659 lines
15 KiB
C
659 lines
15 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright 2007 Sun Microsystems, Inc. All rights reserved.
|
|
* Use is subject to license terms.
|
|
*/
|
|
|
|
#include <sys/zfs_context.h>
|
|
#include <sys/spa.h>
|
|
#include <sys/vdev_disk.h>
|
|
#include <sys/vdev_impl.h>
|
|
#include <sys/fs/zfs.h>
|
|
#include <sys/zio.h>
|
|
#include <sys/sunldi.h>
|
|
|
|
/*
|
|
* Virtual device vector for disks.
|
|
*/
|
|
#if defined(_KERNEL) && defined(HAVE_SPL)
|
|
|
|
/* XXX: A slab entry for these would probably be good */
|
|
typedef struct dio_request {
|
|
struct completion dr_comp;
|
|
atomic_t dr_ref;
|
|
vdev_t *dr_vd;
|
|
zio_t *dr_zio;
|
|
int dr_rc;
|
|
} dio_request_t;
|
|
|
|
static int
|
|
vdev_disk_open_common(vdev_t *vd)
|
|
{
|
|
vdev_disk_t *dvd;
|
|
struct block_device *bdev;
|
|
int mode = 0;
|
|
|
|
// dprintf("vd=%p\n", vd);
|
|
|
|
/* Must have a pathname and it must be absolute. */
|
|
if (vd->vdev_path == NULL || vd->vdev_path[0] != '/') {
|
|
vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
|
|
return EINVAL;
|
|
}
|
|
|
|
dvd = kmem_zalloc(sizeof(vdev_disk_t), KM_SLEEP);
|
|
if (dvd == NULL)
|
|
return ENOMEM;
|
|
|
|
/* XXX: Since we do not have devid support like Solaris we
|
|
* currently can't be as clever about opening the right device.
|
|
* For now we will simple open the device name provided and
|
|
* fail when it doesn't exist. If your devices get reordered
|
|
* your going to be screwed, use udev for now to prevent this.
|
|
*
|
|
* XXX: mode here could be the global spa_mode with a little
|
|
* munging of the flags to make then more agreeable to linux.
|
|
* However, simply passing a 0 for now gets us W/R behavior.
|
|
*/
|
|
bdev = open_bdev_excl(vd->vdev_path, mode, dvd);
|
|
if (IS_ERR(bdev)) {
|
|
kmem_free(dvd, sizeof(vdev_disk_t));
|
|
return -PTR_ERR(bdev);
|
|
}
|
|
|
|
/* XXX: Long term validate stored dvd->vd_devid with
|
|
* a unique identifier read from the disk.
|
|
*/
|
|
|
|
dvd->vd_lh = bdev;
|
|
vd->vdev_tsd = dvd;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
vdev_disk_open(vdev_t *vd, uint64_t *psize, uint64_t *ashift)
|
|
{
|
|
vdev_disk_t *dvd;
|
|
struct block_device *bdev;
|
|
int rc;
|
|
|
|
// dprintf("vd=%p, psize=%p, ashift=%p\n", vd, psize, ashift);
|
|
dprintf("adding disk %s\n",
|
|
vd->vdev_path ? vd->vdev_path : "<none>");
|
|
|
|
rc = vdev_disk_open_common(vd);
|
|
if (rc)
|
|
return rc;
|
|
|
|
dvd = vd->vdev_tsd;
|
|
bdev = dvd->vd_lh;
|
|
|
|
/* Determine the actual size of the device (in bytes) */
|
|
*psize = get_capacity(bdev->bd_disk) * SECTOR_SIZE;
|
|
|
|
/* Check if this is a whole device and if it is try and
|
|
* enable the write cache, it is OK if this fails.
|
|
*
|
|
* XXX: This behavior should probably be configurable.
|
|
*/
|
|
if (bdev->bd_contains == bdev) {
|
|
int wce = 1;
|
|
|
|
vd->vdev_wholedisk = 1ULL;
|
|
|
|
/* Different methods are needed for an IDE vs SCSI disk.
