514 lines
12 KiB
C
514 lines
12 KiB
C
/*
|
|
* Copyright (c) 2008-2010 Sun Microsystems, Inc.
|
|
* Written by Ricardo Correia <Ricardo.M.Correia@Sun.COM>
|
|
*
|
|
* This file is part of the SPL, Solaris Porting Layer.
|
|
* For details, see <http://zfsonlinux.org/>.
|
|
*
|
|
* The SPL is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License as published by the
|
|
* Free Software Foundation; either version 2 of the License, or (at your
|
|
* option) any later version.
|
|
*
|
|
* The SPL is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with the SPL. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
* Solaris Porting Layer (SPL) XDR Implementation.
|
|
*/
|
|
|
|
#include <linux/string.h>
|
|
#include <sys/kmem.h>
|
|
#include <sys/debug.h>
|
|
#include <sys/types.h>
|
|
#include <sys/sysmacros.h>
|
|
#include <rpc/xdr.h>
|
|
|
|
/*
|
|
* SPL's XDR mem implementation.
|
|
*
|
|
* This is used by libnvpair to serialize/deserialize the name-value pair data
|
|
* structures into byte arrays in a well-defined and portable manner.
|
|
*
|
|
* These data structures are used by the DMU/ZFS to flexibly manipulate various
|
|
* information in memory and later serialize it/deserialize it to disk.
|
|
* Examples of usages include the pool configuration, lists of pool and dataset
|
|
* properties, etc.
|
|
*
|
|
* Reference documentation for the XDR representation and XDR operations can be
|
|
* found in RFC 1832 and xdr(3), respectively.
|
|
*
|
|
* === Implementation shortcomings ===
|
|
*
|
|
* It is assumed that the following C types have the following sizes:
|
|
*
|
|
* char/unsigned char: 1 byte
|
|
* short/unsigned short: 2 bytes
|
|
* int/unsigned int: 4 bytes
|
|
* longlong_t/u_longlong_t: 8 bytes
|
|
*
|
|
* The C standard allows these types to be larger (and in the case of ints,
|
|
* shorter), so if that is the case on some compiler/architecture, the build
|
|
* will fail (on purpose).
|
|
*
|
|
* If someone wants to fix the code to work properly on such environments, then:
|
|
*
|
|
* 1) Preconditions should be added to xdrmem_enc functions to make sure the
|
|
* caller doesn't pass arguments which exceed the expected range.
|
|
* 2) Functions which take signed integers should be changed to properly do
|
|
* sign extension.
|
|
* 3) For ints with less than 32 bits, well.. I suspect you'll have bigger
|
|
* problems than this implementation.
|
|
*
|
|
* It is also assumed that:
|
|
*
|
|
* 1) Chars have 8 bits.
|
|
* 2) We can always do 32-bit-aligned int memory accesses and byte-aligned
|
|
* memcpy, memset and memcmp.
|
|
* 3) Arrays passed to xdr_array() are packed and the compiler/architecture
|
|
* supports element-sized-aligned memory accesses.
|
|
* 4) Negative integers are natively stored in two's complement binary
|
|
* representation.
|
|
*
|
|
* No checks are done for the 4 assumptions above, though.
|
|
*
|
|
* === Caller expectations ===
|
|
*
|
|
* Existing documentation does not describe the semantics of XDR operations very
|
|
* well. Therefore, some assumptions about failure semantics will be made and
|
|
* will be described below:
|
|
*
|
|
* 1) If any encoding operation fails (e.g., due to lack of buffer space), the
|
|
* the stream should be considered valid only up to the encoding operation
|
|
* previous to the one that first failed. However, the stream size as returned
|
|
* by xdr_control() cannot be considered to be strictly correct (it may be
|
|
* bigger).
|
|
*
|
|
* Putting it another way, if there is an encoding failure it's undefined
|
|
* whether anything is added to the stream in that operation and therefore
|
|
* neither xdr_control() nor future encoding operations on the same stream can
|
|
* be relied upon to produce correct results.
