1042 lines
29 KiB
C
1042 lines
29 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
|
|
* Copyright (c) 2012, 2019 by Delphix. All rights reserved.
|
|
* Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
|
|
*/
|
|
|
|
#include <sys/dmu.h>
|
|
#include <sys/zap.h>
|
|
#include <sys/zfs_context.h>
|
|
#include <sys/dsl_pool.h>
|
|
#include <sys/dsl_dataset.h>
|
|
|
|
/*
|
|
* Deadlist concurrency:
|
|
*
|
|
* Deadlists can only be modified from the syncing thread.
|
|
*
|
|
* Except for dsl_deadlist_insert(), it can only be modified with the
|
|
* dp_config_rwlock held with RW_WRITER.
|
|
*
|
|
* The accessors (dsl_deadlist_space() and dsl_deadlist_space_range()) can
|
|
* be called concurrently, from open context, with the dl_config_rwlock held
|
|
* with RW_READER.
|
|
*
|
|
* Therefore, we only need to provide locking between dsl_deadlist_insert() and
|
|
* the accessors, protecting:
|
|
* dl_phys->dl_used,comp,uncomp
|
|
* and protecting the dl_tree from being loaded.
|
|
* The locking is provided by dl_lock. Note that locking on the bpobj_t
|
|
* provides its own locking, and dl_oldfmt is immutable.
|
|
*/
|
|
|
|
/*
|
|
* Livelist Overview
|
|
* ================
|
|
*
|
|
* Livelists use the same 'deadlist_t' struct as deadlists and are also used
|
|
* to track blkptrs over the lifetime of a dataset. Livelists however, belong
|
|
* to clones and track the blkptrs that are clone-specific (were born after
|
|
* the clone's creation). The exception is embedded block pointers which are
|
|
* not included in livelists because they do not need to be freed.
|
|
*
|
|
* When it comes time to delete the clone, the livelist provides a quick
|
|
* reference as to what needs to be freed. For this reason, livelists also track
|
|
* when clone-specific blkptrs are freed before deletion to prevent double
|
|
* frees. Each blkptr in a livelist is marked as a FREE or an ALLOC and the
|
|
* deletion algorithm iterates backwards over the livelist, matching
|
|
* FREE/ALLOC pairs and then freeing those ALLOCs which remain. livelists
|
|
* are also updated in the case when blkptrs are remapped: the old version
|
|
* of the blkptr is cancelled out with a FREE and the new version is tracked
|
|
* with an ALLOC.
|
|
*
|
|
* To bound the amount of memory required for deletion, livelists over a
|
|
* certain size are spread over multiple entries. Entries are grouped by
|
|
* birth txg so we can be sure the ALLOC/FREE pair for a given blkptr will
|
|
* be in the same entry. This allows us to delete livelists incrementally
|
|
* over multiple syncs, one entry at a time.
|
|
*
|
|
* During the lifetime of the clone, livelists can get extremely large.
|
|
* Their size is managed by periodic condensing (preemptively cancelling out
|
|
* FREE/ALLOC pairs). Livelists are disabled when a clone is promoted or when
|
|
* the shared space between the clone and its origin is so small that it
|
|
* doesn't make sense to use livelists anymore.
|
|
*/
|
|
|
|
/*
|
|
* The threshold sublist size at which we create a new sub-livelist for the
|
|
* next txg. However, since blkptrs of the same transaction group must be in
|
|
* the same sub-list, the actual sublist size may exceed this. When picking the
|
|
* size we had to balance the fact that larger sublists mean fewer sublists
|
|
* (decreasing the cost of insertion) against the consideration that sublists
|
|
* will be loaded into memory and shouldn't take up an inordinate amount of
|
|
* space. We settled on ~500000 entries, corresponding to roughly 128M.
|
|
*/
|
|
unsigned long zfs_livelist_max_entries = 500000;
|
|
|
|
/*
|
|
* We can approximate how much of a performance gain a livelist will give us
|
|
* based on the percentage of blocks shared between the clone and its origin.
|
|
* 0 percent shared means that the clone has completely diverged and that the
|
|
* old method is maximally effective: every read from the block tree will
|
|
* result in lots of frees. Livelists give us gains when they track blocks
|
|
* scattered across the tree, when one read in the old method might only
|
|
* result in a few frees. Once the clone has been overwritten enough,
|
|
* writes are no longer sparse and we'll no longer get much of a benefit from
|
|
* tracking them with a livelist. We chose a lower limit of 75 percent shared
|
|
* (25 percent overwritten). This means that 1/4 of all block pointers will be
|
|
* freed (e.g. each read frees 256, out of a max of 1024) so we expect livelists
|
|
* to make deletion 4x faster. Once the amount of shared space drops below this
|
|
* threshold, the clone will revert to the old deletion method.
|
|
*/
|
|
int zfs_livelist_min_percent_shared = 75;
|
|
|
|
static int
|
|
dsl_deadlist_compare(const void *arg1, const void *arg2)
|
|
{
|
|
const dsl_deadlist_entry_t *dle1 = arg1;
|
|
const dsl_deadlist_entry_t *dle2 = arg2;
|
|
|
|
return (TREE_CMP(dle1->dle_mintxg, dle2->dle_mintxg));
|
|
}
|
|
|
|
static int
|
|
dsl_deadlist_cache_compare(const void *arg1, const void *arg2)
|
|
{
|
|
const dsl_deadlist_cache_entry_t *dlce1 = arg1;
|
|
const dsl_deadlist_cache_entry_t *dlce2 = arg2;
|
|
|
|
return (TREE_CMP(dlce1->dlce_mintxg, dlce2->dlce_mintxg));
|
|
}
|
|
|
|
static void
|
|
dsl_deadlist_load_tree(dsl_deadlist_t *dl)
|
|
{
|
|
zap_cursor_t zc;
|
|
zap_attribute_t za;
|
|
int error;
|
|
|
|
ASSERT(MUTEX_HELD(&dl->dl_lock));
|
|
|
|
ASSERT(!dl->dl_oldfmt);
|
|
if (dl->dl_havecache) {
|
|
/*
|
|
* After loading the tree, the caller may modify the tree,
|
|
* e.g. to add or remove nodes, or to make a node no longer
|
|
* refer to the empty_bpobj. These changes would make the
|
|
* dl_cache incorrect. Therefore we discard the cache here,
|
|
* so that it can't become incorrect.