|
|
* Since we're not sure what type of disk this is try IDE,
|
|
* if that fails try SCSI. */
|
|
rc = ioctl_by_bdev(bdev, HDIO_SET_WCACHE, (unsigned long)&wce);
|
|
if (rc)
|
|
dprintf("Unable to enable IDE WCE and SCSI WCE "
|
|
"not yet supported: %d\n", rc);
|
|
|
|
/* XXX: To implement the scsi WCE enable we are going to need
|
|
* to use the SG_IO ioctl. But that means fully forming the
|
|
* SCSI command as the ioctl arg. To get this right I need
|
|
* to look at the sdparm source which does this.
|
|
*/
|
|
rc = 0;
|
|
} else {
|
|
/* Must be a partition, that's fine. */
|
|
vd->vdev_wholedisk = 0;
|
|
}
|
|
|
|
/* Based on the minimum sector size set the block size */
|
|
*ashift = highbit(MAX(SECTOR_SIZE, SPA_MINBLOCKSIZE)) - 1;
|
|
|
|
/* Clear the nowritecache bit, causes vdev_reopen() to try again. */
|
|
vd->vdev_nowritecache = B_FALSE;
|
|
|
|
return rc;
|
|
}
|
|
|
|
static void
|
|
vdev_disk_close(vdev_t *vd)
|
|
{
|
|
vdev_disk_t *dvd = vd->vdev_tsd;
|
|
|
|
// dprintf("vd=%p\n", vd);
|
|
dprintf("removing disk %s\n",
|
|
vd->vdev_path ? vd->vdev_path : "<none>");
|
|
|
|
if (dvd == NULL)
|
|
return;
|
|
|
|
close_bdev_excl(dvd->vd_lh);
|
|
|
|
kmem_free(dvd, sizeof(vdev_disk_t));
|
|
vd->vdev_tsd = NULL;
|
|
}
|
|
|
|
#ifdef HAVE_2ARGS_BIO_END_IO_T
|
|
static void
|
|
vdev_disk_probe_io_completion(struct bio *bio, int rc)
|
|
#else
|
|
static int
|
|
vdev_disk_probe_io_completion(struct bio *bio, unsigned int size, int rc)
|
|
#endif /* HAVE_2ARGS_BIO_END_IO_T */
|
|
{
|
|
dio_request_t *dr = bio->bi_private;
|
|
zio_t *zio;
|
|
int error;
|
|
|
|
|
|
/* Fatal error but print some useful debugging before asserting */
|
|
if (dr == NULL) {
|
|
printk("FATAL: bio->bi_private == NULL\n"
|
|
"bi_next: %p, bi_flags: %lx, bi_rw: %lu, bi_vcnt: %d\n"
|
|
"bi_idx: %d, bi->size: %d, bi_end_io: %p, bi_cnt: %d\n",
|
|
bio->bi_next, bio->bi_flags, bio->bi_rw, bio->bi_vcnt,
|
|
bio->bi_idx, bio->bi_size, bio->bi_end_io,
|
|
atomic_read(&bio->bi_cnt));
|
|
SBUG();
|
|
}
|
|
|
|
/* Incomplete */
|
|
if (bio->bi_size) {
|
|
rc = 1;
|
|
goto out;
|
|
}
|
|
|
|
error = rc;
|
|
if (error == 0 && !test_bit(BIO_UPTODATE, &bio->bi_flags))
|
|
error = EIO;
|
|
|
|
zio = dr->dr_zio;
|
|
if (zio) {
|
|
zio->io_error = error;
|
|
zio_interrupt(zio);
|
|
}
|
|
|
|
dr->dr_rc = error;
|
|
atomic_dec(&dr->dr_ref);
|
|
|
|
if (bio_sync(bio)) {
|
|
complete(&dr->dr_comp);
|
|
} else {
|
|
kmem_free(dr, sizeof(dio_request_t));
|
|
bio_put(bio);
|
|
}
|
|
|
|
rc = 0;
|
|
out:
|
|
#ifdef HAVE_2ARGS_BIO_END_IO_T
|
|
return;
|
|
#else
|
|
return rc;
|
|
#endif /* HAVE_2ARGS_BIO_END_IO_T */
|
|
}
|
|
|
|
static struct bio *
|
|
__bio_map_vmem(struct request_queue *q, void *data,
|
|
unsigned int len, gfp_t gfp_mask)
|
|
{
|
|
unsigned long kaddr = (unsigned long)data;
|
|
unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
|
|
unsigned long start = kaddr >> PAGE_SHIFT;
|
|
const int nr_pages = end - start;
|
|
int offset, i;
|
|
struct page *page;
|
|
struct bio *bio;
|
|
|
|
