1281 lines
31 KiB
C
1281 lines
31 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
|
|
*/
|
|
|
|
/*
|
|
* Routines to manage ZFS mounts. We separate all the nasty routines that have
|
|
* to deal with the OS. The following functions are the main entry points --
|
|
* they are used by mount and unmount and when changing a filesystem's
|
|
* mountpoint.
|
|
*
|
|
* zfs_is_mounted()
|
|
* zfs_mount()
|
|
* zfs_unmount()
|
|
* zfs_unmountall()
|
|
*
|
|
* This file also contains the functions used to manage sharing filesystems via
|
|
* NFS and iSCSI:
|
|
*
|
|
* zfs_is_shared()
|
|
* zfs_share()
|
|
* zfs_unshare()
|
|
*
|
|
* zfs_is_shared_nfs()
|
|
* zfs_is_shared_smb()
|
|
* zfs_share_proto()
|
|
* zfs_shareall();
|
|
* zfs_unshare_nfs()
|
|
* zfs_unshare_smb()
|
|
* zfs_unshareall_nfs()
|
|
* zfs_unshareall_smb()
|
|
* zfs_unshareall()
|
|
* zfs_unshareall_bypath()
|
|
*
|
|
* The following functions are available for pool consumers, and will
|
|
* mount/unmount and share/unshare all datasets within pool:
|
|
*
|
|
* zpool_enable_datasets()
|
|
* zpool_disable_datasets()
|
|
*/
|
|
|
|
#include <dirent.h>
|
|
#include <dlfcn.h>
|
|
#include <errno.h>
|
|
#include <libgen.h>
|
|
#include <libintl.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <strings.h>
|
|
#include <unistd.h>
|
|
#include <zone.h>
|
|
#include <sys/mntent.h>
|
|
#include <sys/mount.h>
|
|
#include <sys/stat.h>
|
|
|
|
#include <libzfs.h>
|
|
|
|
#include "libzfs_impl.h"
|
|
|
|
#include <libshare.h>
|
|
#include <sys/systeminfo.h>
|
|
#define MAXISALEN 257 /* based on sysinfo(2) man page */
|
|
|
|
static int zfs_share_proto(zfs_handle_t *, zfs_share_proto_t *);
|
|
zfs_share_type_t zfs_is_shared_proto(zfs_handle_t *, char **,
|
|
zfs_share_proto_t);
|
|
|
|
/*
|
|
* The share protocols table must be in the same order as the zfs_share_prot_t
|
|
* enum in libzfs_impl.h
|
|
*/
|
|
typedef struct {
|
|
zfs_prop_t p_prop;
|
|
char *p_name;
|
|
int p_share_err;
|
|
int p_unshare_err;
|
|
} proto_table_t;
|
|
|
|
proto_table_t proto_table[PROTO_END] = {
|
|
{ZFS_PROP_SHARENFS, "nfs", EZFS_SHARENFSFAILED, EZFS_UNSHARENFSFAILED},
|
|
{ZFS_PROP_SHARESMB, "smb", EZFS_SHARESMBFAILED, EZFS_UNSHARESMBFAILED},
|
|
};
|
|
|
|
zfs_share_proto_t nfs_only[] = {
|
|
PROTO_NFS,
|
|
PROTO_END
|
|
};
|
|
|
|
zfs_share_proto_t smb_only[] = {
|
|
PROTO_SMB,
|
|
PROTO_END
|
|
};
|
|
zfs_share_proto_t share_all_proto[] = {
|
|
PROTO_NFS,
|
|
PROTO_SMB,
|
|
PROTO_END
|
|
};
|
|
|
|
/*
|
|
* Search the sharetab for the given mountpoint and protocol, returning
|
|
* a zfs_share_type_t value.
|
|
*/
|
|
static zfs_share_type_t
|
|
is_shared(libzfs_handle_t *hdl, const char *mountpoint, zfs_share_proto_t proto)
|
|
{
|
|
char buf[MAXPATHLEN], *tab;
|
|
char *ptr;
|
|
|
|
if (hdl->libzfs_sharetab == NULL)
|
|
return (SHARED_NOT_SHARED);
|
|
|
|
(void) fseek(hdl->libzfs_sharetab, 0, SEEK_SET);
|
|
|
|
while (fgets(buf, sizeof (buf), hdl->libzfs_sharetab) != NULL) {
|
|
|
|
/* the mountpoint is the first entry on each line */
|
|
if ((tab = strchr(buf, '\t')) == NULL)
|
|
continue;
|
|
|
|
*tab = '\0';
|
|
if (strcmp(buf, mountpoint) == 0) {
|
|
/*
|
|
* the protocol field is the third field
|
|
* skip over second field
|
|
*/
|
|
ptr = ++tab;
|
|
if ((tab = strchr(ptr, '\t')) == NULL)
|
|
continue;
|
|
ptr = ++tab;
|
|
if ((tab = strchr(ptr, '\t')) == NULL)
|
|
continue;
|
|
*tab = '\0';
|
|
if (strcmp(ptr,
|
|
proto_table[proto].p_name) == 0) {
|
|
switch (proto) {
|
|
case PROTO_NFS:
|
|
return (SHARED_NFS);
|
|
case PROTO_SMB:
|
|
return (SHARED_SMB);
|
|
default:
|
|
return (0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return (SHARED_NOT_SHARED);
|
|
}
|
|
|
|
/*
|
|
* Returns true if the specified directory is empty. If we can't open the
|
|
* directory at all, return true so that the mount can fail with a more
|
|
* informative error message.
|
|
*/
|
|
static boolean_t
|
|
dir_is_empty(const char *dirname)
|
|
{
|
|
DIR *dirp;
|
|
struct dirent64 *dp;
|
|
|
|
if ((dirp = opendir(dirname)) == NULL)
|
|
return (B_TRUE);
|
|
|
|
while ((dp = readdir64(dirp)) != NULL) {
|
|
|
|
if (strcmp(dp->d_name, ".") == 0 ||
|
|
strcmp(dp->d_name, "..") == 0)
|
|
continue;
|
|
|
|
(void) closedir(dirp);
|
|
return (B_FALSE);
|
|
}
|
|
|
|
(void) closedir(dirp);
|
|
return (B_TRUE);
|
|
}
|
|
|
|
/*
|
|
* Checks to see if the mount is active. If the filesystem is mounted, we fill
|
|
* in 'where' with the current mountpoint, and return 1. Otherwise, we return
|
|
* 0.