|
|
*/
|
|
dsl_deadlist_cache_entry_t *dlce;
|
|
void *cookie = NULL;
|
|
while ((dlce = avl_destroy_nodes(&dl->dl_cache, &cookie))
|
|
!= NULL) {
|
|
kmem_free(dlce, sizeof (*dlce));
|
|
}
|
|
avl_destroy(&dl->dl_cache);
|
|
dl->dl_havecache = B_FALSE;
|
|
}
|
|
if (dl->dl_havetree)
|
|
return;
|
|
|
|
avl_create(&dl->dl_tree, dsl_deadlist_compare,
|
|
sizeof (dsl_deadlist_entry_t),
|
|
offsetof(dsl_deadlist_entry_t, dle_node));
|
|
for (zap_cursor_init(&zc, dl->dl_os, dl->dl_object);
|
|
(error = zap_cursor_retrieve(&zc, &za)) == 0;
|
|
zap_cursor_advance(&zc)) {
|
|
dsl_deadlist_entry_t *dle = kmem_alloc(sizeof (*dle), KM_SLEEP);
|
|
dle->dle_mintxg = zfs_strtonum(za.za_name, NULL);
|
|
|
|
/*
|
|
* Prefetch all the bpobj's so that we do that i/o
|
|
* in parallel. Then open them all in a second pass.
|
|
*/
|
|
dle->dle_bpobj.bpo_object = za.za_first_integer;
|
|
dmu_prefetch(dl->dl_os, dle->dle_bpobj.bpo_object,
|
|
0, 0, 0, ZIO_PRIORITY_SYNC_READ);
|
|
|
|
avl_add(&dl->dl_tree, dle);
|
|
}
|
|
VERIFY3U(error, ==, ENOENT);
|
|
zap_cursor_fini(&zc);
|
|
|
|
for (dsl_deadlist_entry_t *dle = avl_first(&dl->dl_tree);
|
|
dle != NULL; dle = AVL_NEXT(&dl->dl_tree, dle)) {
|
|
VERIFY0(bpobj_open(&dle->dle_bpobj, dl->dl_os,
|
|
dle->dle_bpobj.bpo_object));
|
|
}
|
|
dl->dl_havetree = B_TRUE;
|
|
}
|
|
|
|
/*
|
|
* Load only the non-empty bpobj's into the dl_cache. The cache is an analog
|
|
* of the dl_tree, but contains only non-empty_bpobj nodes from the ZAP. It
|
|
* is used only for gathering space statistics. The dl_cache has two
|
|
* advantages over the dl_tree:
|
|
*
|
|
* 1. Loading the dl_cache is ~5x faster than loading the dl_tree (if it's
|
|
* mostly empty_bpobj's), due to less CPU overhead to open the empty_bpobj
|
|
* many times and to inquire about its (zero) space stats many times.
|
|
*
|
|
* 2. The dl_cache uses less memory than the dl_tree. We only need to load
|
|
* the dl_tree of snapshots when deleting a snapshot, after which we free the
|
|
* dl_tree with dsl_deadlist_discard_tree
|
|
*/
|
|
static void
|
|
dsl_deadlist_load_cache(dsl_deadlist_t *dl)
|
|
{
|
|
zap_cursor_t zc;
|
|
zap_attribute_t za;
|
|
int error;
|
|
|
|
ASSERT(MUTEX_HELD(&dl->dl_lock));
|
|
|
|
ASSERT(!dl->dl_oldfmt);
|
|
if (dl->dl_havecache)
|
|
return;
|
|
|
|
uint64_t empty_bpobj = dmu_objset_pool(dl->dl_os)->dp_empty_bpobj;
|
|
|
|
avl_create(&dl->dl_cache, dsl_deadlist_cache_compare,
|
|
sizeof (dsl_deadlist_cache_entry_t),
|
|
offsetof(dsl_deadlist_cache_entry_t, dlce_node));
|
|
for (zap_cursor_init(&zc, dl->dl_os, dl->dl_object);
|
|
(error = zap_cursor_retrieve(&zc, &za)) == 0;
|
|
zap_cursor_advance(&zc)) {
|
|
if (za.za_first_integer == empty_bpobj)
|
|
continue;
|
|
dsl_deadlist_cache_entry_t *dlce =
|
|
kmem_zalloc(sizeof (*dlce), KM_SLEEP);
|
|
dlce->dlce_mintxg = zfs_strtonum(za.za_name, NULL);
|
|
|
|
/*
|
|
* Prefetch all the bpobj's so that we do that i/o
|
|
* in parallel. Then open them all in a second pass.
|
|
*/
|
|
dlce->dlce_bpobj = za.za_first_integer;
|
|
dmu_prefetch(dl->dl_os, dlce->dlce_bpobj,
|
|
0, 0, 0, ZIO_PRIORITY_SYNC_READ);
|
|
avl_add(&dl->dl_cache, dlce);
|
|
}
|
|
VERIFY3U(error, ==, ENOENT);
|
|
zap_cursor_fini(&zc);
|
|
|
|
for (dsl_deadlist_cache_entry_t *dlce = avl_first(&dl->dl_cache);
|
|
dlce != NULL; dlce = AVL_NEXT(&dl->dl_cache, dlce)) {
|
|
bpobj_t bpo;
|
|
VERIFY0(bpobj_open(&bpo, dl->dl_os, dlce->dlce_bpobj));
|
|
|
|
VERIFY0(bpobj_space(&bpo,
|
|
&dlce->dlce_bytes, &dlce->dlce_comp, &dlce->dlce_uncomp));
|
|
bpobj_close(&bpo);
|
|
}
|
|
dl->dl_havecache = B_TRUE;
|
|
}
|
|
|
|
/*
|
|
* Discard the tree to save memory.
