769 lines
18 KiB
C
769 lines
18 KiB
C
/*
|
|
* Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC.
|
|
* Copyright (C) 2007 The Regents of the University of California.
|
|
* Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
|
|
* Written by Brian Behlendorf <behlendorf1@llnl.gov>.
|
|
* UCRL-CODE-235197
|
|
*
|
|
* This file is part of the SPL, Solaris Porting Layer.
|
|
* For details, see <http://zfsonlinux.org/>.
|
|
*
|
|
* The SPL is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License as published by the
|
|
* Free Software Foundation; either version 2 of the License, or (at your
|
|
* option) any later version.
|
|
*
|
|
* The SPL is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with the SPL. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
* Solaris Porting Layer (SPL) Generic Implementation.
|
|
*/
|
|
|
|
#include <sys/sysmacros.h>
|
|
#include <sys/systeminfo.h>
|
|
#include <sys/vmsystm.h>
|
|
#include <sys/kobj.h>
|
|
#include <sys/kmem.h>
|
|
#include <sys/kmem_cache.h>
|
|
#include <sys/vmem.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/rwlock.h>
|
|
#include <sys/taskq.h>
|
|
#include <sys/tsd.h>
|
|
#include <sys/zmod.h>
|
|
#include <sys/debug.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/kstat.h>
|
|
#include <sys/file.h>
|
|
#include <linux/ctype.h>
|
|
#include <sys/disp.h>
|
|
#include <sys/random.h>
|
|
#include <sys/strings.h>
|
|
#include <linux/kmod.h>
|
|
|
|
char spl_version[32] = "SPL v" ZFS_META_VERSION "-" ZFS_META_RELEASE;
|
|
EXPORT_SYMBOL(spl_version);
|
|
|
|
/* BEGIN CSTYLED */
|
|
unsigned long spl_hostid = 0;
|
|
EXPORT_SYMBOL(spl_hostid);
|
|
/* BEGIN CSTYLED */
|
|
module_param(spl_hostid, ulong, 0644);
|
|
MODULE_PARM_DESC(spl_hostid, "The system hostid.");
|
|
/* END CSTYLED */
|
|
|
|
proc_t p0;
|
|
EXPORT_SYMBOL(p0);
|
|
|
|
/*
|
|
* Xorshift Pseudo Random Number Generator based on work by Sebastiano Vigna
|
|
*
|
|
* "Further scramblings of Marsaglia's xorshift generators"
|
|
* http://vigna.di.unimi.it/ftp/papers/xorshiftplus.pdf
|
|
*
|
|
* random_get_pseudo_bytes() is an API function on Illumos whose sole purpose
|
|
* is to provide bytes containing random numbers. It is mapped to /dev/urandom
|
|
* on Illumos, which uses a "FIPS 186-2 algorithm". No user of the SPL's
|
|
* random_get_pseudo_bytes() needs bytes that are of cryptographic quality, so
|
|
* we can implement it using a fast PRNG that we seed using Linux' actual
|
|
* equivalent to random_get_pseudo_bytes(). We do this by providing each CPU
|
|
* with an independent seed so that all calls to random_get_pseudo_bytes() are
|
|
* free of atomic instructions.
|
|
*
|
|
* A consequence of using a fast PRNG is that using random_get_pseudo_bytes()
|
|
* to generate words larger than 128 bits will paradoxically be limited to
|
|
* `2^128 - 1` possibilities. This is because we have a sequence of `2^128 - 1`
|
|
* 128-bit words and selecting the first will implicitly select the second. If
|
|
* a caller finds this behavior undesireable, random_get_bytes() should be used
|
|
* instead.
|
|
*
|
|
* XXX: Linux interrupt handlers that trigger within the critical section
|
|
* formed by `s[1] = xp[1];` and `xp[0] = s[0];` and call this function will
|
|
* see the same numbers. Nothing in the code currently calls this in an
|
|
* interrupt handler, so this is considered to be okay. If that becomes a
|
|
* problem, we could create a set of per-cpu variables for interrupt handlers
|
|
* and use them when in_interrupt() from linux/preempt_mask.h evaluates to
|
|
* true.