|
|
*
|
|
* 2) If a decoding operation fails, it's undefined whether anything will be
|
|
* decoded into passed buffers/pointers during that operation, or what the
|
|
* values on those buffers will look like.
|
|
*
|
|
* Future decoding operations on the same stream will also have similar
|
|
* undefined behavior.
|
|
*
|
|
* 3) When the first decoding operation fails it is OK to trust the results of
|
|
* previous decoding operations on the same stream, as long as the caller
|
|
* expects a failure to be possible (e.g. due to end-of-stream).
|
|
*
|
|
* However, this is highly discouraged because the caller should know the
|
|
* stream size and should be coded to expect any decoding failure to be data
|
|
* corruption due to hardware, accidental or even malicious causes, which should
|
|
* be handled gracefully in all cases.
|
|
*
|
|
* In very rare situations where there are strong reasons to believe the data
|
|
* can be trusted to be valid and non-tampered with, then the caller may assume
|
|
* a decoding failure to be a bug (e.g. due to mismatched data types) and may
|
|
* fail non-gracefully.
|
|
*
|
|
* 4) Non-zero padding bytes will cause the decoding operation to fail.
|
|
*
|
|
* 5) Zero bytes on string types will also cause the decoding operation to fail.
|
|
*
|
|
* 6) It is assumed that either the pointer to the stream buffer given by the
|
|
* caller is 32-bit aligned or the architecture supports non-32-bit-aligned int
|
|
* memory accesses.
|
|
*
|
|
* 7) The stream buffer and encoding/decoding buffers/ptrs should not overlap.
|
|
*
|
|
* 8) If a caller passes pointers to non-kernel memory (e.g., pointers to user
|
|
* space or MMIO space), the computer may explode.
|
|
*/
|
|
|
|
static struct xdr_ops xdrmem_encode_ops;
|
|
static struct xdr_ops xdrmem_decode_ops;
|
|
|
|
void
|
|
xdrmem_create(XDR *xdrs, const caddr_t addr, const uint_t size,
|
|
const enum xdr_op op)
|
|
{
|
|
switch (op) {
|
|
case XDR_ENCODE:
|
|
xdrs->x_ops = &xdrmem_encode_ops;
|
|
break;
|
|
case XDR_DECODE:
|
|
xdrs->x_ops = &xdrmem_decode_ops;
|
|
break;
|
|
default:
|
|
xdrs->x_ops = NULL; /* Let the caller know we failed */
|
|
return;
|
|
}
|
|
|
|
xdrs->x_op = op;
|
|
xdrs->x_addr = addr;
|
|
xdrs->x_addr_end = addr + size;
|
|
|
|
if (xdrs->x_addr_end < xdrs->x_addr) {
|
|
xdrs->x_ops = NULL;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(xdrmem_create);
|
|
|
|
static bool_t
|
|
xdrmem_control(XDR *xdrs, int req, void *info)
|
|
{
|
|
struct xdr_bytesrec *rec = (struct xdr_bytesrec *)info;
|
|
|
|
if (req != XDR_GET_BYTES_AVAIL)
|
|
return (FALSE);
|
|
|
|
rec->xc_is_last_record = TRUE; /* always TRUE in xdrmem streams */
|
|
rec->xc_num_avail = xdrs->x_addr_end - xdrs->x_addr;
|
|
|
|
return (TRUE);
|
|
}
|
|
|
|
static bool_t
|
|
xdrmem_enc_bytes(XDR *xdrs, caddr_t cp, const uint_t cnt)
|
|
{
|
|
uint_t size = roundup(cnt, 4);
|
|
