zfs/module/zfs/spa.c

10182 lines
283 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or https://opensource.org/licenses/CDDL-1.0.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2011, 2020 by Delphix. All rights reserved.
* Copyright (c) 2018, Nexenta Systems, Inc. All rights reserved.
* Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
* Copyright 2013 Saso Kiselkov. All rights reserved.
* Copyright (c) 2014 Integros [integros.com]
* Copyright 2016 Toomas Soome <tsoome@me.com>
* Copyright (c) 2016 Actifio, Inc. All rights reserved.
* Copyright 2018 Joyent, Inc.
* Copyright (c) 2017, 2019, Datto Inc. All rights reserved.
* Copyright 2017 Joyent, Inc.
* Copyright (c) 2017, Intel Corporation.
* Copyright (c) 2021, Colm Buckley <colm@tuatha.org>
* Copyright (c) 2023 Hewlett Packard Enterprise Development LP.
*/
/*
* SPA: Storage Pool Allocator
*
* This file contains all the routines used when modifying on-disk SPA state.
* This includes opening, importing, destroying, exporting a pool, and syncing a
* pool.
*/
#include <sys/zfs_context.h>
#include <sys/fm/fs/zfs.h>
#include <sys/spa_impl.h>
#include <sys/zio.h>
#include <sys/zio_checksum.h>
#include <sys/dmu.h>
#include <sys/dmu_tx.h>
#include <sys/zap.h>
#include <sys/zil.h>
#include <sys/brt.h>
#include <sys/ddt.h>
#include <sys/vdev_impl.h>
#include <sys/vdev_removal.h>
#include <sys/vdev_indirect_mapping.h>
#include <sys/vdev_indirect_births.h>
#include <sys/vdev_initialize.h>
#include <sys/vdev_rebuild.h>
#include <sys/vdev_trim.h>
#include <sys/vdev_disk.h>
#include <sys/vdev_draid.h>
#include <sys/metaslab.h>
#include <sys/metaslab_impl.h>
#include <sys/mmp.h>
#include <sys/uberblock_impl.h>
#include <sys/txg.h>
#include <sys/avl.h>
#include <sys/bpobj.h>
#include <sys/dmu_traverse.h>
#include <sys/dmu_objset.h>
#include <sys/unique.h>
#include <sys/dsl_pool.h>
#include <sys/dsl_dataset.h>
#include <sys/dsl_dir.h>
#include <sys/dsl_prop.h>
#include <sys/dsl_synctask.h>
#include <sys/fs/zfs.h>
#include <sys/arc.h>
#include <sys/callb.h>
#include <sys/systeminfo.h>
#include <sys/zfs_ioctl.h>
#include <sys/dsl_scan.h>
#include <sys/zfeature.h>
#include <sys/dsl_destroy.h>
#include <sys/zvol.h>
#ifdef _KERNEL
#include <sys/fm/protocol.h>
#include <sys/fm/util.h>
#include <sys/callb.h>
#include <sys/zone.h>
#include <sys/vmsystm.h>
#endif /* _KERNEL */
#include "zfs_prop.h"
#include "zfs_comutil.h"
/*
* The interval, in seconds, at which failed configuration cache file writes
* should be retried.
*/
int zfs_ccw_retry_interval = 300;
typedef enum zti_modes {
ZTI_MODE_FIXED, /* value is # of threads (min 1) */
ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */
ZTI_MODE_SCALE, /* Taskqs scale with CPUs. */
ZTI_MODE_NULL, /* don't create a taskq */
ZTI_NMODES
} zti_modes_t;
#define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) }
#define ZTI_PCT(n) { ZTI_MODE_ONLINE_PERCENT, (n), 1 }
#define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 }
#define ZTI_SCALE { ZTI_MODE_SCALE, 0, 1 }
#define ZTI_NULL { ZTI_MODE_NULL, 0, 0 }
#define ZTI_N(n) ZTI_P(n, 1)
#define ZTI_ONE ZTI_N(1)
typedef struct zio_taskq_info {
zti_modes_t zti_mode;
uint_t zti_value;
uint_t zti_count;
} zio_taskq_info_t;
static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
"iss", "iss_h", "int", "int_h"
};
/*
* This table defines the taskq settings for each ZFS I/O type. When
* initializing a pool, we use this table to create an appropriately sized
* taskq. Some operations are low volume and therefore have a small, static
* number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
* macros. Other operations process a large amount of data; the ZTI_BATCH
* macro causes us to create a taskq oriented for throughput. Some operations
* are so high frequency and short-lived that the taskq itself can become a
* point of lock contention. The ZTI_P(#, #) macro indicates that we need an
* additional degree of parallelism specified by the number of threads per-
* taskq and the number of taskqs; when dispatching an event in this case, the
* particular taskq is chosen at random. ZTI_SCALE is similar to ZTI_BATCH,
* but with number of taskqs also scaling with number of CPUs.
*
* The different taskq priorities are to handle the different contexts (issue
* and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
* need to be handled with minimum delay.
*/
static const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
/* ISSUE ISSUE_HIGH INTR INTR_HIGH */
{ ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */
{ ZTI_N(8), ZTI_NULL, ZTI_SCALE, ZTI_NULL }, /* READ */
{ ZTI_BATCH, ZTI_N(5), ZTI_SCALE, ZTI_N(5) }, /* WRITE */
{ ZTI_SCALE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */
{ ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */
{ ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */
{ ZTI_N(4), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* TRIM */
};
static void spa_sync_version(void *arg, dmu_tx_t *tx);
static void spa_sync_props(void *arg, dmu_tx_t *tx);
static boolean_t spa_has_active_shared_spare(spa_t *spa);
static int spa_load_impl(spa_t *spa, spa_import_type_t type,
const char **ereport);
static void spa_vdev_resilver_done(spa_t *spa);
static uint_t zio_taskq_batch_pct = 80; /* 1 thread per cpu in pset */
static uint_t zio_taskq_batch_tpq; /* threads per taskq */
static const boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
static const uint_t zio_taskq_basedc = 80; /* base duty cycle */
static const boolean_t spa_create_process = B_TRUE; /* no process => no sysdc */
/*
* Report any spa_load_verify errors found, but do not fail spa_load.
* This is used by zdb to analyze non-idle pools.
*/
boolean_t spa_load_verify_dryrun = B_FALSE;
/*
* Allow read spacemaps in case of readonly import (spa_mode == SPA_MODE_READ).
* This is used by zdb for spacemaps verification.
*/
boolean_t spa_mode_readable_spacemaps = B_FALSE;
/*
* This (illegal) pool name is used when temporarily importing a spa_t in order
* to get the vdev stats associated with the imported devices.
*/
#define TRYIMPORT_NAME "$import"
/*
* For debugging purposes: print out vdev tree during pool import.
*/
static int spa_load_print_vdev_tree = B_FALSE;
/*
* A non-zero value for zfs_max_missing_tvds means that we allow importing
* pools with missing top-level vdevs. This is strictly intended for advanced
* pool recovery cases since missing data is almost inevitable. Pools with
* missing devices can only be imported read-only for safety reasons, and their
* fail-mode will be automatically set to "continue".
*
* With 1 missing vdev we should be able to import the pool and mount all
* datasets. User data that was not modified after the missing device has been
* added should be recoverable. This means that snapshots created prior to the
* addition of that device should be completely intact.
*
* With 2 missing vdevs, some datasets may fail to mount since there are
* dataset statistics that are stored as regular metadata. Some data might be
* recoverable if those vdevs were added recently.
*
* With 3 or more missing vdevs, the pool is severely damaged and MOS entries
* may be missing entirely. Chances of data recovery are very low. Note that
* there are also risks of performing an inadvertent rewind as we might be
* missing all the vdevs with the latest uberblocks.
*/
uint64_t zfs_max_missing_tvds = 0;
/*
* The parameters below are similar to zfs_max_missing_tvds but are only
* intended for a preliminary open of the pool with an untrusted config which
* might be incomplete or out-dated.
*
* We are more tolerant for pools opened from a cachefile since we could have
* an out-dated cachefile where a device removal was not registered.
* We could have set the limit arbitrarily high but in the case where devices
* are really missing we would want to return the proper error codes; we chose
* SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available
* and we get a chance to retrieve the trusted config.
*/
uint64_t zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1;
/*
* In the case where config was assembled by scanning device paths (/dev/dsks
* by default) we are less tolerant since all the existing devices should have
* been detected and we want spa_load to return the right error codes.
*/
uint64_t zfs_max_missing_tvds_scan = 0;
/*
* Debugging aid that pauses spa_sync() towards the end.
*/
static const boolean_t zfs_pause_spa_sync = B_FALSE;
/*
* Variables to indicate the livelist condense zthr func should wait at certain
* points for the livelist to be removed - used to test condense/destroy races
*/
static int zfs_livelist_condense_zthr_pause = 0;
static int zfs_livelist_condense_sync_pause = 0;
/*
* Variables to track whether or not condense cancellation has been
* triggered in testing.
*/
static int zfs_livelist_condense_sync_cancel = 0;
static int zfs_livelist_condense_zthr_cancel = 0;
/*
* Variable to track whether or not extra ALLOC blkptrs were added to a
* livelist entry while it was being condensed (caused by the way we track
* remapped blkptrs in dbuf_remap_impl)
*/
static int zfs_livelist_condense_new_alloc = 0;
/*
* ==========================================================================
* SPA properties routines
* ==========================================================================
*/
/*
* Add a (source=src, propname=propval) list to an nvlist.
*/
static void
spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, const char *strval,
uint64_t intval, zprop_source_t src)
{
const char *propname = zpool_prop_to_name(prop);
nvlist_t *propval;
propval = fnvlist_alloc();
fnvlist_add_uint64(propval, ZPROP_SOURCE, src);
if (strval != NULL)
fnvlist_add_string(propval, ZPROP_VALUE, strval);
else
fnvlist_add_uint64(propval, ZPROP_VALUE, intval);
fnvlist_add_nvlist(nvl, propname, propval);
nvlist_free(propval);
}
/*
* Add a user property (source=src, propname=propval) to an nvlist.
*/
static void
spa_prop_add_user(nvlist_t *nvl, const char *propname, char *strval,
zprop_source_t src)
{
nvlist_t *propval;
VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
nvlist_free(propval);
}
/*
* Get property values from the spa configuration.
*/
static void
spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
{
vdev_t *rvd = spa->spa_root_vdev;
dsl_pool_t *pool = spa->spa_dsl_pool;
uint64_t size, alloc, cap, version;
const zprop_source_t src = ZPROP_SRC_NONE;
spa_config_dirent_t *dp;
metaslab_class_t *mc = spa_normal_class(spa);
ASSERT(MUTEX_HELD(&spa->spa_props_lock));
if (rvd != NULL) {
alloc = metaslab_class_get_alloc(mc);
alloc += metaslab_class_get_alloc(spa_special_class(spa));
alloc += metaslab_class_get_alloc(spa_dedup_class(spa));
alloc += metaslab_class_get_alloc(spa_embedded_log_class(spa));
size = metaslab_class_get_space(mc);
size += metaslab_class_get_space(spa_special_class(spa));
size += metaslab_class_get_space(spa_dedup_class(spa));
size += metaslab_class_get_space(spa_embedded_log_class(spa));
spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
size - alloc, src);
spa_prop_add_list(*nvp, ZPOOL_PROP_CHECKPOINT, NULL,
spa->spa_checkpoint_info.sci_dspace, src);
spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
metaslab_class_fragmentation(mc), src);
spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
metaslab_class_expandable_space(mc), src);
spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
(spa_mode(spa) == SPA_MODE_READ), src);
cap = (size == 0) ? 0 : (alloc * 100 / size);
spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
ddt_get_pool_dedup_ratio(spa), src);
spa_prop_add_list(*nvp, ZPOOL_PROP_BCLONEUSED, NULL,
brt_get_used(spa), src);
spa_prop_add_list(*nvp, ZPOOL_PROP_BCLONESAVED, NULL,
brt_get_saved(spa), src);
spa_prop_add_list(*nvp, ZPOOL_PROP_BCLONERATIO, NULL,
brt_get_ratio(spa), src);
spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
rvd->vdev_state, src);
version = spa_version(spa);
if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) {
spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL,
version, ZPROP_SRC_DEFAULT);
} else {
spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL,
version, ZPROP_SRC_LOCAL);
}
spa_prop_add_list(*nvp, ZPOOL_PROP_LOAD_GUID,
NULL, spa_load_guid(spa), src);
}
if (pool != NULL) {
/*
* The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
* when opening pools before this version freedir will be NULL.
*/
if (pool->dp_free_dir != NULL) {
spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
src);
} else {
spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
NULL, 0, src);
}
if (pool->dp_leak_dir != NULL) {
spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
src);
} else {
spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
NULL, 0, src);
}
}
spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
if (spa->spa_comment != NULL) {
spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
0, ZPROP_SRC_LOCAL);
}
if (spa->spa_compatibility != NULL) {
spa_prop_add_list(*nvp, ZPOOL_PROP_COMPATIBILITY,
spa->spa_compatibility, 0, ZPROP_SRC_LOCAL);
}
if (spa->spa_root != NULL)
spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
0, ZPROP_SRC_LOCAL);
if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
} else {
spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
}
if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) {
spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
DNODE_MAX_SIZE, ZPROP_SRC_NONE);
} else {
spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
DNODE_MIN_SIZE, ZPROP_SRC_NONE);
}
if ((dp = list_head(&spa->spa_config_list)) != NULL) {
if (dp->scd_path == NULL) {
spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
"none", 0, ZPROP_SRC_LOCAL);
} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
dp->scd_path, 0, ZPROP_SRC_LOCAL);
}
}
}
/*
* Get zpool property values.
*/
int
spa_prop_get(spa_t *spa, nvlist_t **nvp)
{
objset_t *mos = spa->spa_meta_objset;
zap_cursor_t zc;
zap_attribute_t za;
dsl_pool_t *dp;
int err;
err = nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP);
if (err)
return (err);
dp = spa_get_dsl(spa);
dsl_pool_config_enter(dp, FTAG);
mutex_enter(&spa->spa_props_lock);
/*
* Get properties from the spa config.
*/
spa_prop_get_config(spa, nvp);
/* If no pool property object, no more prop to get. */
if (mos == NULL || spa->spa_pool_props_object == 0)
goto out;
/*
* Get properties from the MOS pool property object.
*/
for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
(err = zap_cursor_retrieve(&zc, &za)) == 0;
zap_cursor_advance(&zc)) {
uint64_t intval = 0;
char *strval = NULL;
zprop_source_t src = ZPROP_SRC_DEFAULT;
zpool_prop_t prop;
if ((prop = zpool_name_to_prop(za.za_name)) ==
ZPOOL_PROP_INVAL && !zfs_prop_user(za.za_name))
continue;
switch (za.za_integer_length) {
case 8:
/* integer property */
if (za.za_first_integer !=
zpool_prop_default_numeric(prop))
src = ZPROP_SRC_LOCAL;
if (prop == ZPOOL_PROP_BOOTFS) {
dsl_dataset_t *ds = NULL;
err = dsl_dataset_hold_obj(dp,
za.za_first_integer, FTAG, &ds);
if (err != 0)
break;
strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
KM_SLEEP);
dsl_dataset_name(ds, strval);
dsl_dataset_rele(ds, FTAG);
} else {
strval = NULL;
intval = za.za_first_integer;
}
spa_prop_add_list(*nvp, prop, strval, intval, src);
if (strval != NULL)
kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
break;
case 1:
/* string property */
strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
err = zap_lookup(mos, spa->spa_pool_props_object,
za.za_name, 1, za.za_num_integers, strval);
if (err) {
kmem_free(strval, za.za_num_integers);
break;
}
if (prop != ZPOOL_PROP_INVAL) {
spa_prop_add_list(*nvp, prop, strval, 0, src);
} else {
src = ZPROP_SRC_LOCAL;
spa_prop_add_user(*nvp, za.za_name, strval,
src);
}
kmem_free(strval, za.za_num_integers);
break;
default:
break;
}
}
zap_cursor_fini(&zc);
out:
mutex_exit(&spa->spa_props_lock);
dsl_pool_config_exit(dp, FTAG);
if (err && err != ENOENT) {
nvlist_free(*nvp);
*nvp = NULL;
return (err);
}
return (0);
}
/*
* Validate the given pool properties nvlist and modify the list
* for the property values to be set.
*/
static int
spa_prop_validate(spa_t *spa, nvlist_t *props)
{
nvpair_t *elem;
int error = 0, reset_bootfs = 0;
uint64_t objnum = 0;
boolean_t has_feature = B_FALSE;
elem = NULL;
while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
uint64_t intval;
const char *strval, *slash, *check, *fname;
const char *propname = nvpair_name(elem);
zpool_prop_t prop = zpool_name_to_prop(propname);
switch (prop) {
case ZPOOL_PROP_INVAL:
/*
* Sanitize the input.
*/
if (zfs_prop_user(propname)) {
if (strlen(propname) >= ZAP_MAXNAMELEN) {
error = SET_ERROR(ENAMETOOLONG);
break;
}
if (strlen(fnvpair_value_string(elem)) >=
ZAP_MAXVALUELEN) {
error = SET_ERROR(E2BIG);
break;
}
} else if (zpool_prop_feature(propname)) {
if (nvpair_type(elem) != DATA_TYPE_UINT64) {
error = SET_ERROR(EINVAL);
break;
}
if (nvpair_value_uint64(elem, &intval) != 0) {
error = SET_ERROR(EINVAL);
break;
}
if (intval != 0) {
error = SET_ERROR(EINVAL);
break;
}
fname = strchr(propname, '@') + 1;
if (zfeature_lookup_name(fname, NULL) != 0) {
error = SET_ERROR(EINVAL);
break;
}
has_feature = B_TRUE;
} else {
error = SET_ERROR(EINVAL);
break;
}
break;
case ZPOOL_PROP_VERSION:
error = nvpair_value_uint64(elem, &intval);
if (!error &&
(intval < spa_version(spa) ||
intval > SPA_VERSION_BEFORE_FEATURES ||
has_feature))
error = SET_ERROR(EINVAL);
break;
case ZPOOL_PROP_DELEGATION:
case ZPOOL_PROP_AUTOREPLACE:
case ZPOOL_PROP_LISTSNAPS:
case ZPOOL_PROP_AUTOEXPAND:
case ZPOOL_PROP_AUTOTRIM:
error = nvpair_value_uint64(elem, &intval);
if (!error && intval > 1)
error = SET_ERROR(EINVAL);
break;
case ZPOOL_PROP_MULTIHOST:
error = nvpair_value_uint64(elem, &intval);
if (!error && intval > 1)
error = SET_ERROR(EINVAL);
if (!error) {
uint32_t hostid = zone_get_hostid(NULL);
if (hostid)
spa->spa_hostid = hostid;
else
error = SET_ERROR(ENOTSUP);
}
break;
case ZPOOL_PROP_BOOTFS:
/*
* If the pool version is less than SPA_VERSION_BOOTFS,
* or the pool is still being created (version == 0),
* the bootfs property cannot be set.
*/
if (spa_version(spa) < SPA_VERSION_BOOTFS) {
error = SET_ERROR(ENOTSUP);
break;
}
/*
* Make sure the vdev config is bootable
*/
if (!vdev_is_bootable(spa->spa_root_vdev)) {
error = SET_ERROR(ENOTSUP);
break;
}
reset_bootfs = 1;
error = nvpair_value_string(elem, &strval);
if (!error) {
objset_t *os;
if (strval == NULL || strval[0] == '\0') {
objnum = zpool_prop_default_numeric(
ZPOOL_PROP_BOOTFS);
break;
}
error = dmu_objset_hold(strval, FTAG, &os);
if (error != 0)
break;
/* Must be ZPL. */
if (dmu_objset_type(os) != DMU_OST_ZFS) {
error = SET_ERROR(ENOTSUP);
} else {
objnum = dmu_objset_id(os);
}
dmu_objset_rele(os, FTAG);
}
break;
case ZPOOL_PROP_FAILUREMODE:
error = nvpair_value_uint64(elem, &intval);
if (!error && intval > ZIO_FAILURE_MODE_PANIC)
error = SET_ERROR(EINVAL);
/*
* This is a special case which only occurs when
* the pool has completely failed. This allows
* the user to change the in-core failmode property
* without syncing it out to disk (I/Os might
* currently be blocked). We do this by returning
* EIO to the caller (spa_prop_set) to trick it
* into thinking we encountered a property validation
* error.
*/
if (!error && spa_suspended(spa)) {
spa->spa_failmode = intval;
error = SET_ERROR(EIO);
}
break;
case ZPOOL_PROP_CACHEFILE:
if ((error = nvpair_value_string(elem, &strval)) != 0)
break;
if (strval[0] == '\0')
break;
if (strcmp(strval, "none") == 0)
break;
if (strval[0] != '/') {
error = SET_ERROR(EINVAL);
break;
}
slash = strrchr(strval, '/');
ASSERT(slash != NULL);
if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
strcmp(slash, "/..") == 0)
error = SET_ERROR(EINVAL);
break;
case ZPOOL_PROP_COMMENT:
if ((error = nvpair_value_string(elem, &strval)) != 0)
break;
for (check = strval; *check != '\0'; check++) {
if (!isprint(*check)) {
error = SET_ERROR(EINVAL);
break;
}
}
if (strlen(strval) > ZPROP_MAX_COMMENT)
error = SET_ERROR(E2BIG);
break;
default:
break;
}
if (error)
break;
}
(void) nvlist_remove_all(props,
zpool_prop_to_name(ZPOOL_PROP_DEDUPDITTO));
if (!error && reset_bootfs) {
error = nvlist_remove(props,
zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
if (!error) {
error = nvlist_add_uint64(props,
zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
}
}
return (error);
}
void
spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
{
const char *cachefile;
spa_config_dirent_t *dp;
if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
&cachefile) != 0)
return;
dp = kmem_alloc(sizeof (spa_config_dirent_t),
KM_SLEEP);
if (cachefile[0] == '\0')
dp->scd_path = spa_strdup(spa_config_path);
else if (strcmp(cachefile, "none") == 0)
dp->scd_path = NULL;
else
dp->scd_path = spa_strdup(cachefile);
list_insert_head(&spa->spa_config_list, dp);
if (need_sync)
spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
}
int
spa_prop_set(spa_t *spa, nvlist_t *nvp)
{
int error;
nvpair_t *elem = NULL;
boolean_t need_sync = B_FALSE;
if ((error = spa_prop_validate(spa, nvp)) != 0)
return (error);
while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
if (prop == ZPOOL_PROP_CACHEFILE ||
prop == ZPOOL_PROP_ALTROOT ||
prop == ZPOOL_PROP_READONLY)
continue;
if (prop == ZPOOL_PROP_INVAL &&
zfs_prop_user(nvpair_name(elem))) {
need_sync = B_TRUE;
break;
}
if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) {
uint64_t ver = 0;
if (prop == ZPOOL_PROP_VERSION) {
VERIFY(nvpair_value_uint64(elem, &ver) == 0);
} else {
ASSERT(zpool_prop_feature(nvpair_name(elem)));
ver = SPA_VERSION_FEATURES;
need_sync = B_TRUE;
}
/* Save time if the version is already set. */
if (ver == spa_version(spa))
continue;
/*
* In addition to the pool directory object, we might
* create the pool properties object, the features for
* read object, the features for write object, or the
* feature descriptions object.
*/
error = dsl_sync_task(spa->spa_name, NULL,
spa_sync_version, &ver,
6, ZFS_SPACE_CHECK_RESERVED);
if (error)
return (error);
continue;
}
need_sync = B_TRUE;
break;
}
if (need_sync) {
return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
nvp, 6, ZFS_SPACE_CHECK_RESERVED));
}
return (0);
}
/*
* If the bootfs property value is dsobj, clear it.
*/
void
spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
{
if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
VERIFY(zap_remove(spa->spa_meta_objset,
spa->spa_pool_props_object,
zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
spa->spa_bootfs = 0;
}
}
static int
spa_change_guid_check(void *arg, dmu_tx_t *tx)
{
uint64_t *newguid __maybe_unused = arg;
spa_t *spa = dmu_tx_pool(tx)->dp_spa;
vdev_t *rvd = spa->spa_root_vdev;
uint64_t vdev_state;
if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
int error = (spa_has_checkpoint(spa)) ?
ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
return (SET_ERROR(error));
}
spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
vdev_state = rvd->vdev_state;
spa_config_exit(spa, SCL_STATE, FTAG);
if (vdev_state != VDEV_STATE_HEALTHY)
return (SET_ERROR(ENXIO));
ASSERT3U(spa_guid(spa), !=, *newguid);
return (0);
}
static void
spa_change_guid_sync(void *arg, dmu_tx_t *tx)
{
uint64_t *newguid = arg;
spa_t *spa = dmu_tx_pool(tx)->dp_spa;
uint64_t oldguid;
vdev_t *rvd = spa->spa_root_vdev;
oldguid = spa_guid(spa);
spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
rvd->vdev_guid = *newguid;
rvd->vdev_guid_sum += (*newguid - oldguid);
vdev_config_dirty(rvd);
spa_config_exit(spa, SCL_STATE, FTAG);
spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
(u_longlong_t)oldguid, (u_longlong_t)*newguid);
}
/*
* Change the GUID for the pool. This is done so that we can later
* re-import a pool built from a clone of our own vdevs. We will modify
* the root vdev's guid, our own pool guid, and then mark all of our
* vdevs dirty. Note that we must make sure that all our vdevs are
* online when we do this, or else any vdevs that weren't present
* would be orphaned from our pool. We are also going to issue a
* sysevent to update any watchers.
*/
int
spa_change_guid(spa_t *spa)
{
int error;
uint64_t guid;
mutex_enter(&spa->spa_vdev_top_lock);
mutex_enter(&spa_namespace_lock);
guid = spa_generate_guid(NULL);
error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
if (error == 0) {
/*
* Clear the kobj flag from all the vdevs to allow
* vdev_cache_process_kobj_evt() to post events to all the
* vdevs since GUID is updated.
*/
vdev_clear_kobj_evt(spa->spa_root_vdev);
for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
vdev_clear_kobj_evt(spa->spa_l2cache.sav_vdevs[i]);
spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE);
spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID);
}
mutex_exit(&spa_namespace_lock);
mutex_exit(&spa->spa_vdev_top_lock);
return (error);
}
/*
* ==========================================================================
* SPA state manipulation (open/create/destroy/import/export)
* ==========================================================================
*/
static int
spa_error_entry_compare(const void *a, const void *b)
{
const spa_error_entry_t *sa = (const spa_error_entry_t *)a;
const spa_error_entry_t *sb = (const spa_error_entry_t *)b;
int ret;
ret = memcmp(&sa->se_bookmark, &sb->se_bookmark,
sizeof (zbookmark_phys_t));
return (TREE_ISIGN(ret));
}
/*
* Utility function which retrieves copies of the current logs and
* re-initializes them in the process.
*/
void
spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
{
ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
memcpy(last, &spa->spa_errlist_last, sizeof (avl_tree_t));
memcpy(scrub, &spa->spa_errlist_scrub, sizeof (avl_tree_t));
avl_create(&spa->spa_errlist_scrub,
spa_error_entry_compare, sizeof (spa_error_entry_t),
offsetof(spa_error_entry_t, se_avl));
avl_create(&spa->spa_errlist_last,
spa_error_entry_compare, sizeof (spa_error_entry_t),
offsetof(spa_error_entry_t, se_avl));
}
static void
spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
{
const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
enum zti_modes mode = ztip->zti_mode;
uint_t value = ztip->zti_value;
uint_t count = ztip->zti_count;
spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
uint_t cpus, flags = TASKQ_DYNAMIC;
boolean_t batch = B_FALSE;
switch (mode) {
case ZTI_MODE_FIXED:
ASSERT3U(value, >, 0);
break;
case ZTI_MODE_BATCH:
batch = B_TRUE;
flags |= TASKQ_THREADS_CPU_PCT;
value = MIN(zio_taskq_batch_pct, 100);
break;
case ZTI_MODE_SCALE:
flags |= TASKQ_THREADS_CPU_PCT;
/*
* We want more taskqs to reduce lock contention, but we want
* less for better request ordering and CPU utilization.
*/
cpus = MAX(1, boot_ncpus * zio_taskq_batch_pct / 100);
if (zio_taskq_batch_tpq > 0) {
count = MAX(1, (cpus + zio_taskq_batch_tpq / 2) /
zio_taskq_batch_tpq);
} else {
/*
* Prefer 6 threads per taskq, but no more taskqs
* than threads in them on large systems. For 80%:
*
* taskq taskq total
* cpus taskqs percent threads threads
* ------- ------- ------- ------- -------
* 1 1 80% 1 1
* 2 1 80% 1 1
* 4 1 80% 3 3
* 8 2 40% 3 6
* 16 3 27% 4 12
* 32 5 16% 5 25
* 64 7 11% 7 49
* 128 10 8% 10 100
* 256 14 6% 15 210
*/
count = 1 + cpus / 6;
while (count * count > cpus)
count--;
}
/* Limit each taskq within 100% to not trigger assertion. */
count = MAX(count, (zio_taskq_batch_pct + 99) / 100);
value = (zio_taskq_batch_pct + count / 2) / count;
break;
case ZTI_MODE_NULL:
tqs->stqs_count = 0;
tqs->stqs_taskq = NULL;
return;
default:
panic("unrecognized mode for %s_%s taskq (%u:%u) in "
"spa_activate()",
zio_type_name[t], zio_taskq_types[q], mode, value);
break;
}
ASSERT3U(count, >, 0);
tqs->stqs_count = count;
tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
for (uint_t i = 0; i < count; i++) {
taskq_t *tq;
char name[32];
if (count > 1)
(void) snprintf(name, sizeof (name), "%s_%s_%u",
zio_type_name[t], zio_taskq_types[q], i);
else
(void) snprintf(name, sizeof (name), "%s_%s",
zio_type_name[t], zio_taskq_types[q]);
if (zio_taskq_sysdc && spa->spa_proc != &p0) {
if (batch)
flags |= TASKQ_DC_BATCH;
(void) zio_taskq_basedc;
tq = taskq_create_sysdc(name, value, 50, INT_MAX,
spa->spa_proc, zio_taskq_basedc, flags);
} else {
pri_t pri = maxclsyspri;
/*
* The write issue taskq can be extremely CPU
* intensive. Run it at slightly less important
* priority than the other taskqs.
*
* Under Linux and FreeBSD this means incrementing
* the priority value as opposed to platforms like
* illumos where it should be decremented.
*
* On FreeBSD, if priorities divided by four (RQ_PPQ)
* are equal then a difference between them is
* insignificant.
*/
if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE) {
#if defined(__linux__)
pri++;
#elif defined(__FreeBSD__)
pri += 4;
#else
#error "unknown OS"
#endif
}
tq = taskq_create_proc(name, value, pri, 50,
INT_MAX, spa->spa_proc, flags);
}
tqs->stqs_taskq[i] = tq;
}
}
static void
spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
{
spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
if (tqs->stqs_taskq == NULL) {
ASSERT3U(tqs->stqs_count, ==, 0);
return;
}
for (uint_t i = 0; i < tqs->stqs_count; i++) {
ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
taskq_destroy(tqs->stqs_taskq[i]);
}
kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
tqs->stqs_taskq = NULL;
}
/*
* Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
* Note that a type may have multiple discrete taskqs to avoid lock contention
* on the taskq itself. In that case we choose which taskq at random by using
* the low bits of gethrtime().
*/
void
spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
{
spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
taskq_t *tq;
ASSERT3P(tqs->stqs_taskq, !=, NULL);
ASSERT3U(tqs->stqs_count, !=, 0);
if (tqs->stqs_count == 1) {
tq = tqs->stqs_taskq[0];
} else {
tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
}
taskq_dispatch_ent(tq, func, arg, flags, ent);
}
/*
* Same as spa_taskq_dispatch_ent() but block on the task until completion.
*/
void
spa_taskq_dispatch_sync(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
task_func_t *func, void *arg, uint_t flags)
{
spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
taskq_t *tq;
taskqid_t id;
ASSERT3P(tqs->stqs_taskq, !=, NULL);
ASSERT3U(tqs->stqs_count, !=, 0);
if (tqs->stqs_count == 1) {
tq = tqs->stqs_taskq[0];
} else {
tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
}
id = taskq_dispatch(tq, func, arg, flags);
if (id)
taskq_wait_id(tq, id);
}
static void
spa_create_zio_taskqs(spa_t *spa)
{
for (int t = 0; t < ZIO_TYPES; t++) {
for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
spa_taskqs_init(spa, t, q);
}
}
}
/*
* Disabled until spa_thread() can be adapted for Linux.
*/
#undef HAVE_SPA_THREAD
#if defined(_KERNEL) && defined(HAVE_SPA_THREAD)
static void
spa_thread(void *arg)
{
psetid_t zio_taskq_psrset_bind = PS_NONE;
callb_cpr_t cprinfo;
spa_t *spa = arg;
user_t *pu = PTOU(curproc);
CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
spa->spa_name);
ASSERT(curproc != &p0);
(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
"zpool-%s", spa->spa_name);
(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
/* bind this thread to the requested psrset */
if (zio_taskq_psrset_bind != PS_NONE) {
pool_lock();
mutex_enter(&cpu_lock);
mutex_enter(&pidlock);
mutex_enter(&curproc->p_lock);
if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
0, NULL, NULL) == 0) {
curthread->t_bind_pset = zio_taskq_psrset_bind;
} else {
cmn_err(CE_WARN,
"Couldn't bind process for zfs pool \"%s\" to "
"pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
}
mutex_exit(&curproc->p_lock);
mutex_exit(&pidlock);
mutex_exit(&cpu_lock);
pool_unlock();
}
if (zio_taskq_sysdc) {
sysdc_thread_enter(curthread, 100, 0);
}
spa->spa_proc = curproc;
spa->spa_did = curthread->t_did;
spa_create_zio_taskqs(spa);
mutex_enter(&spa->spa_proc_lock);
ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
spa->spa_proc_state = SPA_PROC_ACTIVE;
cv_broadcast(&spa->spa_proc_cv);
CALLB_CPR_SAFE_BEGIN(&cprinfo);
while (spa->spa_proc_state == SPA_PROC_ACTIVE)
cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
spa->spa_proc_state = SPA_PROC_GONE;
spa->spa_proc = &p0;
cv_broadcast(&spa->spa_proc_cv);
CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */
mutex_enter(&curproc->p_lock);
lwp_exit();
}
#endif
/*
* Activate an uninitialized pool.
*/
static void
spa_activate(spa_t *spa, spa_mode_t mode)
{
ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
spa->spa_state = POOL_STATE_ACTIVE;
spa->spa_mode = mode;
spa->spa_read_spacemaps = spa_mode_readable_spacemaps;
spa->spa_normal_class = metaslab_class_create(spa, &zfs_metaslab_ops);
spa->spa_log_class = metaslab_class_create(spa, &zfs_metaslab_ops);
spa->spa_embedded_log_class =
metaslab_class_create(spa, &zfs_metaslab_ops);
spa->spa_special_class = metaslab_class_create(spa, &zfs_metaslab_ops);
spa->spa_dedup_class = metaslab_class_create(spa, &zfs_metaslab_ops);
/* Try to create a covering process */
mutex_enter(&spa->spa_proc_lock);
ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
ASSERT(spa->spa_proc == &p0);
spa->spa_did = 0;
(void) spa_create_process;
#ifdef HAVE_SPA_THREAD
/* Only create a process if we're going to be around a while. */
if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
NULL, 0) == 0) {
spa->spa_proc_state = SPA_PROC_CREATED;
while (spa->spa_proc_state == SPA_PROC_CREATED) {
cv_wait(&spa->spa_proc_cv,
&spa->spa_proc_lock);
}
ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
ASSERT(spa->spa_proc != &p0);
ASSERT(spa->spa_did != 0);
} else {
#ifdef _KERNEL
cmn_err(CE_WARN,
"Couldn't create process for zfs pool \"%s\"\n",
spa->spa_name);
#endif
}
}
#endif /* HAVE_SPA_THREAD */
mutex_exit(&spa->spa_proc_lock);
/* If we didn't create a process, we need to create our taskqs. */
if (spa->spa_proc == &p0) {
spa_create_zio_taskqs(spa);
}
for (size_t i = 0; i < TXG_SIZE; i++) {
spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL,
ZIO_FLAG_CANFAIL);
}
list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
offsetof(vdev_t, vdev_config_dirty_node));
list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
offsetof(objset_t, os_evicting_node));
list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
offsetof(vdev_t, vdev_state_dirty_node));
txg_list_create(&spa->spa_vdev_txg_list, spa,
offsetof(struct vdev, vdev_txg_node));
avl_create(&spa->spa_errlist_scrub,
spa_error_entry_compare, sizeof (spa_error_entry_t),
offsetof(spa_error_entry_t, se_avl));
avl_create(&spa->spa_errlist_last,
spa_error_entry_compare, sizeof (spa_error_entry_t),
offsetof(spa_error_entry_t, se_avl));
avl_create(&spa->spa_errlist_healed,
spa_error_entry_compare, sizeof (spa_error_entry_t),
offsetof(spa_error_entry_t, se_avl));
spa_activate_os(spa);
spa_keystore_init(&spa->spa_keystore);
/*
* This taskq is used to perform zvol-minor-related tasks
* asynchronously. This has several advantages, including easy
* resolution of various deadlocks.
*
* The taskq must be single threaded to ensure tasks are always
* processed in the order in which they were dispatched.
*
* A taskq per pool allows one to keep the pools independent.
* This way if one pool is suspended, it will not impact another.
*
* The preferred location to dispatch a zvol minor task is a sync
* task. In this context, there is easy access to the spa_t and minimal
* error handling is required because the sync task must succeed.
*/
spa->spa_zvol_taskq = taskq_create("z_zvol", 1, defclsyspri,
1, INT_MAX, 0);
/*
* Taskq dedicated to prefetcher threads: this is used to prevent the
* pool traverse code from monopolizing the global (and limited)
* system_taskq by inappropriately scheduling long running tasks on it.
*/
spa->spa_prefetch_taskq = taskq_create("z_prefetch", 100,
defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
/*
* The taskq to upgrade datasets in this pool. Currently used by
* feature SPA_FEATURE_USEROBJ_ACCOUNTING/SPA_FEATURE_PROJECT_QUOTA.
*/
spa->spa_upgrade_taskq = taskq_create("z_upgrade", 100,
defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
}
/*
* Opposite of spa_activate().
*/
static void
spa_deactivate(spa_t *spa)
{
ASSERT(spa->spa_sync_on == B_FALSE);
ASSERT(spa->spa_dsl_pool == NULL);
ASSERT(spa->spa_root_vdev == NULL);
ASSERT(spa->spa_async_zio_root == NULL);
ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
spa_evicting_os_wait(spa);
if (spa->spa_zvol_taskq) {
taskq_destroy(spa->spa_zvol_taskq);
spa->spa_zvol_taskq = NULL;
}
if (spa->spa_prefetch_taskq) {
taskq_destroy(spa->spa_prefetch_taskq);
spa->spa_prefetch_taskq = NULL;
}
if (spa->spa_upgrade_taskq) {
taskq_destroy(spa->spa_upgrade_taskq);
spa->spa_upgrade_taskq = NULL;
}
txg_list_destroy(&spa->spa_vdev_txg_list);
list_destroy(&spa->spa_config_dirty_list);
list_destroy(&spa->spa_evicting_os_list);
list_destroy(&spa->spa_state_dirty_list);
taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
for (int t = 0; t < ZIO_TYPES; t++) {
for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
spa_taskqs_fini(spa, t, q);
}
}
for (size_t i = 0; i < TXG_SIZE; i++) {
ASSERT3P(spa->spa_txg_zio[i], !=, NULL);
VERIFY0(zio_wait(spa->spa_txg_zio[i]));
spa->spa_txg_zio[i] = NULL;
}
metaslab_class_destroy(spa->spa_normal_class);
spa->spa_normal_class = NULL;
metaslab_class_destroy(spa->spa_log_class);
spa->spa_log_class = NULL;
metaslab_class_destroy(spa->spa_embedded_log_class);
spa->spa_embedded_log_class = NULL;
metaslab_class_destroy(spa->spa_special_class);
spa->spa_special_class = NULL;
metaslab_class_destroy(spa->spa_dedup_class);
spa->spa_dedup_class = NULL;
/*
* If this was part of an import or the open otherwise failed, we may
* still have errors left in the queues. Empty them just in case.
*/
spa_errlog_drain(spa);
avl_destroy(&spa->spa_errlist_scrub);
avl_destroy(&spa->spa_errlist_last);
avl_destroy(&spa->spa_errlist_healed);
spa_keystore_fini(&spa->spa_keystore);
spa->spa_state = POOL_STATE_UNINITIALIZED;
mutex_enter(&spa->spa_proc_lock);
if (spa->spa_proc_state != SPA_PROC_NONE) {
ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
spa->spa_proc_state = SPA_PROC_DEACTIVATE;
cv_broadcast(&spa->spa_proc_cv);
while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
ASSERT(spa->spa_proc != &p0);
cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
}
ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
spa->spa_proc_state = SPA_PROC_NONE;
}
ASSERT(spa->spa_proc == &p0);
mutex_exit(&spa->spa_proc_lock);
/*
* We want to make sure spa_thread() has actually exited the ZFS
* module, so that the module can't be unloaded out from underneath
* it.
*/
if (spa->spa_did != 0) {
thread_join(spa->spa_did);
spa->spa_did = 0;
}
spa_deactivate_os(spa);
}
/*
* Verify a pool configuration, and construct the vdev tree appropriately. This
* will create all the necessary vdevs in the appropriate layout, with each vdev
* in the CLOSED state. This will prep the pool before open/creation/import.
* All vdev validation is done by the vdev_alloc() routine.
*/
int
spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
uint_t id, int atype)
{
nvlist_t **child;
uint_t children;
int error;
if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
return (error);
if ((*vdp)->vdev_ops->vdev_op_leaf)
return (0);
error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
&child, &children);
if (error == ENOENT)
return (0);
if (error) {
vdev_free(*vdp);
*vdp = NULL;
return (SET_ERROR(EINVAL));
}
for (int c = 0; c < children; c++) {
vdev_t *vd;
if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
atype)) != 0) {
vdev_free(*vdp);
*vdp = NULL;
return (error);
}
}
ASSERT(*vdp != NULL);
return (0);
}
static boolean_t
spa_should_flush_logs_on_unload(spa_t *spa)
{
if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
return (B_FALSE);
if (!spa_writeable(spa))
return (B_FALSE);
if (!spa->spa_sync_on)
return (B_FALSE);
if (spa_state(spa) != POOL_STATE_EXPORTED)
return (B_FALSE);
if (zfs_keep_log_spacemaps_at_export)
return (B_FALSE);
return (B_TRUE);
}
/*
* Opens a transaction that will set the flag that will instruct
* spa_sync to attempt to flush all the metaslabs for that txg.
*/
static void
spa_unload_log_sm_flush_all(spa_t *spa)
{
dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
ASSERT3U(spa->spa_log_flushall_txg, ==, 0);
spa->spa_log_flushall_txg = dmu_tx_get_txg(tx);
dmu_tx_commit(tx);
txg_wait_synced(spa_get_dsl(spa), spa->spa_log_flushall_txg);
}
static void
spa_unload_log_sm_metadata(spa_t *spa)
{
void *cookie = NULL;
spa_log_sm_t *sls;
log_summary_entry_t *e;
while ((sls = avl_destroy_nodes(&spa->spa_sm_logs_by_txg,
&cookie)) != NULL) {
VERIFY0(sls->sls_mscount);
kmem_free(sls, sizeof (spa_log_sm_t));
}
while ((e = list_remove_head(&spa->spa_log_summary)) != NULL) {
VERIFY0(e->lse_mscount);
kmem_free(e, sizeof (log_summary_entry_t));
}
spa->spa_unflushed_stats.sus_nblocks = 0;
spa->spa_unflushed_stats.sus_memused = 0;
spa->spa_unflushed_stats.sus_blocklimit = 0;
}
static void
spa_destroy_aux_threads(spa_t *spa)
{
if (spa->spa_condense_zthr != NULL) {
zthr_destroy(spa->spa_condense_zthr);
spa->spa_condense_zthr = NULL;
}
if (spa->spa_checkpoint_discard_zthr != NULL) {
zthr_destroy(spa->spa_checkpoint_discard_zthr);
spa->spa_checkpoint_discard_zthr = NULL;
}
if (spa->spa_livelist_delete_zthr != NULL) {
zthr_destroy(spa->spa_livelist_delete_zthr);
spa->spa_livelist_delete_zthr = NULL;
}
if (spa->spa_livelist_condense_zthr != NULL) {
zthr_destroy(spa->spa_livelist_condense_zthr);
spa->spa_livelist_condense_zthr = NULL;
}
}
/*
* Opposite of spa_load().
*/
static void
spa_unload(spa_t *spa)
{
ASSERT(MUTEX_HELD(&spa_namespace_lock));
ASSERT(spa_state(spa) != POOL_STATE_UNINITIALIZED);
spa_import_progress_remove(spa_guid(spa));
spa_load_note(spa, "UNLOADING");
spa_wake_waiters(spa);
/*
* If we have set the spa_final_txg, we have already performed the
* tasks below in spa_export_common(). We should not redo it here since
* we delay the final TXGs beyond what spa_final_txg is set at.
*/
if (spa->spa_final_txg == UINT64_MAX) {
/*
* If the log space map feature is enabled and the pool is
* getting exported (but not destroyed), we want to spend some
* time flushing as many metaslabs as we can in an attempt to
* destroy log space maps and save import time.
*/
if (spa_should_flush_logs_on_unload(spa))
spa_unload_log_sm_flush_all(spa);
/*
* Stop async tasks.
*/
spa_async_suspend(spa);
if (spa->spa_root_vdev) {
vdev_t *root_vdev = spa->spa_root_vdev;
vdev_initialize_stop_all(root_vdev,
VDEV_INITIALIZE_ACTIVE);
vdev_trim_stop_all(root_vdev, VDEV_TRIM_ACTIVE);
vdev_autotrim_stop_all(spa);
vdev_rebuild_stop_all(spa);
}
}
/*
* Stop syncing.
*/
if (spa->spa_sync_on) {
txg_sync_stop(spa->spa_dsl_pool);
spa->spa_sync_on = B_FALSE;
}
/*
* This ensures that there is no async metaslab prefetching
* while we attempt to unload the spa.
*/
if (spa->spa_root_vdev != NULL) {
for (int c = 0; c < spa->spa_root_vdev->vdev_children; c++) {
vdev_t *vc = spa->spa_root_vdev->vdev_child[c];
if (vc->vdev_mg != NULL)
taskq_wait(vc->vdev_mg->mg_taskq);
}
}
if (spa->spa_mmp.mmp_thread)
mmp_thread_stop(spa);
/*
* Wait for any outstanding async I/O to complete.
*/
if (spa->spa_async_zio_root != NULL) {
for (int i = 0; i < max_ncpus; i++)
(void) zio_wait(spa->spa_async_zio_root[i]);
kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
spa->spa_async_zio_root = NULL;
}
if (spa->spa_vdev_removal != NULL) {
spa_vdev_removal_destroy(spa->spa_vdev_removal);
spa->spa_vdev_removal = NULL;
}
spa_destroy_aux_threads(spa);
spa_condense_fini(spa);
bpobj_close(&spa->spa_deferred_bpobj);
spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
/*
* Close all vdevs.
*/
if (spa->spa_root_vdev)
vdev_free(spa->spa_root_vdev);
ASSERT(spa->spa_root_vdev == NULL);
/*
* Close the dsl pool.
*/
if (spa->spa_dsl_pool) {
dsl_pool_close(spa->spa_dsl_pool);
spa->spa_dsl_pool = NULL;
spa->spa_meta_objset = NULL;
}
ddt_unload(spa);
brt_unload(spa);
spa_unload_log_sm_metadata(spa);
/*
* Drop and purge level 2 cache
*/
spa_l2cache_drop(spa);
if (spa->spa_spares.sav_vdevs) {
for (int i = 0; i < spa->spa_spares.sav_count; i++)
vdev_free(spa->spa_spares.sav_vdevs[i]);
kmem_free(spa->spa_spares.sav_vdevs,
spa->spa_spares.sav_count * sizeof (void *));
spa->spa_spares.sav_vdevs = NULL;
}
if (spa->spa_spares.sav_config) {
nvlist_free(spa->spa_spares.sav_config);
spa->spa_spares.sav_config = NULL;
}
spa->spa_spares.sav_count = 0;
if (spa->spa_l2cache.sav_vdevs) {
for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
vdev_free(spa->spa_l2cache.sav_vdevs[i]);
}
kmem_free(spa->spa_l2cache.sav_vdevs,
spa->spa_l2cache.sav_count * sizeof (void *));
spa->spa_l2cache.sav_vdevs = NULL;
}
if (spa->spa_l2cache.sav_config) {
nvlist_free(spa->spa_l2cache.sav_config);
spa->spa_l2cache.sav_config = NULL;
}
spa->spa_l2cache.sav_count = 0;
spa->spa_async_suspended = 0;
spa->spa_indirect_vdevs_loaded = B_FALSE;
if (spa->spa_comment != NULL) {
spa_strfree(spa->spa_comment);
spa->spa_comment = NULL;
}
if (spa->spa_compatibility != NULL) {
spa_strfree(spa->spa_compatibility);
spa->spa_compatibility = NULL;
}
spa_config_exit(spa, SCL_ALL, spa);
}
/*
* Load (or re-load) the current list of vdevs describing the active spares for
* this pool. When this is called, we have some form of basic information in
* 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and
* then re-generate a more complete list including status information.