|
|
*/
|
|
static DEFINE_PER_CPU(uint64_t[2], spl_pseudo_entropy);
|
|
|
|
/*
|
|
* spl_rand_next()/spl_rand_jump() are copied from the following CC-0 licensed
|
|
* file:
|
|
*
|
|
* http://xorshift.di.unimi.it/xorshift128plus.c
|
|
*/
|
|
|
|
static inline uint64_t
|
|
spl_rand_next(uint64_t *s)
|
|
{
|
|
uint64_t s1 = s[0];
|
|
const uint64_t s0 = s[1];
|
|
s[0] = s0;
|
|
s1 ^= s1 << 23; // a
|
|
s[1] = s1 ^ s0 ^ (s1 >> 18) ^ (s0 >> 5); // b, c
|
|
return (s[1] + s0);
|
|
}
|
|
|
|
static inline void
|
|
spl_rand_jump(uint64_t *s)
|
|
{
|
|
static const uint64_t JUMP[] =
|
|
{ 0x8a5cd789635d2dff, 0x121fd2155c472f96 };
|
|
|
|
uint64_t s0 = 0;
|
|
uint64_t s1 = 0;
|
|
int i, b;
|
|
for (i = 0; i < sizeof (JUMP) / sizeof (*JUMP); i++)
|
|
for (b = 0; b < 64; b++) {
|
|
if (JUMP[i] & 1ULL << b) {
|
|
s0 ^= s[0];
|
|
s1 ^= s[1];
|
|
}
|
|
(void) spl_rand_next(s);
|
|
}
|
|
|
|
s[0] = s0;
|
|
s[1] = s1;
|
|
}
|
|
|
|
int
|
|
random_get_pseudo_bytes(uint8_t *ptr, size_t len)
|
|
{
|
|
uint64_t *xp, s[2];
|
|
|
|
ASSERT(ptr);
|
|
|
|
xp = get_cpu_var(spl_pseudo_entropy);
|
|
|
|
s[0] = xp[0];
|
|
s[1] = xp[1];
|
|
|
|
while (len) {
|
|
union {
|
|
uint64_t ui64;
|
|
uint8_t byte[sizeof (uint64_t)];
|
|
}entropy;
|
|
int i = MIN(len, sizeof (uint64_t));
|
|
|
|
len -= i;
|
|
entropy.ui64 = spl_rand_next(s);
|
|
|
|
while (i--)
|
|
*ptr++ = entropy.byte[i];
|
|
}
|
|
|
|
xp[0] = s[0];
|
|
xp[1] = s[1];
|
|
|
|
put_cpu_var(spl_pseudo_entropy);
|
|
|
|
return (0);
|
|
}
|
|
|
|
|
|
EXPORT_SYMBOL(random_get_pseudo_bytes);
|
|
|
|
#if BITS_PER_LONG == 32
|
|
/*
|
|
* Support 64/64 => 64 division on a 32-bit platform. While the kernel
|
|
* provides a div64_u64() function for this we do not use it because the
|
|
* implementation is flawed. There are cases which return incorrect
|
|
* results as late as linux-2.6.35. Until this is fixed upstream the
|
|
* spl must provide its own implementation.
|
|
*
|
|
* This implementation is a slightly modified version of the algorithm
|
|
* proposed by the book 'Hacker's Delight'. The original source can be
|
|
* found here and is available for use without restriction.
|
|
*
|
|
* http://www.hackersdelight.org/HDcode/newCode/divDouble.c
|
|
*/
|
|
|
|
/*
|
|
* Calculate number of leading of zeros for a 64-bit value.
|
|
*/
|
|
static int
|
|
nlz64(uint64_t x)
|
|
{
|
|
register int n = 0;
|
|
|
|
if (x == 0)
|
|
return (64);
|
|
|
|
if (x <= 0x00000000FFFFFFFFULL) { n = n + 32; x = x << 32; }
|
|
if (x <= 0x0000FFFFFFFFFFFFULL) { n = n + 16; x = x << 16; }
|
|
if (x <= 0x00FFFFFFFFFFFFFFULL) { n = n + 8; x = x << 8; }
|
|
if (x <= 0x0FFFFFFFFFFFFFFFULL) { n = n + 4; x = x << 4; }
|
|
if (x <= 0x3FFFFFFFFFFFFFFFULL) { n = n + 2; x = x << 2; }
|
|
if (x <= 0x7FFFFFFFFFFFFFFFULL) { n = n + 1; }
|
|
|
|
return (n);
|
|
}
|
|
|
|
/*
|
|
* Newer kernels have a div_u64() function but we define our own
|
|
* to simplify portibility between kernel versions.