uint_t pad;
|
|
|
|
if (size < cnt)
|
|
return (FALSE); /* Integer overflow */
|
|
|
|
if (xdrs->x_addr > xdrs->x_addr_end)
|
|
return (FALSE);
|
|
|
|
if (xdrs->x_addr_end - xdrs->x_addr < size)
|
|
return (FALSE);
|
|
|
|
memcpy(xdrs->x_addr, cp, cnt);
|
|
|
|
xdrs->x_addr += cnt;
|
|
|
|
pad = size - cnt;
|
|
if (pad > 0) {
|
|
memset(xdrs->x_addr, 0, pad);
|
|
xdrs->x_addr += pad;
|
|
}
|
|
|
|
return (TRUE);
|
|
}
|
|
|
|
static bool_t
|
|
xdrmem_dec_bytes(XDR *xdrs, caddr_t cp, const uint_t cnt)
|
|
{
|
|
static uint32_t zero = 0;
|
|
uint_t size = roundup(cnt, 4);
|
|
uint_t pad;
|
|
|
|
if (size < cnt)
|
|
return (FALSE); /* Integer overflow */
|
|
|
|
if (xdrs->x_addr > xdrs->x_addr_end)
|
|
return (FALSE);
|
|
|
|
if (xdrs->x_addr_end - xdrs->x_addr < size)
|
|
return (FALSE);
|
|
|
|
memcpy(cp, xdrs->x_addr, cnt);
|
|
xdrs->x_addr += cnt;
|
|
|
|
pad = size - cnt;
|
|
if (pad > 0) {
|
|
/* An inverted memchr() would be useful here... */
|
|
if (memcmp(&zero, xdrs->x_addr, pad) != 0)
|
|
return (FALSE);
|
|
|
|
xdrs->x_addr += pad;
|
|
}
|
|
|
|
return (TRUE);
|
|
}
|
|
|
|
static bool_t
|
|
xdrmem_enc_uint32(XDR *xdrs, uint32_t val)
|
|
{
|
|
if (xdrs->x_addr + sizeof (uint32_t) > xdrs->x_addr_end)
|
|
return (FALSE);
|
|
|
|
*((uint32_t *)xdrs->x_addr) = cpu_to_be32(val);
|
|
|
|
xdrs->x_addr += sizeof (uint32_t);
|
|
|
|
return (TRUE);
|
|
}
|
|
|
|
static bool_t
|
|
xdrmem_dec_uint32(XDR *xdrs, uint32_t *val)
|
|
{
|
|
if (xdrs->x_addr + sizeof (uint32_t) > xdrs->x_addr_end)
|
|
return (FALSE);
|
|
|
|
*val = be32_to_cpu(*((uint32_t *)xdrs->x_addr));
|
|
|
|
xdrs->x_addr += sizeof (uint32_t);
|
|
|
|
return (TRUE);
|
|
}
|
|
|
|
static bool_t
|
|
xdrmem_enc_char(XDR *xdrs, char *cp)
|
|
{
|
|
uint32_t val;
|
|
|
|
BUILD_BUG_ON(sizeof (char) != 1);
|
|
val = *((unsigned char *) cp);
|
|
|
|
return (xdrmem_enc_uint32(xdrs, val));
|
|
}
|
|
|
|
static bool_t
|
|
xdrmem_dec_char(XDR *xdrs, char *cp)
|
|
{
|
|
uint32_t val;
|
|
|
|
BUILD_BUG_ON(sizeof (char) != 1);
|
|
|
|
if (!xdrmem_dec_uint32(xdrs, &val))
|
|
return (FALSE);
|
|
|
|
/*
|
|
* If any of the 3 other bytes are non-zero then val will be greater
|
|
* than 0xff and we fail because according to the RFC, this block does
|
|
* not have a char encoded in it.
|
|
*/
|
|
if (val > 0xff)
|
|
return (FALSE);
|
|
|
|
*((unsigned char *) cp) = val;
|
|
|
|
return (TRUE);
|
|
}
|
|
|
|
static bool_t
|
|
xdrmem_enc_ushort(XDR *xdrs, unsigned short *usp)
|
|
{
|
|
BUILD_BUG_ON(sizeof (unsigned short) != 2);
|
|
|
|
return (xdrmem_enc_uint32(xdrs, *usp));
|
|
}
|
|
|
|
static bool_t
|
|
xdrmem_dec_ushort(XDR *xdrs, unsigned short *usp)
|
|
{
|
|
uint32_t val;
|
|
|
|
BUILD_BUG_ON(sizeof (unsigned short) != 2);
|
|
|
|
if (!xdrmem_dec_uint32(xdrs, &val))
|
|
return (FALSE);
|
|
|
|
/*
|
|
* Short ints are not in the RFC, but we assume similar logic as in
|
|
* xdrmem_dec_char().