|
|
*/
|
|
void
|
|
dsl_deadlist_discard_tree(dsl_deadlist_t *dl)
|
|
{
|
|
mutex_enter(&dl->dl_lock);
|
|
|
|
if (!dl->dl_havetree) {
|
|
mutex_exit(&dl->dl_lock);
|
|
return;
|
|
}
|
|
dsl_deadlist_entry_t *dle;
|
|
void *cookie = NULL;
|
|
while ((dle = avl_destroy_nodes(&dl->dl_tree, &cookie)) != NULL) {
|
|
bpobj_close(&dle->dle_bpobj);
|
|
kmem_free(dle, sizeof (*dle));
|
|
}
|
|
avl_destroy(&dl->dl_tree);
|
|
|
|
dl->dl_havetree = B_FALSE;
|
|
mutex_exit(&dl->dl_lock);
|
|
}
|
|
|
|
void
|
|
dsl_deadlist_iterate(dsl_deadlist_t *dl, deadlist_iter_t func, void *args)
|
|
{
|
|
dsl_deadlist_entry_t *dle;
|
|
|
|
ASSERT(dsl_deadlist_is_open(dl));
|
|
|
|
mutex_enter(&dl->dl_lock);
|
|
dsl_deadlist_load_tree(dl);
|
|
mutex_exit(&dl->dl_lock);
|
|
for (dle = avl_first(&dl->dl_tree); dle != NULL;
|
|
dle = AVL_NEXT(&dl->dl_tree, dle)) {
|
|
if (func(args, dle) != 0)
|
|
break;
|
|
}
|
|
}
|
|
|
|
void
|
|
dsl_deadlist_open(dsl_deadlist_t *dl, objset_t *os, uint64_t object)
|
|
{
|
|
dmu_object_info_t doi;
|
|
|
|
ASSERT(!dsl_deadlist_is_open(dl));
|
|
|
|
mutex_init(&dl->dl_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
dl->dl_os = os;
|
|
dl->dl_object = object;
|
|
VERIFY0(dmu_bonus_hold(os, object, dl, &dl->dl_dbuf));
|
|
dmu_object_info_from_db(dl->dl_dbuf, &doi);
|
|
if (doi.doi_type == DMU_OT_BPOBJ) {
|
|
dmu_buf_rele(dl->dl_dbuf, dl);
|
|
dl->dl_dbuf = NULL;
|
|
dl->dl_oldfmt = B_TRUE;
|
|
VERIFY0(bpobj_open(&dl->dl_bpobj, os, object));
|
|
return;
|
|
}
|
|
|
|
dl->dl_oldfmt = B_FALSE;
|
|
dl->dl_phys = dl->dl_dbuf->db_data;
|
|
dl->dl_havetree = B_FALSE;
|
|
dl->dl_havecache = B_FALSE;
|
|
}
|
|
|
|
boolean_t
|
|
dsl_deadlist_is_open(dsl_deadlist_t *dl)
|
|
{
|
|
return (dl->dl_os != NULL);
|
|
}
|
|
|
|
void
|
|
dsl_deadlist_close(dsl_deadlist_t *dl)
|
|
{
|
|
ASSERT(dsl_deadlist_is_open(dl));
|
|
mutex_destroy(&dl->dl_lock);
|
|
|
|
if (dl->dl_oldfmt) {
|
|
dl->dl_oldfmt = B_FALSE;
|
|
bpobj_close(&dl->dl_bpobj);
|
|
dl->dl_os = NULL;
|
|
dl->dl_object = 0;
|
|
return;
|
|
}
|
|
|
|
if (dl->dl_havetree) {
|
|
dsl_deadlist_entry_t *dle;
|
|
void *cookie = NULL;
|
|
while ((dle = avl_destroy_nodes(&dl->dl_tree, &cookie))
|
|
!= NULL) {
|
|
bpobj_close(&dle->dle_bpobj);
|
|
kmem_free(dle, sizeof (*dle));
|
|
}
|
|
avl_destroy(&dl->dl_tree);
|
|
}
|
|
if (dl->dl_havecache) {
|
|
dsl_deadlist_cache_entry_t *dlce;
|
|
void *cookie = NULL;
|
|
while ((dlce = avl_destroy_nodes(&dl->dl_cache, &cookie))
|
|
!= NULL) {
|
|
kmem_free(dlce, sizeof (*dlce));
|
|
}
|
|
avl_destroy(&dl->dl_cache);
|
|
}
|
|
dmu_buf_rele(dl->dl_dbuf, dl);
|
|
dl->dl_dbuf = NULL;
|
|
dl->dl_phys = NULL;
|
|
dl->dl_os = NULL;
|
|
dl->dl_object = 0;
|
|
}
|
|
|
|
uint64_t
|
|
dsl_deadlist_alloc(objset_t *os, dmu_tx_t *tx)
|
|
{
|
|
if (spa_version(dmu_objset_spa(os)) < SPA_VERSION_DEADLISTS)
|
|
return (bpobj_alloc(os, SPA_OLD_MAXBLOCKSIZE, tx));
|
|
return (zap_create(os, DMU_OT_DEADLIST, DMU_OT_DEADLIST_HDR,
|
|
sizeof (dsl_deadlist_phys_t), tx));
|
|
}
|
|
|
|
void
|
|
dsl_deadlist_free(objset_t *os, uint64_t dlobj, dmu_tx_t *tx)
|
|
{
|
|
dmu_object_info_t doi;
|
|
zap_cursor_t zc;
|
|
zap_attribute_t za;
|
|
int error;
|
|
|
|
VERIFY0(dmu_object_info(os, dlobj, &doi));
|
|
if (doi.doi_type == DMU_OT_BPOBJ) {
|
|
bpobj_free(os, dlobj, tx);
|
|
return;
|
|
}
|
|
|
|
for (zap_cursor_init(&zc, os, dlobj);
|
|
(error = zap_cursor_retrieve(&zc, &za)) == 0;
|
|
zap_cursor_advance(&zc)) {
|
|
uint64_t obj = za.za_first_integer;
|
|
if (obj == dmu_objset_pool(os)->dp_empty_bpobj)
|
|
bpobj_decr_empty(os, tx);
|
|
else
|
|
bpobj_free(os, obj, tx);
|
|
}
|
|
VERIFY3U(error, ==, ENOENT);
|
|