|
|
*/
|
|
static inline uint64_t
|
|
__div_u64(uint64_t u, uint32_t v)
|
|
{
|
|
(void) do_div(u, v);
|
|
return (u);
|
|
}
|
|
|
|
/*
|
|
* Implementation of 64-bit unsigned division for 32-bit machines.
|
|
*
|
|
* First the procedure takes care of the case in which the divisor is a
|
|
* 32-bit quantity. There are two subcases: (1) If the left half of the
|
|
* dividend is less than the divisor, one execution of do_div() is all that
|
|
* is required (overflow is not possible). (2) Otherwise it does two
|
|
* divisions, using the grade school method.
|
|
*/
|
|
uint64_t
|
|
__udivdi3(uint64_t u, uint64_t v)
|
|
{
|
|
uint64_t u0, u1, v1, q0, q1, k;
|
|
int n;
|
|
|
|
if (v >> 32 == 0) { // If v < 2**32:
|
|
if (u >> 32 < v) { // If u/v cannot overflow,
|
|
return (__div_u64(u, v)); // just do one division.
|
|
} else { // If u/v would overflow:
|
|
u1 = u >> 32; // Break u into two halves.
|
|
u0 = u & 0xFFFFFFFF;
|
|
q1 = __div_u64(u1, v); // First quotient digit.
|
|
k = u1 - q1 * v; // First remainder, < v.
|
|
u0 += (k << 32);
|
|
q0 = __div_u64(u0, v); // Seconds quotient digit.
|
|
return ((q1 << 32) + q0);
|
|
}
|
|
} else { // If v >= 2**32:
|
|
n = nlz64(v); // 0 <= n <= 31.
|
|
v1 = (v << n) >> 32; // Normalize divisor, MSB is 1.
|
|
u1 = u >> 1; // To ensure no overflow.
|
|
q1 = __div_u64(u1, v1); // Get quotient from
|
|
q0 = (q1 << n) >> 31; // Undo normalization and
|
|
// division of u by 2.
|
|
if (q0 != 0) // Make q0 correct or
|
|
q0 = q0 - 1; // too small by 1.
|
|
if ((u - q0 * v) >= v)
|
|
q0 = q0 + 1; // Now q0 is correct.
|
|
|
|
return (q0);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(__udivdi3);
|
|
|
|
/* BEGIN CSTYLED */
|
|
#ifndef abs64
|
|
#define abs64(x) ({ uint64_t t = (x) >> 63; ((x) ^ t) - t; })
|
|
#endif
|
|
/* END CSTYLED */
|
|
|
|
/*
|
|
* Implementation of 64-bit signed division for 32-bit machines.
|
|
*/
|
|
int64_t
|
|
__divdi3(int64_t u, int64_t v)
|
|
{
|
|
int64_t q, t;
|
|
q = __udivdi3(abs64(u), abs64(v));
|
|
t = (u ^ v) >> 63; // If u, v have different
|
|
return ((q ^ t) - t); // signs, negate q.
|
|
}
|
|
EXPORT_SYMBOL(__divdi3);
|
|
|
|
/*
|
|
* Implementation of 64-bit unsigned modulo for 32-bit machines.
|
|
*/
|
|
uint64_t
|
|
__umoddi3(uint64_t dividend, uint64_t divisor)
|
|
{
|
|
return (dividend - (divisor * __udivdi3(dividend, divisor)));
|
|
}
|
|
EXPORT_SYMBOL(__umoddi3);
|
|
|
|
/*
|
|
* Implementation of 64-bit unsigned division/modulo for 32-bit machines.
|
|
*/
|
|
uint64_t
|
|
__udivmoddi4(uint64_t n, uint64_t d, uint64_t *r)
|
|
{
|
|
uint64_t q = __udivdi3(n, d);
|
|
if (r)
|
|
*r = n - d * q;
|
|
return (q);
|
|
}
|
|
EXPORT_SYMBOL(__udivmoddi4);
|
|
|
|
/*
|
|
* Implementation of 64-bit signed division/modulo for 32-bit machines.