|
|
*/
|
|
boolean_t
|
|
is_mounted(libzfs_handle_t *zfs_hdl, const char *special, char **where)
|
|
{
|
|
struct mnttab entry;
|
|
|
|
if (libzfs_mnttab_find(zfs_hdl, special, &entry) != 0)
|
|
return (B_FALSE);
|
|
|
|
if (where != NULL)
|
|
*where = zfs_strdup(zfs_hdl, entry.mnt_mountp);
|
|
|
|
return (B_TRUE);
|
|
}
|
|
|
|
boolean_t
|
|
zfs_is_mounted(zfs_handle_t *zhp, char **where)
|
|
{
|
|
return (is_mounted(zhp->zfs_hdl, zfs_get_name(zhp), where));
|
|
}
|
|
|
|
/*
|
|
* Returns true if the given dataset is mountable, false otherwise. Returns the
|
|
* mountpoint in 'buf'.
|
|
*/
|
|
static boolean_t
|
|
zfs_is_mountable(zfs_handle_t *zhp, char *buf, size_t buflen,
|
|
zprop_source_t *source)
|
|
{
|
|
char sourceloc[ZFS_MAXNAMELEN];
|
|
zprop_source_t sourcetype;
|
|
|
|
if (!zfs_prop_valid_for_type(ZFS_PROP_MOUNTPOINT, zhp->zfs_type))
|
|
return (B_FALSE);
|
|
|
|
verify(zfs_prop_get(zhp, ZFS_PROP_MOUNTPOINT, buf, buflen,
|
|
&sourcetype, sourceloc, sizeof (sourceloc), B_FALSE) == 0);
|
|
|
|
if (strcmp(buf, ZFS_MOUNTPOINT_NONE) == 0 ||
|
|
strcmp(buf, ZFS_MOUNTPOINT_LEGACY) == 0)
|
|
return (B_FALSE);
|
|
|
|
if (zfs_prop_get_int(zhp, ZFS_PROP_CANMOUNT) == ZFS_CANMOUNT_OFF)
|
|
return (B_FALSE);
|
|
|
|
if (zfs_prop_get_int(zhp, ZFS_PROP_ZONED) &&
|
|
getzoneid() == GLOBAL_ZONEID)
|
|
return (B_FALSE);
|
|
|
|
if (source)
|
|
*source = sourcetype;
|
|
|
|
return (B_TRUE);
|
|
}
|
|
|
|
/*
|
|
* The filesystem is mounted by invoking the system mount utility rather
|
|
* than by the system call mount(2). This ensures that the /etc/mtab
|
|
* file is correctly locked for the update. Performing our own locking
|
|
* and /etc/mtab update requires making an unsafe assumption about how
|
|
* the mount utility performs its locking. Unfortunately, this also means
|
|
* in the case of a mount failure we do not have the exact errno. We must
|
|
* make due with return value from the mount process.
|
|
*
|
|
* In the long term a shared library called libmount is under development
|
|
* which provides a common API to address the locking and errno issues.
|
|
* Once the standard mount utility has been updated to use this library
|
|
* we can add an autoconf check to conditionally use it.
|
|
*
|
|
* http://www.kernel.org/pub/linux/utils/util-linux/libmount-docs/index.html
|
|
*/
|
|
|
|
static int
|
|
do_mount(const char *src, const char *mntpt, char *opts)
|
|
{
|
|
char *argv[8] = {
|
|
"/bin/mount",
|
|
"-t", MNTTYPE_ZFS,
|
|
"-o", opts,
|
|
(char *)src,
|
|
(char *)mntpt,
|
|
(char *)NULL };
|
|
int rc;
|
|
|
|
/* Return only the most critical mount error */
|
|
rc = libzfs_run_process(argv[0], argv, STDOUT_VERBOSE|STDERR_VERBOSE);
|
|
if (rc) {
|
|
if (rc & MOUNT_FILEIO)
|
|
return EIO;
|
|
if (rc & MOUNT_USER)
|
|
return EINTR;
|
|
if (rc & MOUNT_SOFTWARE)
|
|
return EPIPE;
|
|
if (rc & MOUNT_BUSY)
|
|
return EBUSY;
|
|
if (rc & MOUNT_SYSERR)
|
|
return EAGAIN;
|
|
if (rc & MOUNT_USAGE)
|
|
return EINVAL;
|
|
|
|
return ENXIO; /* Generic error */
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
do_unmount(const char *mntpt, int flags)
|
|
{
|
|
char force_opt[] = "-f";
|
|
char lazy_opt[] = "-l";
|
|
char *argv[7] = {
|
|
"/bin/umount",
|
|
"-t", MNTTYPE_ZFS,
|
|
NULL, NULL, NULL, NULL };
|
|
int rc, count = 3;
|
|
|
|
if (flags & MS_FORCE) {
|
|
argv[count] = force_opt;
|
|
count++;
|
|
}
|
|
|
|
if (flags & MS_DETACH) {
|
|
argv[count] = lazy_opt;
|
|
count++;
|
|
}
|
|
|
|
argv[count] = (char *)mntpt;
|
|
rc = libzfs_run_process(argv[0], argv, STDOUT_VERBOSE|STDERR_VERBOSE);
|
|
|
|
return (rc ? EINVAL : 0);
|
|
}
|
|
|
|
static int
|
|
zfs_add_option(zfs_handle_t *zhp, char *options, int len,
|
|
zfs_prop_t prop, char *on, char *off)
|
|
{
|
|
char *source;
|
|
uint64_t value;
|
|
|
|
/* Skip adding duplicate default options */
|
|
if ((strstr(options, on) != NULL) || (strstr(options, off) != NULL))
|
|
return (0);
|
|
|
|
/*
|
|
* zfs_prop_get_int() to not used to ensure our mount options
|
|
* are not influenced by the current /etc/mtab contents.
