zfs/module/zfs/txg.c

646 lines
14 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2008 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#include <sys/zfs_context.h>
#include <sys/txg_impl.h>
#include <sys/dmu_impl.h>
#include <sys/dsl_pool.h>
#include <sys/callb.h>
/*
* Pool-wide transaction groups.
*/
static void txg_sync_thread(dsl_pool_t *dp);
static void txg_quiesce_thread(dsl_pool_t *dp);
int zfs_txg_timeout = 30; /* max seconds worth of delta per txg */
/*
* Prepare the txg subsystem.
*/
void
txg_init(dsl_pool_t *dp, uint64_t txg)
{
tx_state_t *tx = &dp->dp_tx;
int c;
bzero(tx, sizeof (tx_state_t));
tx->tx_cpu = vmem_zalloc(max_ncpus * sizeof (tx_cpu_t), KM_SLEEP);
for (c = 0; c < max_ncpus; c++) {
int i;
mutex_init(&tx->tx_cpu[c].tc_lock, NULL, MUTEX_DEFAULT, NULL);
for (i = 0; i < TXG_SIZE; i++) {
cv_init(&tx->tx_cpu[c].tc_cv[i], NULL, CV_DEFAULT,
NULL);
}
}
rw_init(&tx->tx_suspend, NULL, RW_DEFAULT, NULL);
mutex_init(&tx->tx_sync_lock, NULL, MUTEX_DEFAULT, NULL);
cv_init(&tx->tx_sync_more_cv, NULL, CV_DEFAULT, NULL);
cv_init(&tx->tx_sync_done_cv, NULL, CV_DEFAULT, NULL);
cv_init(&tx->tx_quiesce_more_cv, NULL, CV_DEFAULT, NULL);
cv_init(&tx->tx_quiesce_done_cv, NULL, CV_DEFAULT, NULL);
cv_init(&tx->tx_timeout_cv, NULL, CV_DEFAULT, NULL);
cv_init(&tx->tx_exit_cv, NULL, CV_DEFAULT, NULL);
tx->tx_open_txg = txg;
}
/*
* Close down the txg subsystem.
*/
void
txg_fini(dsl_pool_t *dp)
{
tx_state_t *tx = &dp->dp_tx;
int c;
ASSERT(tx->tx_threads == 0);
cv_destroy(&tx->tx_sync_more_cv);
cv_destroy(&tx->tx_sync_done_cv);
cv_destroy(&tx->tx_quiesce_more_cv);
cv_destroy(&tx->tx_quiesce_done_cv);
cv_destroy(&tx->tx_timeout_cv);
cv_destroy(&tx->tx_exit_cv);
rw_destroy(&tx->tx_suspend);
mutex_destroy(&tx->tx_sync_lock);
for (c = 0; c < max_ncpus; c++) {
int i;
mutex_destroy(&tx->tx_cpu[c].tc_lock);
for (i = 0; i < TXG_SIZE; i++)
cv_destroy(&tx->tx_cpu[c].tc_cv[i]);
}
vmem_free(tx->tx_cpu, max_ncpus * sizeof (tx_cpu_t));
bzero(tx, sizeof (tx_state_t));
}
/*
* Start syncing transaction groups.
*/
void
txg_sync_start(dsl_pool_t *dp)
{
tx_state_t *tx = &dp->dp_tx;
mutex_enter(&tx->tx_sync_lock);
dprintf("pool %p\n", dp);
ASSERT(tx->tx_threads == 0);
tx->tx_threads = 2;
tx->tx_quiesce_thread = thread_create(NULL, 0, txg_quiesce_thread,
dp, 0, &p0, TS_RUN, minclsyspri);
/*
* The sync thread can need a larger-than-default stack size on
* 32-bit x86. This is due in part to nested pools and
* scrub_visitbp() recursion.