|
|
*/
|
|
int64_t
|
|
__divmoddi4(int64_t n, int64_t d, int64_t *r)
|
|
{
|
|
int64_t q, rr;
|
|
boolean_t nn = B_FALSE;
|
|
boolean_t nd = B_FALSE;
|
|
if (n < 0) {
|
|
nn = B_TRUE;
|
|
n = -n;
|
|
}
|
|
if (d < 0) {
|
|
nd = B_TRUE;
|
|
d = -d;
|
|
}
|
|
|
|
q = __udivmoddi4(n, d, (uint64_t *)&rr);
|
|
|
|
if (nn != nd)
|
|
q = -q;
|
|
if (nn)
|
|
rr = -rr;
|
|
if (r)
|
|
*r = rr;
|
|
return (q);
|
|
}
|
|
EXPORT_SYMBOL(__divmoddi4);
|
|
|
|
#if defined(__arm) || defined(__arm__)
|
|
/*
|
|
* Implementation of 64-bit (un)signed division for 32-bit arm machines.
|
|
*
|
|
* Run-time ABI for the ARM Architecture (page 20). A pair of (unsigned)
|
|
* long longs is returned in {{r0, r1}, {r2,r3}}, the quotient in {r0, r1},
|
|
* and the remainder in {r2, r3}. The return type is specifically left
|
|
* set to 'void' to ensure the compiler does not overwrite these registers
|
|
* during the return. All results are in registers as per ABI
|
|
*/
|
|
void
|
|
__aeabi_uldivmod(uint64_t u, uint64_t v)
|
|
{
|
|
uint64_t res;
|
|
uint64_t mod;
|
|
|
|
res = __udivdi3(u, v);
|
|
mod = __umoddi3(u, v);
|
|
{
|
|
register uint32_t r0 asm("r0") = (res & 0xFFFFFFFF);
|
|
register uint32_t r1 asm("r1") = (res >> 32);
|
|
register uint32_t r2 asm("r2") = (mod & 0xFFFFFFFF);
|
|
register uint32_t r3 asm("r3") = (mod >> 32);
|
|
|
|
/* BEGIN CSTYLED */
|
|
asm volatile(""
|
|
: "+r"(r0), "+r"(r1), "+r"(r2),"+r"(r3) /* output */
|
|
: "r"(r0), "r"(r1), "r"(r2), "r"(r3)); /* input */
|
|
/* END CSTYLED */
|
|
|
|
return; /* r0; */
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(__aeabi_uldivmod);
|
|
|
|
void
|
|
__aeabi_ldivmod(int64_t u, int64_t v)
|
|
{
|
|
int64_t res;
|
|
uint64_t mod;
|
|
|
|
res = __divdi3(u, v);
|
|
mod = __umoddi3(u, v);
|
|
{
|
|
register uint32_t r0 asm("r0") = (res & 0xFFFFFFFF);
|
|
register uint32_t r1 asm("r1") = (res >> 32);
|
|
register uint32_t r2 asm("r2") = (mod & 0xFFFFFFFF);
|
|
register uint32_t r3 asm("r3") = (mod >> 32);
|
|
|
|
/* BEGIN CSTYLED */
|
|
asm volatile(""
|
|
: "+r"(r0), "+r"(r1), "+r"(r2),"+r"(r3) /* output */
|
|
: "r"(r0), "r"(r1), "r"(r2), "r"(r3)); /* input */
|
|
/* END CSTYLED */
|
|
|
|
return; /* r0; */
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(__aeabi_ldivmod);
|
|
#endif /* __arm || __arm__ */
|
|
#endif /* BITS_PER_LONG */
|
|
|
|
/*
|
|
* NOTE: The strtoxx behavior is solely based on my reading of the Solaris
|
|
* ddi_strtol(9F) man page. I have not verified the behavior of these
|
|
* functions against their Solaris counterparts. It is possible that I
|
|
* may have misinterpreted the man page or the man page is incorrect.