|
|
*/
|
|
value = getprop_uint64(zhp, prop, &source);
|
|
|
|
(void) strlcat(options, ",", len);
|
|
(void) strlcat(options, value ? on : off, len);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
zfs_add_options(zfs_handle_t *zhp, char *options, int len)
|
|
{
|
|
int error = 0;
|
|
|
|
error = zfs_add_option(zhp, options, len,
|
|
ZFS_PROP_ATIME, MNTOPT_ATIME, MNTOPT_NOATIME);
|
|
error = error ? error : zfs_add_option(zhp, options, len,
|
|
ZFS_PROP_DEVICES, MNTOPT_DEVICES, MNTOPT_NODEVICES);
|
|
error = error ? error : zfs_add_option(zhp, options, len,
|
|
ZFS_PROP_EXEC, MNTOPT_EXEC, MNTOPT_NOEXEC);
|
|
error = error ? error : zfs_add_option(zhp, options, len,
|
|
ZFS_PROP_READONLY, MNTOPT_RO, MNTOPT_RW);
|
|
error = error ? error : zfs_add_option(zhp, options, len,
|
|
ZFS_PROP_SETUID, MNTOPT_SETUID, MNTOPT_NOSETUID);
|
|
error = error ? error : zfs_add_option(zhp, options, len,
|
|
ZFS_PROP_XATTR, MNTOPT_XATTR, MNTOPT_NOXATTR);
|
|
error = error ? error : zfs_add_option(zhp, options, len,
|
|
ZFS_PROP_NBMAND, MNTOPT_NBMAND, MNTOPT_NONBMAND);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Mount the given filesystem.
|
|
*/
|
|
int
|
|
zfs_mount(zfs_handle_t *zhp, const char *options, int flags)
|
|
{
|
|
struct stat buf;
|
|
char mountpoint[ZFS_MAXPROPLEN];
|
|
char mntopts[MNT_LINE_MAX];
|
|
libzfs_handle_t *hdl = zhp->zfs_hdl;
|
|
int remount = 0, rc;
|
|
|
|
if (options == NULL) {
|
|
(void) strlcpy(mntopts, MNTOPT_DEFAULTS, sizeof (mntopts));
|
|
} else {
|
|
(void) strlcpy(mntopts, options, sizeof (mntopts));
|
|
}
|
|
|
|
if (strstr(mntopts, MNTOPT_REMOUNT) != NULL)
|
|
remount = 1;
|
|
|
|
/*
|
|
* If the pool is imported read-only then all mounts must be read-only
|
|
*/
|
|
if (zpool_get_prop_int(zhp->zpool_hdl, ZPOOL_PROP_READONLY, NULL))
|
|
(void) strlcat(mntopts, "," MNTOPT_RO, sizeof (mntopts));
|
|
|
|
/*
|
|
* Append default mount options which apply to the mount point.
|
|
* This is done because under Linux (unlike Solaris) multiple mount
|
|
* points may reference a single super block. This means that just
|
|
* given a super block there is no back reference to update the per
|
|
* mount point options.
|
|
*/
|
|
rc = zfs_add_options(zhp, mntopts, sizeof (mntopts));
|
|
if (rc) {
|
|
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
|
|
"default options unavailable"));
|
|
return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
|
|
dgettext(TEXT_DOMAIN, "cannot mount '%s'"),
|
|
mountpoint));
|
|
}
|
|
|
|
/*
|
|
* Append zfsutil option so the mount helper allow the mount
|
|
*/
|
|
strlcat(mntopts, "," MNTOPT_ZFSUTIL, sizeof (mntopts));
|
|
|
|
if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint), NULL))
|
|
return (0);
|
|
|
|
/* Create the directory if it doesn't already exist */
|
|
if (lstat(mountpoint, &buf) != 0) {
|
|
if (mkdirp(mountpoint, 0755) != 0) {
|
|
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
|
|
"failed to create mountpoint"));
|
|
return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
|
|
dgettext(TEXT_DOMAIN, "cannot mount '%s'"),
|
|
mountpoint));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Determine if the mountpoint is empty. If so, refuse to perform the
|
|
* mount. We don't perform this check if 'remount' is
|
|
* specified or if overlay option(-O) is given
|
|
*/
|
|
if ((flags & MS_OVERLAY) == 0 && !remount &&
|
|
!dir_is_empty(mountpoint)) {
|
|
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
|
|
"directory is not empty"));
|
|
return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
|
|
dgettext(TEXT_DOMAIN, "cannot mount '%s'"), mountpoint));
|
|
}
|
|
|
|
/* perform the mount */
|
|
rc = do_mount(zfs_get_name(zhp), mountpoint, mntopts);
|
|
if (rc) {
|
|
/*
|
|
* Generic errors are nasty, but there are just way too many
|
|
* from mount(), and they're well-understood. We pick a few
|
|
* common ones to improve upon.
|
|
*/
|
|
if (rc == EBUSY) {
|
|
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
|
|
"mountpoint or dataset is busy"));
|
|
} else if (rc == EPERM) {
|
|
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
|
|
"Insufficient privileges"));
|
|
} else if (rc == ENOTSUP) {
|
|
char buf[256];
|
|
int spa_version;
|
|
|
|
VERIFY(zfs_spa_version(zhp, &spa_version) == 0);
|
|
(void) snprintf(buf, sizeof (buf),
|
|
dgettext(TEXT_DOMAIN, "Can't mount a version %lld "
|
|
"file system on a version %d pool. Pool must be"
|
|
" upgraded to mount this file system."),
|
|
(u_longlong_t)zfs_prop_get_int(zhp,
|
|
ZFS_PROP_VERSION), spa_version);
|
|
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, buf));
|
|
} else {
|
|
zfs_error_aux(hdl, strerror(rc));
|
|
}
|
|
return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
|
|
dgettext(TEXT_DOMAIN, "cannot mount '%s'"),
|
|
zhp->zfs_name));
|
|
}
|
|
|
|
/* remove the mounted entry before re-adding on remount */
|
|
if (remount)
|
|
libzfs_mnttab_remove(hdl, zhp->zfs_name);
|
|
|
|
/* add the mounted entry into our cache */
|
|
libzfs_mnttab_add(hdl, zfs_get_name(zhp), mountpoint, mntopts);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Unmount a single filesystem.