*/
tx->tx_sync_thread = thread_create(NULL, 12<<10, txg_sync_thread,
dp, 0, &p0, TS_RUN, minclsyspri);
mutex_exit(&tx->tx_sync_lock);
}
static void
txg_thread_enter(tx_state_t *tx, callb_cpr_t *cpr)
{
CALLB_CPR_INIT(cpr, &tx->tx_sync_lock, callb_generic_cpr, FTAG);
mutex_enter(&tx->tx_sync_lock);
}
static void
txg_thread_exit(tx_state_t *tx, callb_cpr_t *cpr, kthread_t **tpp)
{
ASSERT(*tpp != NULL);
*tpp = NULL;
tx->tx_threads--;
cv_broadcast(&tx->tx_exit_cv);
CALLB_CPR_EXIT(cpr); /* drops &tx->tx_sync_lock */
thread_exit();
}
static void
txg_thread_wait(tx_state_t *tx, callb_cpr_t *cpr, kcondvar_t *cv, uint64_t wt)
{
CALLB_CPR_SAFE_BEGIN(cpr);
if (wt)
(void) cv_timedwait(cv, &tx->tx_sync_lock, lbolt + wt);
else
cv_wait(cv, &tx->tx_sync_lock);
CALLB_CPR_SAFE_END(cpr, &tx->tx_sync_lock);
}
/*
* Stop syncing transaction groups.
*/
void
txg_sync_stop(dsl_pool_t *dp)
{
tx_state_t *tx = &dp->dp_tx;
dprintf("pool %p\n", dp);
/*
* Finish off any work in progress.
*/
ASSERT(tx->tx_threads == 2);
txg_wait_synced(dp, 0);
/*
* Wake all sync threads and wait for them to die.
*/
mutex_enter(&tx->tx_sync_lock);
ASSERT(tx->tx_threads == 2);
tx->tx_exiting = 1;
cv_broadcast(&tx->tx_quiesce_more_cv);
cv_broadcast(&tx->tx_quiesce_done_cv);
cv_broadcast(&tx->tx_sync_more_cv);
while (tx->tx_threads != 0)
cv_wait(&tx->tx_exit_cv, &tx->tx_sync_lock);
tx->tx_exiting = 0;
mutex_exit(&tx->tx_sync_lock);
}
uint64_t
txg_hold_open(dsl_pool_t *dp, txg_handle_t *th)
{
tx_state_t *tx = &dp->dp_tx;
tx_cpu_t *tc = &tx->tx_cpu[CPU_SEQID];
uint64_t txg;
mutex_enter(&tc->tc_lock);
txg = tx->tx_open_txg;
tc->tc_count[txg & TXG_MASK]++;
th->th_cpu = tc;
th->th_txg = txg;
return (txg);
}
void
txg_rele_to_quiesce(txg_handle_t *th)
{
tx_cpu_t *tc = th->th_cpu;
mutex_exit(&tc->tc_lock);
}
void
txg_rele_to_sync(txg_handle_t *th)
{
tx_cpu_t *tc = th->th_cpu;
int g = th->th_txg & TXG_MASK;
mutex_enter(&tc->tc_lock);
ASSERT(tc->tc_count[g] != 0);
if (--tc->tc_count[g] == 0)
cv_broadcast(&tc->tc_cv[g]);
mutex_exit(&tc->tc_lock);
th->th_cpu = NULL; /* defensive */
}
static void
txg_quiesce(dsl_pool_t *dp, uint64_t txg)
{
tx_state_t *tx = &dp->dp_tx;
int g = txg & TXG_MASK;
int c;
/*
* Grab all tx_cpu locks so nobody else can get into this txg.
*/
for (c = 0; c < max_ncpus; c++)
mutex_enter(&tx->tx_cpu[c].tc_lock);
ASSERT(txg == tx->tx_open_txg);
tx->tx_open_txg++;
/*
* Now that we've incremented tx_open_txg, we can let threads
* enter the next transaction group.