|
|
*/
|
|
int ddi_strtoul(const char *, char **, int, unsigned long *);
|
|
int ddi_strtol(const char *, char **, int, long *);
|
|
int ddi_strtoull(const char *, char **, int, unsigned long long *);
|
|
int ddi_strtoll(const char *, char **, int, long long *);
|
|
|
|
#define define_ddi_strtoux(type, valtype) \
|
|
int ddi_strtou##type(const char *str, char **endptr, \
|
|
int base, valtype *result) \
|
|
{ \
|
|
valtype last_value, value = 0; \
|
|
char *ptr = (char *)str; \
|
|
int flag = 1, digit; \
|
|
\
|
|
if (strlen(ptr) == 0) \
|
|
return (EINVAL); \
|
|
\
|
|
/* Auto-detect base based on prefix */ \
|
|
if (!base) { \
|
|
if (str[0] == '0') { \
|
|
if (tolower(str[1]) == 'x' && isxdigit(str[2])) { \
|
|
base = 16; /* hex */ \
|
|
ptr += 2; \
|
|
} else if (str[1] >= '0' && str[1] < 8) { \
|
|
base = 8; /* octal */ \
|
|
ptr += 1; \
|
|
} else { \
|
|
return (EINVAL); \
|
|
} \
|
|
} else { \
|
|
base = 10; /* decimal */ \
|
|
} \
|
|
} \
|
|
\
|
|
while (1) { \
|
|
if (isdigit(*ptr)) \
|
|
digit = *ptr - '0'; \
|
|
else if (isalpha(*ptr)) \
|
|
digit = tolower(*ptr) - 'a' + 10; \
|
|
else \
|
|
break; \
|
|
\
|
|
if (digit >= base) \
|
|
break; \
|
|
\
|
|
last_value = value; \
|
|
value = value * base + digit; \
|
|
if (last_value > value) /* Overflow */ \
|
|
return (ERANGE); \
|
|
\
|
|
flag = 1; \
|
|
ptr++; \
|
|
} \
|
|
\
|
|
if (flag) \
|
|
*result = value; \
|
|
\
|
|
if (endptr) \
|
|
*endptr = (char *)(flag ? ptr : str); \
|
|
\
|
|
return (0); \
|
|
} \
|
|
|
|
#define define_ddi_strtox(type, valtype) \
|
|
int ddi_strto##type(const char *str, char **endptr, \
|
|
int base, valtype *result) \
|
|
{ \
|
|
int rc; \
|
|
\
|
|
if (*str == '-') { \
|
|
rc = ddi_strtou##type(str + 1, endptr, base, result); \
|
|
if (!rc) { \
|
|
if (*endptr == str + 1) \
|
|
*endptr = (char *)str; \
|
|
else \
|
|
*result = -*result; \
|
|
} \
|
|
} else { \
|
|
rc = ddi_strtou##type(str, endptr, base, result); \
|
|
} \
|
|
\
|
|
return (rc); \
|
|
}
|
|
|
|
define_ddi_strtoux(l, unsigned long)
|
|
define_ddi_strtox(l, long)
|
|
define_ddi_strtoux(ll, unsigned long long)
|
|
define_ddi_strtox(ll, long long)
|
|
|
|
EXPORT_SYMBOL(ddi_strtoul);
|
|
EXPORT_SYMBOL(ddi_strtol);
|
|
EXPORT_SYMBOL(ddi_strtoll);
|
|
EXPORT_SYMBOL(ddi_strtoull);
|
|
|
|
int
|
|
ddi_copyin(const void *from, void *to, size_t len, int flags)
|
|
{
|
|
/* Fake ioctl() issued by kernel, 'from' is a kernel address */
|
|
if (flags & FKIOCTL) {
|
|
memcpy(to, from, len);
|
|
return (0);
|
|
}
|
|
|
|
return (copyin(from, to, len));
|
|
}
|
|
EXPORT_SYMBOL(ddi_copyin);
|
|
|
|
int
|
|
ddi_copyout(const void *from, void *to, size_t len, int flags)
|
|
{
|
|
/* Fake ioctl() issued by kernel, 'from' is a kernel address */
|
|
if (flags & FKIOCTL) {
|
|
memcpy(to, from, len);
|
|
return (0);
|
|
}
|
|
|
|
return (copyout(from, to, len));
|
|
}
|
|
EXPORT_SYMBOL(ddi_copyout);
|
|
|
|
/*
|
|
* Read the unique system identifier from the /etc/hostid file.