|
|
*/
|
|
static int
|
|
unmount_one(libzfs_handle_t *hdl, const char *mountpoint, int flags)
|
|
{
|
|
int error;
|
|
|
|
error = do_unmount(mountpoint, flags);
|
|
if (error != 0) {
|
|
return (zfs_error_fmt(hdl, EZFS_UMOUNTFAILED,
|
|
dgettext(TEXT_DOMAIN, "cannot unmount '%s'"),
|
|
mountpoint));
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Unmount the given filesystem.
|
|
*/
|
|
int
|
|
zfs_unmount(zfs_handle_t *zhp, const char *mountpoint, int flags)
|
|
{
|
|
libzfs_handle_t *hdl = zhp->zfs_hdl;
|
|
struct mnttab entry;
|
|
char *mntpt = NULL;
|
|
|
|
/* check to see if we need to unmount the filesystem */
|
|
if (mountpoint != NULL || ((zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM) &&
|
|
libzfs_mnttab_find(hdl, zhp->zfs_name, &entry) == 0)) {
|
|
/*
|
|
* mountpoint may have come from a call to
|
|
* getmnt/getmntany if it isn't NULL. If it is NULL,
|
|
* we know it comes from libzfs_mnttab_find which can
|
|
* then get freed later. We strdup it to play it safe.
|
|
*/
|
|
if (mountpoint == NULL)
|
|
mntpt = zfs_strdup(hdl, entry.mnt_mountp);
|
|
else
|
|
mntpt = zfs_strdup(hdl, mountpoint);
|
|
|
|
/*
|
|
* Unshare and unmount the filesystem
|
|
*/
|
|
if (zfs_unshare_proto(zhp, mntpt, share_all_proto) != 0)
|
|
return (-1);
|
|
|
|
if (unmount_one(hdl, mntpt, flags) != 0) {
|
|
free(mntpt);
|
|
(void) zfs_shareall(zhp);
|
|
return (-1);
|
|
}
|
|
libzfs_mnttab_remove(hdl, zhp->zfs_name);
|
|
free(mntpt);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Unmount this filesystem and any children inheriting the mountpoint property.
|
|
* To do this, just act like we're changing the mountpoint property, but don't
|
|
* remount the filesystems afterwards.
|
|
*/
|
|
int
|
|
zfs_unmountall(zfs_handle_t *zhp, int flags)
|
|
{
|
|
prop_changelist_t *clp;
|
|
int ret;
|
|
|
|
clp = changelist_gather(zhp, ZFS_PROP_MOUNTPOINT, 0, flags);
|
|
if (clp == NULL)
|
|
return (-1);
|
|
|
|
ret = changelist_prefix(clp);
|
|
changelist_free(clp);
|
|
|
|
return (ret);
|
|
}
|
|
|
|
boolean_t
|
|
zfs_is_shared(zfs_handle_t *zhp)
|
|
{
|
|
zfs_share_type_t rc = 0;
|
|
zfs_share_proto_t *curr_proto;
|
|
|
|
if (ZFS_IS_VOLUME(zhp))
|
|
return (B_FALSE);
|
|
|
|
for (curr_proto = share_all_proto; *curr_proto != PROTO_END;
|
|
curr_proto++)
|
|
rc |= zfs_is_shared_proto(zhp, NULL, *curr_proto);
|
|
|
|
return (rc ? B_TRUE : B_FALSE);
|
|
}
|
|
|
|
int
|
|
zfs_share(zfs_handle_t *zhp)
|
|
{
|
|
assert(!ZFS_IS_VOLUME(zhp));
|
|
return (zfs_share_proto(zhp, share_all_proto));
|
|
}
|
|
|
|
int
|
|
zfs_unshare(zfs_handle_t *zhp)
|
|
{
|
|
assert(!ZFS_IS_VOLUME(zhp));
|
|
return (zfs_unshareall(zhp));
|
|
}
|
|
|
|
/*
|
|
* Check to see if the filesystem is currently shared.
|
|
*/
|
|
zfs_share_type_t
|
|
zfs_is_shared_proto(zfs_handle_t *zhp, char **where, zfs_share_proto_t proto)
|
|
{
|
|
char *mountpoint;
|
|
zfs_share_type_t rc;
|
|
|
|
if (!zfs_is_mounted(zhp, &mountpoint))
|
|
return (SHARED_NOT_SHARED);
|
|
|
|
if ((rc = is_shared(zhp->zfs_hdl, mountpoint, proto))) {
|
|
if (where != NULL)
|
|
*where = mountpoint;
|
|
else
|
|
free(mountpoint);
|
|
return (rc);
|
|
} else {
|
|
free(mountpoint);
|
|
return (SHARED_NOT_SHARED);
|
|
}
|
|
}
|
|
|
|
boolean_t
|
|
zfs_is_shared_nfs(zfs_handle_t *zhp, char **where)
|
|
{
|
|
return (zfs_is_shared_proto(zhp, where,
|
|
PROTO_NFS) != SHARED_NOT_SHARED);
|
|
}
|
|
|
|
boolean_t
|
|
zfs_is_shared_smb(zfs_handle_t *zhp, char **where)
|
|
{
|
|
return (zfs_is_shared_proto(zhp, where,
|
|
PROTO_SMB) != SHARED_NOT_SHARED);
|
|
}
|
|
|
|
/*
|
|
* zfs_init_libshare(zhandle, service)
|
|
*
|
|
* Initialize the libshare API if it hasn't already been initialized.
|
|
* In all cases it returns 0 if it succeeded and an error if not. The
|
|
* service value is which part(s) of the API to initialize and is a
|
|
* direct map to the libshare sa_init(service) interface.