*/
for (c = 0; c < max_ncpus; c++)
mutex_exit(&tx->tx_cpu[c].tc_lock);
/*
* Quiesce the transaction group by waiting for everyone to txg_exit().
*/
for (c = 0; c < max_ncpus; c++) {
tx_cpu_t *tc = &tx->tx_cpu[c];
mutex_enter(&tc->tc_lock);
while (tc->tc_count[g] != 0)
cv_wait(&tc->tc_cv[g], &tc->tc_lock);
mutex_exit(&tc->tc_lock);
}
}
static void
txg_sync_thread(dsl_pool_t *dp)
{
tx_state_t *tx = &dp->dp_tx;
callb_cpr_t cpr;
uint64_t start, delta;
txg_thread_enter(tx, &cpr);
start = delta = 0;
for (;;) {
uint64_t timer, timeout = zfs_txg_timeout * hz;
uint64_t txg;
/*
* We sync when we're scrubbing, there's someone waiting
* on us, or the quiesce thread has handed off a txg to
* us, or we have reached our timeout.
*/
timer = (delta >= timeout ? 0 : timeout - delta);
while ((dp->dp_scrub_func == SCRUB_FUNC_NONE ||
spa_shutting_down(dp->dp_spa)) &&
!tx->tx_exiting && timer > 0 &&
tx->tx_synced_txg >= tx->tx_sync_txg_waiting &&
tx->tx_quiesced_txg == 0) {
dprintf("waiting; tx_synced=%llu waiting=%llu dp=%p\n",
tx->tx_synced_txg, tx->tx_sync_txg_waiting, dp);
txg_thread_wait(tx, &cpr, &tx->tx_sync_more_cv, timer);
delta = lbolt - start;
timer = (delta > timeout ? 0 : timeout - delta);
}
/*
* Wait until the quiesce thread hands off a txg to us,
* prompting it to do so if necessary.
*/
while (!tx->tx_exiting && tx->tx_quiesced_txg == 0) {
if (tx->tx_quiesce_txg_waiting < tx->tx_open_txg+1)
tx->tx_quiesce_txg_waiting = tx->tx_open_txg+1;
cv_broadcast(&tx->tx_quiesce_more_cv);
txg_thread_wait(tx, &cpr, &tx->tx_quiesce_done_cv, 0);
}
if (tx->tx_exiting)
txg_thread_exit(tx, &cpr, &tx->tx_sync_thread);
rw_enter(&tx->tx_suspend, RW_WRITER);
/*
* Consume the quiesced txg which has been handed off to
* us. This may cause the quiescing thread to now be
* able to quiesce another txg, so we must signal it.
*/
txg = tx->tx_quiesced_txg;
tx->tx_quiesced_txg = 0;
tx->tx_syncing_txg = txg;
cv_broadcast(&tx->tx_quiesce_more_cv);
rw_exit(&tx->tx_suspend);
dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting);
mutex_exit(&tx->tx_sync_lock);
start = lbolt;
spa_sync(dp->dp_spa, txg);
delta = lbolt - start;
mutex_enter(&tx->tx_sync_lock);
rw_enter(&tx->tx_suspend, RW_WRITER);
tx->tx_synced_txg = txg;
tx->tx_syncing_txg = 0;
rw_exit(&tx->tx_suspend);
cv_broadcast(&tx->tx_sync_done_cv);
}
}
static void
txg_quiesce_thread(dsl_pool_t *dp)
{
tx_state_t *tx = &dp->dp_tx;
callb_cpr_t cpr;
txg_thread_enter(tx, &cpr);
for (;;) {
uint64_t txg;
/*
* We quiesce when there's someone waiting on us.
* However, we can only have one txg in "quiescing" or
* "quiesced, waiting to sync" state. So we wait until
* the "quiesced, waiting to sync" txg has been consumed
* by the sync thread.