zap_cursor_fini(&zc);
|
|
VERIFY0(dmu_object_free(os, dlobj, tx));
|
|
}
|
|
|
|
static void
|
|
dle_enqueue(dsl_deadlist_t *dl, dsl_deadlist_entry_t *dle,
|
|
const blkptr_t *bp, boolean_t bp_freed, dmu_tx_t *tx)
|
|
{
|
|
ASSERT(MUTEX_HELD(&dl->dl_lock));
|
|
if (dle->dle_bpobj.bpo_object ==
|
|
dmu_objset_pool(dl->dl_os)->dp_empty_bpobj) {
|
|
uint64_t obj = bpobj_alloc(dl->dl_os, SPA_OLD_MAXBLOCKSIZE, tx);
|
|
bpobj_close(&dle->dle_bpobj);
|
|
bpobj_decr_empty(dl->dl_os, tx);
|
|
VERIFY0(bpobj_open(&dle->dle_bpobj, dl->dl_os, obj));
|
|
VERIFY0(zap_update_int_key(dl->dl_os, dl->dl_object,
|
|
dle->dle_mintxg, obj, tx));
|
|
}
|
|
bpobj_enqueue(&dle->dle_bpobj, bp, bp_freed, tx);
|
|
}
|
|
|
|
static void
|
|
dle_enqueue_subobj(dsl_deadlist_t *dl, dsl_deadlist_entry_t *dle,
|
|
uint64_t obj, dmu_tx_t *tx)
|
|
{
|
|
ASSERT(MUTEX_HELD(&dl->dl_lock));
|
|
if (dle->dle_bpobj.bpo_object !=
|
|
dmu_objset_pool(dl->dl_os)->dp_empty_bpobj) {
|
|
bpobj_enqueue_subobj(&dle->dle_bpobj, obj, tx);
|
|
} else {
|
|
bpobj_close(&dle->dle_bpobj);
|
|
bpobj_decr_empty(dl->dl_os, tx);
|
|
VERIFY0(bpobj_open(&dle->dle_bpobj, dl->dl_os, obj));
|
|
VERIFY0(zap_update_int_key(dl->dl_os, dl->dl_object,
|
|
dle->dle_mintxg, obj, tx));
|
|
}
|
|
}
|
|
|
|
void
|
|
dsl_deadlist_insert(dsl_deadlist_t *dl, const blkptr_t *bp, boolean_t bp_freed,
|
|
dmu_tx_t *tx)
|
|
{
|
|
dsl_deadlist_entry_t dle_tofind;
|
|
dsl_deadlist_entry_t *dle;
|
|
avl_index_t where;
|
|
|
|
if (dl->dl_oldfmt) {
|
|
bpobj_enqueue(&dl->dl_bpobj, bp, bp_freed, tx);
|
|
return;
|
|
}
|
|
|
|
mutex_enter(&dl->dl_lock);
|
|
dsl_deadlist_load_tree(dl);
|
|
|
|
dmu_buf_will_dirty(dl->dl_dbuf, tx);
|
|
|
|
int sign = bp_freed ? -1 : +1;
|
|
dl->dl_phys->dl_used +=
|
|
sign * bp_get_dsize_sync(dmu_objset_spa(dl->dl_os), bp);
|
|
dl->dl_phys->dl_comp += sign * BP_GET_PSIZE(bp);
|
|
dl->dl_phys->dl_uncomp += sign * BP_GET_UCSIZE(bp);
|
|
|
|
dle_tofind.dle_mintxg = bp->blk_birth;
|
|
dle = avl_find(&dl->dl_tree, &dle_tofind, &where);
|
|
if (dle == NULL)
|
|
dle = avl_nearest(&dl->dl_tree, where, AVL_BEFORE);
|
|
else
|
|
dle = AVL_PREV(&dl->dl_tree, dle);
|
|
|
|
if (dle == NULL) {
|
|
zfs_panic_recover("blkptr at %p has invalid BLK_BIRTH %llu",
|
|
bp, (longlong_t)bp->blk_birth);
|
|
dle = avl_first(&dl->dl_tree);
|
|
}
|
|
|
|
ASSERT3P(dle, !=, NULL);
|
|
dle_enqueue(dl, dle, bp, bp_freed, tx);
|
|
mutex_exit(&dl->dl_lock);
|
|
}
|
|
|
|
int
|
|
dsl_deadlist_insert_alloc_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
|
|
{
|
|
dsl_deadlist_t *dl = arg;
|
|
dsl_deadlist_insert(dl, bp, B_FALSE, tx);
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
dsl_deadlist_insert_free_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
|
|
{
|
|
dsl_deadlist_t *dl = arg;
|
|
dsl_deadlist_insert(dl, bp, B_TRUE, tx);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Insert new key in deadlist, which must be > all current entries.
|
|
* mintxg is not inclusive.
|
|
*/
|
|
void
|
|
dsl_deadlist_add_key(dsl_deadlist_t *dl, uint64_t mintxg, dmu_tx_t *tx)
|
|
{
|
|
uint64_t obj;
|
|
dsl_deadlist_entry_t *dle;
|
|
|
|
if (dl->dl_oldfmt)
|
|
return;
|
|
|
|
dle = kmem_alloc(sizeof (*dle), KM_SLEEP);
|
|
dle->dle_mintxg = mintxg;
|
|
|
|
mutex_enter(&dl->dl_lock);
|
|
dsl_deadlist_load_tree(dl);
|
|
|
|
obj = bpobj_alloc_empty(dl->dl_os, SPA_OLD_MAXBLOCKSIZE, tx);
|
|
VERIFY0(bpobj_open(&dle->dle_bpobj, dl->dl_os, obj));
|
|
avl_add(&dl->dl_tree, dle);
|
|
|
|
VERIFY0(zap_add_int_key(dl->dl_os, dl->dl_object,
|
|
mintxg, obj, tx));
|
|
mutex_exit(&dl->dl_lock);
|
|
}
|
|
|
|
/*
|
|
* Remove this key, merging its entries into the previous key.