bio = bio_alloc(gfp_mask, nr_pages);
|
|
if (!bio)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
offset = offset_in_page(kaddr);
|
|
for (i = 0; i < nr_pages; i++) {
|
|
unsigned int bytes = PAGE_SIZE - offset;
|
|
|
|
if (len <= 0)
|
|
break;
|
|
|
|
if (bytes > len)
|
|
bytes = len;
|
|
|
|
page = vmalloc_to_page(data);
|
|
ASSERT(page); /* Expecting virtual linear address */
|
|
|
|
if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
|
|
break;
|
|
|
|
data += bytes;
|
|
len -= bytes;
|
|
offset = 0;
|
|
bytes = PAGE_SIZE;
|
|
}
|
|
|
|
return bio;
|
|
}
|
|
|
|
static struct bio *
|
|
bio_map_vmem(struct request_queue *q, void *data,
|
|
unsigned int len, gfp_t gfp_mask)
|
|
{
|
|
struct bio *bio;
|
|
|
|
bio = __bio_map_vmem(q, data, len, gfp_mask);
|
|
if (IS_ERR(bio))
|
|
return bio;
|
|
|
|
if (bio->bi_size != len) {
|
|
bio_put(bio);
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
|
|
return bio;
|
|
}
|
|
|
|
static struct bio *
|
|
bio_map(struct request_queue *q, void *data, unsigned int len, gfp_t gfp_mask)
|
|
{
|
|
struct bio *bio;
|
|
|
|
/* Cleanly map buffer we are passed in to a bio regardless
|
|
* of if the buffer is a virtual or physical address. */
|
|
if (kmem_virt(data))
|
|
bio = bio_map_vmem(q, data, len, gfp_mask);
|
|
else
|
|
bio = bio_map_kern(q, data, len, gfp_mask);
|
|
|
|
return bio;
|
|
}
|
|
|
|
static int
|
|
vdev_disk_io(vdev_t *vd, zio_t *zio, caddr_t kbuf, size_t size,
|
|
uint64_t offset, int flags)
|
|
{
|
|
struct bio *bio;
|
|
dio_request_t *dr;
|
|
int rw, rc = 0;
|
|
struct block_device *bdev;
|
|
struct request_queue *q;
|
|
|
|
// dprintf("vd=%p, zio=%p, kbuf=%p, size=%ld, offset=%lu, flag=%lx\n",
|
|
// vd, zio, kbuf, size, offset, flags);
|
|
|
|
ASSERT((offset % SECTOR_SIZE) == 0); /* Sector aligned */
|
|
|
|
if (vd == NULL || vd->vdev_tsd == NULL)
|
|
return EINVAL;
|
|
|
|
dr = kmem_alloc(sizeof(dio_request_t), KM_SLEEP);
|
|
if (dr == NULL)
|
|
return ENOMEM;
|
|
|
|
atomic_set(&dr->dr_ref, 0);
|
|
dr->dr_vd = vd;
|
|
dr->dr_zio = zio;
|
|
dr->dr_rc = 0;
|
|
|
|
bdev = ((vdev_disk_t *)(vd->vdev_tsd))->vd_lh;
|
|
q = bdev->bd_disk->queue;
|
|
|
|
bio = bio_map(q, kbuf, size, GFP_NOIO);
|
|
if (IS_ERR(bio)) {
|
|
kmem_free(dr, sizeof(dio_request_t));
|
|
return -PTR_ERR(bio);
|
|
}
|
|
|
|
bio->bi_bdev = bdev;
|
|
bio->bi_sector = offset / SECTOR_SIZE;
|
|
bio->bi_end_io = vdev_disk_probe_io_completion;
|
|
bio->bi_private = dr;
|
|
|
|
init_completion(&dr->dr_comp);
|
|
atomic_inc(&dr->dr_ref);
|
|
|
|
if (flags & (1 << BIO_RW))
|
|
rw = (flags & (1 << BIO_RW_SYNC)) ? WRITE_SYNC : WRITE;
|
|
else
|
|
rw = READ;
|
|
|
|
if (flags & (1 << BIO_RW_FAILFAST))
|
|
rw |= 1 << BIO_RW_FAILFAST;
|
|
|
|
ASSERT3S(flags & ~((1 << BIO_RW) | (1 << BIO_RW_SYNC) |
|
|
(1 << BIO_RW_FAILFAST)), ==, 0);
|
|
|
|
submit_bio(rw, bio);
|
|
|
|
/*
|
|
* On syncronous blocking requests we wait for the completion
|
|
* callback to wake us. Then we are responsible for freeing
|
|
* the dio_request_t as well as dropping the final bio reference.
