, and in
* doing so the next spa to feed from: dev->l2ad_spa. This
* will return NULL if there are now no l2arc devices or if
* they are all faulted.
*
* If a device is returned, its spa's config lock is also
* held to prevent device removal. l2arc_dev_get_next()
* will grab and release l2arc_dev_mtx.
*/
if ((dev = l2arc_dev_get_next()) == NULL)
continue;
spa = dev->l2ad_spa;
ASSERT(spa != NULL);
/*
* Avoid contributing to memory pressure.
*/
if (arc_reclaim_needed()) {
ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
spa_config_exit(spa, SCL_L2ARC, dev);
continue;
}
ARCSTAT_BUMP(arcstat_l2_feeds);
size = l2arc_write_size(dev);
/*
* Evict L2ARC buffers that will be overwritten.
*/
l2arc_evict(dev, size, B_FALSE);
/*
* Write ARC buffers.
*/
wrote = l2arc_write_buffers(spa, dev, size);
/*
* Calculate interval between writes.
*/
next = l2arc_write_interval(begin, size, wrote);
spa_config_exit(spa, SCL_L2ARC, dev);
}
l2arc_thread_exit = 0;
cv_broadcast(&l2arc_feed_thr_cv);
CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */
thread_exit();
}
boolean_t
l2arc_vdev_present(vdev_t *vd)
{
l2arc_dev_t *dev;
mutex_enter(&l2arc_dev_mtx);
for (dev = list_head(l2arc_dev_list); dev != NULL;
dev = list_next(l2arc_dev_list, dev)) {
if (dev->l2ad_vdev == vd)
break;
}
mutex_exit(&l2arc_dev_mtx);
return (dev != NULL);
}
/*
* Add a vdev for use by the L2ARC. By this point the spa has already
* validated the vdev and opened it.
*/
void
l2arc_add_vdev(spa_t *spa, vdev_t *vd, uint64_t start, uint64_t end)
{
l2arc_dev_t *adddev;
ASSERT(!l2arc_vdev_present(vd));
/*
* Create a new l2arc device entry.
*/
adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
adddev->l2ad_spa = spa;
adddev->l2ad_vdev = vd;
adddev->l2ad_write = l2arc_write_max;
adddev->l2ad_boost = l2arc_write_boost;
adddev->l2ad_start = start;
adddev->l2ad_end = end;
adddev->l2ad_hand = adddev->l2ad_start;
adddev->l2ad_evict = adddev->l2ad_start;
adddev->l2ad_first = B_TRUE;
adddev->l2ad_writing = B_FALSE;
list_link_init(&adddev->l2ad_node);
ASSERT3U(adddev->l2ad_write, >, 0);
/*
* This is a list of all ARC buffers that are still valid on the
* device.
*/
adddev->l2ad_buflist = kmem_zalloc(sizeof (list_t), KM_SLEEP);
list_create(adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
offsetof(arc_buf_hdr_t, b_l2node));
spa_l2cache_space_update(vd, adddev->l2ad_end - adddev->l2ad_hand, 0);
/*
* Add device to global list
*/
mutex_enter(&l2arc_dev_mtx);
list_insert_head(l2arc_dev_list, adddev);
atomic_inc_64(&l2arc_ndev);
mutex_exit(&l2arc_dev_mtx);
}
/*
* Remove a vdev from the L2ARC.
*/
void
l2arc_remove_vdev(vdev_t *vd)
{
l2arc_dev_t *dev, *nextdev, *remdev = NULL;
/*
* Find the device by vdev
*/
mutex_enter(&l2arc_dev_mtx);
for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
nextdev = list_next(l2arc_dev_list, dev);
if (vd == dev->l2ad_vdev) {
remdev = dev;
break;
}
}
ASSERT(remdev != NULL);
/*
* Remove device from global list
*/
list_remove(l2arc_dev_list, remdev);
l2arc_dev_last = NULL; /* may have been invalidated */
atomic_dec_64(&l2arc_ndev);
mutex_exit(&l2arc_dev_mtx);
/*
* Clear all buflists and ARC references. L2ARC device flush.
*/
l2arc_evict(remdev, 0, B_TRUE);
list_destroy(remdev->l2ad_buflist);
kmem_free(remdev->l2ad_buflist, sizeof (list_t));
kmem_free(remdev, sizeof (l2arc_dev_t));
}
void
l2arc_init(void)
{
l2arc_thread_exit = 0;
l2arc_ndev = 0;
l2arc_writes_sent = 0;
l2arc_writes_done = 0;
mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
mutex_init(&l2arc_buflist_mtx, NULL, MUTEX_DEFAULT, NULL);
mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
l2arc_dev_list = &L2ARC_dev_list;
l2arc_free_on_write = &L2ARC_free_on_write;
list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
offsetof(l2arc_dev_t, l2ad_node));
list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
offsetof(l2arc_data_free_t, l2df_list_node));
}
void
l2arc_fini(void)
{
/*
* This is called from dmu_fini(), which is called from spa_fini();
* Because of this, we can assume that all l2arc devices have
* already been removed when the pools themselves were removed.
*/
l2arc_do_free_on_write();
mutex_destroy(&l2arc_feed_thr_lock);
cv_destroy(&l2arc_feed_thr_cv);
mutex_destroy(&l2arc_dev_mtx);
mutex_destroy(&l2arc_buflist_mtx);
mutex_destroy(&l2arc_free_on_write_mtx);
list_destroy(l2arc_dev_list);
list_destroy(l2arc_free_on_write);
}
void
l2arc_start(void)
{
if (!(spa_mode_global & FWRITE))
return;
(void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
TS_RUN, minclsyspri);
}
void
l2arc_stop(void)
{
if (!(spa_mode_global & FWRITE))
return;
mutex_enter(&l2arc_feed_thr_lock);
cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */
l2arc_thread_exit = 1;
while (l2arc_thread_exit != 0)
cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
mutex_exit(&l2arc_feed_thr_lock);
}
#if defined(_KERNEL) && defined(HAVE_SPL)
EXPORT_SYMBOL(arc_read);
EXPORT_SYMBOL(arc_buf_remove_ref);
EXPORT_SYMBOL(arc_getbuf_func);
module_param(zfs_arc_min, ulong, 0644);
MODULE_PARM_DESC(zfs_arc_min, "Minimum arc size");
module_param(zfs_arc_max, ulong, 0644);
MODULE_PARM_DESC(zfs_arc_max, "Maximum arc size");
module_param(zfs_arc_meta_limit, ulong, 0644);
MODULE_PARM_DESC(zfs_arc_meta_limit, "Meta limit for arc size");
module_param(zfs_mdcomp_disable, int, 0644);
MODULE_PARM_DESC(zfs_mdcomp_disable, "Meta compression disable");
#endif