*/
void
spa_load_spares(spa_t *spa)
{
nvlist_t **spares;
uint_t nspares;
int i;
vdev_t *vd, *tvd;
#ifndef _KERNEL
/*
* zdb opens both the current state of the pool and the
* checkpointed state (if present), with a different spa_t.
*
* As spare vdevs are shared among open pools, we skip loading
* them when we load the checkpointed state of the pool.
*/
if (!spa_writeable(spa))
return;
#endif
ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
/*
* First, close and free any existing spare vdevs.
*/
if (spa->spa_spares.sav_vdevs) {
for (i = 0; i < spa->spa_spares.sav_count; i++) {
vd = spa->spa_spares.sav_vdevs[i];
/* Undo the call to spa_activate() below */
if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
B_FALSE)) != NULL && tvd->vdev_isspare)
spa_spare_remove(tvd);
vdev_close(vd);
vdev_free(vd);
}
kmem_free(spa->spa_spares.sav_vdevs,
spa->spa_spares.sav_count * sizeof (void *));
}
if (spa->spa_spares.sav_config == NULL)
nspares = 0;
else
VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
ZPOOL_CONFIG_SPARES, &spares, &nspares));
spa->spa_spares.sav_count = (int)nspares;
spa->spa_spares.sav_vdevs = NULL;
if (nspares == 0)
return;
/*
* Construct the array of vdevs, opening them to get status in the
* process. For each spare, there is potentially two different vdev_t
* structures associated with it: one in the list of spares (used only
* for basic validation purposes) and one in the active vdev
* configuration (if it's spared in). During this phase we open and
* validate each vdev on the spare list. If the vdev also exists in the
* active configuration, then we also mark this vdev as an active spare.
*/
spa->spa_spares.sav_vdevs = kmem_zalloc(nspares * sizeof (void *),
KM_SLEEP);
for (i = 0; i < spa->spa_spares.sav_count; i++) {
VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
VDEV_ALLOC_SPARE) == 0);
ASSERT(vd != NULL);
spa->spa_spares.sav_vdevs[i] = vd;
if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
B_FALSE)) != NULL) {
if (!tvd->vdev_isspare)
spa_spare_add(tvd);
/*
* We only mark the spare active if we were successfully
* able to load the vdev. Otherwise, importing a pool
* with a bad active spare would result in strange
* behavior, because multiple pool would think the spare
* is actively in use.
*
* There is a vulnerability here to an equally bizarre
* circumstance, where a dead active spare is later
* brought back to life (onlined or otherwise). Given
* the rarity of this scenario, and the extra complexity
* it adds, we ignore the possibility.
*/
if (!vdev_is_dead(tvd))
spa_spare_activate(tvd);
}
vd->vdev_top = vd;
vd->vdev_aux = &spa->spa_spares;
if (vdev_open(vd) != 0)
continue;
if (vdev_validate_aux(vd) == 0)
spa_spare_add(vd);
}
/*
* Recompute the stashed list of spares, with status information
* this time.
*/
fnvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES);
spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
KM_SLEEP);
for (i = 0; i < spa->spa_spares.sav_count; i++)
spares[i] = vdev_config_generate(spa,
spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
spa->spa_spares.sav_count);
for (i = 0; i < spa->spa_spares.sav_count; i++)
nvlist_free(spares[i]);
kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
}
/*
* Load (or re-load) the current list of vdevs describing the active l2cache for
* this pool. When this is called, we have some form of basic information in
* 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and
* then re-generate a more complete list including status information.
* Devices which are already active have their details maintained, and are
* not re-opened.
*/
void
spa_load_l2cache(spa_t *spa)
{
nvlist_t **l2cache = NULL;
uint_t nl2cache;
int i, j, oldnvdevs;
uint64_t guid;
vdev_t *vd, **oldvdevs, **newvdevs;
spa_aux_vdev_t *sav = &spa->spa_l2cache;
#ifndef _KERNEL
/*
* zdb opens both the current state of the pool and the
* checkpointed state (if present), with a different spa_t.
*
* As L2 caches are part of the ARC which is shared among open
* pools, we skip loading them when we load the checkpointed
* state of the pool.
*/
if (!spa_writeable(spa))
return;
#endif
ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
oldvdevs = sav->sav_vdevs;
oldnvdevs = sav->sav_count;
sav->sav_vdevs = NULL;
sav->sav_count = 0;
if (sav->sav_config == NULL) {
nl2cache = 0;
newvdevs = NULL;
goto out;
}
VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config,
ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache));
newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
/*
* Process new nvlist of vdevs.
*/
for (i = 0; i < nl2cache; i++) {
guid = fnvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID);
newvdevs[i] = NULL;
for (j = 0; j < oldnvdevs; j++) {
vd = oldvdevs[j];
if (vd != NULL && guid == vd->vdev_guid) {
/*
* Retain previous vdev for add/remove ops.
*/
newvdevs[i] = vd;
oldvdevs[j] = NULL;
break;
}
}
if (newvdevs[i] == NULL) {
/*
* Create new vdev
*/
VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
VDEV_ALLOC_L2CACHE) == 0);
ASSERT(vd != NULL);
newvdevs[i] = vd;
/*
* Commit this vdev as an l2cache device,
* even if it fails to open.
*/
spa_l2cache_add(vd);
vd->vdev_top = vd;
vd->vdev_aux = sav;
spa_l2cache_activate(vd);
if (vdev_open(vd) != 0)
continue;
(void) vdev_validate_aux(vd);
if (!vdev_is_dead(vd))
l2arc_add_vdev(spa, vd);
/*
* Upon cache device addition to a pool or pool
* creation with a cache device or if the header
* of the device is invalid we issue an async
* TRIM command for the whole device which will
* execute if l2arc_trim_ahead > 0.
*/
spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM);
}
}
sav->sav_vdevs = newvdevs;
sav->sav_count = (int)nl2cache;
/*
* Recompute the stashed list of l2cache devices, with status
* information this time.
*/
fnvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE);
if (sav->sav_count > 0)
l2cache = kmem_alloc(sav->sav_count * sizeof (void *),
KM_SLEEP);
for (i = 0; i < sav->sav_count; i++)
l2cache[i] = vdev_config_generate(spa,
sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
fnvlist_add_nvlist_array(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
(const nvlist_t * const *)l2cache, sav->sav_count);
out:
/*
* Purge vdevs that were dropped
*/
if (oldvdevs) {
for (i = 0; i < oldnvdevs; i++) {
uint64_t pool;
vd = oldvdevs[i];
if (vd != NULL) {
ASSERT(vd->vdev_isl2cache);
if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
pool != 0ULL && l2arc_vdev_present(vd))
l2arc_remove_vdev(vd);
vdev_clear_stats(vd);
vdev_free(vd);
}
}
kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
}
for (i = 0; i < sav->sav_count; i++)
nvlist_free(l2cache[i]);
if (sav->sav_count)
kmem_free(l2cache, sav->sav_count * sizeof (void *));
}
static int
load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
{
dmu_buf_t *db;
char *packed = NULL;
size_t nvsize = 0;
int error;
*value = NULL;
error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
if (error)
return (error);
nvsize = *(uint64_t *)db->db_data;
dmu_buf_rele(db, FTAG);
packed = vmem_alloc(nvsize, KM_SLEEP);
error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
DMU_READ_PREFETCH);
if (error == 0)
error = nvlist_unpack(packed, nvsize, value, 0);
vmem_free(packed, nvsize);
return (error);
}
/*
* Concrete top-level vdevs that are not missing and are not logs. At every
* spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds.
*/
static uint64_t
spa_healthy_core_tvds(spa_t *spa)
{
vdev_t *rvd = spa->spa_root_vdev;
uint64_t tvds = 0;
for (uint64_t i = 0; i < rvd->vdev_children; i++) {
vdev_t *vd = rvd->vdev_child[i];
if (vd->vdev_islog)
continue;
if (vdev_is_concrete(vd) && !vdev_is_dead(vd))
tvds++;
}
return (tvds);
}
/*
* Checks to see if the given vdev could not be opened, in which case we post a
* sysevent to notify the autoreplace code that the device has been removed.
*/
static void
spa_check_removed(vdev_t *vd)
{
for (uint64_t c = 0; c < vd->vdev_children; c++)
spa_check_removed(vd->vdev_child[c]);
if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
vdev_is_concrete(vd)) {
zfs_post_autoreplace(vd->vdev_spa, vd);
spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK);
}
}
static int
spa_check_for_missing_logs(spa_t *spa)
{
vdev_t *rvd = spa->spa_root_vdev;
/*
* If we're doing a normal import, then build up any additional
* diagnostic information about missing log devices.
* We'll pass this up to the user for further processing.
*/
if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
nvlist_t **child, *nv;
uint64_t idx = 0;
child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t *),
KM_SLEEP);
nv = fnvlist_alloc();
for (uint64_t c = 0; c < rvd->vdev_children; c++) {
vdev_t *tvd = rvd->vdev_child[c];
/*
* We consider a device as missing only if it failed
* to open (i.e. offline or faulted is not considered
* as missing).
*/
if (tvd->vdev_islog &&
tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
child[idx++] = vdev_config_generate(spa, tvd,
B_FALSE, VDEV_CONFIG_MISSING);
}
}
if (idx > 0) {
fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
(const nvlist_t * const *)child, idx);
fnvlist_add_nvlist(spa->spa_load_info,
ZPOOL_CONFIG_MISSING_DEVICES, nv);
for (uint64_t i = 0; i < idx; i++)
nvlist_free(child[i]);
}
nvlist_free(nv);
kmem_free(child, rvd->vdev_children * sizeof (char **));
if (idx > 0) {
spa_load_failed(spa, "some log devices are missing");
vdev_dbgmsg_print_tree(rvd, 2);
return (SET_ERROR(ENXIO));
}
} else {
for (uint64_t c = 0; c < rvd->vdev_children; c++) {
vdev_t *tvd = rvd->vdev_child[c];
if (tvd->vdev_islog &&
tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
spa_set_log_state(spa, SPA_LOG_CLEAR);
spa_load_note(spa, "some log devices are "
"missing, ZIL is dropped.");
vdev_dbgmsg_print_tree(rvd, 2);
break;
}
}
}
return (0);
}
/*
* Check for missing log devices
*/
static boolean_t
spa_check_logs(spa_t *spa)
{
boolean_t rv = B_FALSE;
dsl_pool_t *dp = spa_get_dsl(spa);
switch (spa->spa_log_state) {
default:
break;
case SPA_LOG_MISSING:
/* need to recheck in case slog has been restored */
case SPA_LOG_UNKNOWN:
rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
if (rv)
spa_set_log_state(spa, SPA_LOG_MISSING);
break;
}
return (rv);
}
/*
* Passivate any log vdevs (note, does not apply to embedded log metaslabs).
*/
static boolean_t
spa_passivate_log(spa_t *spa)
{
vdev_t *rvd = spa->spa_root_vdev;
boolean_t slog_found = B_FALSE;
ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
for (int c = 0; c < rvd->vdev_children; c++) {
vdev_t *tvd = rvd->vdev_child[c];
if (tvd->vdev_islog) {
ASSERT3P(tvd->vdev_log_mg, ==, NULL);
metaslab_group_passivate(tvd->vdev_mg);
slog_found = B_TRUE;
}
}
return (slog_found);
}
/*
* Activate any log vdevs (note, does not apply to embedded log metaslabs).
*/
static void
spa_activate_log(spa_t *spa)
{
vdev_t *rvd = spa->spa_root_vdev;
ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
for (int c = 0; c < rvd->vdev_children; c++) {
vdev_t *tvd = rvd->vdev_child[c];
if (tvd->vdev_islog) {
ASSERT3P(tvd->vdev_log_mg, ==, NULL);
metaslab_group_activate(tvd->vdev_mg);
}
}
}
int
spa_reset_logs(spa_t *spa)
{
int error;
error = dmu_objset_find(spa_name(spa), zil_reset,
NULL, DS_FIND_CHILDREN);
if (error == 0) {
/*
* We successfully offlined the log device, sync out the
* current txg so that the "stubby" block can be removed
* by zil_sync().
*/
txg_wait_synced(spa->spa_dsl_pool, 0);
}
return (error);
}
static void
spa_aux_check_removed(spa_aux_vdev_t *sav)
{
for (int i = 0; i < sav->sav_count; i++)
spa_check_removed(sav->sav_vdevs[i]);
}
void
spa_claim_notify(zio_t *zio)
{
spa_t *spa = zio->io_spa;
if (zio->io_error)
return;
mutex_enter(&spa->spa_props_lock); /* any mutex will do */
if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
spa->spa_claim_max_txg = zio->io_bp->blk_birth;
mutex_exit(&spa->spa_props_lock);
}
typedef struct spa_load_error {
boolean_t sle_verify_data;
uint64_t sle_meta_count;
uint64_t sle_data_count;
} spa_load_error_t;
static void
spa_load_verify_done(zio_t *zio)
{
blkptr_t *bp = zio->io_bp;
spa_load_error_t *sle = zio->io_private;
dmu_object_type_t type = BP_GET_TYPE(bp);
int error = zio->io_error;
spa_t *spa = zio->io_spa;
abd_free(zio->io_abd);
if (error) {
if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
type != DMU_OT_INTENT_LOG)
atomic_inc_64(&sle->sle_meta_count);
else
atomic_inc_64(&sle->sle_data_count);
}
mutex_enter(&spa->spa_scrub_lock);
spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp);
cv_broadcast(&spa->spa_scrub_io_cv);
mutex_exit(&spa->spa_scrub_lock);
}
/*
* Maximum number of inflight bytes is the log2 fraction of the arc size.
* By default, we set it to 1/16th of the arc.
*/
static uint_t spa_load_verify_shift = 4;
static int spa_load_verify_metadata = B_TRUE;
static int spa_load_verify_data = B_TRUE;
static int
spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
{
zio_t *rio = arg;
spa_load_error_t *sle = rio->io_private;
(void) zilog, (void) dnp;
/*
* Note: normally this routine will not be called if
* spa_load_verify_metadata is not set. However, it may be useful
* to manually set the flag after the traversal has begun.
*/
if (!spa_load_verify_metadata)
return (0);
/*
* Sanity check the block pointer in order to detect obvious damage
* before using the contents in subsequent checks or in zio_read().
* When damaged consider it to be a metadata error since we cannot
* trust the BP_GET_TYPE and BP_GET_LEVEL values.
*/
if (!zfs_blkptr_verify(spa, bp, BLK_CONFIG_NEEDED, BLK_VERIFY_LOG)) {
atomic_inc_64(&sle->sle_meta_count);
return (0);
}
if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) ||
BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp))
return (0);
if (!BP_IS_METADATA(bp) &&
(!spa_load_verify_data || !sle->sle_verify_data))
return (0);
uint64_t maxinflight_bytes =
arc_target_bytes() >> spa_load_verify_shift;
size_t size = BP_GET_PSIZE(bp);
mutex_enter(&spa->spa_scrub_lock);
while (spa->spa_load_verify_bytes >= maxinflight_bytes)
cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
spa->spa_load_verify_bytes += size;
mutex_exit(&spa->spa_scrub_lock);
zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size,
spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
return (0);
}
static int
verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
{
(void) dp, (void) arg;
if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
return (SET_ERROR(ENAMETOOLONG));
return (0);
}
static int
spa_load_verify(spa_t *spa)
{
zio_t *rio;
spa_load_error_t sle = { 0 };
zpool_load_policy_t policy;
boolean_t verify_ok = B_FALSE;
int error = 0;
zpool_get_load_policy(spa->spa_config, &policy);
if (policy.zlp_rewind & ZPOOL_NEVER_REWIND ||
policy.zlp_maxmeta == UINT64_MAX)
return (0);
dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
error = dmu_objset_find_dp(spa->spa_dsl_pool,
spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
DS_FIND_CHILDREN);
dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
if (error != 0)
return (error);
/*
* Verify data only if we are rewinding or error limit was set.
* Otherwise nothing except dbgmsg care about it to waste time.
*/
sle.sle_verify_data = (policy.zlp_rewind & ZPOOL_REWIND_MASK) ||
(policy.zlp_maxdata < UINT64_MAX);
rio = zio_root(spa, NULL, &sle,
ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
if (spa_load_verify_metadata) {
if (spa->spa_extreme_rewind) {
spa_load_note(spa, "performing a complete scan of the "
"pool since extreme rewind is on. This may take "
"a very long time.\n (spa_load_verify_data=%u, "
"spa_load_verify_metadata=%u)",
spa_load_verify_data, spa_load_verify_metadata);
}
error = traverse_pool(spa, spa->spa_verify_min_txg,
TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
TRAVERSE_NO_DECRYPT, spa_load_verify_cb, rio);
}
(void) zio_wait(rio);
ASSERT0(spa->spa_load_verify_bytes);
spa->spa_load_meta_errors = sle.sle_meta_count;
spa->spa_load_data_errors = sle.sle_data_count;
if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) {
spa_load_note(spa, "spa_load_verify found %llu metadata errors "
"and %llu data errors", (u_longlong_t)sle.sle_meta_count,
(u_longlong_t)sle.sle_data_count);
}
if (spa_load_verify_dryrun ||
(!error && sle.sle_meta_count <= policy.zlp_maxmeta &&
sle.sle_data_count <= policy.zlp_maxdata)) {
int64_t loss = 0;
verify_ok = B_TRUE;
spa->spa_load_txg = spa->spa_uberblock.ub_txg;
spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_LOAD_TIME,
spa->spa_load_txg_ts);
fnvlist_add_int64(spa->spa_load_info, ZPOOL_CONFIG_REWIND_TIME,
loss);
fnvlist_add_uint64(spa->spa_load_info,
ZPOOL_CONFIG_LOAD_META_ERRORS, sle.sle_meta_count);
fnvlist_add_uint64(spa->spa_load_info,
ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count);
} else {
spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
}
if (spa_load_verify_dryrun)
return (0);
if (error) {
if (error != ENXIO && error != EIO)
error = SET_ERROR(EIO);
return (error);
}
return (verify_ok ? 0 : EIO);
}
/*
* Find a value in the pool props object.
*/
static void
spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
{
(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
}
/*
* Find a value in the pool directory object.
*/
static int
spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent)
{
int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
name, sizeof (uint64_t), 1, val);
if (error != 0 && (error != ENOENT || log_enoent)) {
spa_load_failed(spa, "couldn't get '%s' value in MOS directory "
"[error=%d]", name, error);
}
return (error);
}
static int
spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
{
vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
return (SET_ERROR(err));
}
boolean_t
spa_livelist_delete_check(spa_t *spa)
{
return (spa->spa_livelists_to_delete != 0);
}
static boolean_t
spa_livelist_delete_cb_check(void *arg, zthr_t *z)
{
(void) z;
spa_t *spa = arg;
return (spa_livelist_delete_check(spa));
}
static int
delete_blkptr_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
{
spa_t *spa = arg;
zio_free(spa, tx->tx_txg, bp);
dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD,
-bp_get_dsize_sync(spa, bp),
-BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx);
return (0);
}
static int
dsl_get_next_livelist_obj(objset_t *os, uint64_t zap_obj, uint64_t *llp)
{
int err;
zap_cursor_t zc;
zap_attribute_t za;
zap_cursor_init(&zc, os, zap_obj);
err = zap_cursor_retrieve(&zc, &za);
zap_cursor_fini(&zc);
if (err == 0)
*llp = za.za_first_integer;
return (err);
}
/*
* Components of livelist deletion that must be performed in syncing
* context: freeing block pointers and updating the pool-wide data
* structures to indicate how much work is left to do
*/
typedef struct sublist_delete_arg {
spa_t *spa;
dsl_deadlist_t *ll;
uint64_t key;
bplist_t *to_free;
} sublist_delete_arg_t;
static void
sublist_delete_sync(void *arg, dmu_tx_t *tx)
{
sublist_delete_arg_t *sda = arg;
spa_t *spa = sda->spa;
dsl_deadlist_t *ll = sda->ll;
uint64_t key = sda->key;
bplist_t *to_free = sda->to_free;
bplist_iterate(to_free, delete_blkptr_cb, spa, tx);
dsl_deadlist_remove_entry(ll, key, tx);
}
typedef struct livelist_delete_arg {
spa_t *spa;
uint64_t ll_obj;
uint64_t zap_obj;
} livelist_delete_arg_t;
static void
livelist_delete_sync(void *arg, dmu_tx_t *tx)
{
livelist_delete_arg_t *lda = arg;
spa_t *spa = lda->spa;
uint64_t ll_obj = lda->ll_obj;
uint64_t zap_obj = lda->zap_obj;
objset_t *mos = spa->spa_meta_objset;
uint64_t count;
/* free the livelist and decrement the feature count */
VERIFY0(zap_remove_int(mos, zap_obj, ll_obj, tx));
dsl_deadlist_free(mos, ll_obj, tx);
spa_feature_decr(spa, SPA_FEATURE_LIVELIST, tx);
VERIFY0(zap_count(mos, zap_obj, &count));
if (count == 0) {
/* no more livelists to delete */
VERIFY0(zap_remove(mos, DMU_POOL_DIRECTORY_OBJECT,
DMU_POOL_DELETED_CLONES, tx));
VERIFY0(zap_destroy(mos, zap_obj, tx));
spa->spa_livelists_to_delete = 0;
spa_notify_waiters(spa);
}
}
/*
* Load in the value for the livelist to be removed and open it. Then,
* load its first sublist and determine which block pointers should actually
* be freed. Then, call a synctask which performs the actual frees and updates
* the pool-wide livelist data.
*/
static void
spa_livelist_delete_cb(void *arg, zthr_t *z)
{
spa_t *spa = arg;
uint64_t ll_obj = 0, count;
objset_t *mos = spa->spa_meta_objset;
uint64_t zap_obj = spa->spa_livelists_to_delete;
/*
* Determine the next livelist to delete. This function should only
* be called if there is at least one deleted clone.
*/
VERIFY0(dsl_get_next_livelist_obj(mos, zap_obj, &ll_obj));
VERIFY0(zap_count(mos, ll_obj, &count));
if (count > 0) {
dsl_deadlist_t *ll;
dsl_deadlist_entry_t *dle;
bplist_t to_free;
ll = kmem_zalloc(sizeof (dsl_deadlist_t), KM_SLEEP);
dsl_deadlist_open(ll, mos, ll_obj);
dle = dsl_deadlist_first(ll);
ASSERT3P(dle, !=, NULL);
bplist_create(&to_free);
int err = dsl_process_sub_livelist(&dle->dle_bpobj, &to_free,
z, NULL);
if (err == 0) {
sublist_delete_arg_t sync_arg = {
.spa = spa,
.ll = ll,
.key = dle->dle_mintxg,
.to_free = &to_free
};
zfs_dbgmsg("deleting sublist (id %llu) from"
" livelist %llu, %lld remaining",
(u_longlong_t)dle->dle_bpobj.bpo_object,
(u_longlong_t)ll_obj, (longlong_t)count - 1);
VERIFY0(dsl_sync_task(spa_name(spa), NULL,
sublist_delete_sync, &sync_arg, 0,
ZFS_SPACE_CHECK_DESTROY));
} else {
VERIFY3U(err, ==, EINTR);
}
bplist_clear(&to_free);
bplist_destroy(&to_free);
dsl_deadlist_close(ll);
kmem_free(ll, sizeof (dsl_deadlist_t));
} else {
livelist_delete_arg_t sync_arg = {
.spa = spa,
.ll_obj = ll_obj,
.zap_obj = zap_obj
};
zfs_dbgmsg("deletion of livelist %llu completed",
(u_longlong_t)ll_obj);
VERIFY0(dsl_sync_task(spa_name(spa), NULL, livelist_delete_sync,
&sync_arg, 0, ZFS_SPACE_CHECK_DESTROY));
}
}
static void
spa_start_livelist_destroy_thread(spa_t *spa)
{
ASSERT3P(spa->spa_livelist_delete_zthr, ==, NULL);
spa->spa_livelist_delete_zthr =
zthr_create("z_livelist_destroy",
spa_livelist_delete_cb_check, spa_livelist_delete_cb, spa,
minclsyspri);
}
typedef struct livelist_new_arg {
bplist_t *allocs;
bplist_t *frees;
} livelist_new_arg_t;
static int
livelist_track_new_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
dmu_tx_t *tx)
{
ASSERT(tx == NULL);
livelist_new_arg_t *lna = arg;
if (bp_freed) {
bplist_append(lna->frees, bp);
} else {
bplist_append(lna->allocs, bp);
zfs_livelist_condense_new_alloc++;
}
return (0);
}
typedef struct livelist_condense_arg {
spa_t *spa;
bplist_t to_keep;
uint64_t first_size;
uint64_t next_size;
} livelist_condense_arg_t;
static void
spa_livelist_condense_sync(void *arg, dmu_tx_t *tx)
{
livelist_condense_arg_t *lca = arg;
spa_t *spa = lca->spa;
bplist_t new_frees;
dsl_dataset_t *ds = spa->spa_to_condense.ds;
/* Have we been cancelled? */
if (spa->spa_to_condense.cancelled) {
zfs_livelist_condense_sync_cancel++;
goto out;
}
dsl_deadlist_entry_t *first = spa->spa_to_condense.first;
dsl_deadlist_entry_t *next = spa->spa_to_condense.next;
dsl_deadlist_t *ll = &ds->ds_dir->dd_livelist;
/*
* It's possible that the livelist was changed while the zthr was
* running. Therefore, we need to check for new blkptrs in the two
* entries being condensed and continue to track them in the livelist.