*/
while (!tx->tx_exiting &&
(tx->tx_open_txg >= tx->tx_quiesce_txg_waiting ||
tx->tx_quiesced_txg != 0))
txg_thread_wait(tx, &cpr, &tx->tx_quiesce_more_cv, 0);
if (tx->tx_exiting)
txg_thread_exit(tx, &cpr, &tx->tx_quiesce_thread);
txg = tx->tx_open_txg;
dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
txg, tx->tx_quiesce_txg_waiting,
tx->tx_sync_txg_waiting);
mutex_exit(&tx->tx_sync_lock);
txg_quiesce(dp, txg);
mutex_enter(&tx->tx_sync_lock);
/*
* Hand this txg off to the sync thread.
*/
dprintf("quiesce done, handing off txg %llu\n", txg);
tx->tx_quiesced_txg = txg;
cv_broadcast(&tx->tx_sync_more_cv);
cv_broadcast(&tx->tx_quiesce_done_cv);
}
}
/*
* Delay this thread by 'ticks' if we are still in the open transaction
* group and there is already a waiting txg quiesing or quiesced. Abort
* the delay if this txg stalls or enters the quiesing state.
*/
void
txg_delay(dsl_pool_t *dp, uint64_t txg, int ticks)
{
tx_state_t *tx = &dp->dp_tx;
int timeout = lbolt + ticks;
/* don't delay if this txg could transition to quiesing immediately */
if (tx->tx_open_txg > txg ||
tx->tx_syncing_txg == txg-1 || tx->tx_synced_txg == txg-1)
return;
mutex_enter(&tx->tx_sync_lock);
if (tx->tx_open_txg > txg || tx->tx_synced_txg == txg-1) {
mutex_exit(&tx->tx_sync_lock);
return;
}
while (lbolt < timeout &&
tx->tx_syncing_txg < txg-1 && !txg_stalled(dp))
(void) cv_timedwait(&tx->tx_quiesce_more_cv, &tx->tx_sync_lock,
timeout);
mutex_exit(&tx->tx_sync_lock);
}
void
txg_wait_synced(dsl_pool_t *dp, uint64_t txg)
{
tx_state_t *tx = &dp->dp_tx;
mutex_enter(&tx->tx_sync_lock);
ASSERT(tx->tx_threads == 2);
if (txg == 0)
txg = tx->tx_open_txg;
if (tx->tx_sync_txg_waiting < txg)
tx->tx_sync_txg_waiting = txg;
dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting);
while (tx->tx_synced_txg < txg) {
dprintf("broadcasting sync more "
"tx_synced=%llu waiting=%llu dp=%p\n",
tx->tx_synced_txg, tx->tx_sync_txg_waiting, dp);
cv_broadcast(&tx->tx_sync_more_cv);
cv_wait(&tx->tx_sync_done_cv, &tx->tx_sync_lock);
}
mutex_exit(&tx->tx_sync_lock);
}
void
txg_wait_open(dsl_pool_t *dp, uint64_t txg)
{
tx_state_t *tx = &dp->dp_tx;
mutex_enter(&tx->tx_sync_lock);
ASSERT(tx->tx_threads == 2);
if (txg == 0)
txg = tx->tx_open_txg + 1;
if (tx->tx_quiesce_txg_waiting < txg)
tx->tx_quiesce_txg_waiting = txg;
dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting);
while (tx->tx_open_txg < txg) {
cv_broadcast(&tx->tx_quiesce_more_cv);
cv_wait(&tx->tx_quiesce_done_cv, &tx->tx_sync_lock);
}
mutex_exit(&tx->tx_sync_lock);
}
boolean_t
txg_stalled(dsl_pool_t *dp)
{
tx_state_t *tx = &dp->dp_tx;
return (tx->tx_quiesce_txg_waiting > tx->tx_open_txg);
}
boolean_t
txg_sync_waiting(dsl_pool_t *dp)
{
tx_state_t *tx = &dp->dp_tx;
return (tx->tx_syncing_txg <= tx->tx_sync_txg_waiting ||
tx->tx_quiesced_txg != 0);
}
void
txg_suspend(dsl_pool_t *dp)
{
tx_state_t *tx = &dp->dp_tx;
/* XXX some code paths suspend when they are already suspended! */
rw_enter(&tx->tx_suspend, RW_READER);
}
void
txg_resume(dsl_pool_t *dp)
{
tx_state_t *tx = &dp->dp_tx;
rw_exit(&tx->tx_suspend);
}
/*
* Per-txg object lists.