|
|
*/
|
|
int
|
|
zfs_init_libshare(libzfs_handle_t *zhandle, int service)
|
|
{
|
|
int ret = SA_OK;
|
|
|
|
if (ret == SA_OK && zhandle->libzfs_shareflags & ZFSSHARE_MISS) {
|
|
/*
|
|
* We had a cache miss. Most likely it is a new ZFS
|
|
* dataset that was just created. We want to make sure
|
|
* so check timestamps to see if a different process
|
|
* has updated any of the configuration. If there was
|
|
* some non-ZFS change, we need to re-initialize the
|
|
* internal cache.
|
|
*/
|
|
zhandle->libzfs_shareflags &= ~ZFSSHARE_MISS;
|
|
if (sa_needs_refresh(zhandle->libzfs_sharehdl)) {
|
|
zfs_uninit_libshare(zhandle);
|
|
zhandle->libzfs_sharehdl = sa_init(service);
|
|
}
|
|
}
|
|
|
|
if (ret == SA_OK && zhandle && zhandle->libzfs_sharehdl == NULL)
|
|
zhandle->libzfs_sharehdl = sa_init(service);
|
|
|
|
if (ret == SA_OK && zhandle->libzfs_sharehdl == NULL)
|
|
ret = SA_NO_MEMORY;
|
|
|
|
return (ret);
|
|
}
|
|
|
|
/*
|
|
* zfs_uninit_libshare(zhandle)
|
|
*
|
|
* Uninitialize the libshare API if it hasn't already been
|
|
* uninitialized. It is OK to call multiple times.
|
|
*/
|
|
void
|
|
zfs_uninit_libshare(libzfs_handle_t *zhandle)
|
|
{
|
|
if (zhandle != NULL && zhandle->libzfs_sharehdl != NULL) {
|
|
sa_fini(zhandle->libzfs_sharehdl);
|
|
zhandle->libzfs_sharehdl = NULL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* zfs_parse_options(options, proto)
|
|
*
|
|
* Call the legacy parse interface to get the protocol specific
|
|
* options using the NULL arg to indicate that this is a "parse" only.
|
|
*/
|
|
int
|
|
zfs_parse_options(char *options, zfs_share_proto_t proto)
|
|
{
|
|
return (sa_parse_legacy_options(NULL, options,
|
|
proto_table[proto].p_name));
|
|
}
|
|
|
|
/*
|
|
* Share the given filesystem according to the options in the specified
|
|
* protocol specific properties (sharenfs, sharesmb). We rely
|
|
* on "libshare" to do the dirty work for us.
|
|
*/
|
|
static int
|
|
zfs_share_proto(zfs_handle_t *zhp, zfs_share_proto_t *proto)
|
|
{
|
|
char mountpoint[ZFS_MAXPROPLEN];
|
|
char shareopts[ZFS_MAXPROPLEN];
|
|
char sourcestr[ZFS_MAXPROPLEN];
|
|
libzfs_handle_t *hdl = zhp->zfs_hdl;
|
|
sa_share_t share;
|
|
zfs_share_proto_t *curr_proto;
|
|
zprop_source_t sourcetype;
|
|
int ret;
|
|
|
|
if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint), NULL))
|
|
return (0);
|
|
|
|
if ((ret = zfs_init_libshare(hdl, SA_INIT_SHARE_API)) != SA_OK) {
|
|
(void) zfs_error_fmt(hdl, EZFS_SHARENFSFAILED,
|
|
dgettext(TEXT_DOMAIN, "cannot share '%s': %s"),
|
|
zfs_get_name(zhp), sa_errorstr(ret));
|
|
return (-1);
|
|
}
|
|
|
|
for (curr_proto = proto; *curr_proto != PROTO_END; curr_proto++) {
|
|
/*
|
|
* Return success if there are no share options.
|
|
*/
|
|
if (zfs_prop_get(zhp, proto_table[*curr_proto].p_prop,
|
|
shareopts, sizeof (shareopts), &sourcetype, sourcestr,
|
|
ZFS_MAXPROPLEN, B_FALSE) != 0 ||
|
|
strcmp(shareopts, "off") == 0)
|
|
continue;
|
|
|
|
/*
|
|
* If the 'zoned' property is set, then zfs_is_mountable()
|
|
* will have already bailed out if we are in the global zone.
|
|
* But local zones cannot be NFS servers, so we ignore it for
|
|
* local zones as well.
|
|
*/
|
|
if (zfs_prop_get_int(zhp, ZFS_PROP_ZONED))
|
|
continue;
|
|
|
|
share = sa_find_share(hdl->libzfs_sharehdl, mountpoint);
|
|
if (share == NULL) {
|
|
/*
|
|
* This may be a new file system that was just
|
|
* created so isn't in the internal cache
|
|
* (second time through). Rather than
|
|
* reloading the entire configuration, we can
|
|
* assume ZFS has done the checking and it is
|
|
* safe to add this to the internal
|
|
* configuration.
|
|
*/
|
|
if (sa_zfs_process_share(hdl->libzfs_sharehdl,
|
|
NULL, NULL, mountpoint,
|
|
proto_table[*curr_proto].p_name, sourcetype,
|
|
shareopts, sourcestr, zhp->zfs_name) != SA_OK) {
|
|
(void) zfs_error_fmt(hdl,
|
|
proto_table[*curr_proto].p_share_err,
|
|
dgettext(TEXT_DOMAIN, "cannot share '%s'"),
|
|
zfs_get_name(zhp));
|
|
return (-1);
|
|
}
|
|
hdl->libzfs_shareflags |= ZFSSHARE_MISS;
|
|
share = sa_find_share(hdl->libzfs_sharehdl,
|
|
mountpoint);
|
|
}
|
|
if (share != NULL) {
|
|
int err;
|
|
err = sa_enable_share(share,
|
|
proto_table[*curr_proto].p_name);
|
|
if (err != SA_OK) {
|
|
(void) zfs_error_fmt(hdl,
|
|
proto_table[*curr_proto].p_share_err,
|
|
dgettext(TEXT_DOMAIN, "cannot share '%s'"),
|
|
zfs_get_name(zhp));
|
|
return (-1);
|
|
}
|
|
} else {
|
|
(void) zfs_error_fmt(hdl,
|
|
proto_table[*curr_proto].p_share_err,
|
|
dgettext(TEXT_DOMAIN, "cannot share '%s'"),
|
|
zfs_get_name(zhp));
|
|
return (-1);
|
|
}
|
|
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
|
|
int
|
|
zfs_share_nfs(zfs_handle_t *zhp)
|
|
{
|
|
return (zfs_share_proto(zhp, nfs_only));
|
|
}
|
|
|
|
int
|
|
zfs_share_smb(zfs_handle_t *zhp)
|
|
{
|
|
return (zfs_share_proto(zhp, smb_only));
|
|
}
|
|
|
|
int
|
|
zfs_shareall(zfs_handle_t *zhp)
|
|
{
|
|
return (zfs_share_proto(zhp, share_all_proto));
|
|
}
|
|
|
|
/*
|
|
* Unshare a filesystem by mountpoint.