|
|
*/
|
|
if (bio_sync(bio)) {
|
|
wait_for_completion(&dr->dr_comp);
|
|
ASSERT(atomic_read(&dr->dr_ref) == 0);
|
|
rc = dr->dr_rc;
|
|
kmem_free(dr, sizeof(dio_request_t));
|
|
bio_put(bio);
|
|
}
|
|
|
|
if (zio_injection_enabled && rc == 0)
|
|
rc = zio_handle_device_injection(vd, EIO);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int
|
|
vdev_disk_probe_io(vdev_t *vd, caddr_t kbuf, size_t size,
|
|
uint64_t offset, int flags)
|
|
{
|
|
int rc;
|
|
|
|
// dprintf("vd=%p, kbuf=%p, size=%ld, offset=%lu, flag=%d\n",
|
|
// vd, kbuf, size, offset, flags);
|
|
|
|
flags |= (1 << BIO_RW_SYNC);
|
|
flags |= (1 << BIO_RW_FAILFAST);
|
|
|
|
/* XXX: offset must be block aligned or we need to take
|
|
* care of it */
|
|
|
|
rc = vdev_disk_io(vd, NULL, kbuf, size, offset, flags);
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* Determine if the underlying device is accessible by reading and writing
|
|
* to a known location. We must be able to do this during syncing context
|
|
* and thus we cannot set the vdev state directly.
|
|
*/
|
|
static int
|
|
vdev_disk_probe(vdev_t *vd)
|
|
{
|
|
vdev_t *nvd;
|
|
int label_idx, rc = 0, retries = 0;
|
|
uint64_t offset;
|
|
char *vl_pad;
|
|
|
|
// dprintf("vd=%p\n", vd);
|
|
|
|
if (vd == NULL)
|
|
return EINVAL;
|
|
|
|
/* Hijack the current vdev */
|
|
nvd = vd;
|
|
|
|
/* Pick a random label to rewrite */
|
|
label_idx = spa_get_random(VDEV_LABELS);
|
|
ASSERT(label_idx < VDEV_LABELS);
|
|
|
|
offset = vdev_label_offset(vd->vdev_psize, label_idx,
|
|
offsetof(vdev_label_t, vl_pad));
|
|
|
|
vl_pad = vmem_alloc(VDEV_SKIP_SIZE, KM_SLEEP);
|
|
if (vl_pad == NULL)
|
|
return ENOMEM;
|
|
|
|
/*
|
|
* Try to read and write to a special location on the
|
|
* label. We use the existing vdev initially and only
|
|
* try to create and reopen it if we encounter a failure.