*/
void
txg_list_create(txg_list_t *tl, size_t offset)
{
int t;
mutex_init(&tl->tl_lock, NULL, MUTEX_DEFAULT, NULL);
tl->tl_offset = offset;
for (t = 0; t < TXG_SIZE; t++)
tl->tl_head[t] = NULL;
}
void
txg_list_destroy(txg_list_t *tl)
{
int t;
for (t = 0; t < TXG_SIZE; t++)
ASSERT(txg_list_empty(tl, t));
mutex_destroy(&tl->tl_lock);
}
int
txg_list_empty(txg_list_t *tl, uint64_t txg)
{
return (tl->tl_head[txg & TXG_MASK] == NULL);
}
/*
* Add an entry to the list.
* Returns 0 if it's a new entry, 1 if it's already there.
*/
int
txg_list_add(txg_list_t *tl, void *p, uint64_t txg)
{
int t = txg & TXG_MASK;
txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
int already_on_list;
mutex_enter(&tl->tl_lock);
already_on_list = tn->tn_member[t];
if (!already_on_list) {
tn->tn_member[t] = 1;
tn->tn_next[t] = tl->tl_head[t];
tl->tl_head[t] = tn;
}
mutex_exit(&tl->tl_lock);
return (already_on_list);
}
/*
* Remove the head of the list and return it.
*/
void *
txg_list_remove(txg_list_t *tl, uint64_t txg)
{
int t = txg & TXG_MASK;
txg_node_t *tn;
void *p = NULL;
mutex_enter(&tl->tl_lock);
if ((tn = tl->tl_head[t]) != NULL) {
p = (char *)tn - tl->tl_offset;
tl->tl_head[t] = tn->tn_next[t];
tn->tn_next[t] = NULL;
tn->tn_member[t] = 0;
}
mutex_exit(&tl->tl_lock);
return (p);
}
/*
* Remove a specific item from the list and return it.
*/
void *
txg_list_remove_this(txg_list_t *tl, void *p, uint64_t txg)
{
int t = txg & TXG_MASK;
txg_node_t *tn, **tp;
mutex_enter(&tl->tl_lock);
for (tp = &tl->tl_head[t]; (tn = *tp) != NULL; tp = &tn->tn_next[t]) {
if ((char *)tn - tl->tl_offset == p) {
*tp = tn->tn_next[t];
tn->tn_next[t] = NULL;
tn->tn_member[t] = 0;
mutex_exit(&tl->tl_lock);
return (p);
}
}
mutex_exit(&tl->tl_lock);
return (NULL);
}
int
txg_list_member(txg_list_t *tl, void *p, uint64_t txg)
{
int t = txg & TXG_MASK;
txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
return (tn->tn_member[t]);
}
/*
* Walk a txg list -- only safe if you know it's not changing.
*/
void *
txg_list_head(txg_list_t *tl, uint64_t txg)
{
int t = txg & TXG_MASK;
txg_node_t *tn = tl->tl_head[t];
return (tn == NULL ? NULL : (char *)tn - tl->tl_offset);
}
void *
txg_list_next(txg_list_t *tl, void *p, uint64_t txg)
{
int t = txg & TXG_MASK;
txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
tn = tn->tn_next[t];
return (tn == NULL ? NULL : (char *)tn - tl->tl_offset);
}
#if defined(_KERNEL) && defined(HAVE_SPL)
EXPORT_SYMBOL(txg_wait_synced);
#endif