|
|
*
|
|
* The behavior of /usr/bin/hostid on Linux systems with the
|
|
* regular eglibc and coreutils is:
|
|
*
|
|
* 1. Generate the value if the /etc/hostid file does not exist
|
|
* or if the /etc/hostid file is less than four bytes in size.
|
|
*
|
|
* 2. If the /etc/hostid file is at least 4 bytes, then return
|
|
* the first four bytes [0..3] in native endian order.
|
|
*
|
|
* 3. Always ignore bytes [4..] if they exist in the file.
|
|
*
|
|
* Only the first four bytes are significant, even on systems that
|
|
* have a 64-bit word size.
|
|
*
|
|
* See:
|
|
*
|
|
* eglibc: sysdeps/unix/sysv/linux/gethostid.c
|
|
* coreutils: src/hostid.c
|
|
*
|
|
* Notes:
|
|
*
|
|
* The /etc/hostid file on Solaris is a text file that often reads:
|
|
*
|
|
* # DO NOT EDIT
|
|
* "0123456789"
|
|
*
|
|
* Directly copying this file to Linux results in a constant
|
|
* hostid of 4f442023 because the default comment constitutes
|
|
* the first four bytes of the file.
|
|
*
|
|
*/
|
|
|
|
char *spl_hostid_path = HW_HOSTID_PATH;
|
|
module_param(spl_hostid_path, charp, 0444);
|
|
MODULE_PARM_DESC(spl_hostid_path, "The system hostid file (/etc/hostid)");
|
|
|
|
static int
|
|
hostid_read(uint32_t *hostid)
|
|
{
|
|
uint64_t size;
|
|
struct _buf *file;
|
|
uint32_t value = 0;
|
|
int error;
|
|
|
|
file = kobj_open_file(spl_hostid_path);
|
|
if (file == (struct _buf *)-1)
|
|
return (ENOENT);
|
|
|
|
error = kobj_get_filesize(file, &size);
|
|
if (error) {
|
|
kobj_close_file(file);
|
|
return (error);
|
|
}
|
|
|
|
if (size < sizeof (HW_HOSTID_MASK)) {
|
|
kobj_close_file(file);
|
|
return (EINVAL);
|
|
}
|
|
|
|
/*
|
|
* Read directly into the variable like eglibc does.
|
|
* Short reads are okay; native behavior is preserved.
|
|
*/
|
|
error = kobj_read_file(file, (char *)&value, sizeof (value), 0);
|
|
if (error < 0) {
|
|
kobj_close_file(file);
|
|
return (EIO);
|
|
}
|
|
|
|
/* Mask down to 32 bits like coreutils does. */
|
|
*hostid = (value & HW_HOSTID_MASK);
|
|
kobj_close_file(file);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Return the system hostid. Preferentially use the spl_hostid module option
|
|
* when set, otherwise use the value in the /etc/hostid file.
|
|
*/
|
|
uint32_t
|
|
zone_get_hostid(void *zone)
|
|
{
|
|
uint32_t hostid;
|
|
|
|
ASSERT3P(zone, ==, NULL);
|
|
|
|
if (spl_hostid != 0)
|
|
return ((uint32_t)(spl_hostid & HW_HOSTID_MASK));
|
|
|
|
if (hostid_read(&hostid) == 0)
|
|
return (hostid);
|
|
|
|
return (0);
|
|
}
|
|
EXPORT_SYMBOL(zone_get_hostid);
|
|
|
|
static int
|
|
spl_kvmem_init(void)
|
|
{
|
|
int rc = 0;
|
|
|
|
rc = spl_kmem_init();
|
|
if (rc)
|
|
return (rc);
|
|
|
|
rc = spl_vmem_init();
|
|
if (rc) {
|
|
spl_kmem_fini();
|
|
return (rc);
|
|
}
|
|
|
|
return (rc);
|
|
}
|
|
|
|
/*
|
|
* We initialize the random number generator with 128 bits of entropy from the
|
|
* system random number generator. In the improbable case that we have a zero
|
|
* seed, we fallback to the system jiffies, unless it is also zero, in which
|
|
* situation we use a preprogrammed seed. We step forward by 2^64 iterations to
|
|
* initialize each of the per-cpu seeds so that the sequences generated on each
|
|
* CPU are guaranteed to never overlap in practice.