|
|
*/
|
|
while ((rc = vdev_disk_probe_io(nvd, vl_pad,
|
|
VDEV_SKIP_SIZE, offset, READ)) != 0 && retries == 0) {
|
|
|
|
nvd = kmem_zalloc(sizeof(vdev_t), KM_SLEEP);
|
|
|
|
if (vd->vdev_path)
|
|
nvd->vdev_path = spa_strdup(vd->vdev_path);
|
|
if (vd->vdev_physpath)
|
|
nvd->vdev_physpath = spa_strdup(vd->vdev_physpath);
|
|
if (vd->vdev_devid)
|
|
nvd->vdev_devid = spa_strdup(vd->vdev_devid);
|
|
|
|
nvd->vdev_wholedisk = vd->vdev_wholedisk;
|
|
nvd->vdev_guid = vd->vdev_guid;
|
|
retries++;
|
|
|
|
rc = vdev_disk_open_common(nvd);
|
|
if (rc)
|
|
break;
|
|
}
|
|
|
|
if (!rc)
|
|
rc = vdev_disk_probe_io(nvd, vl_pad, VDEV_SKIP_SIZE,
|
|
offset, WRITE);
|
|
|
|
/* Clean up if we allocated a new vdev */
|
|
if (retries) {
|
|
vdev_disk_close(nvd);
|
|
if (nvd->vdev_path)
|
|
spa_strfree(nvd->vdev_path);
|
|
if (nvd->vdev_physpath)
|
|
spa_strfree(nvd->vdev_physpath);
|
|
if (nvd->vdev_devid)
|
|
spa_strfree(nvd->vdev_devid);
|
|
kmem_free(nvd, sizeof(vdev_t));
|
|
}
|
|
|
|
vmem_free(vl_pad, VDEV_SKIP_SIZE);
|
|
|
|
/* Reset the failing flag */
|
|
if (!rc)
|
|
vd->vdev_is_failing = B_FALSE;
|
|
|
|
return rc;
|
|
}
|
|
|
|
#if 0
|
|
static void
|
|
vdev_disk_ioctl_done(void *zio_arg, int rc)
|
|
{
|
|
zio_t *zio = zio_arg;
|
|
|
|
zio->io_error = rc;
|
|
|
|
zio_interrupt(zio);
|
|
}
|
|
#endif
|
|
|
|
static int
|
|
vdev_disk_io_start(zio_t *zio)
|
|
{
|
|
vdev_t *vd = zio->io_vd;
|
|
// vdev_disk_t *dvd = vd->vdev_tsd;
|
|
int flags, rc;
|
|
|
|
// dprintf("zio=%p\n", zio);
|
|
|
|
if (zio->io_type == ZIO_TYPE_IOCTL) {
|
|
zio_vdev_io_bypass(zio);
|
|
|
|
/* XXPOLICY */
|
|
if (!vdev_readable(vd)) {
|
|
zio->io_error = ENXIO;
|
|
return ZIO_PIPELINE_CONTINUE;
|
|
}
|
|
|
|
switch (zio->io_cmd) {
|
|
|
|
case DKIOCFLUSHWRITECACHE:
|
|
|
|
if (zfs_nocacheflush)
|
|
break;
|
|
|
|
if (vd->vdev_nowritecache) {
|
|
zio->io_error = ENOTSUP;
|
|
break;
|
|
}
|
|
|
|
#if 0
|
|
zio->io_dk_callback.dkc_callback = vdev_disk_ioctl_done;
|
|
zio->io_dk_callback.dkc_flag = FLUSH_VOLATILE;
|
|
zio->io_dk_callback.dkc_cookie = zio;
|
|
|
|
rc = ldi_ioctl(dvd->vd_lh, zio->io_cmd,
|
|
(uintptr_t)&zio->io_dk_callback,
|
|
FKIOCTL, kcred, NULL);
|
|
|
|
if (rc == 0) {
|
|
/*
|
|
* The ioctl will be done asychronously,
|
|
* and will call vdev_disk_ioctl_done()
|
|
* upon completion.
|
|
*/
|
|
return ZIO_PIPELINE_STOP;
|
|
}
|
|
#else
|
|
rc = ENOTSUP;
|
|
#endif
|
|
|
|
if (rc == ENOTSUP || rc == ENOTTY) {
|
|
/*
|
|
* If we get ENOTSUP or ENOTTY, we know that
|
|
* no future attempts will ever succeed.
|
|
* In this case we set a persistent bit so
|
|
* that we don't bother with the ioctl in the
|
|
* future.