|
|
*/
|
|
void
|
|
dsl_deadlist_remove_key(dsl_deadlist_t *dl, uint64_t mintxg, dmu_tx_t *tx)
|
|
{
|
|
dsl_deadlist_entry_t dle_tofind;
|
|
dsl_deadlist_entry_t *dle, *dle_prev;
|
|
|
|
if (dl->dl_oldfmt)
|
|
return;
|
|
mutex_enter(&dl->dl_lock);
|
|
dsl_deadlist_load_tree(dl);
|
|
|
|
dle_tofind.dle_mintxg = mintxg;
|
|
dle = avl_find(&dl->dl_tree, &dle_tofind, NULL);
|
|
ASSERT3P(dle, !=, NULL);
|
|
dle_prev = AVL_PREV(&dl->dl_tree, dle);
|
|
|
|
dle_enqueue_subobj(dl, dle_prev, dle->dle_bpobj.bpo_object, tx);
|
|
|
|
avl_remove(&dl->dl_tree, dle);
|
|
bpobj_close(&dle->dle_bpobj);
|
|
kmem_free(dle, sizeof (*dle));
|
|
|
|
VERIFY0(zap_remove_int(dl->dl_os, dl->dl_object, mintxg, tx));
|
|
mutex_exit(&dl->dl_lock);
|
|
}
|
|
|
|
/*
|
|
* Remove a deadlist entry and all of its contents by removing the entry from
|
|
* the deadlist's avl tree, freeing the entry's bpobj and adjusting the
|
|
* deadlist's space accounting accordingly.
|
|
*/
|
|
void
|
|
dsl_deadlist_remove_entry(dsl_deadlist_t *dl, uint64_t mintxg, dmu_tx_t *tx)
|
|
{
|
|
uint64_t used, comp, uncomp;
|
|
dsl_deadlist_entry_t dle_tofind;
|
|
dsl_deadlist_entry_t *dle;
|
|
objset_t *os = dl->dl_os;
|
|
|
|
if (dl->dl_oldfmt)
|
|
return;
|
|
|
|
mutex_enter(&dl->dl_lock);
|
|
dsl_deadlist_load_tree(dl);
|
|
|
|
dle_tofind.dle_mintxg = mintxg;
|
|
dle = avl_find(&dl->dl_tree, &dle_tofind, NULL);
|
|
VERIFY3P(dle, !=, NULL);
|
|
|
|
avl_remove(&dl->dl_tree, dle);
|
|
VERIFY0(zap_remove_int(os, dl->dl_object, mintxg, tx));
|
|
VERIFY0(bpobj_space(&dle->dle_bpobj, &used, &comp, &uncomp));
|
|
dmu_buf_will_dirty(dl->dl_dbuf, tx);
|
|
dl->dl_phys->dl_used -= used;
|
|
dl->dl_phys->dl_comp -= comp;
|
|
dl->dl_phys->dl_uncomp -= uncomp;
|
|
if (dle->dle_bpobj.bpo_object == dmu_objset_pool(os)->dp_empty_bpobj) {
|
|
bpobj_decr_empty(os, tx);
|
|
} else {
|
|
bpobj_free(os, dle->dle_bpobj.bpo_object, tx);
|
|
}
|
|
bpobj_close(&dle->dle_bpobj);
|
|
kmem_free(dle, sizeof (*dle));
|
|
mutex_exit(&dl->dl_lock);
|
|
}
|
|
|
|
/*
|
|
* Clear out the contents of a deadlist_entry by freeing its bpobj,
|
|
* replacing it with an empty bpobj and adjusting the deadlist's
|
|
* space accounting
|
|
*/
|
|
void
|
|
dsl_deadlist_clear_entry(dsl_deadlist_entry_t *dle, dsl_deadlist_t *dl,
|
|
dmu_tx_t *tx)
|
|
{
|
|
uint64_t new_obj, used, comp, uncomp;
|
|
objset_t *os = dl->dl_os;
|
|
|
|
mutex_enter(&dl->dl_lock);
|
|
VERIFY0(zap_remove_int(os, dl->dl_object, dle->dle_mintxg, tx));
|
|
VERIFY0(bpobj_space(&dle->dle_bpobj, &used, &comp, &uncomp));
|
|
dmu_buf_will_dirty(dl->dl_dbuf, tx);
|
|
dl->dl_phys->dl_used -= used;
|
|
dl->dl_phys->dl_comp -= comp;
|
|
dl->dl_phys->dl_uncomp -= uncomp;
|
|
if (dle->dle_bpobj.bpo_object == dmu_objset_pool(os)->dp_empty_bpobj)
|
|
bpobj_decr_empty(os, tx);
|
|
else
|
|
bpobj_free(os, dle->dle_bpobj.bpo_object, tx);
|
|
bpobj_close(&dle->dle_bpobj);
|
|
new_obj = bpobj_alloc_empty(os, SPA_OLD_MAXBLOCKSIZE, tx);
|
|
VERIFY0(bpobj_open(&dle->dle_bpobj, os, new_obj));
|
|
VERIFY0(zap_add_int_key(os, dl->dl_object, dle->dle_mintxg,
|
|
new_obj, tx));
|
|
ASSERT(bpobj_is_empty(&dle->dle_bpobj));
|
|
mutex_exit(&dl->dl_lock);
|
|
}
|
|
|
|
/*
|
|
* Return the first entry in deadlist's avl tree
|
|
*/
|
|
dsl_deadlist_entry_t *
|
|
dsl_deadlist_first(dsl_deadlist_t *dl)
|
|
{
|
|
dsl_deadlist_entry_t *dle;
|
|
|
|
mutex_enter(&dl->dl_lock);
|
|
dsl_deadlist_load_tree(dl);
|
|
dle = avl_first(&dl->dl_tree);
|
|
mutex_exit(&dl->dl_lock);
|
|
|
|
return (dle);
|
|
}
|
|
|
|
/*
|
|
* Return the last entry in deadlist's avl tree
|
|
*/
|
|
dsl_deadlist_entry_t *
|
|
dsl_deadlist_last(dsl_deadlist_t *dl)
|
|
{
|
|
dsl_deadlist_entry_t *dle;
|
|
|
|
mutex_enter(&dl->dl_lock);
|
|
dsl_deadlist_load_tree(dl);
|
|
dle = avl_last(&dl->dl_tree);
|
|
mutex_exit(&dl->dl_lock);
|
|
|
|
return (dle);
|
|
}
|
|
|
|
/*
|
|
* Walk ds's snapshots to regenerate generate ZAP & AVL.