|
|
*/
|
|
static int
|
|
unshare_one(libzfs_handle_t *hdl, const char *name, const char *mountpoint,
|
|
zfs_share_proto_t proto)
|
|
{
|
|
sa_share_t share;
|
|
int err;
|
|
char *mntpt;
|
|
/*
|
|
* Mountpoint could get trashed if libshare calls getmntany
|
|
* which it does during API initialization, so strdup the
|
|
* value.
|
|
*/
|
|
mntpt = zfs_strdup(hdl, mountpoint);
|
|
|
|
/* make sure libshare initialized */
|
|
if ((err = zfs_init_libshare(hdl, SA_INIT_SHARE_API)) != SA_OK) {
|
|
free(mntpt); /* don't need the copy anymore */
|
|
return (zfs_error_fmt(hdl, EZFS_SHARENFSFAILED,
|
|
dgettext(TEXT_DOMAIN, "cannot unshare '%s': %s"),
|
|
name, sa_errorstr(err)));
|
|
}
|
|
|
|
share = sa_find_share(hdl->libzfs_sharehdl, mntpt);
|
|
free(mntpt); /* don't need the copy anymore */
|
|
|
|
if (share != NULL) {
|
|
err = sa_disable_share(share, proto_table[proto].p_name);
|
|
if (err != SA_OK) {
|
|
return (zfs_error_fmt(hdl, EZFS_UNSHARENFSFAILED,
|
|
dgettext(TEXT_DOMAIN, "cannot unshare '%s': %s"),
|
|
name, sa_errorstr(err)));
|
|
}
|
|
} else {
|
|
return (zfs_error_fmt(hdl, EZFS_UNSHARENFSFAILED,
|
|
dgettext(TEXT_DOMAIN, "cannot unshare '%s': not found"),
|
|
name));
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Unshare the given filesystem.
|
|
*/
|
|
int
|
|
zfs_unshare_proto(zfs_handle_t *zhp, const char *mountpoint,
|
|
zfs_share_proto_t *proto)
|
|
{
|
|
libzfs_handle_t *hdl = zhp->zfs_hdl;
|
|
struct mnttab entry;
|
|
char *mntpt = NULL;
|
|
|
|
/* check to see if need to unmount the filesystem */
|
|
if (mountpoint != NULL)
|
|
mountpoint = mntpt = zfs_strdup(hdl, mountpoint);
|
|
|
|
if (mountpoint != NULL || ((zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM) &&
|
|
libzfs_mnttab_find(hdl, zfs_get_name(zhp), &entry) == 0)) {
|
|
zfs_share_proto_t *curr_proto;
|
|
|
|
if (mountpoint == NULL)
|
|
mntpt = zfs_strdup(zhp->zfs_hdl, entry.mnt_mountp);
|
|
|
|
for (curr_proto = proto; *curr_proto != PROTO_END;
|
|
curr_proto++) {
|
|
|
|
if (is_shared(hdl, mntpt, *curr_proto) &&
|
|
unshare_one(hdl, zhp->zfs_name,
|
|
mntpt, *curr_proto) != 0) {
|
|
if (mntpt != NULL)
|
|
free(mntpt);
|
|
return (-1);
|
|
}
|
|
}
|
|
}
|
|
if (mntpt != NULL)
|
|
free(mntpt);
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
zfs_unshare_nfs(zfs_handle_t *zhp, const char *mountpoint)
|
|
{
|
|
return (zfs_unshare_proto(zhp, mountpoint, nfs_only));
|
|
}
|
|
|
|
int
|
|
zfs_unshare_smb(zfs_handle_t *zhp, const char *mountpoint)
|
|
{
|
|
return (zfs_unshare_proto(zhp, mountpoint, smb_only));
|
|
}
|
|
|
|
/*
|
|
* Same as zfs_unmountall(), but for NFS and SMB unshares.
|
|
*/
|
|
int
|
|
zfs_unshareall_proto(zfs_handle_t *zhp, zfs_share_proto_t *proto)
|
|
{
|
|
prop_changelist_t *clp;
|
|
int ret;
|
|
|
|
clp = changelist_gather(zhp, ZFS_PROP_SHARENFS, 0, 0);
|
|
if (clp == NULL)
|
|
return (-1);
|
|
|
|
ret = changelist_unshare(clp, proto);
|
|
changelist_free(clp);
|
|
|
|
return (ret);
|
|
}
|
|
|
|
int
|
|
zfs_unshareall_nfs(zfs_handle_t *zhp)
|
|
{
|
|
return (zfs_unshareall_proto(zhp, nfs_only));
|
|
}
|
|
|
|
int
|
|
zfs_unshareall_smb(zfs_handle_t *zhp)
|
|
{
|
|
return (zfs_unshareall_proto(zhp, smb_only));
|
|
}
|
|
|
|
int
|
|
zfs_unshareall(zfs_handle_t *zhp)
|
|
{
|
|
return (zfs_unshareall_proto(zhp, share_all_proto));
|
|
}
|
|
|
|
int
|
|
zfs_unshareall_bypath(zfs_handle_t *zhp, const char *mountpoint)
|
|
{
|
|
return (zfs_unshare_proto(zhp, mountpoint, share_all_proto));
|
|
}
|
|
|
|
/*
|
|
* Remove the mountpoint associated with the current dataset, if necessary.