* Because of the way we handle remapped blkptrs (see dbuf_remap_impl),
* it's possible that the newly added blkptrs are FREEs or ALLOCs so
* we need to sort them into two different bplists.
*/
uint64_t first_obj = first->dle_bpobj.bpo_object;
uint64_t next_obj = next->dle_bpobj.bpo_object;
uint64_t cur_first_size = first->dle_bpobj.bpo_phys->bpo_num_blkptrs;
uint64_t cur_next_size = next->dle_bpobj.bpo_phys->bpo_num_blkptrs;
bplist_create(&new_frees);
livelist_new_arg_t new_bps = {
.allocs = &lca->to_keep,
.frees = &new_frees,
};
if (cur_first_size > lca->first_size) {
VERIFY0(livelist_bpobj_iterate_from_nofree(&first->dle_bpobj,
livelist_track_new_cb, &new_bps, lca->first_size));
}
if (cur_next_size > lca->next_size) {
VERIFY0(livelist_bpobj_iterate_from_nofree(&next->dle_bpobj,
livelist_track_new_cb, &new_bps, lca->next_size));
}
dsl_deadlist_clear_entry(first, ll, tx);
ASSERT(bpobj_is_empty(&first->dle_bpobj));
dsl_deadlist_remove_entry(ll, next->dle_mintxg, tx);
bplist_iterate(&lca->to_keep, dsl_deadlist_insert_alloc_cb, ll, tx);
bplist_iterate(&new_frees, dsl_deadlist_insert_free_cb, ll, tx);
bplist_destroy(&new_frees);
char dsname[ZFS_MAX_DATASET_NAME_LEN];
dsl_dataset_name(ds, dsname);
zfs_dbgmsg("txg %llu condensing livelist of %s (id %llu), bpobj %llu "
"(%llu blkptrs) and bpobj %llu (%llu blkptrs) -> bpobj %llu "
"(%llu blkptrs)", (u_longlong_t)tx->tx_txg, dsname,
(u_longlong_t)ds->ds_object, (u_longlong_t)first_obj,
(u_longlong_t)cur_first_size, (u_longlong_t)next_obj,
(u_longlong_t)cur_next_size,
(u_longlong_t)first->dle_bpobj.bpo_object,
(u_longlong_t)first->dle_bpobj.bpo_phys->bpo_num_blkptrs);
out:
dmu_buf_rele(ds->ds_dbuf, spa);
spa->spa_to_condense.ds = NULL;
bplist_clear(&lca->to_keep);
bplist_destroy(&lca->to_keep);
kmem_free(lca, sizeof (livelist_condense_arg_t));
spa->spa_to_condense.syncing = B_FALSE;
}
static void
spa_livelist_condense_cb(void *arg, zthr_t *t)
{
while (zfs_livelist_condense_zthr_pause &&
!(zthr_has_waiters(t) || zthr_iscancelled(t)))
delay(1);
spa_t *spa = arg;
dsl_deadlist_entry_t *first = spa->spa_to_condense.first;
dsl_deadlist_entry_t *next = spa->spa_to_condense.next;
uint64_t first_size, next_size;
livelist_condense_arg_t *lca =
kmem_alloc(sizeof (livelist_condense_arg_t), KM_SLEEP);
bplist_create(&lca->to_keep);
/*
* Process the livelists (matching FREEs and ALLOCs) in open context
* so we have minimal work in syncing context to condense.
*
* We save bpobj sizes (first_size and next_size) to use later in
* syncing context to determine if entries were added to these sublists
* while in open context. This is possible because the clone is still
* active and open for normal writes and we want to make sure the new,
* unprocessed blockpointers are inserted into the livelist normally.
*
* Note that dsl_process_sub_livelist() both stores the size number of
* blockpointers and iterates over them while the bpobj's lock held, so
* the sizes returned to us are consistent which what was actually
* processed.
*/
int err = dsl_process_sub_livelist(&first->dle_bpobj, &lca->to_keep, t,
&first_size);
if (err == 0)
err = dsl_process_sub_livelist(&next->dle_bpobj, &lca->to_keep,
t, &next_size);
if (err == 0) {
while (zfs_livelist_condense_sync_pause &&
!(zthr_has_waiters(t) || zthr_iscancelled(t)))
delay(1);
dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
dmu_tx_mark_netfree(tx);
dmu_tx_hold_space(tx, 1);
err = dmu_tx_assign(tx, TXG_NOWAIT | TXG_NOTHROTTLE);
if (err == 0) {
/*
* Prevent the condense zthr restarting before
* the synctask completes.
*/
spa->spa_to_condense.syncing = B_TRUE;
lca->spa = spa;
lca->first_size = first_size;
lca->next_size = next_size;
dsl_sync_task_nowait(spa_get_dsl(spa),
spa_livelist_condense_sync, lca, tx);
dmu_tx_commit(tx);
return;
}
}
/*
* Condensing can not continue: either it was externally stopped or
* we were unable to assign to a tx because the pool has run out of
* space. In the second case, we'll just end up trying to condense
* again in a later txg.
*/
ASSERT(err != 0);
bplist_clear(&lca->to_keep);
bplist_destroy(&lca->to_keep);
kmem_free(lca, sizeof (livelist_condense_arg_t));
dmu_buf_rele(spa->spa_to_condense.ds->ds_dbuf, spa);
spa->spa_to_condense.ds = NULL;
if (err == EINTR)
zfs_livelist_condense_zthr_cancel++;
}
/*
* Check that there is something to condense but that a condense is not
* already in progress and that condensing has not been cancelled.
*/
static boolean_t
spa_livelist_condense_cb_check(void *arg, zthr_t *z)
{
(void) z;
spa_t *spa = arg;
if ((spa->spa_to_condense.ds != NULL) &&
(spa->spa_to_condense.syncing == B_FALSE) &&
(spa->spa_to_condense.cancelled == B_FALSE)) {
return (B_TRUE);
}
return (B_FALSE);
}
static void
spa_start_livelist_condensing_thread(spa_t *spa)
{
spa->spa_to_condense.ds = NULL;
spa->spa_to_condense.first = NULL;
spa->spa_to_condense.next = NULL;
spa->spa_to_condense.syncing = B_FALSE;
spa->spa_to_condense.cancelled = B_FALSE;
ASSERT3P(spa->spa_livelist_condense_zthr, ==, NULL);
spa->spa_livelist_condense_zthr =
zthr_create("z_livelist_condense",
spa_livelist_condense_cb_check,
spa_livelist_condense_cb, spa, minclsyspri);
}
static void
spa_spawn_aux_threads(spa_t *spa)
{
ASSERT(spa_writeable(spa));
ASSERT(MUTEX_HELD(&spa_namespace_lock));
spa_start_indirect_condensing_thread(spa);
spa_start_livelist_destroy_thread(spa);
spa_start_livelist_condensing_thread(spa);
ASSERT3P(spa->spa_checkpoint_discard_zthr, ==, NULL);
spa->spa_checkpoint_discard_zthr =
zthr_create("z_checkpoint_discard",
spa_checkpoint_discard_thread_check,
spa_checkpoint_discard_thread, spa, minclsyspri);
}
/*
* Fix up config after a partly-completed split. This is done with the
* ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off
* pool have that entry in their config, but only the splitting one contains
* a list of all the guids of the vdevs that are being split off.
*
* This function determines what to do with that list: either rejoin
* all the disks to the pool, or complete the splitting process. To attempt
* the rejoin, each disk that is offlined is marked online again, and
* we do a reopen() call. If the vdev label for every disk that was
* marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
* then we call vdev_split() on each disk, and complete the split.
*
* Otherwise we leave the config alone, with all the vdevs in place in
* the original pool.
*/
static void
spa_try_repair(spa_t *spa, nvlist_t *config)
{
uint_t extracted;
uint64_t *glist;
uint_t i, gcount;
nvlist_t *nvl;
vdev_t **vd;
boolean_t attempt_reopen;
if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
return;
/* check that the config is complete */
if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
&glist, &gcount) != 0)
return;
vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
/* attempt to online all the vdevs & validate */
attempt_reopen = B_TRUE;
for (i = 0; i < gcount; i++) {
if (glist[i] == 0) /* vdev is hole */
continue;
vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
if (vd[i] == NULL) {
/*
* Don't bother attempting to reopen the disks;
* just do the split.
*/
attempt_reopen = B_FALSE;
} else {
/* attempt to re-online it */
vd[i]->vdev_offline = B_FALSE;
}
}
if (attempt_reopen) {
vdev_reopen(spa->spa_root_vdev);
/* check each device to see what state it's in */
for (extracted = 0, i = 0; i < gcount; i++) {
if (vd[i] != NULL &&
vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
break;
++extracted;
}
}
/*
* If every disk has been moved to the new pool, or if we never
* even attempted to look at them, then we split them off for
* good.
*/
if (!attempt_reopen || gcount == extracted) {
for (i = 0; i < gcount; i++)
if (vd[i] != NULL)
vdev_split(vd[i]);
vdev_reopen(spa->spa_root_vdev);
}
kmem_free(vd, gcount * sizeof (vdev_t *));
}
static int
spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type)
{
const char *ereport = FM_EREPORT_ZFS_POOL;
int error;
spa->spa_load_state = state;
(void) spa_import_progress_set_state(spa_guid(spa),
spa_load_state(spa));
gethrestime(&spa->spa_loaded_ts);
error = spa_load_impl(spa, type, &ereport);
/*
* Don't count references from objsets that are already closed
* and are making their way through the eviction process.
*/
spa_evicting_os_wait(spa);
spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
if (error) {
if (error != EEXIST) {
spa->spa_loaded_ts.tv_sec = 0;
spa->spa_loaded_ts.tv_nsec = 0;
}
if (error != EBADF) {
(void) zfs_ereport_post(ereport, spa,
NULL, NULL, NULL, 0);
}
}
spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
spa->spa_ena = 0;
(void) spa_import_progress_set_state(spa_guid(spa),
spa_load_state(spa));
return (error);
}
#ifdef ZFS_DEBUG
/*
* Count the number of per-vdev ZAPs associated with all of the vdevs in the
* vdev tree rooted in the given vd, and ensure that each ZAP is present in the
* spa's per-vdev ZAP list.
*/
static uint64_t
vdev_count_verify_zaps(vdev_t *vd)
{
spa_t *spa = vd->vdev_spa;
uint64_t total = 0;
if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_AVZ_V2) &&
vd->vdev_root_zap != 0) {
total++;
ASSERT0(zap_lookup_int(spa->spa_meta_objset,
spa->spa_all_vdev_zaps, vd->vdev_root_zap));
}
if (vd->vdev_top_zap != 0) {
total++;
ASSERT0(zap_lookup_int(spa->spa_meta_objset,
spa->spa_all_vdev_zaps, vd->vdev_top_zap));
}
if (vd->vdev_leaf_zap != 0) {
total++;
ASSERT0(zap_lookup_int(spa->spa_meta_objset,
spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
}
for (uint64_t i = 0; i < vd->vdev_children; i++) {
total += vdev_count_verify_zaps(vd->vdev_child[i]);
}
return (total);
}
#else
#define vdev_count_verify_zaps(vd) ((void) sizeof (vd), 0)
#endif
/*
* Determine whether the activity check is required.
*/
static boolean_t
spa_activity_check_required(spa_t *spa, uberblock_t *ub, nvlist_t *label,
nvlist_t *config)
{
uint64_t state = 0;
uint64_t hostid = 0;
uint64_t tryconfig_txg = 0;
uint64_t tryconfig_timestamp = 0;
uint16_t tryconfig_mmp_seq = 0;
nvlist_t *nvinfo;
if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
nvinfo = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO);
(void) nvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG,
&tryconfig_txg);
(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
&tryconfig_timestamp);
(void) nvlist_lookup_uint16(nvinfo, ZPOOL_CONFIG_MMP_SEQ,
&tryconfig_mmp_seq);
}
(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &state);
/*
* Disable the MMP activity check - This is used by zdb which
* is intended to be used on potentially active pools.
*/
if (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP)
return (B_FALSE);
/*
* Skip the activity check when the MMP feature is disabled.
*/
if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay == 0)
return (B_FALSE);
/*
* If the tryconfig_ values are nonzero, they are the results of an
* earlier tryimport. If they all match the uberblock we just found,
* then the pool has not changed and we return false so we do not test
* a second time.
*/
if (tryconfig_txg && tryconfig_txg == ub->ub_txg &&
tryconfig_timestamp && tryconfig_timestamp == ub->ub_timestamp &&
tryconfig_mmp_seq && tryconfig_mmp_seq ==
(MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0))
return (B_FALSE);
/*
* Allow the activity check to be skipped when importing the pool
* on the same host which last imported it. Since the hostid from
* configuration may be stale use the one read from the label.
*/
if (nvlist_exists(label, ZPOOL_CONFIG_HOSTID))
hostid = fnvlist_lookup_uint64(label, ZPOOL_CONFIG_HOSTID);
if (hostid == spa_get_hostid(spa))
return (B_FALSE);
/*
* Skip the activity test when the pool was cleanly exported.
*/
if (state != POOL_STATE_ACTIVE)
return (B_FALSE);
return (B_TRUE);
}
/*
* Nanoseconds the activity check must watch for changes on-disk.
*/
static uint64_t
spa_activity_check_duration(spa_t *spa, uberblock_t *ub)
{
uint64_t import_intervals = MAX(zfs_multihost_import_intervals, 1);
uint64_t multihost_interval = MSEC2NSEC(
MMP_INTERVAL_OK(zfs_multihost_interval));
uint64_t import_delay = MAX(NANOSEC, import_intervals *
multihost_interval);
/*
* Local tunables determine a minimum duration except for the case
* where we know when the remote host will suspend the pool if MMP
* writes do not land.
*
* See Big Theory comment at the top of mmp.c for the reasoning behind
* these cases and times.
*/
ASSERT(MMP_IMPORT_SAFETY_FACTOR >= 100);
if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
MMP_FAIL_INT(ub) > 0) {
/* MMP on remote host will suspend pool after failed writes */
import_delay = MMP_FAIL_INT(ub) * MSEC2NSEC(MMP_INTERVAL(ub)) *
MMP_IMPORT_SAFETY_FACTOR / 100;
zfs_dbgmsg("fail_intvals>0 import_delay=%llu ub_mmp "
"mmp_fails=%llu ub_mmp mmp_interval=%llu "
"import_intervals=%llu", (u_longlong_t)import_delay,
(u_longlong_t)MMP_FAIL_INT(ub),
(u_longlong_t)MMP_INTERVAL(ub),
(u_longlong_t)import_intervals);
} else if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
MMP_FAIL_INT(ub) == 0) {
/* MMP on remote host will never suspend pool */
import_delay = MAX(import_delay, (MSEC2NSEC(MMP_INTERVAL(ub)) +
ub->ub_mmp_delay) * import_intervals);
zfs_dbgmsg("fail_intvals=0 import_delay=%llu ub_mmp "
"mmp_interval=%llu ub_mmp_delay=%llu "
"import_intervals=%llu", (u_longlong_t)import_delay,
(u_longlong_t)MMP_INTERVAL(ub),
(u_longlong_t)ub->ub_mmp_delay,
(u_longlong_t)import_intervals);
} else if (MMP_VALID(ub)) {
/*
* zfs-0.7 compatibility case
*/
import_delay = MAX(import_delay, (multihost_interval +
ub->ub_mmp_delay) * import_intervals);
zfs_dbgmsg("import_delay=%llu ub_mmp_delay=%llu "
"import_intervals=%llu leaves=%u",
(u_longlong_t)import_delay,
(u_longlong_t)ub->ub_mmp_delay,
(u_longlong_t)import_intervals,
vdev_count_leaves(spa));
} else {
/* Using local tunings is the only reasonable option */
zfs_dbgmsg("pool last imported on non-MMP aware "
"host using import_delay=%llu multihost_interval=%llu "
"import_intervals=%llu", (u_longlong_t)import_delay,
(u_longlong_t)multihost_interval,
(u_longlong_t)import_intervals);
}
return (import_delay);
}
/*
* Perform the import activity check. If the user canceled the import or
* we detected activity then fail.
*/
static int
spa_activity_check(spa_t *spa, uberblock_t *ub, nvlist_t *config)
{
uint64_t txg = ub->ub_txg;
uint64_t timestamp = ub->ub_timestamp;
uint64_t mmp_config = ub->ub_mmp_config;
uint16_t mmp_seq = MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0;
uint64_t import_delay;
hrtime_t import_expire;
nvlist_t *mmp_label = NULL;
vdev_t *rvd = spa->spa_root_vdev;
kcondvar_t cv;
kmutex_t mtx;
int error = 0;
cv_init(&cv, NULL, CV_DEFAULT, NULL);
mutex_init(&mtx, NULL, MUTEX_DEFAULT, NULL);
mutex_enter(&mtx);
/*
* If ZPOOL_CONFIG_MMP_TXG is present an activity check was performed
* during the earlier tryimport. If the txg recorded there is 0 then
* the pool is known to be active on another host.
*
* Otherwise, the pool might be in use on another host. Check for
* changes in the uberblocks on disk if necessary.
*/
if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
nvlist_t *nvinfo = fnvlist_lookup_nvlist(config,
ZPOOL_CONFIG_LOAD_INFO);
if (nvlist_exists(nvinfo, ZPOOL_CONFIG_MMP_TXG) &&
fnvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG) == 0) {
vdev_uberblock_load(rvd, ub, &mmp_label);
error = SET_ERROR(EREMOTEIO);
goto out;
}
}
import_delay = spa_activity_check_duration(spa, ub);
/* Add a small random factor in case of simultaneous imports (0-25%) */
import_delay += import_delay * random_in_range(250) / 1000;
import_expire = gethrtime() + import_delay;
while (gethrtime() < import_expire) {
(void) spa_import_progress_set_mmp_check(spa_guid(spa),
NSEC2SEC(import_expire - gethrtime()));
vdev_uberblock_load(rvd, ub, &mmp_label);
if (txg != ub->ub_txg || timestamp != ub->ub_timestamp ||
mmp_seq != (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)) {
zfs_dbgmsg("multihost activity detected "
"txg %llu ub_txg %llu "
"timestamp %llu ub_timestamp %llu "
"mmp_config %#llx ub_mmp_config %#llx",
(u_longlong_t)txg, (u_longlong_t)ub->ub_txg,
(u_longlong_t)timestamp,
(u_longlong_t)ub->ub_timestamp,
(u_longlong_t)mmp_config,
(u_longlong_t)ub->ub_mmp_config);
error = SET_ERROR(EREMOTEIO);
break;
}
if (mmp_label) {
nvlist_free(mmp_label);
mmp_label = NULL;
}
error = cv_timedwait_sig(&cv, &mtx, ddi_get_lbolt() + hz);
if (error != -1) {
error = SET_ERROR(EINTR);
break;
}
error = 0;
}
out:
mutex_exit(&mtx);
mutex_destroy(&mtx);
cv_destroy(&cv);
/*
* If the pool is determined to be active store the status in the
* spa->spa_load_info nvlist. If the remote hostname or hostid are
* available from configuration read from disk store them as well.
* This allows 'zpool import' to generate a more useful message.
*
* ZPOOL_CONFIG_MMP_STATE - observed pool status (mandatory)
* ZPOOL_CONFIG_MMP_HOSTNAME - hostname from the active pool
* ZPOOL_CONFIG_MMP_HOSTID - hostid from the active pool
*/
if (error == EREMOTEIO) {
const char *hostname = "<unknown>";
uint64_t hostid = 0;
if (mmp_label) {
if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTNAME)) {
hostname = fnvlist_lookup_string(mmp_label,
ZPOOL_CONFIG_HOSTNAME);
fnvlist_add_string(spa->spa_load_info,
ZPOOL_CONFIG_MMP_HOSTNAME, hostname);
}
if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTID)) {
hostid = fnvlist_lookup_uint64(mmp_label,
ZPOOL_CONFIG_HOSTID);
fnvlist_add_uint64(spa->spa_load_info,
ZPOOL_CONFIG_MMP_HOSTID, hostid);
}
}
fnvlist_add_uint64(spa->spa_load_info,
ZPOOL_CONFIG_MMP_STATE, MMP_STATE_ACTIVE);
fnvlist_add_uint64(spa->spa_load_info,
ZPOOL_CONFIG_MMP_TXG, 0);
error = spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO);
}
if (mmp_label)
nvlist_free(mmp_label);
return (error);
}
static int
spa_verify_host(spa_t *spa, nvlist_t *mos_config)
{
uint64_t hostid;
const char *hostname;
uint64_t myhostid = 0;
if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config,
ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
hostname = fnvlist_lookup_string(mos_config,
ZPOOL_CONFIG_HOSTNAME);
myhostid = zone_get_hostid(NULL);
if (hostid != 0 && myhostid != 0 && hostid != myhostid) {
cmn_err(CE_WARN, "pool '%s' could not be "
"loaded as it was last accessed by "
"another system (host: %s hostid: 0x%llx). "
"See: https://openzfs.github.io/openzfs-docs/msg/"
"ZFS-8000-EY",
spa_name(spa), hostname, (u_longlong_t)hostid);
spa_load_failed(spa, "hostid verification failed: pool "
"last accessed by host: %s (hostid: 0x%llx)",
hostname, (u_longlong_t)hostid);
return (SET_ERROR(EBADF));
}
}
return (0);
}
static int
spa_ld_parse_config(spa_t *spa, spa_import_type_t type)
{
int error = 0;
nvlist_t *nvtree, *nvl, *config = spa->spa_config;
int parse;
vdev_t *rvd;
uint64_t pool_guid;
const char *comment;
const char *compatibility;
/*
* Versioning wasn't explicitly added to the label until later, so if
* it's not present treat it as the initial version.
*/
if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
&spa->spa_ubsync.ub_version) != 0)
spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
spa_load_failed(spa, "invalid config provided: '%s' missing",
ZPOOL_CONFIG_POOL_GUID);
return (SET_ERROR(EINVAL));
}
/*
* If we are doing an import, ensure that the pool is not already
* imported by checking if its pool guid already exists in the
* spa namespace.
*
* The only case that we allow an already imported pool to be
* imported again, is when the pool is checkpointed and we want to
* look at its checkpointed state from userland tools like zdb.
*/
#ifdef _KERNEL
if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
spa_guid_exists(pool_guid, 0)) {
#else
if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
spa_guid_exists(pool_guid, 0) &&
!spa_importing_readonly_checkpoint(spa)) {
#endif
spa_load_failed(spa, "a pool with guid %llu is already open",
(u_longlong_t)pool_guid);
return (SET_ERROR(EEXIST));
}
spa->spa_config_guid = pool_guid;
nvlist_free(spa->spa_load_info);
spa->spa_load_info = fnvlist_alloc();
ASSERT(spa->spa_comment == NULL);
if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
spa->spa_comment = spa_strdup(comment);
ASSERT(spa->spa_compatibility == NULL);
if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMPATIBILITY,
&compatibility) == 0)
spa->spa_compatibility = spa_strdup(compatibility);
(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
&spa->spa_config_txg);
if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0)
spa->spa_config_splitting = fnvlist_dup(nvl);
if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) {
spa_load_failed(spa, "invalid config provided: '%s' missing",
ZPOOL_CONFIG_VDEV_TREE);
return (SET_ERROR(EINVAL));
}
/*
* Create "The Godfather" zio to hold all async IOs
*/
spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
KM_SLEEP);
for (int i = 0; i < max_ncpus; i++) {
spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
ZIO_FLAG_GODFATHER);
}
/*
* Parse the configuration into a vdev tree. We explicitly set the
* value that will be returned by spa_version() since parsing the
* configuration requires knowing the version number.
*/
spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
parse = (type == SPA_IMPORT_EXISTING ?
VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse);
spa_config_exit(spa, SCL_ALL, FTAG);
if (error != 0) {
spa_load_failed(spa, "unable to parse config [error=%d]",
error);
return (error);
}
ASSERT(spa->spa_root_vdev == rvd);
ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
if (type != SPA_IMPORT_ASSEMBLE) {
ASSERT(spa_guid(spa) == pool_guid);
}
return (0);
}
/*
* Recursively open all vdevs in the vdev tree. This function is called twice:
* first with the untrusted config, then with the trusted config.