|
|
*/
|
|
static void
|
|
dsl_deadlist_regenerate(objset_t *os, uint64_t dlobj,
|
|
uint64_t mrs_obj, dmu_tx_t *tx)
|
|
{
|
|
dsl_deadlist_t dl = { 0 };
|
|
dsl_pool_t *dp = dmu_objset_pool(os);
|
|
|
|
dsl_deadlist_open(&dl, os, dlobj);
|
|
if (dl.dl_oldfmt) {
|
|
dsl_deadlist_close(&dl);
|
|
return;
|
|
}
|
|
|
|
while (mrs_obj != 0) {
|
|
dsl_dataset_t *ds;
|
|
VERIFY0(dsl_dataset_hold_obj(dp, mrs_obj, FTAG, &ds));
|
|
dsl_deadlist_add_key(&dl,
|
|
dsl_dataset_phys(ds)->ds_prev_snap_txg, tx);
|
|
mrs_obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
|
|
dsl_dataset_rele(ds, FTAG);
|
|
}
|
|
dsl_deadlist_close(&dl);
|
|
}
|
|
|
|
uint64_t
|
|
dsl_deadlist_clone(dsl_deadlist_t *dl, uint64_t maxtxg,
|
|
uint64_t mrs_obj, dmu_tx_t *tx)
|
|
{
|
|
dsl_deadlist_entry_t *dle;
|
|
uint64_t newobj;
|
|
|
|
newobj = dsl_deadlist_alloc(dl->dl_os, tx);
|
|
|
|
if (dl->dl_oldfmt) {
|
|
dsl_deadlist_regenerate(dl->dl_os, newobj, mrs_obj, tx);
|
|
return (newobj);
|
|
}
|
|
|
|
mutex_enter(&dl->dl_lock);
|
|
dsl_deadlist_load_tree(dl);
|
|
|
|
for (dle = avl_first(&dl->dl_tree); dle;
|
|
dle = AVL_NEXT(&dl->dl_tree, dle)) {
|
|
uint64_t obj;
|
|
|
|
if (dle->dle_mintxg >= maxtxg)
|
|
break;
|
|
|
|
obj = bpobj_alloc_empty(dl->dl_os, SPA_OLD_MAXBLOCKSIZE, tx);
|
|
VERIFY0(zap_add_int_key(dl->dl_os, newobj,
|
|
dle->dle_mintxg, obj, tx));
|
|
}
|
|
mutex_exit(&dl->dl_lock);
|
|
return (newobj);
|
|
}
|
|
|
|
void
|
|
dsl_deadlist_space(dsl_deadlist_t *dl,
|
|
uint64_t *usedp, uint64_t *compp, uint64_t *uncompp)
|
|
{
|
|
ASSERT(dsl_deadlist_is_open(dl));
|
|
if (dl->dl_oldfmt) {
|
|
VERIFY0(bpobj_space(&dl->dl_bpobj,
|
|
usedp, compp, uncompp));
|
|
return;
|
|
}
|
|
|
|
mutex_enter(&dl->dl_lock);
|
|
*usedp = dl->dl_phys->dl_used;
|
|
*compp = dl->dl_phys->dl_comp;
|
|
*uncompp = dl->dl_phys->dl_uncomp;
|
|
mutex_exit(&dl->dl_lock);
|
|
}
|
|
|
|
/*
|
|
* return space used in the range (mintxg, maxtxg].
|
|
* Includes maxtxg, does not include mintxg.
|
|
* mintxg and maxtxg must both be keys in the deadlist (unless maxtxg is
|
|
* UINT64_MAX).
|
|
*/
|
|
void
|
|
dsl_deadlist_space_range(dsl_deadlist_t *dl, uint64_t mintxg, uint64_t maxtxg,
|
|
uint64_t *usedp, uint64_t *compp, uint64_t *uncompp)
|
|
{
|
|
dsl_deadlist_cache_entry_t *dlce;
|
|
dsl_deadlist_cache_entry_t dlce_tofind;
|
|
avl_index_t where;
|
|
|
|
if (dl->dl_oldfmt) {
|
|
VERIFY0(bpobj_space_range(&dl->dl_bpobj,
|
|
mintxg, maxtxg, usedp, compp, uncompp));
|
|
return;
|
|
}
|
|
|
|
*usedp = *compp = *uncompp = 0;
|
|
|
|
mutex_enter(&dl->dl_lock);
|
|
dsl_deadlist_load_cache(dl);
|
|
dlce_tofind.dlce_mintxg = mintxg;
|
|
dlce = avl_find(&dl->dl_cache, &dlce_tofind, &where);
|
|
|
|
/*
|
|
* If this mintxg doesn't exist, it may be an empty_bpobj which
|
|
* is omitted from the sparse tree. Start at the next non-empty
|
|
* entry.