|
|
* We only remove the underlying directory if:
|
|
*
|
|
* - The mountpoint is not 'none' or 'legacy'
|
|
* - The mountpoint is non-empty
|
|
* - The mountpoint is the default or inherited
|
|
* - The 'zoned' property is set, or we're in a local zone
|
|
*
|
|
* Any other directories we leave alone.
|
|
*/
|
|
void
|
|
remove_mountpoint(zfs_handle_t *zhp)
|
|
{
|
|
char mountpoint[ZFS_MAXPROPLEN];
|
|
zprop_source_t source;
|
|
|
|
if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint),
|
|
&source))
|
|
return;
|
|
|
|
if (source == ZPROP_SRC_DEFAULT ||
|
|
source == ZPROP_SRC_INHERITED) {
|
|
/*
|
|
* Try to remove the directory, silently ignoring any errors.
|
|
* The filesystem may have since been removed or moved around,
|
|
* and this error isn't really useful to the administrator in
|
|
* any way.
|
|
*/
|
|
(void) rmdir(mountpoint);
|
|
}
|
|
}
|
|
|
|
void
|
|
libzfs_add_handle(get_all_cb_t *cbp, zfs_handle_t *zhp)
|
|
{
|
|
if (cbp->cb_alloc == cbp->cb_used) {
|
|
size_t newsz;
|
|
void *ptr;
|
|
|
|
newsz = cbp->cb_alloc ? cbp->cb_alloc * 2 : 64;
|
|
ptr = zfs_realloc(zhp->zfs_hdl,
|
|
cbp->cb_handles, cbp->cb_alloc * sizeof (void *),
|
|
newsz * sizeof (void *));
|
|
cbp->cb_handles = ptr;
|
|
cbp->cb_alloc = newsz;
|
|
}
|
|
cbp->cb_handles[cbp->cb_used++] = zhp;
|
|
}
|
|
|
|
static int
|
|
mount_cb(zfs_handle_t *zhp, void *data)
|
|
{
|
|
get_all_cb_t *cbp = data;
|
|
|
|
if (!(zfs_get_type(zhp) & ZFS_TYPE_FILESYSTEM)) {
|
|
zfs_close(zhp);
|
|
return (0);
|
|
}
|
|
|
|
if (zfs_prop_get_int(zhp, ZFS_PROP_CANMOUNT) == ZFS_CANMOUNT_NOAUTO) {
|
|
zfs_close(zhp);
|
|
return (0);
|
|
}
|
|
|
|
libzfs_add_handle(cbp, zhp);
|
|
if (zfs_iter_filesystems(zhp, mount_cb, cbp) != 0) {
|
|
zfs_close(zhp);
|
|
return (-1);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
libzfs_dataset_cmp(const void *a, const void *b)
|
|
{
|
|
zfs_handle_t **za = (zfs_handle_t **)a;
|
|
zfs_handle_t **zb = (zfs_handle_t **)b;
|
|
char mounta[MAXPATHLEN];
|
|
char mountb[MAXPATHLEN];
|
|
boolean_t gota, gotb;
|
|
|
|
if ((gota = (zfs_get_type(*za) == ZFS_TYPE_FILESYSTEM)) != 0)
|
|
verify(zfs_prop_get(*za, ZFS_PROP_MOUNTPOINT, mounta,
|
|
sizeof (mounta), NULL, NULL, 0, B_FALSE) == 0);
|
|
if ((gotb = (zfs_get_type(*zb) == ZFS_TYPE_FILESYSTEM)) != 0)
|
|
verify(zfs_prop_get(*zb, ZFS_PROP_MOUNTPOINT, mountb,
|
|
sizeof (mountb), NULL, NULL, 0, B_FALSE) == 0);
|
|
|
|
if (gota && gotb)
|
|
return (strcmp(mounta, mountb));
|
|
|
|
if (gota)
|
|
return (-1);
|
|
if (gotb)
|
|
return (1);
|
|
|
|
return (strcmp(zfs_get_name(a), zfs_get_name(b)));
|
|
}
|
|
|
|
/*
|
|
* Mount and share all datasets within the given pool. This assumes that no
|
|
* datasets within the pool are currently mounted. Because users can create
|
|
* complicated nested hierarchies of mountpoints, we first gather all the
|
|
* datasets and mountpoints within the pool, and sort them by mountpoint. Once
|
|
* we have the list of all filesystems, we iterate over them in order and mount
|
|
* and/or share each one.
|
|
*/
|
|
#pragma weak zpool_mount_datasets = zpool_enable_datasets
|
|
int
|
|
zpool_enable_datasets(zpool_handle_t *zhp, const char *mntopts, int flags)
|
|
{
|
|
get_all_cb_t cb = { 0 };
|
|
libzfs_handle_t *hdl = zhp->zpool_hdl;
|
|
zfs_handle_t *zfsp;
|
|
int i, ret = -1;
|
|
int *good;
|
|
|
|
/*
|
|
* Gather all non-snap datasets within the pool.
|
|
*/
|
|
if ((zfsp = zfs_open(hdl, zhp->zpool_name, ZFS_TYPE_DATASET)) == NULL)
|
|
goto out;
|
|
|
|
libzfs_add_handle(&cb, zfsp);
|
|
if (zfs_iter_filesystems(zfsp, mount_cb, &cb) != 0)
|
|
goto out;
|
|
/*
|
|
* Sort the datasets by mountpoint.
|
|
*/
|
|
qsort(cb.cb_handles, cb.cb_used, sizeof (void *),
|
|
libzfs_dataset_cmp);
|
|
|
|
/*
|
|
* And mount all the datasets, keeping track of which ones
|
|
* succeeded or failed.
|
|
*/
|
|
if ((good = zfs_alloc(zhp->zpool_hdl,
|
|
cb.cb_used * sizeof (int))) == NULL)
|
|
goto out;
|
|
|
|
ret = 0;
|
|
for (i = 0; i < cb.cb_used; i++) {
|
|
if (zfs_mount(cb.cb_handles[i], mntopts, flags) != 0)
|
|
ret = -1;
|
|
else
|
|
good[i] = 1;
|
|
}
|
|
|
|
/*
|
|
* Then share all the ones that need to be shared. This needs
|
|
* to be a separate pass in order to avoid excessive reloading
|
|
* of the configuration. Good should never be NULL since
|
|
* zfs_alloc is supposed to exit if memory isn't available.