|
|
*/
|
|
vd->vdev_nowritecache = B_TRUE;
|
|
}
|
|
zio->io_error = rc;
|
|
|
|
break;
|
|
|
|
default:
|
|
zio->io_error = ENOTSUP;
|
|
}
|
|
|
|
return ZIO_PIPELINE_CONTINUE;
|
|
}
|
|
|
|
if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio) == 0)
|
|
return ZIO_PIPELINE_STOP;
|
|
|
|
if ((zio = vdev_queue_io(zio)) == NULL)
|
|
return ZIO_PIPELINE_STOP;
|
|
|
|
if (zio->io_type == ZIO_TYPE_WRITE)
|
|
rc = vdev_writeable(vd) ? vdev_error_inject(vd, zio) : ENXIO;
|
|
else
|
|
rc = vdev_readable(vd) ? vdev_error_inject(vd, zio) : ENXIO;
|
|
|
|
rc = (vd->vdev_remove_wanted || vd->vdev_is_failing) ? ENXIO : rc;
|
|
|
|
if (rc) {
|
|
zio->io_error = rc;
|
|
zio_interrupt(zio);
|
|
return ZIO_PIPELINE_STOP;
|
|
}
|
|
|
|
flags = ((zio->io_type == ZIO_TYPE_READ) ? READ : WRITE);
|
|
/* flags |= B_BUSY | B_NOCACHE; XXX : Not supported */
|
|
|
|
if (zio->io_flags & ZIO_FLAG_FAILFAST)
|
|
flags |= (1 << BIO_RW_FAILFAST);
|
|
|
|
|
|
vdev_disk_io(vd, zio, zio->io_data, zio->io_size,
|
|
zio->io_offset, flags);
|
|
|
|
return ZIO_PIPELINE_STOP;
|
|
}
|
|
|
|
static int
|
|
vdev_disk_io_done(zio_t *zio)
|
|
{
|
|
// dprintf("zio=%p\n", zio);
|
|
|
|
vdev_queue_io_done(zio);
|
|
|
|
if (zio->io_type == ZIO_TYPE_WRITE)
|
|
vdev_cache_write(zio);
|
|
|
|
if (zio_injection_enabled && zio->io_error == 0)
|
|
zio->io_error = zio_handle_device_injection(zio->io_vd, EIO);
|
|
|
|
/*
|
|
* If the device returned EIO, then attempt a DKIOCSTATE ioctl to see if
|
|
* the device has been removed. If this is the case, then we trigger an
|
|
* asynchronous removal of the device. Otherwise, probe the device and
|
|
* make sure it's still accessible.
|
|
*/
|
|
if (zio->io_error == EIO) {
|
|
ASSERT(0); /* XXX: Not yet supported */
|
|
#if 0
|
|
vdev_t *vd = zio->io_vd;
|
|
vdev_disk_t *dvd = vd->vdev_tsd;
|
|
int state;
|
|
|
|
state = DKIO_NONE;
|
|
if (dvd && ldi_ioctl(dvd->vd_lh, DKIOCSTATE, (intptr_t)&state,
|
|
FKIOCTL, kcred, NULL) == 0 &&
|
|
state != DKIO_INSERTED) {
|
|
vd->vdev_remove_wanted = B_TRUE;
|
|
spa_async_request(zio->io_spa, SPA_ASYNC_REMOVE);
|
|
} else if (vdev_probe(vd) != 0) {
|
|
ASSERT(vd->vdev_ops->vdev_op_leaf);
|
|
vd->vdev_is_failing = B_TRUE;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
return ZIO_PIPELINE_CONTINUE;
|
|
}
|
|
|
|
nvlist_t *
|
|
vdev_disk_read_rootlabel(char *devpath)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
vdev_ops_t vdev_disk_ops = {
|
|
vdev_disk_open,
|
|
vdev_disk_close,
|
|
vdev_disk_probe,
|
|
vdev_default_asize,
|
|
vdev_disk_io_start,
|
|
vdev_disk_io_done,
|
|
NULL,
|
|
VDEV_TYPE_DISK, /* name of this vdev type */
|
|
B_TRUE /* leaf vdev */
|
|
};
|
|
|
|
#endif /* defined(_KERNEL) && defined(HAVE_SPL) */
|