|
|
*/
|
|
if (dlce == NULL)
|
|
dlce = avl_nearest(&dl->dl_cache, where, AVL_AFTER);
|
|
|
|
for (; dlce && dlce->dlce_mintxg < maxtxg;
|
|
dlce = AVL_NEXT(&dl->dl_tree, dlce)) {
|
|
*usedp += dlce->dlce_bytes;
|
|
*compp += dlce->dlce_comp;
|
|
*uncompp += dlce->dlce_uncomp;
|
|
}
|
|
|
|
mutex_exit(&dl->dl_lock);
|
|
}
|
|
|
|
static void
|
|
dsl_deadlist_insert_bpobj(dsl_deadlist_t *dl, uint64_t obj, uint64_t birth,
|
|
dmu_tx_t *tx)
|
|
{
|
|
dsl_deadlist_entry_t dle_tofind;
|
|
dsl_deadlist_entry_t *dle;
|
|
avl_index_t where;
|
|
uint64_t used, comp, uncomp;
|
|
bpobj_t bpo;
|
|
|
|
ASSERT(MUTEX_HELD(&dl->dl_lock));
|
|
|
|
VERIFY0(bpobj_open(&bpo, dl->dl_os, obj));
|
|
VERIFY0(bpobj_space(&bpo, &used, &comp, &uncomp));
|
|
bpobj_close(&bpo);
|
|
|
|
dsl_deadlist_load_tree(dl);
|
|
|
|
dmu_buf_will_dirty(dl->dl_dbuf, tx);
|
|
dl->dl_phys->dl_used += used;
|
|
dl->dl_phys->dl_comp += comp;
|
|
dl->dl_phys->dl_uncomp += uncomp;
|
|
|
|
dle_tofind.dle_mintxg = birth;
|
|
dle = avl_find(&dl->dl_tree, &dle_tofind, &where);
|
|
if (dle == NULL)
|
|
dle = avl_nearest(&dl->dl_tree, where, AVL_BEFORE);
|
|
dle_enqueue_subobj(dl, dle, obj, tx);
|
|
}
|
|
|
|
static int
|
|
dsl_deadlist_insert_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
|
|
dmu_tx_t *tx)
|
|
{
|
|
dsl_deadlist_t *dl = arg;
|
|
dsl_deadlist_insert(dl, bp, bp_freed, tx);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Merge the deadlist pointed to by 'obj' into dl. obj will be left as
|
|
* an empty deadlist.
|
|
*/
|
|
void
|
|
dsl_deadlist_merge(dsl_deadlist_t *dl, uint64_t obj, dmu_tx_t *tx)
|
|
{
|
|
zap_cursor_t zc;
|
|
zap_attribute_t za;
|
|
dmu_buf_t *bonus;
|
|
dsl_deadlist_phys_t *dlp;
|
|
dmu_object_info_t doi;
|
|
int error;
|
|
|
|
VERIFY0(dmu_object_info(dl->dl_os, obj, &doi));
|
|
if (doi.doi_type == DMU_OT_BPOBJ) {
|
|
bpobj_t bpo;
|
|
VERIFY0(bpobj_open(&bpo, dl->dl_os, obj));
|
|
VERIFY0(bpobj_iterate(&bpo, dsl_deadlist_insert_cb, dl, tx));
|
|
bpobj_close(&bpo);
|
|
return;
|
|
}
|
|
|
|
mutex_enter(&dl->dl_lock);
|
|
for (zap_cursor_init(&zc, dl->dl_os, obj);
|
|
(error = zap_cursor_retrieve(&zc, &za)) == 0;
|
|
zap_cursor_advance(&zc)) {
|
|
uint64_t mintxg = zfs_strtonum(za.za_name, NULL);
|
|
dsl_deadlist_insert_bpobj(dl, za.za_first_integer, mintxg, tx);
|
|
VERIFY0(zap_remove_int(dl->dl_os, obj, mintxg, tx));
|
|
}
|
|
VERIFY3U(error, ==, ENOENT);
|
|
zap_cursor_fini(&zc);
|
|
|
|
VERIFY0(dmu_bonus_hold(dl->dl_os, obj, FTAG, &bonus));
|
|
dlp = bonus->db_data;
|
|
dmu_buf_will_dirty(bonus, tx);
|
|
memset(dlp, 0, sizeof (*dlp));
|
|
dmu_buf_rele(bonus, FTAG);
|
|
mutex_exit(&dl->dl_lock);
|
|
}
|
|
|
|
/*
|
|
* Remove entries on dl that are born > mintxg, and put them on the bpobj.
|
|
*/
|
|
void
|
|
dsl_deadlist_move_bpobj(dsl_deadlist_t *dl, bpobj_t *bpo, uint64_t mintxg,
|
|
dmu_tx_t *tx)
|
|
{
|
|
dsl_deadlist_entry_t dle_tofind;
|
|
dsl_deadlist_entry_t *dle;
|
|
avl_index_t where;
|
|
|
|
ASSERT(!dl->dl_oldfmt);
|
|
|
|
mutex_enter(&dl->dl_lock);
|
|
dmu_buf_will_dirty(dl->dl_dbuf, tx);
|
|
dsl_deadlist_load_tree(dl);
|
|
|
|
dle_tofind.dle_mintxg = mintxg;
|
|
dle = avl_find(&dl->dl_tree, &dle_tofind, &where);
|
|
if (dle == NULL)
|
|
dle = avl_nearest(&dl->dl_tree, where, AVL_AFTER);
|
|
while (dle) {
|
|
uint64_t used, comp, uncomp;
|
|
dsl_deadlist_entry_t *dle_next;
|
|
|
|
bpobj_enqueue_subobj(bpo, dle->dle_bpobj.bpo_object, tx);
|
|
|
|
VERIFY0(bpobj_space(&dle->dle_bpobj,
|
|
&used, &comp, &uncomp));
|
|
ASSERT3U(dl->dl_phys->dl_used, >=, used);
|
|
ASSERT3U(dl->dl_phys->dl_comp, >=, comp);
|
|
ASSERT3U(dl->dl_phys->dl_uncomp, >=, uncomp);
|
|
dl->dl_phys->dl_used -= used;
|
|
dl->dl_phys->dl_comp -= comp;
|
|
dl->dl_phys->dl_uncomp -= uncomp;
|
|
|
|
VERIFY0(zap_remove_int(dl->dl_os, dl->dl_object,
|
|
dle->dle_mintxg, tx));
|
|
|
|
dle_next = AVL_NEXT(&dl->dl_tree, dle);
|
|
avl_remove(&dl->dl_tree, dle);
|
|
bpobj_close(&dle->dle_bpobj);
|
|
kmem_free(dle, sizeof (*dle));
|
|
dle = dle_next;
|
|
}
|
|
mutex_exit(&dl->dl_lock);
|
|
}
|
|
|
|