|
|
*/
|
|
for (i = 0; i < cb.cb_used; i++) {
|
|
if (good[i] && zfs_share(cb.cb_handles[i]) != 0)
|
|
ret = -1;
|
|
}
|
|
|
|
free(good);
|
|
|
|
out:
|
|
for (i = 0; i < cb.cb_used; i++)
|
|
zfs_close(cb.cb_handles[i]);
|
|
free(cb.cb_handles);
|
|
|
|
return (ret);
|
|
}
|
|
|
|
static int
|
|
mountpoint_compare(const void *a, const void *b)
|
|
{
|
|
const char *mounta = *((char **)a);
|
|
const char *mountb = *((char **)b);
|
|
|
|
return (strcmp(mountb, mounta));
|
|
}
|
|
|
|
/* alias for 2002/240 */
|
|
#pragma weak zpool_unmount_datasets = zpool_disable_datasets
|
|
/*
|
|
* Unshare and unmount all datasets within the given pool. We don't want to
|
|
* rely on traversing the DSL to discover the filesystems within the pool,
|
|
* because this may be expensive (if not all of them are mounted), and can fail
|
|
* arbitrarily (on I/O error, for example). Instead, we walk /etc/mtab and
|
|
* gather all the filesystems that are currently mounted.
|
|
*/
|
|
int
|
|
zpool_disable_datasets(zpool_handle_t *zhp, boolean_t force)
|
|
{
|
|
int used, alloc;
|
|
struct mnttab entry;
|
|
size_t namelen;
|
|
char **mountpoints = NULL;
|
|
zfs_handle_t **datasets = NULL;
|
|
libzfs_handle_t *hdl = zhp->zpool_hdl;
|
|
int i;
|
|
int ret = -1;
|
|
int flags = (force ? MS_FORCE : 0);
|
|
|
|
namelen = strlen(zhp->zpool_name);
|
|
|
|
rewind(hdl->libzfs_mnttab);
|
|
used = alloc = 0;
|
|
while (getmntent(hdl->libzfs_mnttab, &entry) == 0) {
|
|
/*
|
|
* Ignore non-ZFS entries.
|
|
*/
|
|
if (entry.mnt_fstype == NULL ||
|
|
strcmp(entry.mnt_fstype, MNTTYPE_ZFS) != 0)
|
|
continue;
|
|
|
|
/*
|
|
* Ignore filesystems not within this pool.
|
|
*/
|
|
if (entry.mnt_mountp == NULL ||
|
|
strncmp(entry.mnt_special, zhp->zpool_name, namelen) != 0 ||
|
|
(entry.mnt_special[namelen] != '/' &&
|
|
entry.mnt_special[namelen] != '\0'))
|
|
continue;
|
|
|
|
/*
|
|
* At this point we've found a filesystem within our pool. Add
|
|
* it to our growing list.
|
|
*/
|
|
if (used == alloc) {
|
|
if (alloc == 0) {
|
|
if ((mountpoints = zfs_alloc(hdl,
|
|
8 * sizeof (void *))) == NULL)
|
|
goto out;
|
|
|
|
if ((datasets = zfs_alloc(hdl,
|
|
8 * sizeof (void *))) == NULL)
|
|
goto out;
|
|
|
|
alloc = 8;
|
|
} else {
|
|
void *ptr;
|
|
|
|
if ((ptr = zfs_realloc(hdl, mountpoints,
|
|
alloc * sizeof (void *),
|
|
alloc * 2 * sizeof (void *))) == NULL)
|
|
goto out;
|
|
mountpoints = ptr;
|
|
|
|
if ((ptr = zfs_realloc(hdl, datasets,
|
|
alloc * sizeof (void *),
|
|
alloc * 2 * sizeof (void *))) == NULL)
|
|
goto out;
|
|
datasets = ptr;
|
|
|
|
alloc *= 2;
|
|
}
|
|
}
|
|
|
|
if ((mountpoints[used] = zfs_strdup(hdl,
|
|
entry.mnt_mountp)) == NULL)
|
|
goto out;
|
|
|
|
/*
|
|
* This is allowed to fail, in case there is some I/O error. It
|
|
* is only used to determine if we need to remove the underlying
|
|
* mountpoint, so failure is not fatal.
|
|
*/
|
|
datasets[used] = make_dataset_handle(hdl, entry.mnt_special);
|
|
|
|
used++;
|
|
}
|
|
|
|
/*
|
|
* At this point, we have the entire list of filesystems, so sort it by
|
|
* mountpoint.
|
|
*/
|
|
qsort(mountpoints, used, sizeof (char *), mountpoint_compare);
|
|
|
|
/*
|
|
* Walk through and first unshare everything.
|
|
*/
|
|
for (i = 0; i < used; i++) {
|
|
zfs_share_proto_t *curr_proto;
|
|
for (curr_proto = share_all_proto; *curr_proto != PROTO_END;
|
|
curr_proto++) {
|
|
if (is_shared(hdl, mountpoints[i], *curr_proto) &&
|
|
unshare_one(hdl, mountpoints[i],
|
|
mountpoints[i], *curr_proto) != 0)
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Now unmount everything, removing the underlying directories as
|
|
* appropriate.
|
|
*/
|
|
for (i = 0; i < used; i++) {
|
|
if (unmount_one(hdl, mountpoints[i], flags) != 0)
|
|
goto out;
|
|
}
|
|
|
|
for (i = 0; i < used; i++) {
|
|
if (datasets[i])
|
|
remove_mountpoint(datasets[i]);
|
|
}
|
|
|
|
ret = 0;
|
|
out:
|
|
for (i = 0; i < used; i++) {
|
|
if (datasets[i])
|
|
zfs_close(datasets[i]);
|
|
free(mountpoints[i]);
|
|
}
|
|
free(datasets);
|
|
free(mountpoints);
|
|
|
|
return (ret);
|
|
}
|