|
|
*/
|
|
static void __init
|
|
spl_random_init(void)
|
|
{
|
|
uint64_t s[2];
|
|
int i;
|
|
|
|
get_random_bytes(s, sizeof (s));
|
|
|
|
if (s[0] == 0 && s[1] == 0) {
|
|
if (jiffies != 0) {
|
|
s[0] = jiffies;
|
|
s[1] = ~0 - jiffies;
|
|
} else {
|
|
(void) memcpy(s, "improbable seed", sizeof (s));
|
|
}
|
|
printk("SPL: get_random_bytes() returned 0 "
|
|
"when generating random seed. Setting initial seed to "
|
|
"0x%016llx%016llx.", cpu_to_be64(s[0]), cpu_to_be64(s[1]));
|
|
}
|
|
|
|
for_each_possible_cpu(i) {
|
|
uint64_t *wordp = per_cpu(spl_pseudo_entropy, i);
|
|
|
|
spl_rand_jump(s);
|
|
|
|
wordp[0] = s[0];
|
|
wordp[1] = s[1];
|
|
}
|
|
}
|
|
|
|
static void
|
|
spl_kvmem_fini(void)
|
|
{
|
|
spl_vmem_fini();
|
|
spl_kmem_fini();
|
|
}
|
|
|
|
static int __init
|
|
spl_init(void)
|
|
{
|
|
int rc = 0;
|
|
|
|
bzero(&p0, sizeof (proc_t));
|
|
spl_random_init();
|
|
|
|
if ((rc = spl_kvmem_init()))
|
|
goto out1;
|
|
|
|
if ((rc = spl_mutex_init()))
|
|
goto out2;
|
|
|
|
if ((rc = spl_rw_init()))
|
|
goto out3;
|
|
|
|
if ((rc = spl_tsd_init()))
|
|
goto out4;
|
|
|
|
if ((rc = spl_taskq_init()))
|
|
goto out5;
|
|
|
|
if ((rc = spl_kmem_cache_init()))
|
|
goto out6;
|
|
|
|
if ((rc = spl_vn_init()))
|
|
goto out7;
|
|
|
|
if ((rc = spl_proc_init()))
|
|
goto out8;
|
|
|
|
if ((rc = spl_kstat_init()))
|
|
goto out9;
|
|
|
|
if ((rc = spl_zlib_init()))
|
|
goto out10;
|
|
|
|
return (rc);
|
|
|
|
out10:
|
|
spl_kstat_fini();
|
|
out9:
|
|
spl_proc_fini();
|
|
out8:
|
|
spl_vn_fini();
|
|
out7:
|
|
spl_kmem_cache_fini();
|
|
out6:
|
|
spl_taskq_fini();
|
|
out5:
|
|
spl_tsd_fini();
|
|
out4:
|
|
spl_rw_fini();
|
|
out3:
|
|
spl_mutex_fini();
|
|
out2:
|
|
spl_kvmem_fini();
|
|
out1:
|
|
return (rc);
|
|
}
|
|
|
|
static void __exit
|
|
spl_fini(void)
|
|
{
|
|
spl_zlib_fini();
|
|
spl_kstat_fini();
|
|
spl_proc_fini();
|
|
spl_vn_fini();
|
|
spl_kmem_cache_fini();
|
|
spl_taskq_fini();
|
|
spl_tsd_fini();
|
|
spl_rw_fini();
|
|
spl_mutex_fini();
|
|
spl_kvmem_fini();
|
|
}
|
|
|
|
module_init(spl_init);
|
|
module_exit(spl_fini);
|
|
|
|
MODULE_DESCRIPTION("Solaris Porting Layer");
|
|
MODULE_AUTHOR(ZFS_META_AUTHOR);
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_VERSION(ZFS_META_VERSION "-" ZFS_META_RELEASE);
|