This deadlock may manifest itself in slightly different ways but
at the core it is caused by a memory allocation blocking on file-
system reclaim in the zio pipeline. This is normally impossible
because zio_execute() disables filesystem reclaim by setting
PF_FSTRANS on the thread. However, kmem cache allocations may
still indirectly block on file system reclaim while holding the
critical vq->vq_lock as shown below.
To resolve this issue zio_buf_alloc_flags() is introduced which
allocation flags to be passed. This can then be used in
vdev_queue_aggregate() with KM_NOSLEEP when allocating the
aggregate IO buffer. Since aggregating the IO is purely a
performance optimization we want this to either succeed or fail
quickly. Trying too hard to allocate this memory under the
vq->vq_lock can negatively impact performance and result in
this deadlock.
* z_wr_iss
zio_vdev_io_start
vdev_queue_io -> Takes vq->vq_lock
vdev_queue_io_to_issue
vdev_queue_aggregate
zio_buf_alloc -> Waiting on spl_kmem_cache process
* z_wr_int
zio_vdev_io_done
vdev_queue_io_done
mutex_lock -> Waiting on vq->vq_lock held by z_wr_iss
* txg_sync
spa_sync
dsl_pool_sync
zio_wait -> Waiting on zio being handled by z_wr_int
* spl_kmem_cache
spl_cache_grow_work
kv_alloc
spl_vmalloc
...
evict
zpl_evict_inode
zfs_inactive
dmu_tx_wait
txg_wait_open -> Waiting on txg_sync
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Chunwei Chen <david.chen@osnexus.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
Closes#3808Closes#3867