typedef struct livelist_entry {
|
|
blkptr_t le_bp;
|
|
uint32_t le_refcnt;
|
|
avl_node_t le_node;
|
|
} livelist_entry_t;
|
|
|
|
static int
|
|
livelist_compare(const void *larg, const void *rarg)
|
|
{
|
|
const blkptr_t *l = &((livelist_entry_t *)larg)->le_bp;
|
|
const blkptr_t *r = &((livelist_entry_t *)rarg)->le_bp;
|
|
|
|
/* Sort them according to dva[0] */
|
|
uint64_t l_dva0_vdev = DVA_GET_VDEV(&l->blk_dva[0]);
|
|
uint64_t r_dva0_vdev = DVA_GET_VDEV(&r->blk_dva[0]);
|
|
|
|
if (l_dva0_vdev != r_dva0_vdev)
|
|
return (TREE_CMP(l_dva0_vdev, r_dva0_vdev));
|
|
|
|
/* if vdevs are equal, sort by offsets. */
|
|
uint64_t l_dva0_offset = DVA_GET_OFFSET(&l->blk_dva[0]);
|
|
uint64_t r_dva0_offset = DVA_GET_OFFSET(&r->blk_dva[0]);
|
|
if (l_dva0_offset == r_dva0_offset)
|
|
ASSERT3U(l->blk_birth, ==, r->blk_birth);
|
|
return (TREE_CMP(l_dva0_offset, r_dva0_offset));
|
|
}
|
|
|
|
struct livelist_iter_arg {
|
|
avl_tree_t *avl;
|
|
bplist_t *to_free;
|
|
zthr_t *t;
|
|
};
|
|
|
|
/*
|
|
* Expects an AVL tree which is incrementally filled will FREE blkptrs
|
|
* and used to match up ALLOC/FREE pairs. ALLOC'd blkptrs without a
|
|
* corresponding FREE are stored in the supplied bplist.
|
|
*
|
|
* Note that multiple FREE and ALLOC entries for the same blkptr may
|
|
* be encountered when dedup is involved. For this reason we keep a
|
|
* refcount for all the FREE entries of each blkptr and ensure that
|
|
* each of those FREE entries has a corresponding ALLOC preceding it.
|
|
*/
|
|
static int
|
|
dsl_livelist_iterate(void *arg, const blkptr_t *bp, boolean_t bp_freed,
|
|
dmu_tx_t *tx)
|
|
{
|
|
struct livelist_iter_arg *lia = arg;
|
|
avl_tree_t *avl = lia->avl;
|
|
bplist_t *to_free = lia->to_free;
|
|
zthr_t *t = lia->t;
|
|
ASSERT(tx == NULL);
|
|
|
|
if ((t != NULL) && (zthr_has_waiters(t) || zthr_iscancelled(t)))
|
|
return (SET_ERROR(EINTR));
|
|
|
|
livelist_entry_t node;
|
|
node.le_bp = *bp;
|
|
livelist_entry_t *found = avl_find(avl, &node, NULL);
|
|
if (bp_freed) {
|
|
if (found == NULL) {
|
|
/* first free entry for this blkptr */
|
|
livelist_entry_t *e =
|
|
kmem_alloc(sizeof (livelist_entry_t), KM_SLEEP);
|
|
e->le_bp = *bp;
|
|
e->le_refcnt = 1;
|
|
avl_add(avl, e);
|
|
} else {
|
|
/* dedup block free */
|
|
ASSERT(BP_GET_DEDUP(bp));
|
|
ASSERT3U(BP_GET_CHECKSUM(bp), ==,
|
|
BP_GET_CHECKSUM(&found->le_bp));
|
|
ASSERT3U(found->le_refcnt + 1, >, found->le_refcnt);
|
|
found->le_refcnt++;
|
|
}
|
|
} else {
|
|
if (found == NULL) {
|
|
/* block is currently marked as allocated */
|
|
bplist_append(to_free, bp);
|
|
} else {
|
|
/* alloc matches a free entry */
|
|
ASSERT3U(found->le_refcnt, !=, 0);
|
|
found->le_refcnt--;
|
|
if (found->le_refcnt == 0) {
|
|
/* all tracked free pairs have been matched */
|
|
avl_remove(avl, found);
|
|
kmem_free(found, sizeof (livelist_entry_t));
|
|
} else {
|
|
/*
|
|
* This is definitely a deduped blkptr so
|
|
* let's validate it.
|
|
*/
|
|
ASSERT(BP_GET_DEDUP(bp));
|
|
ASSERT3U(BP_GET_CHECKSUM(bp), ==,
|
|
BP_GET_CHECKSUM(&found->le_bp));
|
|
}
|
|
}
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Accepts a bpobj and a bplist. Will insert into the bplist the blkptrs
|
|
* which have an ALLOC entry but no matching FREE
|
|
*/
|
|
int
|
|
dsl_process_sub_livelist(bpobj_t *bpobj, bplist_t *to_free, zthr_t *t,
|
|
uint64_t *size)
|
|
{
|
|
avl_tree_t avl;
|
|
avl_create(&avl, livelist_compare, sizeof (livelist_entry_t),
|
|
offsetof(livelist_entry_t, le_node));
|
|
|
|
/* process the sublist */
|
|
struct livelist_iter_arg arg = {
|
|
.avl = &avl,
|
|
.to_free = to_free,
|
|
.t = t
|
|
};
|
|
int err = bpobj_iterate_nofree(bpobj, dsl_livelist_iterate, &arg, size);
|
|
|
|
VERIFY0(avl_numnodes(&avl));
|
|
avl_destroy(&avl);
|
|
return (err);
|
|
}
|
|
|
|
ZFS_MODULE_PARAM(zfs_livelist, zfs_livelist_, max_entries, ULONG, ZMOD_RW,
|
|
"Size to start the next sub-livelist in a livelist");
|
|
|
|
ZFS_MODULE_PARAM(zfs_livelist, zfs_livelist_, min_percent_shared, INT, ZMOD_RW,
|
|
"Threshold at which livelist is disabled");
|