*/
static int
spa_ld_open_vdevs(spa_t *spa)
{
int error = 0;
/*
* spa_missing_tvds_allowed defines how many top-level vdevs can be
* missing/unopenable for the root vdev to be still considered openable.
*/
if (spa->spa_trust_config) {
spa->spa_missing_tvds_allowed = zfs_max_missing_tvds;
} else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) {
spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile;
} else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) {
spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan;
} else {
spa->spa_missing_tvds_allowed = 0;
}
spa->spa_missing_tvds_allowed =
MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed);
spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
error = vdev_open(spa->spa_root_vdev);
spa_config_exit(spa, SCL_ALL, FTAG);
if (spa->spa_missing_tvds != 0) {
spa_load_note(spa, "vdev tree has %lld missing top-level "
"vdevs.", (u_longlong_t)spa->spa_missing_tvds);
if (spa->spa_trust_config && (spa->spa_mode & SPA_MODE_WRITE)) {
/*
* Although theoretically we could allow users to open
* incomplete pools in RW mode, we'd need to add a lot
* of extra logic (e.g. adjust pool space to account
* for missing vdevs).
* This limitation also prevents users from accidentally
* opening the pool in RW mode during data recovery and
* damaging it further.
*/
spa_load_note(spa, "pools with missing top-level "
"vdevs can only be opened in read-only mode.");
error = SET_ERROR(ENXIO);
} else {
spa_load_note(spa, "current settings allow for maximum "
"%lld missing top-level vdevs at this stage.",
(u_longlong_t)spa->spa_missing_tvds_allowed);
}
}
if (error != 0) {
spa_load_failed(spa, "unable to open vdev tree [error=%d]",
error);
}
if (spa->spa_missing_tvds != 0 || error != 0)
vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2);
return (error);
}
/*
* We need to validate the vdev labels against the configuration that
* we have in hand. This function is called twice: first with an untrusted
* config, then with a trusted config. The validation is more strict when the
* config is trusted.
*/
static int
spa_ld_validate_vdevs(spa_t *spa)
{
int error = 0;
vdev_t *rvd = spa->spa_root_vdev;
spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
error = vdev_validate(rvd);
spa_config_exit(spa, SCL_ALL, FTAG);
if (error != 0) {
spa_load_failed(spa, "vdev_validate failed [error=%d]", error);
return (error);
}
if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
spa_load_failed(spa, "cannot open vdev tree after invalidating "
"some vdevs");
vdev_dbgmsg_print_tree(rvd, 2);
return (SET_ERROR(ENXIO));
}
return (0);
}
static void
spa_ld_select_uberblock_done(spa_t *spa, uberblock_t *ub)
{
spa->spa_state = POOL_STATE_ACTIVE;
spa->spa_ubsync = spa->spa_uberblock;
spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
spa->spa_first_txg = spa->spa_last_ubsync_txg ?
spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
spa->spa_claim_max_txg = spa->spa_first_txg;
spa->spa_prev_software_version = ub->ub_software_version;
}
static int
spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type)
{
vdev_t *rvd = spa->spa_root_vdev;
nvlist_t *label;
uberblock_t *ub = &spa->spa_uberblock;
boolean_t activity_check = B_FALSE;
/*
* If we are opening the checkpointed state of the pool by
* rewinding to it, at this point we will have written the
* checkpointed uberblock to the vdev labels, so searching
* the labels will find the right uberblock. However, if
* we are opening the checkpointed state read-only, we have
* not modified the labels. Therefore, we must ignore the
* labels and continue using the spa_uberblock that was set
* by spa_ld_checkpoint_rewind.
*
* Note that it would be fine to ignore the labels when
* rewinding (opening writeable) as well. However, if we
* crash just after writing the labels, we will end up
* searching the labels. Doing so in the common case means
* that this code path gets exercised normally, rather than
* just in the edge case.
*/
if (ub->ub_checkpoint_txg != 0 &&
spa_importing_readonly_checkpoint(spa)) {
spa_ld_select_uberblock_done(spa, ub);
return (0);
}
/*
* Find the best uberblock.
*/
vdev_uberblock_load(rvd, ub, &label);
/*
* If we weren't able to find a single valid uberblock, return failure.
*/
if (ub->ub_txg == 0) {
nvlist_free(label);
spa_load_failed(spa, "no valid uberblock found");
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
}
if (spa->spa_load_max_txg != UINT64_MAX) {
(void) spa_import_progress_set_max_txg(spa_guid(spa),
(u_longlong_t)spa->spa_load_max_txg);
}
spa_load_note(spa, "using uberblock with txg=%llu",
(u_longlong_t)ub->ub_txg);
/*
* For pools which have the multihost property on determine if the
* pool is truly inactive and can be safely imported. Prevent
* hosts which don't have a hostid set from importing the pool.
*/
activity_check = spa_activity_check_required(spa, ub, label,
spa->spa_config);
if (activity_check) {
if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay &&
spa_get_hostid(spa) == 0) {
nvlist_free(label);
fnvlist_add_uint64(spa->spa_load_info,
ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
}
int error = spa_activity_check(spa, ub, spa->spa_config);
if (error) {
nvlist_free(label);
return (error);
}
fnvlist_add_uint64(spa->spa_load_info,
ZPOOL_CONFIG_MMP_STATE, MMP_STATE_INACTIVE);
fnvlist_add_uint64(spa->spa_load_info,
ZPOOL_CONFIG_MMP_TXG, ub->ub_txg);
fnvlist_add_uint16(spa->spa_load_info,
ZPOOL_CONFIG_MMP_SEQ,
(MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0));
}
/*
* If the pool has an unsupported version we can't open it.
*/
if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
nvlist_free(label);
spa_load_failed(spa, "version %llu is not supported",
(u_longlong_t)ub->ub_version);
return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
}
if (ub->ub_version >= SPA_VERSION_FEATURES) {
nvlist_t *features;
/*
* If we weren't able to find what's necessary for reading the
* MOS in the label, return failure.
*/
if (label == NULL) {
spa_load_failed(spa, "label config unavailable");
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
ENXIO));
}
if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ,
&features) != 0) {
nvlist_free(label);
spa_load_failed(spa, "invalid label: '%s' missing",
ZPOOL_CONFIG_FEATURES_FOR_READ);
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
ENXIO));
}
/*
* Update our in-core representation with the definitive values
* from the label.
*/
nvlist_free(spa->spa_label_features);
spa->spa_label_features = fnvlist_dup(features);
}
nvlist_free(label);
/*
* Look through entries in the label nvlist's features_for_read. If
* there is a feature listed there which we don't understand then we
* cannot open a pool.
*/
if (ub->ub_version >= SPA_VERSION_FEATURES) {
nvlist_t *unsup_feat;
unsup_feat = fnvlist_alloc();
for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
NULL); nvp != NULL;
nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
if (!zfeature_is_supported(nvpair_name(nvp))) {
fnvlist_add_string(unsup_feat,
nvpair_name(nvp), "");
}
}
if (!nvlist_empty(unsup_feat)) {
fnvlist_add_nvlist(spa->spa_load_info,
ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
nvlist_free(unsup_feat);
spa_load_failed(spa, "some features are unsupported");
return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
ENOTSUP));
}
nvlist_free(unsup_feat);
}
if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
spa_try_repair(spa, spa->spa_config);
spa_config_exit(spa, SCL_ALL, FTAG);
nvlist_free(spa->spa_config_splitting);
spa->spa_config_splitting = NULL;
}
/*
* Initialize internal SPA structures.
*/
spa_ld_select_uberblock_done(spa, ub);
return (0);
}
static int
spa_ld_open_rootbp(spa_t *spa)
{
int error = 0;
vdev_t *rvd = spa->spa_root_vdev;
error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
if (error != 0) {
spa_load_failed(spa, "unable to open rootbp in dsl_pool_init "
"[error=%d]", error);
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
}
spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
return (0);
}
static int
spa_ld_trusted_config(spa_t *spa, spa_import_type_t type,
boolean_t reloading)
{
vdev_t *mrvd, *rvd = spa->spa_root_vdev;
nvlist_t *nv, *mos_config, *policy;
int error = 0, copy_error;
uint64_t healthy_tvds, healthy_tvds_mos;
uint64_t mos_config_txg;
if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE)
!= 0)
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
/*
* If we're assembling a pool from a split, the config provided is
* already trusted so there is nothing to do.
*/
if (type == SPA_IMPORT_ASSEMBLE)
return (0);
healthy_tvds = spa_healthy_core_tvds(spa);
if (load_nvlist(spa, spa->spa_config_object, &mos_config)
!= 0) {
spa_load_failed(spa, "unable to retrieve MOS config");
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
}
/*
* If we are doing an open, pool owner wasn't verified yet, thus do
* the verification here.
*/
if (spa->spa_load_state == SPA_LOAD_OPEN) {
error = spa_verify_host(spa, mos_config);
if (error != 0) {
nvlist_free(mos_config);
return (error);
}
}
nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE);
spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
/*
* Build a new vdev tree from the trusted config
*/
error = spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD);
if (error != 0) {
nvlist_free(mos_config);
spa_config_exit(spa, SCL_ALL, FTAG);
spa_load_failed(spa, "spa_config_parse failed [error=%d]",
error);
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
}
/*
* Vdev paths in the MOS may be obsolete. If the untrusted config was
* obtained by scanning /dev/dsk, then it will have the right vdev
* paths. We update the trusted MOS config with this information.
* We first try to copy the paths with vdev_copy_path_strict, which
* succeeds only when both configs have exactly the same vdev tree.
* If that fails, we fall back to a more flexible method that has a
* best effort policy.
*/
copy_error = vdev_copy_path_strict(rvd, mrvd);
if (copy_error != 0 || spa_load_print_vdev_tree) {
spa_load_note(spa, "provided vdev tree:");
vdev_dbgmsg_print_tree(rvd, 2);
spa_load_note(spa, "MOS vdev tree:");
vdev_dbgmsg_print_tree(mrvd, 2);
}
if (copy_error != 0) {
spa_load_note(spa, "vdev_copy_path_strict failed, falling "
"back to vdev_copy_path_relaxed");
vdev_copy_path_relaxed(rvd, mrvd);
}
vdev_close(rvd);
vdev_free(rvd);
spa->spa_root_vdev = mrvd;
rvd = mrvd;
spa_config_exit(spa, SCL_ALL, FTAG);
/*
* We will use spa_config if we decide to reload the spa or if spa_load
* fails and we rewind. We must thus regenerate the config using the
* MOS information with the updated paths. ZPOOL_LOAD_POLICY is used to
* pass settings on how to load the pool and is not stored in the MOS.
* We copy it over to our new, trusted config.
*/
mos_config_txg = fnvlist_lookup_uint64(mos_config,
ZPOOL_CONFIG_POOL_TXG);
nvlist_free(mos_config);
mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE);
if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_LOAD_POLICY,
&policy) == 0)
fnvlist_add_nvlist(mos_config, ZPOOL_LOAD_POLICY, policy);
spa_config_set(spa, mos_config);
spa->spa_config_source = SPA_CONFIG_SRC_MOS;
/*
* Now that we got the config from the MOS, we should be more strict
* in checking blkptrs and can make assumptions about the consistency
* of the vdev tree. spa_trust_config must be set to true before opening
* vdevs in order for them to be writeable.
*/
spa->spa_trust_config = B_TRUE;
/*
* Open and validate the new vdev tree
*/
error = spa_ld_open_vdevs(spa);
if (error != 0)
return (error);
error = spa_ld_validate_vdevs(spa);
if (error != 0)
return (error);
if (copy_error != 0 || spa_load_print_vdev_tree) {
spa_load_note(spa, "final vdev tree:");
vdev_dbgmsg_print_tree(rvd, 2);
}
if (spa->spa_load_state != SPA_LOAD_TRYIMPORT &&
!spa->spa_extreme_rewind && zfs_max_missing_tvds == 0) {
/*
* Sanity check to make sure that we are indeed loading the
* latest uberblock. If we missed SPA_SYNC_MIN_VDEVS tvds
* in the config provided and they happened to be the only ones
* to have the latest uberblock, we could involuntarily perform
* an extreme rewind.
*/
healthy_tvds_mos = spa_healthy_core_tvds(spa);
if (healthy_tvds_mos - healthy_tvds >=
SPA_SYNC_MIN_VDEVS) {
spa_load_note(spa, "config provided misses too many "
"top-level vdevs compared to MOS (%lld vs %lld). ",
(u_longlong_t)healthy_tvds,
(u_longlong_t)healthy_tvds_mos);
spa_load_note(spa, "vdev tree:");
vdev_dbgmsg_print_tree(rvd, 2);
if (reloading) {
spa_load_failed(spa, "config was already "
"provided from MOS. Aborting.");
return (spa_vdev_err(rvd,
VDEV_AUX_CORRUPT_DATA, EIO));
}
spa_load_note(spa, "spa must be reloaded using MOS "
"config");
return (SET_ERROR(EAGAIN));
}
}
error = spa_check_for_missing_logs(spa);
if (error != 0)
return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
if (rvd->vdev_guid_sum != spa->spa_uberblock.ub_guid_sum) {
spa_load_failed(spa, "uberblock guid sum doesn't match MOS "
"guid sum (%llu != %llu)",
(u_longlong_t)spa->spa_uberblock.ub_guid_sum,
(u_longlong_t)rvd->vdev_guid_sum);
return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
ENXIO));
}
return (0);
}
static int
spa_ld_open_indirect_vdev_metadata(spa_t *spa)
{
int error = 0;
vdev_t *rvd = spa->spa_root_vdev;
/*
* Everything that we read before spa_remove_init() must be stored
* on concreted vdevs. Therefore we do this as early as possible.
*/
error = spa_remove_init(spa);
if (error != 0) {
spa_load_failed(spa, "spa_remove_init failed [error=%d]",
error);
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
}
/*
* Retrieve information needed to condense indirect vdev mappings.
*/
error = spa_condense_init(spa);
if (error != 0) {
spa_load_failed(spa, "spa_condense_init failed [error=%d]",
error);
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
}
return (0);
}
static int
spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep)
{
int error = 0;
vdev_t *rvd = spa->spa_root_vdev;
if (spa_version(spa) >= SPA_VERSION_FEATURES) {
boolean_t missing_feat_read = B_FALSE;
nvlist_t *unsup_feat, *enabled_feat;
if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
&spa->spa_feat_for_read_obj, B_TRUE) != 0) {
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
}
if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
&spa->spa_feat_for_write_obj, B_TRUE) != 0) {
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
}
if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
&spa->spa_feat_desc_obj, B_TRUE) != 0) {
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
}
enabled_feat = fnvlist_alloc();
unsup_feat = fnvlist_alloc();
if (!spa_features_check(spa, B_FALSE,
unsup_feat, enabled_feat))
missing_feat_read = B_TRUE;
if (spa_writeable(spa) ||
spa->spa_load_state == SPA_LOAD_TRYIMPORT) {
if (!spa_features_check(spa, B_TRUE,
unsup_feat, enabled_feat)) {
*missing_feat_writep = B_TRUE;
}
}
fnvlist_add_nvlist(spa->spa_load_info,
ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
if (!nvlist_empty(unsup_feat)) {
fnvlist_add_nvlist(spa->spa_load_info,
ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
}
fnvlist_free(enabled_feat);
fnvlist_free(unsup_feat);
if (!missing_feat_read) {
fnvlist_add_boolean(spa->spa_load_info,
ZPOOL_CONFIG_CAN_RDONLY);
}
/*
* If the state is SPA_LOAD_TRYIMPORT, our objective is
* twofold: to determine whether the pool is available for
* import in read-write mode and (if it is not) whether the
* pool is available for import in read-only mode. If the pool
* is available for import in read-write mode, it is displayed
* as available in userland; if it is not available for import
* in read-only mode, it is displayed as unavailable in
* userland. If the pool is available for import in read-only
* mode but not read-write mode, it is displayed as unavailable
* in userland with a special note that the pool is actually
* available for open in read-only mode.
*
* As a result, if the state is SPA_LOAD_TRYIMPORT and we are
* missing a feature for write, we must first determine whether
* the pool can be opened read-only before returning to
* userland in order to know whether to display the
* abovementioned note.
*/
if (missing_feat_read || (*missing_feat_writep &&
spa_writeable(spa))) {
spa_load_failed(spa, "pool uses unsupported features");
return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
ENOTSUP));
}
/*
* Load refcounts for ZFS features from disk into an in-memory
* cache during SPA initialization.
*/
for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
uint64_t refcount;
error = feature_get_refcount_from_disk(spa,
&spa_feature_table[i], &refcount);
if (error == 0) {
spa->spa_feat_refcount_cache[i] = refcount;
} else if (error == ENOTSUP) {
spa->spa_feat_refcount_cache[i] =
SPA_FEATURE_DISABLED;
} else {
spa_load_failed(spa, "error getting refcount "
"for feature %s [error=%d]",
spa_feature_table[i].fi_guid, error);
return (spa_vdev_err(rvd,
VDEV_AUX_CORRUPT_DATA, EIO));
}
}
}
if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
&spa->spa_feat_enabled_txg_obj, B_TRUE) != 0)
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
}
/*
* Encryption was added before bookmark_v2, even though bookmark_v2
* is now a dependency. If this pool has encryption enabled without
* bookmark_v2, trigger an errata message.
*/
if (spa_feature_is_enabled(spa, SPA_FEATURE_ENCRYPTION) &&
!spa_feature_is_enabled(spa, SPA_FEATURE_BOOKMARK_V2)) {
spa->spa_errata = ZPOOL_ERRATA_ZOL_8308_ENCRYPTION;
}
return (0);
}
static int
spa_ld_load_special_directories(spa_t *spa)
{
int error = 0;
vdev_t *rvd = spa->spa_root_vdev;
spa->spa_is_initializing = B_TRUE;
error = dsl_pool_open(spa->spa_dsl_pool);
spa->spa_is_initializing = B_FALSE;
if (error != 0) {
spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error);
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
}
return (0);
}
static int
spa_ld_get_props(spa_t *spa)
{
int error = 0;
uint64_t obj;
vdev_t *rvd = spa->spa_root_vdev;
/* Grab the checksum salt from the MOS. */
error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
DMU_POOL_CHECKSUM_SALT, 1,
sizeof (spa->spa_cksum_salt.zcs_bytes),
spa->spa_cksum_salt.zcs_bytes);
if (error == ENOENT) {
/* Generate a new salt for subsequent use */
(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
sizeof (spa->spa_cksum_salt.zcs_bytes));
} else if (error != 0) {
spa_load_failed(spa, "unable to retrieve checksum salt from "
"MOS [error=%d]", error);
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
}
if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0)
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
if (error != 0) {
spa_load_failed(spa, "error opening deferred-frees bpobj "
"[error=%d]", error);
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
}
/*
* Load the bit that tells us to use the new accounting function
* (raid-z deflation). If we have an older pool, this will not
* be present.
*/
error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE);
if (error != 0 && error != ENOENT)
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
&spa->spa_creation_version, B_FALSE);
if (error != 0 && error != ENOENT)
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
/*
* Load the persistent error log. If we have an older pool, this will
* not be present.
*/
error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last,
B_FALSE);
if (error != 0 && error != ENOENT)
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
&spa->spa_errlog_scrub, B_FALSE);
if (error != 0 && error != ENOENT)
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
/*
* Load the livelist deletion field. If a livelist is queued for
* deletion, indicate that in the spa
*/
error = spa_dir_prop(spa, DMU_POOL_DELETED_CLONES,
&spa->spa_livelists_to_delete, B_FALSE);
if (error != 0 && error != ENOENT)
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
/*
* Load the history object. If we have an older pool, this
* will not be present.
*/
error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE);
if (error != 0 && error != ENOENT)
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
/*
* Load the per-vdev ZAP map. If we have an older pool, this will not
* be present; in this case, defer its creation to a later time to
* avoid dirtying the MOS this early / out of sync context. See
* spa_sync_config_object.
*/
/* The sentinel is only available in the MOS config. */
nvlist_t *mos_config;
if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) {
spa_load_failed(spa, "unable to retrieve MOS config");
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
}
error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
&spa->spa_all_vdev_zaps, B_FALSE);
if (error == ENOENT) {
VERIFY(!nvlist_exists(mos_config,
ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
spa->spa_avz_action = AVZ_ACTION_INITIALIZE;
ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
} else if (error != 0) {
nvlist_free(mos_config);
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
} else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
/*
* An older version of ZFS overwrote the sentinel value, so
* we have orphaned per-vdev ZAPs in the MOS. Defer their
* destruction to later; see spa_sync_config_object.
*/
spa->spa_avz_action = AVZ_ACTION_DESTROY;
/*
* We're assuming that no vdevs have had their ZAPs created
* before this. Better be sure of it.
*/
ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
}
nvlist_free(mos_config);
spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object,
B_FALSE);
if (error && error != ENOENT)
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
if (error == 0) {
uint64_t autoreplace = 0;
spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
spa_prop_find(spa, ZPOOL_PROP_MULTIHOST, &spa->spa_multihost);
spa_prop_find(spa, ZPOOL_PROP_AUTOTRIM, &spa->spa_autotrim);
spa->spa_autoreplace = (autoreplace != 0);
}
/*
* If we are importing a pool with missing top-level vdevs,
* we enforce that the pool doesn't panic or get suspended on
* error since the likelihood of missing data is extremely high.
*/
if (spa->spa_missing_tvds > 0 &&
spa->spa_failmode != ZIO_FAILURE_MODE_CONTINUE &&
spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
spa_load_note(spa, "forcing failmode to 'continue' "
"as some top level vdevs are missing");
spa->spa_failmode = ZIO_FAILURE_MODE_CONTINUE;
}
return (0);
}
static int
spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type)
{
int error = 0;
vdev_t *rvd = spa->spa_root_vdev;
/*
* If we're assembling the pool from the split-off vdevs of
* an existing pool, we don't want to attach the spares & cache
* devices.
*/
/*
* Load any hot spares for this pool.
*/
error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object,
B_FALSE);
if (error != 0 && error != ENOENT)
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
if (load_nvlist(spa, spa->spa_spares.sav_object,
&spa->spa_spares.sav_config) != 0) {
spa_load_failed(spa, "error loading spares nvlist");
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
}
spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
spa_load_spares(spa);
spa_config_exit(spa, SCL_ALL, FTAG);
} else if (error == 0) {
spa->spa_spares.sav_sync = B_TRUE;
}
/*
* Load any level 2 ARC devices for this pool.
*/
error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
&spa->spa_l2cache.sav_object, B_FALSE);
if (error != 0 && error != ENOENT)
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
if (load_nvlist(spa, spa->spa_l2cache.sav_object,
&spa->spa_l2cache.sav_config) != 0) {
spa_load_failed(spa, "error loading l2cache nvlist");
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
}
spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
spa_load_l2cache(spa);
spa_config_exit(spa, SCL_ALL, FTAG);
} else if (error == 0) {
spa->spa_l2cache.sav_sync = B_TRUE;
}
return (0);
}
static int
spa_ld_load_vdev_metadata(spa_t *spa)
{
int error = 0;
vdev_t *rvd = spa->spa_root_vdev;
/*
* If the 'multihost' property is set, then never allow a pool to
* be imported when the system hostid is zero. The exception to
* this rule is zdb which is always allowed to access pools.
*/
if (spa_multihost(spa) && spa_get_hostid(spa) == 0 &&
(spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) == 0) {
fnvlist_add_uint64(spa->spa_load_info,
ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
}
/*
* If the 'autoreplace' property is set, then post a resource notifying
* the ZFS DE that it should not issue any faults for unopenable
* devices. We also iterate over the vdevs, and post a sysevent for any
* unopenable vdevs so that the normal autoreplace handler can take
* over.
*/
if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
spa_check_removed(spa->spa_root_vdev);
/*
* For the import case, this is done in spa_import(), because
* at this point we're using the spare definitions from
* the MOS config, not necessarily from the userland config.
*/
if (spa->spa_load_state != SPA_LOAD_IMPORT) {
spa_aux_check_removed(&spa->spa_spares);
spa_aux_check_removed(&spa->spa_l2cache);
}
}
/*
* Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc.
*/
error = vdev_load(rvd);
if (error != 0) {
spa_load_failed(spa, "vdev_load failed [error=%d]", error);
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
}
error = spa_ld_log_spacemaps(spa);
if (error != 0) {
spa_load_failed(spa, "spa_ld_log_spacemaps failed [error=%d]",
error);
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
}
/*
* Propagate the leaf DTLs we just loaded all the way up the vdev tree.