|
|
*/
|
|
if (val > 0xffff)
|
|
return (FALSE);
|
|
|
|
*usp = val;
|
|
|
|
return (TRUE);
|
|
}
|
|
|
|
static bool_t
|
|
xdrmem_enc_uint(XDR *xdrs, unsigned *up)
|
|
{
|
|
BUILD_BUG_ON(sizeof (unsigned) != 4);
|
|
|
|
return (xdrmem_enc_uint32(xdrs, *up));
|
|
}
|
|
|
|
static bool_t
|
|
xdrmem_dec_uint(XDR *xdrs, unsigned *up)
|
|
{
|
|
BUILD_BUG_ON(sizeof (unsigned) != 4);
|
|
|
|
return (xdrmem_dec_uint32(xdrs, (uint32_t *)up));
|
|
}
|
|
|
|
static bool_t
|
|
xdrmem_enc_ulonglong(XDR *xdrs, u_longlong_t *ullp)
|
|
{
|
|
BUILD_BUG_ON(sizeof (u_longlong_t) != 8);
|
|
|
|
if (!xdrmem_enc_uint32(xdrs, *ullp >> 32))
|
|
return (FALSE);
|
|
|
|
return (xdrmem_enc_uint32(xdrs, *ullp & 0xffffffff));
|
|
}
|
|
|
|
static bool_t
|
|
xdrmem_dec_ulonglong(XDR *xdrs, u_longlong_t *ullp)
|
|
{
|
|
uint32_t low, high;
|
|
|
|
BUILD_BUG_ON(sizeof (u_longlong_t) != 8);
|
|
|
|
if (!xdrmem_dec_uint32(xdrs, &high))
|
|
return (FALSE);
|
|
if (!xdrmem_dec_uint32(xdrs, &low))
|
|
return (FALSE);
|
|
|
|
*ullp = ((u_longlong_t)high << 32) | low;
|
|
|
|
return (TRUE);
|
|
}
|
|
|
|
static bool_t
|
|
xdr_enc_array(XDR *xdrs, caddr_t *arrp, uint_t *sizep, const uint_t maxsize,
|
|
const uint_t elsize, const xdrproc_t elproc)
|
|
{
|
|
uint_t i;
|
|
caddr_t addr = *arrp;
|
|
|
|
if (*sizep > maxsize || *sizep > UINT_MAX / elsize)
|
|
return (FALSE);
|
|
|
|
if (!xdrmem_enc_uint(xdrs, sizep))
|
|
return (FALSE);
|
|
|
|
for (i = 0; i < *sizep; i++) {
|
|
if (!elproc(xdrs, addr))
|
|
return (FALSE);
|
|
addr += elsize;
|
|
}
|
|
|
|
return (TRUE);
|
|
}
|
|
|
|
static bool_t
|
|
xdr_dec_array(XDR *xdrs, caddr_t *arrp, uint_t *sizep, const uint_t maxsize,
|
|
const uint_t elsize, const xdrproc_t elproc)
|
|
{
|
|
uint_t i, size;
|
|
bool_t alloc = FALSE;
|
|
caddr_t addr;
|
|
|
|
if (!xdrmem_dec_uint(xdrs, sizep))
|
|
return (FALSE);
|
|
|
|
size = *sizep;
|
|
|
|
if (size > maxsize || size > UINT_MAX / elsize)
|
|
return (FALSE);
|
|
|
|
/*
|
|
* The Solaris man page says: "If *arrp is NULL when decoding,
|
|
* xdr_array() allocates memory and *arrp points to it".