*/
spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
vdev_dtl_reassess(rvd, 0, 0, B_FALSE, B_FALSE);
spa_config_exit(spa, SCL_ALL, FTAG);
return (0);
}
static int
spa_ld_load_dedup_tables(spa_t *spa)
{
int error = 0;
vdev_t *rvd = spa->spa_root_vdev;
error = ddt_load(spa);
if (error != 0) {
spa_load_failed(spa, "ddt_load failed [error=%d]", error);
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
}
return (0);
}
static int
spa_ld_load_brt(spa_t *spa)
{
int error = 0;
vdev_t *rvd = spa->spa_root_vdev;
error = brt_load(spa);
if (error != 0) {
spa_load_failed(spa, "brt_load failed [error=%d]", error);
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
}
return (0);
}
static int
spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, const char **ereport)
{
vdev_t *rvd = spa->spa_root_vdev;
if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) {
boolean_t missing = spa_check_logs(spa);
if (missing) {
if (spa->spa_missing_tvds != 0) {
spa_load_note(spa, "spa_check_logs failed "
"so dropping the logs");
} else {
*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
spa_load_failed(spa, "spa_check_logs failed");
return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG,
ENXIO));
}
}
}
return (0);
}
static int
spa_ld_verify_pool_data(spa_t *spa)
{
int error = 0;
vdev_t *rvd = spa->spa_root_vdev;
/*
* We've successfully opened the pool, verify that we're ready
* to start pushing transactions.
*/
if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
error = spa_load_verify(spa);
if (error != 0) {
spa_load_failed(spa, "spa_load_verify failed "
"[error=%d]", error);
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
error));
}
}
return (0);
}
static void
spa_ld_claim_log_blocks(spa_t *spa)
{
dmu_tx_t *tx;
dsl_pool_t *dp = spa_get_dsl(spa);
/*
* Claim log blocks that haven't been committed yet.
* This must all happen in a single txg.
* Note: spa_claim_max_txg is updated by spa_claim_notify(),
* invoked from zil_claim_log_block()'s i/o done callback.
* Price of rollback is that we abandon the log.
*/
spa->spa_claiming = B_TRUE;
tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
(void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
zil_claim, tx, DS_FIND_CHILDREN);
dmu_tx_commit(tx);
spa->spa_claiming = B_FALSE;
spa_set_log_state(spa, SPA_LOG_GOOD);
}
static void
spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg,
boolean_t update_config_cache)
{
vdev_t *rvd = spa->spa_root_vdev;
int need_update = B_FALSE;
/*
* If the config cache is stale, or we have uninitialized
* metaslabs (see spa_vdev_add()), then update the config.
*
* If this is a verbatim import, trust the current
* in-core spa_config and update the disk labels.
*/
if (update_config_cache || config_cache_txg != spa->spa_config_txg ||
spa->spa_load_state == SPA_LOAD_IMPORT ||
spa->spa_load_state == SPA_LOAD_RECOVER ||
(spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
need_update = B_TRUE;
for (int c = 0; c < rvd->vdev_children; c++)
if (rvd->vdev_child[c]->vdev_ms_array == 0)
need_update = B_TRUE;
/*
* Update the config cache asynchronously in case we're the
* root pool, in which case the config cache isn't writable yet.
*/
if (need_update)
spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
}
static void
spa_ld_prepare_for_reload(spa_t *spa)
{
spa_mode_t mode = spa->spa_mode;
int async_suspended = spa->spa_async_suspended;
spa_unload(spa);
spa_deactivate(spa);
spa_activate(spa, mode);
/*
* We save the value of spa_async_suspended as it gets reset to 0 by
* spa_unload(). We want to restore it back to the original value before
* returning as we might be calling spa_async_resume() later.
*/
spa->spa_async_suspended = async_suspended;
}
static int
spa_ld_read_checkpoint_txg(spa_t *spa)
{
uberblock_t checkpoint;
int error = 0;
ASSERT0(spa->spa_checkpoint_txg);
ASSERT(MUTEX_HELD(&spa_namespace_lock));
error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
if (error == ENOENT)
return (0);
if (error != 0)
return (error);
ASSERT3U(checkpoint.ub_txg, !=, 0);
ASSERT3U(checkpoint.ub_checkpoint_txg, !=, 0);
ASSERT3U(checkpoint.ub_timestamp, !=, 0);
spa->spa_checkpoint_txg = checkpoint.ub_txg;
spa->spa_checkpoint_info.sci_timestamp = checkpoint.ub_timestamp;
return (0);
}
static int
spa_ld_mos_init(spa_t *spa, spa_import_type_t type)
{
int error = 0;
ASSERT(MUTEX_HELD(&spa_namespace_lock));
ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
/*
* Never trust the config that is provided unless we are assembling
* a pool following a split.
* This means don't trust blkptrs and the vdev tree in general. This
* also effectively puts the spa in read-only mode since
* spa_writeable() checks for spa_trust_config to be true.
* We will later load a trusted config from the MOS.
*/
if (type != SPA_IMPORT_ASSEMBLE)
spa->spa_trust_config = B_FALSE;
/*
* Parse the config provided to create a vdev tree.
*/
error = spa_ld_parse_config(spa, type);
if (error != 0)
return (error);
spa_import_progress_add(spa);
/*
* Now that we have the vdev tree, try to open each vdev. This involves
* opening the underlying physical device, retrieving its geometry and
* probing the vdev with a dummy I/O. The state of each vdev will be set
* based on the success of those operations. After this we'll be ready
* to read from the vdevs.
*/
error = spa_ld_open_vdevs(spa);
if (error != 0)
return (error);
/*
* Read the label of each vdev and make sure that the GUIDs stored
* there match the GUIDs in the config provided.
* If we're assembling a new pool that's been split off from an
* existing pool, the labels haven't yet been updated so we skip
* validation for now.
*/
if (type != SPA_IMPORT_ASSEMBLE) {
error = spa_ld_validate_vdevs(spa);
if (error != 0)
return (error);
}
/*
* Read all vdev labels to find the best uberblock (i.e. latest,
* unless spa_load_max_txg is set) and store it in spa_uberblock. We
* get the list of features required to read blkptrs in the MOS from
* the vdev label with the best uberblock and verify that our version
* of zfs supports them all.
*/
error = spa_ld_select_uberblock(spa, type);
if (error != 0)
return (error);
/*
* Pass that uberblock to the dsl_pool layer which will open the root
* blkptr. This blkptr points to the latest version of the MOS and will
* allow us to read its contents.
*/
error = spa_ld_open_rootbp(spa);
if (error != 0)
return (error);
return (0);
}
static int
spa_ld_checkpoint_rewind(spa_t *spa)
{
uberblock_t checkpoint;
int error = 0;
ASSERT(MUTEX_HELD(&spa_namespace_lock));
ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
if (error != 0) {
spa_load_failed(spa, "unable to retrieve checkpointed "
"uberblock from the MOS config [error=%d]", error);
if (error == ENOENT)
error = ZFS_ERR_NO_CHECKPOINT;
return (error);
}
ASSERT3U(checkpoint.ub_txg, <, spa->spa_uberblock.ub_txg);
ASSERT3U(checkpoint.ub_txg, ==, checkpoint.ub_checkpoint_txg);
/*
* We need to update the txg and timestamp of the checkpointed
* uberblock to be higher than the latest one. This ensures that
* the checkpointed uberblock is selected if we were to close and
* reopen the pool right after we've written it in the vdev labels.
* (also see block comment in vdev_uberblock_compare)
*/
checkpoint.ub_txg = spa->spa_uberblock.ub_txg + 1;
checkpoint.ub_timestamp = gethrestime_sec();
/*
* Set current uberblock to be the checkpointed uberblock.
*/
spa->spa_uberblock = checkpoint;
/*
* If we are doing a normal rewind, then the pool is open for
* writing and we sync the "updated" checkpointed uberblock to
* disk. Once this is done, we've basically rewound the whole
* pool and there is no way back.
*
* There are cases when we don't want to attempt and sync the
* checkpointed uberblock to disk because we are opening a
* pool as read-only. Specifically, verifying the checkpointed
* state with zdb, and importing the checkpointed state to get
* a "preview" of its content.
*/
if (spa_writeable(spa)) {
vdev_t *rvd = spa->spa_root_vdev;
spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
int svdcount = 0;
int children = rvd->vdev_children;
int c0 = random_in_range(children);
for (int c = 0; c < children; c++) {
vdev_t *vd = rvd->vdev_child[(c0 + c) % children];
/* Stop when revisiting the first vdev */
if (c > 0 && svd[0] == vd)
break;
if (vd->vdev_ms_array == 0 || vd->vdev_islog ||
!vdev_is_concrete(vd))
continue;
svd[svdcount++] = vd;
if (svdcount == SPA_SYNC_MIN_VDEVS)
break;
}
error = vdev_config_sync(svd, svdcount, spa->spa_first_txg);
if (error == 0)
spa->spa_last_synced_guid = rvd->vdev_guid;
spa_config_exit(spa, SCL_ALL, FTAG);
if (error != 0) {
spa_load_failed(spa, "failed to write checkpointed "
"uberblock to the vdev labels [error=%d]", error);
return (error);
}
}
return (0);
}
static int
spa_ld_mos_with_trusted_config(spa_t *spa, spa_import_type_t type,
boolean_t *update_config_cache)
{
int error;
/*
* Parse the config for pool, open and validate vdevs,
* select an uberblock, and use that uberblock to open
* the MOS.
*/
error = spa_ld_mos_init(spa, type);
if (error != 0)
return (error);
/*
* Retrieve the trusted config stored in the MOS and use it to create
* a new, exact version of the vdev tree, then reopen all vdevs.
*/
error = spa_ld_trusted_config(spa, type, B_FALSE);
if (error == EAGAIN) {
if (update_config_cache != NULL)
*update_config_cache = B_TRUE;
/*
* Redo the loading process with the trusted config if it is
* too different from the untrusted config.
*/
spa_ld_prepare_for_reload(spa);
spa_load_note(spa, "RELOADING");
error = spa_ld_mos_init(spa, type);
if (error != 0)
return (error);
error = spa_ld_trusted_config(spa, type, B_TRUE);
if (error != 0)
return (error);
} else if (error != 0) {
return (error);
}
return (0);
}
/*
* Load an existing storage pool, using the config provided. This config
* describes which vdevs are part of the pool and is later validated against
* partial configs present in each vdev's label and an entire copy of the
* config stored in the MOS.
*/
static int
spa_load_impl(spa_t *spa, spa_import_type_t type, const char **ereport)
{
int error = 0;
boolean_t missing_feat_write = B_FALSE;
boolean_t checkpoint_rewind =
(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
boolean_t update_config_cache = B_FALSE;
ASSERT(MUTEX_HELD(&spa_namespace_lock));
ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
spa_load_note(spa, "LOADING");
error = spa_ld_mos_with_trusted_config(spa, type, &update_config_cache);
if (error != 0)
return (error);
/*
* If we are rewinding to the checkpoint then we need to repeat
* everything we've done so far in this function but this time
* selecting the checkpointed uberblock and using that to open
* the MOS.
*/
if (checkpoint_rewind) {
/*
* If we are rewinding to the checkpoint update config cache
* anyway.
*/
update_config_cache = B_TRUE;
/*
* Extract the checkpointed uberblock from the current MOS
* and use this as the pool's uberblock from now on. If the
* pool is imported as writeable we also write the checkpoint
* uberblock to the labels, making the rewind permanent.
*/
error = spa_ld_checkpoint_rewind(spa);
if (error != 0)
return (error);
/*
* Redo the loading process again with the
* checkpointed uberblock.
*/
spa_ld_prepare_for_reload(spa);
spa_load_note(spa, "LOADING checkpointed uberblock");
error = spa_ld_mos_with_trusted_config(spa, type, NULL);
if (error != 0)
return (error);
}
/*
* Retrieve the checkpoint txg if the pool has a checkpoint.
*/
error = spa_ld_read_checkpoint_txg(spa);
if (error != 0)
return (error);
/*
* Retrieve the mapping of indirect vdevs. Those vdevs were removed
* from the pool and their contents were re-mapped to other vdevs. Note
* that everything that we read before this step must have been
* rewritten on concrete vdevs after the last device removal was
* initiated. Otherwise we could be reading from indirect vdevs before
* we have loaded their mappings.
*/
error = spa_ld_open_indirect_vdev_metadata(spa);
if (error != 0)
return (error);
/*
* Retrieve the full list of active features from the MOS and check if
* they are all supported.
*/
error = spa_ld_check_features(spa, &missing_feat_write);
if (error != 0)
return (error);
/*
* Load several special directories from the MOS needed by the dsl_pool
* layer.
*/
error = spa_ld_load_special_directories(spa);
if (error != 0)
return (error);
/*
* Retrieve pool properties from the MOS.
*/
error = spa_ld_get_props(spa);
if (error != 0)
return (error);
/*
* Retrieve the list of auxiliary devices - cache devices and spares -
* and open them.
*/
error = spa_ld_open_aux_vdevs(spa, type);
if (error != 0)
return (error);
/*
* Load the metadata for all vdevs. Also check if unopenable devices
* should be autoreplaced.
*/
error = spa_ld_load_vdev_metadata(spa);
if (error != 0)
return (error);
error = spa_ld_load_dedup_tables(spa);
if (error != 0)
return (error);
error = spa_ld_load_brt(spa);
if (error != 0)
return (error);
/*
* Verify the logs now to make sure we don't have any unexpected errors
* when we claim log blocks later.
*/
error = spa_ld_verify_logs(spa, type, ereport);
if (error != 0)
return (error);
if (missing_feat_write) {
ASSERT(spa->spa_load_state == SPA_LOAD_TRYIMPORT);
/*
* At this point, we know that we can open the pool in
* read-only mode but not read-write mode. We now have enough
* information and can return to userland.
*/
return (spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT,
ENOTSUP));
}
/*
* Traverse the last txgs to make sure the pool was left off in a safe
* state. When performing an extreme rewind, we verify the whole pool,
* which can take a very long time.
*/
error = spa_ld_verify_pool_data(spa);
if (error != 0)
return (error);
/*
* Calculate the deflated space for the pool. This must be done before
* we write anything to the pool because we'd need to update the space
* accounting using the deflated sizes.
*/
spa_update_dspace(spa);
/*
* We have now retrieved all the information we needed to open the
* pool. If we are importing the pool in read-write mode, a few
* additional steps must be performed to finish the import.
*/
if (spa_writeable(spa) && (spa->spa_load_state == SPA_LOAD_RECOVER ||
spa->spa_load_max_txg == UINT64_MAX)) {
uint64_t config_cache_txg = spa->spa_config_txg;
ASSERT(spa->spa_load_state != SPA_LOAD_TRYIMPORT);
/*
* In case of a checkpoint rewind, log the original txg
* of the checkpointed uberblock.
*/
if (checkpoint_rewind) {
spa_history_log_internal(spa, "checkpoint rewind",
NULL, "rewound state to txg=%llu",
(u_longlong_t)spa->spa_uberblock.ub_checkpoint_txg);
}
/*
* Traverse the ZIL and claim all blocks.
*/
spa_ld_claim_log_blocks(spa);
/*
* Kick-off the syncing thread.
*/
spa->spa_sync_on = B_TRUE;
txg_sync_start(spa->spa_dsl_pool);
mmp_thread_start(spa);
/*
* Wait for all claims to sync. We sync up to the highest
* claimed log block birth time so that claimed log blocks
* don't appear to be from the future. spa_claim_max_txg
* will have been set for us by ZIL traversal operations
* performed above.
*/
txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
/*
* Check if we need to request an update of the config. On the
* next sync, we would update the config stored in vdev labels
* and the cachefile (by default /etc/zfs/zpool.cache).
*/
spa_ld_check_for_config_update(spa, config_cache_txg,
update_config_cache);
/*
* Check if a rebuild was in progress and if so resume it.
* Then check all DTLs to see if anything needs resilvering.
* The resilver will be deferred if a rebuild was started.
*/
if (vdev_rebuild_active(spa->spa_root_vdev)) {
vdev_rebuild_restart(spa);
} else if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
spa_async_request(spa, SPA_ASYNC_RESILVER);
}
/*
* Log the fact that we booted up (so that we can detect if
* we rebooted in the middle of an operation).
*/
spa_history_log_version(spa, "open", NULL);
spa_restart_removal(spa);
spa_spawn_aux_threads(spa);
/*
* Delete any inconsistent datasets.
*
* Note:
* Since we may be issuing deletes for clones here,
* we make sure to do so after we've spawned all the
* auxiliary threads above (from which the livelist
* deletion zthr is part of).
*/
(void) dmu_objset_find(spa_name(spa),
dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
/*
* Clean up any stale temporary dataset userrefs.
*/
dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
vdev_initialize_restart(spa->spa_root_vdev);
vdev_trim_restart(spa->spa_root_vdev);
vdev_autotrim_restart(spa);
spa_config_exit(spa, SCL_CONFIG, FTAG);
}
spa_import_progress_remove(spa_guid(spa));
spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD);
spa_load_note(spa, "LOADED");
return (0);
}
static int
spa_load_retry(spa_t *spa, spa_load_state_t state)
{
spa_mode_t mode = spa->spa_mode;
spa_unload(spa);
spa_deactivate(spa);
spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
spa_activate(spa, mode);
spa_async_suspend(spa);
spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu",
(u_longlong_t)spa->spa_load_max_txg);
return (spa_load(spa, state, SPA_IMPORT_EXISTING));
}
/*
* If spa_load() fails this function will try loading prior txg's. If
* 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
* will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
* function will not rewind the pool and will return the same error as
* spa_load().
*/
static int
spa_load_best(spa_t *spa, spa_load_state_t state, uint64_t max_request,
int rewind_flags)
{
nvlist_t *loadinfo = NULL;
nvlist_t *config = NULL;
int load_error, rewind_error;
uint64_t safe_rewind_txg;
uint64_t min_txg;
if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
spa->spa_load_max_txg = spa->spa_load_txg;
spa_set_log_state(spa, SPA_LOG_CLEAR);
} else {
spa->spa_load_max_txg = max_request;
if (max_request != UINT64_MAX)
spa->spa_extreme_rewind = B_TRUE;
}
load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING);
if (load_error == 0)
return (0);
if (load_error == ZFS_ERR_NO_CHECKPOINT) {
/*
* When attempting checkpoint-rewind on a pool with no
* checkpoint, we should not attempt to load uberblocks
* from previous txgs when spa_load fails.
*/
ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
spa_import_progress_remove(spa_guid(spa));
return (load_error);
}
if (spa->spa_root_vdev != NULL)
config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
if (rewind_flags & ZPOOL_NEVER_REWIND) {
nvlist_free(config);
spa_import_progress_remove(spa_guid(spa));
return (load_error);
}
if (state == SPA_LOAD_RECOVER) {
/* Price of rolling back is discarding txgs, including log */
spa_set_log_state(spa, SPA_LOG_CLEAR);
} else {
/*
* If we aren't rolling back save the load info from our first
* import attempt so that we can restore it after attempting
* to rewind.
*/
loadinfo = spa->spa_load_info;
spa->spa_load_info = fnvlist_alloc();
}
spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
TXG_INITIAL : safe_rewind_txg;
/*
* Continue as long as we're finding errors, we're still within
* the acceptable rewind range, and we're still finding uberblocks
*/
while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
if (spa->spa_load_max_txg < safe_rewind_txg)
spa->spa_extreme_rewind = B_TRUE;
rewind_error = spa_load_retry(spa, state);
}
spa->spa_extreme_rewind = B_FALSE;
spa->spa_load_max_txg = UINT64_MAX;
if (config && (rewind_error || state != SPA_LOAD_RECOVER))
spa_config_set(spa, config);
else
nvlist_free(config);
if (state == SPA_LOAD_RECOVER) {
ASSERT3P(loadinfo, ==, NULL);
spa_import_progress_remove(spa_guid(spa));
return (rewind_error);
} else {
/* Store the rewind info as part of the initial load info */
fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
spa->spa_load_info);
/* Restore the initial load info */
fnvlist_free(spa->spa_load_info);
spa->spa_load_info = loadinfo;
spa_import_progress_remove(spa_guid(spa));
return (load_error);
}
}
/*
* Pool Open/Import
*
* The import case is identical to an open except that the configuration is sent
* down from userland, instead of grabbed from the configuration cache. For the
* case of an open, the pool configuration will exist in the
* POOL_STATE_UNINITIALIZED state.
*
* The stats information (gen/count/ustats) is used to gather vdev statistics at
* the same time open the pool, without having to keep around the spa_t in some
* ambiguous state.
*/
static int
spa_open_common(const char *pool, spa_t **spapp, const void *tag,
nvlist_t *nvpolicy, nvlist_t **config)
{
spa_t *spa;
spa_load_state_t state = SPA_LOAD_OPEN;
int error;
int locked = B_FALSE;
int firstopen = B_FALSE;
*spapp = NULL;
/*
* As disgusting as this is, we need to support recursive calls to this
* function because dsl_dir_open() is called during spa_load(), and ends
* up calling spa_open() again. The real fix is to figure out how to
* avoid dsl_dir_open() calling this in the first place.
*/
if (MUTEX_NOT_HELD(&spa_namespace_lock)) {
mutex_enter(&spa_namespace_lock);
locked = B_TRUE;
}
if ((spa = spa_lookup(pool)) == NULL) {
if (locked)
mutex_exit(&spa_namespace_lock);
return (SET_ERROR(ENOENT));
}
if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
zpool_load_policy_t policy;
firstopen = B_TRUE;
zpool_get_load_policy(nvpolicy ? nvpolicy : spa->spa_config,
&policy);
if (policy.zlp_rewind & ZPOOL_DO_REWIND)
state = SPA_LOAD_RECOVER;
spa_activate(spa, spa_mode_global);
if (state != SPA_LOAD_RECOVER)
spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
zfs_dbgmsg("spa_open_common: opening %s", pool);
error = spa_load_best(spa, state, policy.zlp_txg,
policy.zlp_rewind);
if (error == EBADF) {
/*
* If vdev_validate() returns failure (indicated by
* EBADF), it indicates that one of the vdevs indicates
* that the pool has been exported or destroyed. If
* this is the case, the config cache is out of sync and
* we should remove the pool from the namespace.
*/
spa_unload(spa);
spa_deactivate(spa);
spa_write_cachefile(spa, B_TRUE, B_TRUE, B_FALSE);
spa_remove(spa);
if (locked)
mutex_exit(&spa_namespace_lock);
return (SET_ERROR(ENOENT));
}
if (error) {
/*
* We can't open the pool, but we still have useful
* information: the state of each vdev after the
* attempted vdev_open(). Return this to the user.
*/
if (config != NULL && spa->spa_config) {
*config = fnvlist_dup(spa->spa_config);
fnvlist_add_nvlist(*config,
ZPOOL_CONFIG_LOAD_INFO,
spa->spa_load_info);
}
spa_unload(spa);
spa_deactivate(spa);
spa->spa_last_open_failed = error;
if (locked)
mutex_exit(&spa_namespace_lock);
*spapp = NULL;
return (error);
}
}
spa_open_ref(spa, tag);
if (config != NULL)
*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
/*
* If we've recovered the pool, pass back any information we
* gathered while doing the load.
*/
if (state == SPA_LOAD_RECOVER && config != NULL) {
fnvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
spa->spa_load_info);
}
if (locked) {
spa->spa_last_open_failed = 0;
spa->spa_last_ubsync_txg = 0;
spa->spa_load_txg = 0;
mutex_exit(&spa_namespace_lock);
}
if (firstopen)
zvol_create_minors_recursive(spa_name(spa));
*spapp = spa;
return (0);
}
int
spa_open_rewind(const char *name, spa_t **spapp, const void *tag,
nvlist_t *policy, nvlist_t **config)
{
return (spa_open_common(name, spapp, tag, policy, config));
}
int
spa_open(const char *name, spa_t **spapp, const void *tag)
{
return (spa_open_common(name, spapp, tag, NULL, NULL));
}
/*
* Lookup the given spa_t, incrementing the inject count in the process,
* preventing it from being exported or destroyed.
*/
spa_t *
spa_inject_addref(char *name)
{
spa_t *spa;
mutex_enter(&spa_namespace_lock);
if ((spa = spa_lookup(name)) == NULL) {
mutex_exit(&spa_namespace_lock);
return (NULL);
}
spa->spa_inject_ref++;
mutex_exit(&spa_namespace_lock);
return (spa);
}
void
spa_inject_delref(spa_t *spa)
{
mutex_enter(&spa_namespace_lock);
spa->spa_inject_ref--;
mutex_exit(&spa_namespace_lock);
}
/*
* Add spares device information to the nvlist.
*/
static void
spa_add_spares(spa_t *spa, nvlist_t *config)
{
nvlist_t **spares;
uint_t i, nspares;
nvlist_t *nvroot;
uint64_t guid;
vdev_stat_t *vs;
uint_t vsc;
uint64_t pool;
ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
if (spa->spa_spares.sav_count == 0)
return;
nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
ZPOOL_CONFIG_SPARES, &spares, &nspares));
if (nspares != 0) {
fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
(const nvlist_t * const *)spares, nspares);
VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
&spares, &nspares));
/*
* Go through and find any spares which have since been
* repurposed as an active spare. If this is the case, update
* their status appropriately.
*/
for (i = 0; i < nspares; i++) {
guid = fnvlist_lookup_uint64(spares[i],
ZPOOL_CONFIG_GUID);
VERIFY0(nvlist_lookup_uint64_array(spares[i],
ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc));
if (spa_spare_exists(guid, &pool, NULL) &&
pool != 0ULL) {
vs->vs_state = VDEV_STATE_CANT_OPEN;
vs->vs_aux = VDEV_AUX_SPARED;
} else {
vs->vs_state =
spa->spa_spares.sav_vdevs[i]->vdev_state;
}
}
}
}
/*
* Add l2cache device information to the nvlist, including vdev stats.
*/
static void
spa_add_l2cache(spa_t *spa, nvlist_t *config)
{
nvlist_t **l2cache;
uint_t i, j, nl2cache;
nvlist_t *nvroot;
uint64_t guid;
vdev_t *vd;
vdev_stat_t *vs;
uint_t vsc;
ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
if (spa->spa_l2cache.sav_count == 0)
return;
nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
VERIFY0(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache));
if (nl2cache != 0) {
fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
(const nvlist_t * const *)l2cache, nl2cache);
VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
&l2cache, &nl2cache));
/*
* Update level 2 cache device stats.
*/
for (i = 0; i < nl2cache; i++) {
guid = fnvlist_lookup_uint64(l2cache[i],
ZPOOL_CONFIG_GUID);
vd = NULL;
for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
if (guid ==
spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
vd = spa->spa_l2cache.sav_vdevs[j];
break;
}
}
ASSERT(vd != NULL);
VERIFY0(nvlist_lookup_uint64_array(l2cache[i],
ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc));
vdev_get_stats(vd, vs);
vdev_config_generate_stats(vd, l2cache[i]);
}
}
}
static void
spa_feature_stats_from_disk(spa_t *spa, nvlist_t *features)
{
zap_cursor_t zc;
zap_attribute_t za;
if (spa->spa_feat_for_read_obj != 0) {
for (zap_cursor_init(&zc, spa->spa_meta_objset,
spa->spa_feat_for_read_obj);
zap_cursor_retrieve(&zc, &za) == 0;
zap_cursor_advance(&zc)) {
ASSERT(za.za_integer_length == sizeof (uint64_t) &&
za.za_num_integers == 1);
VERIFY0(nvlist_add_uint64(features, za.za_name,
za.za_first_integer));
}
zap_cursor_fini(&zc);
}
if (spa->spa_feat_for_write_obj != 0) {
for (zap_cursor_init(&zc, spa->spa_meta_objset,
spa->spa_feat_for_write_obj);
zap_cursor_retrieve(&zc, &za) == 0;
zap_cursor_advance(&zc)) {
ASSERT(za.za_integer_length == sizeof (uint64_t) &&
za.za_num_integers == 1);
VERIFY0(nvlist_add_uint64(features, za.za_name,
za.za_first_integer));
}
zap_cursor_fini(&zc);
}
}
static void
spa_feature_stats_from_cache(spa_t *spa, nvlist_t *features)
{
int i;
for (i = 0; i < SPA_FEATURES; i++) {
zfeature_info_t feature = spa_feature_table[i];
uint64_t refcount;
if (feature_get_refcount(spa, &feature, &refcount) != 0)
continue;
VERIFY0(nvlist_add_uint64(features, feature.fi_guid, refcount));
}
}
/*
* Store a list of pool features and their reference counts in the
* config.
*
* The first time this is called on a spa, allocate a new nvlist, fetch
* the pool features and reference counts from disk, then save the list
* in the spa. In subsequent calls on the same spa use the saved nvlist
* and refresh its values from the cached reference counts. This
* ensures we don't block here on I/O on a suspended pool so 'zpool
* clear' can resume the pool.
*/
static void
spa_add_feature_stats(spa_t *spa, nvlist_t *config)
{
nvlist_t *features;
ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
mutex_enter(&spa->spa_feat_stats_lock);
features = spa->spa_feat_stats;
if (features != NULL) {
spa_feature_stats_from_cache(spa, features);
} else {
VERIFY0(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP));
spa->spa_feat_stats = features;
spa_feature_stats_from_disk(spa, features);
}
VERIFY0(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
features));
mutex_exit(&spa->spa_feat_stats_lock);
}
int
spa_get_stats(const char *name, nvlist_t **config,
char *altroot, size_t buflen)
{
int error;
spa_t *spa;
*config = NULL;
error = spa_open_common(name, &spa, FTAG, NULL, config);
if (spa != NULL) {
/*
* This still leaves a window of inconsistency where the spares
* or l2cache devices could change and the config would be
* self-inconsistent.
*/
spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
if (*config != NULL) {
uint64_t loadtimes[2];
loadtimes[0] = spa->spa_loaded_ts.tv_sec;
loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
fnvlist_add_uint64_array(*config,
ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2);
fnvlist_add_uint64(*config,
ZPOOL_CONFIG_ERRCOUNT,
spa_approx_errlog_size(spa));
if (spa_suspended(spa)) {
fnvlist_add_uint64(*config,
ZPOOL_CONFIG_SUSPENDED,
spa->spa_failmode);
fnvlist_add_uint64(*config,
ZPOOL_CONFIG_SUSPENDED_REASON,
spa->spa_suspended);
}
spa_add_spares(spa, *config);
spa_add_l2cache(spa, *config);
spa_add_feature_stats(spa, *config);
}
}
/*
* We want to get the alternate root even for faulted pools, so we cheat
* and call spa_lookup() directly.
*/
if (altroot) {
if (spa == NULL) {
mutex_enter(&spa_namespace_lock);
spa = spa_lookup(name);
if (spa)
spa_altroot(spa, altroot, buflen);
else
altroot[0] = '\0';
spa = NULL;
mutex_exit(&spa_namespace_lock);
} else {
spa_altroot(spa, altroot, buflen);
}
}
if (spa != NULL) {
spa_config_exit(spa, SCL_CONFIG, FTAG);
spa_close(spa, FTAG);
}
return (error);
}
/*
* Validate that the auxiliary device array is well formed. We must have an
* array of nvlists, each which describes a valid leaf vdev. If this is an
* import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
* specified, as long as they are well-formed.
*/
static int
spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
spa_aux_vdev_t *sav, const char *config, uint64_t version,
vdev_labeltype_t label)
{
nvlist_t **dev;
uint_t i, ndev;
vdev_t *vd;
int error;
ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
/*
* It's acceptable to have no devs specified.
*/
if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
return (0);
if (ndev == 0)
return (SET_ERROR(EINVAL));
/*
* Make sure the pool is formatted with a version that supports this
* device type.
*/
if (spa_version(spa) < version)
return (SET_ERROR(ENOTSUP));
/*
* Set the pending device list so we correctly handle device in-use
* checking.
*/
sav->sav_pending = dev;
sav->sav_npending = ndev;
for (i = 0; i < ndev; i++) {
if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
mode)) != 0)
goto out;
if (!vd->vdev_ops->vdev_op_leaf) {
vdev_free(vd);
error = SET_ERROR(EINVAL);
goto out;
}
vd->vdev_top = vd;
if ((error = vdev_open(vd)) == 0 &&
(error = vdev_label_init(vd, crtxg, label)) == 0) {
fnvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
vd->vdev_guid);
}
vdev_free(vd);
if (error &&
(mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
goto out;
else
error = 0;
}
out:
sav->sav_pending = NULL;
sav->sav_npending = 0;
return (error);
}
static int
spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
{
int error;
ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
&spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
VDEV_LABEL_SPARE)) != 0) {
return (error);
}
return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
&spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
VDEV_LABEL_L2CACHE));
}
static void
spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
const char *config)
{
int i;
if (sav->sav_config != NULL) {
nvlist_t **olddevs;
uint_t oldndevs;
nvlist_t **newdevs;
/*
* Generate new dev list by concatenating with the
* current dev list.
*/
VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config, config,
&olddevs, &oldndevs));
newdevs = kmem_alloc(sizeof (void *) *
(ndevs + oldndevs), KM_SLEEP);
for (i = 0; i < oldndevs; i++)
newdevs[i] = fnvlist_dup(olddevs[i]);
for (i = 0; i < ndevs; i++)
newdevs[i + oldndevs] = fnvlist_dup(devs[i]);
fnvlist_remove(sav->sav_config, config);
fnvlist_add_nvlist_array(sav->sav_config, config,
(const nvlist_t * const *)newdevs, ndevs + oldndevs);
for (i = 0; i < oldndevs + ndevs; i++)
nvlist_free(newdevs[i]);
kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
} else {
/*
* Generate a new dev list.
*/
sav->sav_config = fnvlist_alloc();
fnvlist_add_nvlist_array(sav->sav_config, config,
(const nvlist_t * const *)devs, ndevs);
}
}
/*
* Stop and drop level 2 ARC devices
*/
void
spa_l2cache_drop(spa_t *spa)
{
vdev_t *vd;
int i;
spa_aux_vdev_t *sav = &spa->spa_l2cache;
for (i = 0; i < sav->sav_count; i++) {
uint64_t pool;
vd = sav->sav_vdevs[i];
ASSERT(vd != NULL);
if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
pool != 0ULL && l2arc_vdev_present(vd))
l2arc_remove_vdev(vd);
}
}
/*
* Verify encryption parameters for spa creation. If we are encrypting, we must
* have the encryption feature flag enabled.
*/
static int
spa_create_check_encryption_params(dsl_crypto_params_t *dcp,
boolean_t has_encryption)
{
if (dcp->cp_crypt != ZIO_CRYPT_OFF &&
dcp->cp_crypt != ZIO_CRYPT_INHERIT &&
!has_encryption)
return (SET_ERROR(ENOTSUP));
return (dmu_objset_create_crypt_check(NULL, dcp, NULL));
}
/*
* Pool Creation
*/
int
spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
nvlist_t *zplprops, dsl_crypto_params_t *dcp)
{
spa_t *spa;
const char *altroot = NULL;
vdev_t *rvd;
dsl_pool_t *dp;
dmu_tx_t *tx;
int error = 0;
uint64_t txg = TXG_INITIAL;
nvlist_t **spares, **l2cache;
uint_t nspares, nl2cache;
uint64_t version, obj, ndraid = 0;
boolean_t has_features;
boolean_t has_encryption;
boolean_t has_allocclass;
spa_feature_t feat;
const char *feat_name;
const char *poolname;
nvlist_t *nvl;
if (props == NULL ||
nvlist_lookup_string(props, "tname", &poolname) != 0)
poolname = (char *)pool;
/*
* If this pool already exists, return failure.
*/
mutex_enter(&spa_namespace_lock);
if (spa_lookup(poolname) != NULL) {
mutex_exit(&spa_namespace_lock);
return (SET_ERROR(EEXIST));
}
/*
* Allocate a new spa_t structure.
*/
nvl = fnvlist_alloc();
fnvlist_add_string(nvl, ZPOOL_CONFIG_POOL_NAME, pool);
(void) nvlist_lookup_string(props,
zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
spa = spa_add(poolname, nvl, altroot);
fnvlist_free(nvl);
spa_activate(spa, spa_mode_global);
if (props && (error = spa_prop_validate(spa, props))) {
spa_deactivate(spa);
spa_remove(spa);
mutex_exit(&spa_namespace_lock);
return (error);
}
/*
* Temporary pool names should never be written to disk.
*/
if (poolname != pool)
spa->spa_import_flags |= ZFS_IMPORT_TEMP_NAME;
has_features = B_FALSE;
has_encryption = B_FALSE;
has_allocclass = B_FALSE;
for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
if (zpool_prop_feature(nvpair_name(elem))) {
has_features = B_TRUE;
feat_name = strchr(nvpair_name(elem), '@') + 1;
VERIFY0(zfeature_lookup_name(feat_name, &feat));
if (feat == SPA_FEATURE_ENCRYPTION)
has_encryption = B_TRUE;
if (feat == SPA_FEATURE_ALLOCATION_CLASSES)
has_allocclass = B_TRUE;
}
}
/* verify encryption params, if they were provided */
if (dcp != NULL) {
error = spa_create_check_encryption_params(dcp, has_encryption);
if (error != 0) {
spa_deactivate(spa);
spa_remove(spa);
mutex_exit(&spa_namespace_lock);
return (error);
}
}
if (!has_allocclass && zfs_special_devs(nvroot, NULL)) {
spa_deactivate(spa);
spa_remove(spa);
mutex_exit(&spa_namespace_lock);
return (ENOTSUP);
}
if (has_features || nvlist_lookup_uint64(props,
zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
version = SPA_VERSION;
}
ASSERT(SPA_VERSION_IS_SUPPORTED(version));
spa->spa_first_txg = txg;
spa->spa_uberblock.ub_txg = txg - 1;
spa->spa_uberblock.ub_version = version;
spa->spa_ubsync = spa->spa_uberblock;
spa->spa_load_state = SPA_LOAD_CREATE;
spa->spa_removing_phys.sr_state = DSS_NONE;
spa->spa_removing_phys.sr_removing_vdev = -1;
spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
spa->spa_indirect_vdevs_loaded = B_TRUE;
/*
* Create "The Godfather" zio to hold all async IOs
*/
spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
KM_SLEEP);
for (int i = 0; i < max_ncpus; i++) {
spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
ZIO_FLAG_GODFATHER);
}
/*
* Create the root vdev.
*/
spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
ASSERT(error != 0 || rvd != NULL);
ASSERT(error != 0 || spa->spa_root_vdev == rvd);
if (error == 0 && !zfs_allocatable_devs(nvroot))
error = SET_ERROR(EINVAL);
if (error == 0 &&
(error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
(error = vdev_draid_spare_create(nvroot, rvd, &ndraid, 0)) == 0 &&
(error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) == 0) {
/*
* instantiate the metaslab groups (this will dirty the vdevs)
* we can no longer error exit past this point
*/
for (int c = 0; error == 0 && c < rvd->vdev_children; c++) {
vdev_t *vd = rvd->vdev_child[c];
vdev_metaslab_set_size(vd);
vdev_expand(vd, txg);
}
}
spa_config_exit(spa, SCL_ALL, FTAG);
if (error != 0) {
spa_unload(spa);
spa_deactivate(spa);
spa_remove(spa);
mutex_exit(&spa_namespace_lock);
return (error);
}
/*
* Get the list of spares, if specified.
*/
if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
&spares, &nspares) == 0) {
spa->spa_spares.sav_config = fnvlist_alloc();
fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
nspares);
spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
spa_load_spares(spa);
spa_config_exit(spa, SCL_ALL, FTAG);
spa->spa_spares.sav_sync = B_TRUE;
}
/*
* Get the list of level 2 cache devices, if specified.
*/
if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
&l2cache, &nl2cache) == 0) {
VERIFY0(nvlist_alloc(&spa->spa_l2cache.sav_config,
NV_UNIQUE_NAME, KM_SLEEP));
fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache,
nl2cache);
spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
spa_load_l2cache(spa);
spa_config_exit(spa, SCL_ALL, FTAG);
spa->spa_l2cache.sav_sync = B_TRUE;
}
spa->spa_is_initializing = B_TRUE;
spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, dcp, txg);
spa->spa_is_initializing = B_FALSE;
/*
* Create DDTs (dedup tables).
*/
ddt_create(spa);
/*
* Create BRT table and BRT table object.
*/
brt_create(spa);
spa_update_dspace(spa);
tx = dmu_tx_create_assigned(dp, txg);
/*
* Create the pool's history object.
*/
if (version >= SPA_VERSION_ZPOOL_HISTORY && !spa->spa_history)
spa_history_create_obj(spa, tx);
spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE);
spa_history_log_version(spa, "create", tx);
/*
* Create the pool config object.
*/
spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
if (zap_add(spa->spa_meta_objset,
DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
cmn_err(CE_PANIC, "failed to add pool config");
}
if (zap_add(spa->spa_meta_objset,
DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
sizeof (uint64_t), 1, &version, tx) != 0) {
cmn_err(CE_PANIC, "failed to add pool version");
}
/* Newly created pools with the right version are always deflated. */
if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
spa->spa_deflate = TRUE;
if (zap_add(spa->spa_meta_objset,
DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
cmn_err(CE_PANIC, "failed to add deflate");
}
}
/*
* Create the deferred-free bpobj. Turn off compression
* because sync-to-convergence takes longer if the blocksize
* keeps changing.
*/
obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
dmu_object_set_compress(spa->spa_meta_objset, obj,
ZIO_COMPRESS_OFF, tx);
if (zap_add(spa->spa_meta_objset,
DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
sizeof (uint64_t), 1, &obj, tx) != 0) {
cmn_err(CE_PANIC, "failed to add bpobj");
}
VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
spa->spa_meta_objset, obj));
/*
* Generate some random noise for salted checksums to operate on.
*/
(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
sizeof (spa->spa_cksum_salt.zcs_bytes));
/*
* Set pool properties.
*/
spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
spa->spa_multihost = zpool_prop_default_numeric(ZPOOL_PROP_MULTIHOST);
spa->spa_autotrim = zpool_prop_default_numeric(ZPOOL_PROP_AUTOTRIM);
if (props != NULL) {
spa_configfile_set(spa, props, B_FALSE);
spa_sync_props(props, tx);
}
for (int i = 0; i < ndraid; i++)
spa_feature_incr(spa, SPA_FEATURE_DRAID, tx);
dmu_tx_commit(tx);
spa->spa_sync_on = B_TRUE;
txg_sync_start(dp);
mmp_thread_start(spa);
txg_wait_synced(dp, txg);
spa_spawn_aux_threads(spa);
spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE);
/*
* Don't count references from objsets that are already closed
* and are making their way through the eviction process.
*/
spa_evicting_os_wait(spa);
spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
spa->spa_load_state = SPA_LOAD_NONE;
spa_import_os(spa);
mutex_exit(&spa_namespace_lock);
return (0);
}
/*
* Import a non-root pool into the system.
*/
int
spa_import(char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
{
spa_t *spa;
const char *altroot = NULL;
spa_load_state_t state = SPA_LOAD_IMPORT;
zpool_load_policy_t policy;
spa_mode_t mode = spa_mode_global;
uint64_t readonly = B_FALSE;
int error;
nvlist_t *nvroot;
nvlist_t **spares, **l2cache;
uint_t nspares, nl2cache;
/*
* If a pool with this name exists, return failure.
*/
mutex_enter(&spa_namespace_lock);
if (spa_lookup(pool) != NULL) {
mutex_exit(&spa_namespace_lock);
return (SET_ERROR(EEXIST));
}
/*
* Create and initialize the spa structure.
*/
(void) nvlist_lookup_string(props,
zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
(void) nvlist_lookup_uint64(props,
zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
if (readonly)
mode = SPA_MODE_READ;
spa = spa_add(pool, config, altroot);
spa->spa_import_flags = flags;
/*
* Verbatim import - Take a pool and insert it into the namespace
* as if it had been loaded at boot.
*/
if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
if (props != NULL)
spa_configfile_set(spa, props, B_FALSE);
spa_write_cachefile(spa, B_FALSE, B_TRUE, B_FALSE);
spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
zfs_dbgmsg("spa_import: verbatim import of %s", pool);
mutex_exit(&spa_namespace_lock);
return (0);
}
spa_activate(spa, mode);
/*
* Don't start async tasks until we know everything is healthy.
*/
spa_async_suspend(spa);
zpool_get_load_policy(config, &policy);
if (policy.zlp_rewind & ZPOOL_DO_REWIND)
state = SPA_LOAD_RECOVER;
spa->spa_config_source = SPA_CONFIG_SRC_TRYIMPORT;
if (state != SPA_LOAD_RECOVER) {
spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
zfs_dbgmsg("spa_import: importing %s", pool);
} else {
zfs_dbgmsg("spa_import: importing %s, max_txg=%lld "
"(RECOVERY MODE)", pool, (longlong_t)policy.zlp_txg);
}
error = spa_load_best(spa, state, policy.zlp_txg, policy.zlp_rewind);
/*
* Propagate anything learned while loading the pool and pass it
* back to caller (i.e. rewind info, missing devices, etc).
*/
fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, spa->spa_load_info);
spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
/*
* Toss any existing sparelist, as it doesn't have any validity
* anymore, and conflicts with spa_has_spare().
*/
if (spa->spa_spares.sav_config) {
nvlist_free(spa->spa_spares.sav_config);
spa->spa_spares.sav_config = NULL;
spa_load_spares(spa);
}
if (spa->spa_l2cache.sav_config) {
nvlist_free(spa->spa_l2cache.sav_config);
spa->spa_l2cache.sav_config = NULL;
spa_load_l2cache(spa);
}
nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
spa_config_exit(spa, SCL_ALL, FTAG);
if (props != NULL)
spa_configfile_set(spa, props, B_FALSE);
if (error != 0 || (props && spa_writeable(spa) &&
(error = spa_prop_set(spa, props)))) {
spa_unload(spa);
spa_deactivate(spa);
spa_remove(spa);
mutex_exit(&spa_namespace_lock);
return (error);
}
spa_async_resume(spa);
/*
* Override any spares and level 2 cache devices as specified by
* the user, as these may have correct device names/devids, etc.
*/
if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
&spares, &nspares) == 0) {
if (spa->spa_spares.sav_config)
fnvlist_remove(spa->spa_spares.sav_config,
ZPOOL_CONFIG_SPARES);
else
spa->spa_spares.sav_config = fnvlist_alloc();
fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
nspares);
spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
spa_load_spares(spa);
spa_config_exit(spa, SCL_ALL, FTAG);
spa->spa_spares.sav_sync = B_TRUE;
}
if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
&l2cache, &nl2cache) == 0) {
if (spa->spa_l2cache.sav_config)
fnvlist_remove(spa->spa_l2cache.sav_config,
ZPOOL_CONFIG_L2CACHE);
else
spa->spa_l2cache.sav_config = fnvlist_alloc();
fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache,
nl2cache);
spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
spa_load_l2cache(spa);
spa_config_exit(spa, SCL_ALL, FTAG);
spa->spa_l2cache.sav_sync = B_TRUE;
}
/*
* Check for any removed devices.
*/
if (spa->spa_autoreplace) {
spa_aux_check_removed(&spa->spa_spares);
spa_aux_check_removed(&spa->spa_l2cache);
}
if (spa_writeable(spa)) {
/*
* Update the config cache to include the newly-imported pool.
*/
spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
}
/*
* It's possible that the pool was expanded while it was exported.
* We kick off an async task to handle this for us.
*/
spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
spa_history_log_version(spa, "import", NULL);
spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
mutex_exit(&spa_namespace_lock);
zvol_create_minors_recursive(pool);
spa_import_os(spa);
return (0);
}
nvlist_t *
spa_tryimport(nvlist_t *tryconfig)
{
nvlist_t *config = NULL;
const char *poolname, *cachefile;
spa_t *spa;
uint64_t state;
int error;
zpool_load_policy_t policy;
if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
return (NULL);
if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
return (NULL);
/*
* Create and initialize the spa structure.
*/
mutex_enter(&spa_namespace_lock);
spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
spa_activate(spa, SPA_MODE_READ);
/*
* Rewind pool if a max txg was provided.
*/
zpool_get_load_policy(spa->spa_config, &policy);
if (policy.zlp_txg != UINT64_MAX) {
spa->spa_load_max_txg = policy.zlp_txg;
spa->spa_extreme_rewind = B_TRUE;
zfs_dbgmsg("spa_tryimport: importing %s, max_txg=%lld",
poolname, (longlong_t)policy.zlp_txg);
} else {
zfs_dbgmsg("spa_tryimport: importing %s", poolname);
}
if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_CACHEFILE, &cachefile)
== 0) {
zfs_dbgmsg("spa_tryimport: using cachefile '%s'", cachefile);
spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
} else {
spa->spa_config_source = SPA_CONFIG_SRC_SCAN;
}
/*
* spa_import() relies on a pool config fetched by spa_try_import()
* for spare/cache devices. Import flags are not passed to
* spa_tryimport(), which makes it return early due to a missing log
* device and missing retrieving the cache device and spare eventually.
* Passing ZFS_IMPORT_MISSING_LOG to spa_tryimport() makes it fetch
* the correct configuration regardless of the missing log device.
*/
spa->spa_import_flags |= ZFS_IMPORT_MISSING_LOG;
error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING);
/*
* If 'tryconfig' was at least parsable, return the current config.
*/
if (spa->spa_root_vdev != NULL) {
config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, poolname);
fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, state);
fnvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
spa->spa_uberblock.ub_timestamp);
fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
spa->spa_load_info);
fnvlist_add_uint64(config, ZPOOL_CONFIG_ERRATA,
spa->spa_errata);
/*
* If the bootfs property exists on this pool then we
* copy it out so that external consumers can tell which
* pools are bootable.