|
|
*/
|
|
if (*arrp == NULL) {
|
|
BUILD_BUG_ON(sizeof (uint_t) > sizeof (size_t));
|
|
|
|
*arrp = kmem_alloc(size * elsize, KM_NOSLEEP);
|
|
if (*arrp == NULL)
|
|
return (FALSE);
|
|
|
|
alloc = TRUE;
|
|
}
|
|
|
|
addr = *arrp;
|
|
|
|
for (i = 0; i < size; i++) {
|
|
if (!elproc(xdrs, addr)) {
|
|
if (alloc)
|
|
kmem_free(*arrp, size * elsize);
|
|
return (FALSE);
|
|
}
|
|
addr += elsize;
|
|
}
|
|
|
|
return (TRUE);
|
|
}
|
|
|
|
static bool_t
|
|
xdr_enc_string(XDR *xdrs, char **sp, const uint_t maxsize)
|
|
{
|
|
size_t slen = strlen(*sp);
|
|
uint_t len;
|
|
|
|
if (slen > maxsize)
|
|
return (FALSE);
|
|
|
|
len = slen;
|
|
|
|
if (!xdrmem_enc_uint(xdrs, &len))
|
|
return (FALSE);
|
|
|
|
return (xdrmem_enc_bytes(xdrs, *sp, len));
|
|
}
|
|
|
|
static bool_t
|
|
xdr_dec_string(XDR *xdrs, char **sp, const uint_t maxsize)
|
|
{
|
|
uint_t size;
|
|
bool_t alloc = FALSE;
|
|
|
|
if (!xdrmem_dec_uint(xdrs, &size))
|
|
return (FALSE);
|
|
|
|
if (size > maxsize || size > UINT_MAX - 1)
|
|
return (FALSE);
|
|
|
|
/*
|
|
* Solaris man page: "If *sp is NULL when decoding, xdr_string()
|
|
* allocates memory and *sp points to it".
|
|
*/
|
|
if (*sp == NULL) {
|
|
BUILD_BUG_ON(sizeof (uint_t) > sizeof (size_t));
|
|
|
|
*sp = kmem_alloc(size + 1, KM_NOSLEEP);
|
|
if (*sp == NULL)
|
|
return (FALSE);
|
|
|
|
alloc = TRUE;
|
|
}
|
|
|
|
if (!xdrmem_dec_bytes(xdrs, *sp, size))
|
|
goto fail;
|
|
|
|
if (memchr(*sp, 0, size) != NULL)
|
|
goto fail;
|
|
|
|
(*sp)[size] = '\0';
|
|
|
|
return (TRUE);
|
|
|
|
fail:
|
|
if (alloc)
|
|
kmem_free(*sp, size + 1);
|
|
|
|
return (FALSE);
|
|
}
|
|
|
|
static struct xdr_ops xdrmem_encode_ops = {
|
|
.xdr_control = xdrmem_control,
|
|
.xdr_char = xdrmem_enc_char,
|
|
.xdr_u_short = xdrmem_enc_ushort,
|
|
.xdr_u_int = xdrmem_enc_uint,
|
|
.xdr_u_longlong_t = xdrmem_enc_ulonglong,
|
|
.xdr_opaque = xdrmem_enc_bytes,
|
|
.xdr_string = xdr_enc_string,
|
|
.xdr_array = xdr_enc_array
|
|
};
|
|
|
|
static struct xdr_ops xdrmem_decode_ops = {
|
|
.xdr_control = xdrmem_control,
|
|
.xdr_char = xdrmem_dec_char,
|
|
.xdr_u_short = xdrmem_dec_ushort,
|
|
.xdr_u_int = xdrmem_dec_uint,
|
|
.xdr_u_longlong_t = xdrmem_dec_ulonglong,
|
|
.xdr_opaque = xdrmem_dec_bytes,
|
|
.xdr_string = xdr_dec_string,
|
|
.xdr_array = xdr_dec_array
|
|
};
|