*/
if ((!error || error == EEXIST) && spa->spa_bootfs) {
char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
/*
* We have to play games with the name since the
* pool was opened as TRYIMPORT_NAME.
*/
if (dsl_dsobj_to_dsname(spa_name(spa),
spa->spa_bootfs, tmpname) == 0) {
char *cp;
char *dsname;
dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
cp = strchr(tmpname, '/');
if (cp == NULL) {
(void) strlcpy(dsname, tmpname,
MAXPATHLEN);
} else {
(void) snprintf(dsname, MAXPATHLEN,
"%s/%s", poolname, ++cp);
}
fnvlist_add_string(config, ZPOOL_CONFIG_BOOTFS,
dsname);
kmem_free(dsname, MAXPATHLEN);
}
kmem_free(tmpname, MAXPATHLEN);
}
/*
* Add the list of hot spares and level 2 cache devices.
*/
spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
spa_add_spares(spa, config);
spa_add_l2cache(spa, config);
spa_config_exit(spa, SCL_CONFIG, FTAG);
}
spa_unload(spa);
spa_deactivate(spa);
spa_remove(spa);
mutex_exit(&spa_namespace_lock);
return (config);
}
/*
* Pool export/destroy
*
* The act of destroying or exporting a pool is very simple. We make sure there
* is no more pending I/O and any references to the pool are gone. Then, we
* update the pool state and sync all the labels to disk, removing the
* configuration from the cache afterwards. If the 'hardforce' flag is set, then
* we don't sync the labels or remove the configuration cache.
*/
static int
spa_export_common(const char *pool, int new_state, nvlist_t **oldconfig,
boolean_t force, boolean_t hardforce)
{
int error;
spa_t *spa;
if (oldconfig)
*oldconfig = NULL;
if (!(spa_mode_global & SPA_MODE_WRITE))
return (SET_ERROR(EROFS));
mutex_enter(&spa_namespace_lock);
if ((spa = spa_lookup(pool)) == NULL) {
mutex_exit(&spa_namespace_lock);
return (SET_ERROR(ENOENT));
}
if (spa->spa_is_exporting) {
/* the pool is being exported by another thread */
mutex_exit(&spa_namespace_lock);
return (SET_ERROR(ZFS_ERR_EXPORT_IN_PROGRESS));
}
spa->spa_is_exporting = B_TRUE;
/*
* Put a hold on the pool, drop the namespace lock, stop async tasks,
* reacquire the namespace lock, and see if we can export.
*/
spa_open_ref(spa, FTAG);
mutex_exit(&spa_namespace_lock);
spa_async_suspend(spa);
if (spa->spa_zvol_taskq) {
zvol_remove_minors(spa, spa_name(spa), B_TRUE);
taskq_wait(spa->spa_zvol_taskq);
}
mutex_enter(&spa_namespace_lock);
spa_close(spa, FTAG);
if (spa->spa_state == POOL_STATE_UNINITIALIZED)
goto export_spa;
/*
* The pool will be in core if it's openable, in which case we can
* modify its state. Objsets may be open only because they're dirty,
* so we have to force it to sync before checking spa_refcnt.
*/
if (spa->spa_sync_on) {
txg_wait_synced(spa->spa_dsl_pool, 0);
spa_evicting_os_wait(spa);
}
/*
* A pool cannot be exported or destroyed if there are active
* references. If we are resetting a pool, allow references by
* fault injection handlers.
*/
if (!spa_refcount_zero(spa) || (spa->spa_inject_ref != 0)) {
error = SET_ERROR(EBUSY);
goto fail;
}
if (spa->spa_sync_on) {
vdev_t *rvd = spa->spa_root_vdev;
/*
* A pool cannot be exported if it has an active shared spare.
* This is to prevent other pools stealing the active spare
* from an exported pool. At user's own will, such pool can
* be forcedly exported.
*/
if (!force && new_state == POOL_STATE_EXPORTED &&
spa_has_active_shared_spare(spa)) {
error = SET_ERROR(EXDEV);
goto fail;
}
/*
* We're about to export or destroy this pool. Make sure
* we stop all initialization and trim activity here before
* we set the spa_final_txg. This will ensure that all
* dirty data resulting from the initialization is
* committed to disk before we unload the pool.
*/
vdev_initialize_stop_all(rvd, VDEV_INITIALIZE_ACTIVE);
vdev_trim_stop_all(rvd, VDEV_TRIM_ACTIVE);
vdev_autotrim_stop_all(spa);
vdev_rebuild_stop_all(spa);
/*
* We want this to be reflected on every label,
* so mark them all dirty. spa_unload() will do the
* final sync that pushes these changes out.
*/
if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
spa->spa_state = new_state;
vdev_config_dirty(rvd);
spa_config_exit(spa, SCL_ALL, FTAG);
}
/*
* If the log space map feature is enabled and the pool is
* getting exported (but not destroyed), we want to spend some
* time flushing as many metaslabs as we can in an attempt to
* destroy log space maps and save import time. This has to be
* done before we set the spa_final_txg, otherwise
* spa_sync() -> spa_flush_metaslabs() may dirty the final TXGs.
* spa_should_flush_logs_on_unload() should be called after
* spa_state has been set to the new_state.
*/
if (spa_should_flush_logs_on_unload(spa))
spa_unload_log_sm_flush_all(spa);
if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
spa->spa_final_txg = spa_last_synced_txg(spa) +
TXG_DEFER_SIZE + 1;
spa_config_exit(spa, SCL_ALL, FTAG);
}
}
export_spa:
spa_export_os(spa);
if (new_state == POOL_STATE_DESTROYED)
spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY);
else if (new_state == POOL_STATE_EXPORTED)
spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_EXPORT);
if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
spa_unload(spa);
spa_deactivate(spa);
}
if (oldconfig && spa->spa_config)
*oldconfig = fnvlist_dup(spa->spa_config);
if (new_state != POOL_STATE_UNINITIALIZED) {
if (!hardforce)
spa_write_cachefile(spa, B_TRUE, B_TRUE, B_FALSE);
spa_remove(spa);
} else {
/*
* If spa_remove() is not called for this spa_t and
* there is any possibility that it can be reused,
* we make sure to reset the exporting flag.
*/
spa->spa_is_exporting = B_FALSE;
}
mutex_exit(&spa_namespace_lock);
return (0);
fail:
spa->spa_is_exporting = B_FALSE;
spa_async_resume(spa);
mutex_exit(&spa_namespace_lock);
return (error);
}
/*
* Destroy a storage pool.
*/
int
spa_destroy(const char *pool)
{
return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
B_FALSE, B_FALSE));
}
/*
* Export a storage pool.
*/
int
spa_export(const char *pool, nvlist_t **oldconfig, boolean_t force,
boolean_t hardforce)
{
return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
force, hardforce));
}
/*
* Similar to spa_export(), this unloads the spa_t without actually removing it
* from the namespace in any way.
*/
int
spa_reset(const char *pool)
{
return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
B_FALSE, B_FALSE));
}
/*
* ==========================================================================
* Device manipulation
* ==========================================================================
*/
/*
* This is called as a synctask to increment the draid feature flag
*/
static void
spa_draid_feature_incr(void *arg, dmu_tx_t *tx)
{
spa_t *spa = dmu_tx_pool(tx)->dp_spa;
int draid = (int)(uintptr_t)arg;
for (int c = 0; c < draid; c++)
spa_feature_incr(spa, SPA_FEATURE_DRAID, tx);
}
/*
* Add a device to a storage pool.
*/
int
spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
{
uint64_t txg, ndraid = 0;
int error;
vdev_t *rvd = spa->spa_root_vdev;
vdev_t *vd, *tvd;
nvlist_t **spares, **l2cache;
uint_t nspares, nl2cache;
ASSERT(spa_writeable(spa));
txg = spa_vdev_enter(spa);
if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
VDEV_ALLOC_ADD)) != 0)
return (spa_vdev_exit(spa, NULL, txg, error));
spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */
if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
&nspares) != 0)
nspares = 0;
if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
&nl2cache) != 0)
nl2cache = 0;
if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
return (spa_vdev_exit(spa, vd, txg, EINVAL));
if (vd->vdev_children != 0 &&
(error = vdev_create(vd, txg, B_FALSE)) != 0) {
return (spa_vdev_exit(spa, vd, txg, error));
}
/*
* The virtual dRAID spares must be added after vdev tree is created
* and the vdev guids are generated. The guid of their associated
* dRAID is stored in the config and used when opening the spare.
*/
if ((error = vdev_draid_spare_create(nvroot, vd, &ndraid,
rvd->vdev_children)) == 0) {
if (ndraid > 0 && nvlist_lookup_nvlist_array(nvroot,
ZPOOL_CONFIG_SPARES, &spares, &nspares) != 0)
nspares = 0;
} else {
return (spa_vdev_exit(spa, vd, txg, error));
}
/*
* We must validate the spares and l2cache devices after checking the
* children. Otherwise, vdev_inuse() will blindly overwrite the spare.
*/
if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
return (spa_vdev_exit(spa, vd, txg, error));
/*
* If we are in the middle of a device removal, we can only add
* devices which match the existing devices in the pool.
* If we are in the middle of a removal, or have some indirect
* vdevs, we can not add raidz or dRAID top levels.
*/
if (spa->spa_vdev_removal != NULL ||
spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
for (int c = 0; c < vd->vdev_children; c++) {
tvd = vd->vdev_child[c];
if (spa->spa_vdev_removal != NULL &&
tvd->vdev_ashift != spa->spa_max_ashift) {
return (spa_vdev_exit(spa, vd, txg, EINVAL));
}
/* Fail if top level vdev is raidz or a dRAID */
if (vdev_get_nparity(tvd) != 0)
return (spa_vdev_exit(spa, vd, txg, EINVAL));
/*
* Need the top level mirror to be
* a mirror of leaf vdevs only
*/
if (tvd->vdev_ops == &vdev_mirror_ops) {
for (uint64_t cid = 0;
cid < tvd->vdev_children; cid++) {
vdev_t *cvd = tvd->vdev_child[cid];
if (!cvd->vdev_ops->vdev_op_leaf) {
return (spa_vdev_exit(spa, vd,
txg, EINVAL));
}
}
}
}
}
for (int c = 0; c < vd->vdev_children; c++) {
tvd = vd->vdev_child[c];
vdev_remove_child(vd, tvd);
tvd->vdev_id = rvd->vdev_children;
vdev_add_child(rvd, tvd);
vdev_config_dirty(tvd);
}
if (nspares != 0) {
spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
ZPOOL_CONFIG_SPARES);
spa_load_spares(spa);
spa->spa_spares.sav_sync = B_TRUE;
}
if (nl2cache != 0) {
spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
ZPOOL_CONFIG_L2CACHE);
spa_load_l2cache(spa);
spa->spa_l2cache.sav_sync = B_TRUE;
}
/*
* We can't increment a feature while holding spa_vdev so we
* have to do it in a synctask.
*/
if (ndraid != 0) {
dmu_tx_t *tx;
tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
dsl_sync_task_nowait(spa->spa_dsl_pool, spa_draid_feature_incr,
(void *)(uintptr_t)ndraid, tx);
dmu_tx_commit(tx);
}
/*
* We have to be careful when adding new vdevs to an existing pool.
* If other threads start allocating from these vdevs before we
* sync the config cache, and we lose power, then upon reboot we may
* fail to open the pool because there are DVAs that the config cache
* can't translate. Therefore, we first add the vdevs without
* initializing metaslabs; sync the config cache (via spa_vdev_exit());
* and then let spa_config_update() initialize the new metaslabs.
*
* spa_load() checks for added-but-not-initialized vdevs, so that
* if we lose power at any point in this sequence, the remaining
* steps will be completed the next time we load the pool.
*/
(void) spa_vdev_exit(spa, vd, txg, 0);
mutex_enter(&spa_namespace_lock);
spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD);
mutex_exit(&spa_namespace_lock);
return (0);
}
/*
* Attach a device to a mirror. The arguments are the path to any device
* in the mirror, and the nvroot for the new device. If the path specifies
* a device that is not mirrored, we automatically insert the mirror vdev.
*
* If 'replacing' is specified, the new device is intended to replace the
* existing device; in this case the two devices are made into their own
* mirror using the 'replacing' vdev, which is functionally identical to
* the mirror vdev (it actually reuses all the same ops) but has a few
* extra rules: you can't attach to it after it's been created, and upon
* completion of resilvering, the first disk (the one being replaced)
* is automatically detached.
*
* If 'rebuild' is specified, then sequential reconstruction (a.ka. rebuild)
* should be performed instead of traditional healing reconstruction. From
* an administrators perspective these are both resilver operations.
*/
int
spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing,
int rebuild)
{
uint64_t txg, dtl_max_txg;
vdev_t *rvd = spa->spa_root_vdev;
vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
vdev_ops_t *pvops;
char *oldvdpath, *newvdpath;
int newvd_isspare;
int error;
ASSERT(spa_writeable(spa));
txg = spa_vdev_enter(spa);
oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
ASSERT(MUTEX_HELD(&spa_namespace_lock));
if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
error = (spa_has_checkpoint(spa)) ?
ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
return (spa_vdev_exit(spa, NULL, txg, error));
}
if (rebuild) {
if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD))
return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
if (dsl_scan_resilvering(spa_get_dsl(spa)) ||
dsl_scan_resilver_scheduled(spa_get_dsl(spa))) {
return (spa_vdev_exit(spa, NULL, txg,
ZFS_ERR_RESILVER_IN_PROGRESS));
}
} else {
if (vdev_rebuild_active(rvd))
return (spa_vdev_exit(spa, NULL, txg,
ZFS_ERR_REBUILD_IN_PROGRESS));
}
if (spa->spa_vdev_removal != NULL)
return (spa_vdev_exit(spa, NULL, txg, EBUSY));
if (oldvd == NULL)
return (spa_vdev_exit(spa, NULL, txg, ENODEV));
if (!oldvd->vdev_ops->vdev_op_leaf)
return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
pvd = oldvd->vdev_parent;
if (spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
VDEV_ALLOC_ATTACH) != 0)
return (spa_vdev_exit(spa, NULL, txg, EINVAL));
if (newrootvd->vdev_children != 1)
return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
newvd = newrootvd->vdev_child[0];
if (!newvd->vdev_ops->vdev_op_leaf)
return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
return (spa_vdev_exit(spa, newrootvd, txg, error));
/*
* log, dedup and special vdevs should not be replaced by spares.
*/
if ((oldvd->vdev_top->vdev_alloc_bias != VDEV_BIAS_NONE ||
oldvd->vdev_top->vdev_islog) && newvd->vdev_isspare) {
return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
}
/*
* A dRAID spare can only replace a child of its parent dRAID vdev.
*/
if (newvd->vdev_ops == &vdev_draid_spare_ops &&
oldvd->vdev_top != vdev_draid_spare_get_parent(newvd)) {
return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
}
if (rebuild) {
/*
* For rebuilds, the top vdev must support reconstruction
* using only space maps. This means the only allowable
* vdevs types are the root vdev, a mirror, or dRAID.
*/
tvd = pvd;
if (pvd->vdev_top != NULL)
tvd = pvd->vdev_top;
if (tvd->vdev_ops != &vdev_mirror_ops &&
tvd->vdev_ops != &vdev_root_ops &&
tvd->vdev_ops != &vdev_draid_ops) {
return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
}
}
if (!replacing) {
/*
* For attach, the only allowable parent is a mirror or the root
* vdev.
*/
if (pvd->vdev_ops != &vdev_mirror_ops &&
pvd->vdev_ops != &vdev_root_ops)
return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
pvops = &vdev_mirror_ops;
} else {
/*
* Active hot spares can only be replaced by inactive hot
* spares.
*/
if (pvd->vdev_ops == &vdev_spare_ops &&
oldvd->vdev_isspare &&
!spa_has_spare(spa, newvd->vdev_guid))
return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
/*
* If the source is a hot spare, and the parent isn't already a
* spare, then we want to create a new hot spare. Otherwise, we
* want to create a replacing vdev. The user is not allowed to
* attach to a spared vdev child unless the 'isspare' state is
* the same (spare replaces spare, non-spare replaces
* non-spare).
*/
if (pvd->vdev_ops == &vdev_replacing_ops &&
spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
} else if (pvd->vdev_ops == &vdev_spare_ops &&
newvd->vdev_isspare != oldvd->vdev_isspare) {
return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
}
if (newvd->vdev_isspare)
pvops = &vdev_spare_ops;
else
pvops = &vdev_replacing_ops;
}
/*
* Make sure the new device is big enough.
*/
if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
/*
* The new device cannot have a higher alignment requirement
* than the top-level vdev.
*/
if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
/*
* If this is an in-place replacement, update oldvd's path and devid
* to make it distinguishable from newvd, and unopenable from now on.
*/
if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
spa_strfree(oldvd->vdev_path);
oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
KM_SLEEP);
(void) snprintf(oldvd->vdev_path, strlen(newvd->vdev_path) + 5,
"%s/%s", newvd->vdev_path, "old");
if (oldvd->vdev_devid != NULL) {
spa_strfree(oldvd->vdev_devid);
oldvd->vdev_devid = NULL;
}
}
/*
* If the parent is not a mirror, or if we're replacing, insert the new
* mirror/replacing/spare vdev above oldvd.
*/
if (pvd->vdev_ops != pvops)
pvd = vdev_add_parent(oldvd, pvops);
ASSERT(pvd->vdev_top->vdev_parent == rvd);
ASSERT(pvd->vdev_ops == pvops);
ASSERT(oldvd->vdev_parent == pvd);
/*
* Extract the new device from its root and add it to pvd.
*/
vdev_remove_child(newrootvd, newvd);
newvd->vdev_id = pvd->vdev_children;
newvd->vdev_crtxg = oldvd->vdev_crtxg;
vdev_add_child(pvd, newvd);
/*
* Reevaluate the parent vdev state.
*/
vdev_propagate_state(pvd);
tvd = newvd->vdev_top;
ASSERT(pvd->vdev_top == tvd);
ASSERT(tvd->vdev_parent == rvd);
vdev_config_dirty(tvd);
/*
* Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
* for any dmu_sync-ed blocks. It will propagate upward when
* spa_vdev_exit() calls vdev_dtl_reassess().
*/
dtl_max_txg = txg + TXG_CONCURRENT_STATES;
vdev_dtl_dirty(newvd, DTL_MISSING,
TXG_INITIAL, dtl_max_txg - TXG_INITIAL);
if (newvd->vdev_isspare) {
spa_spare_activate(newvd);
spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE);
}
oldvdpath = spa_strdup(oldvd->vdev_path);
newvdpath = spa_strdup(newvd->vdev_path);
newvd_isspare = newvd->vdev_isspare;
/*
* Mark newvd's DTL dirty in this txg.
*/
vdev_dirty(tvd, VDD_DTL, newvd, txg);
/*
* Schedule the resilver or rebuild to restart in the future. We do
* this to ensure that dmu_sync-ed blocks have been stitched into the
* respective datasets.
*/
if (rebuild) {
newvd->vdev_rebuild_txg = txg;
vdev_rebuild(tvd);
} else {
newvd->vdev_resilver_txg = txg;
if (dsl_scan_resilvering(spa_get_dsl(spa)) &&
spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER)) {
vdev_defer_resilver(newvd);
} else {
dsl_scan_restart_resilver(spa->spa_dsl_pool,
dtl_max_txg);
}
}
if (spa->spa_bootfs)
spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH);
spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH);
/*
* Commit the config
*/
(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
spa_history_log_internal(spa, "vdev attach", NULL,
"%s vdev=%s %s vdev=%s",
replacing && newvd_isspare ? "spare in" :
replacing ? "replace" : "attach", newvdpath,
replacing ? "for" : "to", oldvdpath);
spa_strfree(oldvdpath);
spa_strfree(newvdpath);
return (0);
}
/*
* Detach a device from a mirror or replacing vdev.
*
* If 'replace_done' is specified, only detach if the parent
* is a replacing or a spare vdev.
*/
int
spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
{
uint64_t txg;
int error;
vdev_t *rvd __maybe_unused = spa->spa_root_vdev;
vdev_t *vd, *pvd, *cvd, *tvd;
boolean_t unspare = B_FALSE;
uint64_t unspare_guid = 0;
char *vdpath;
ASSERT(spa_writeable(spa));
txg = spa_vdev_detach_enter(spa, guid);
vd = spa_lookup_by_guid(spa, guid, B_FALSE);
/*
* Besides being called directly from the userland through the
* ioctl interface, spa_vdev_detach() can be potentially called
* at the end of spa_vdev_resilver_done().
*
* In the regular case, when we have a checkpoint this shouldn't
* happen as we never empty the DTLs of a vdev during the scrub
* [see comment in dsl_scan_done()]. Thus spa_vdev_resilvering_done()
* should never get here when we have a checkpoint.
*
* That said, even in a case when we checkpoint the pool exactly
* as spa_vdev_resilver_done() calls this function everything
* should be fine as the resilver will return right away.
*/
ASSERT(MUTEX_HELD(&spa_namespace_lock));
if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
error = (spa_has_checkpoint(spa)) ?
ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
return (spa_vdev_exit(spa, NULL, txg, error));
}
if (vd == NULL)
return (spa_vdev_exit(spa, NULL, txg, ENODEV));
if (!vd->vdev_ops->vdev_op_leaf)
return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
pvd = vd->vdev_parent;
/*
* If the parent/child relationship is not as expected, don't do it.
* Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
* vdev that's replacing B with C. The user's intent in replacing
* is to go from M(A,B) to M(A,C). If the user decides to cancel
* the replace by detaching C, the expected behavior is to end up
* M(A,B). But suppose that right after deciding to detach C,
* the replacement of B completes. We would have M(A,C), and then
* ask to detach C, which would leave us with just A -- not what
* the user wanted. To prevent this, we make sure that the
* parent/child relationship hasn't changed -- in this example,
* that C's parent is still the replacing vdev R.
*/
if (pvd->vdev_guid != pguid && pguid != 0)
return (spa_vdev_exit(spa, NULL, txg, EBUSY));
/*
* Only 'replacing' or 'spare' vdevs can be replaced.
*/
if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
pvd->vdev_ops != &vdev_spare_ops)
return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
spa_version(spa) >= SPA_VERSION_SPARES);
/*
* Only mirror, replacing, and spare vdevs support detach.
*/
if (pvd->vdev_ops != &vdev_replacing_ops &&
pvd->vdev_ops != &vdev_mirror_ops &&
pvd->vdev_ops != &vdev_spare_ops)
return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
/*
* If this device has the only valid copy of some data,
* we cannot safely detach it.
*/
if (vdev_dtl_required(vd))
return (spa_vdev_exit(spa, NULL, txg, EBUSY));
ASSERT(pvd->vdev_children >= 2);
/*
* If we are detaching the second disk from a replacing vdev, then
* check to see if we changed the original vdev's path to have "/old"
* at the end in spa_vdev_attach(). If so, undo that change now.
*/
if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
vd->vdev_path != NULL) {
size_t len = strlen(vd->vdev_path);
for (int c = 0; c < pvd->vdev_children; c++) {
cvd = pvd->vdev_child[c];
if (cvd == vd || cvd->vdev_path == NULL)
continue;
if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
strcmp(cvd->vdev_path + len, "/old") == 0) {
spa_strfree(cvd->vdev_path);
cvd->vdev_path = spa_strdup(vd->vdev_path);
break;
}
}
}
/*
* If we are detaching the original disk from a normal spare, then it
* implies that the spare should become a real disk, and be removed
* from the active spare list for the pool. dRAID spares on the
* other hand are coupled to the pool and thus should never be removed
* from the spares list.
*/
if (pvd->vdev_ops == &vdev_spare_ops && vd->vdev_id == 0) {
vdev_t *last_cvd = pvd->vdev_child[pvd->vdev_children - 1];
if (last_cvd->vdev_isspare &&
last_cvd->vdev_ops != &vdev_draid_spare_ops) {
unspare = B_TRUE;
}
}
/*
* Erase the disk labels so the disk can be used for other things.
* This must be done after all other error cases are handled,
* but before we disembowel vd (so we can still do I/O to it).
* But if we can't do it, don't treat the error as fatal --
* it may be that the unwritability of the disk is the reason
* it's being detached!
*/
(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
/*
* Remove vd from its parent and compact the parent's children.
*/
vdev_remove_child(pvd, vd);
vdev_compact_children(pvd);
/*
* Remember one of the remaining children so we can get tvd below.
*/
cvd = pvd->vdev_child[pvd->vdev_children - 1];
/*
* If we need to remove the remaining child from the list of hot spares,
* do it now, marking the vdev as no longer a spare in the process.
* We must do this before vdev_remove_parent(), because that can
* change the GUID if it creates a new toplevel GUID. For a similar
* reason, we must remove the spare now, in the same txg as the detach;
* otherwise someone could attach a new sibling, change the GUID, and
* the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
*/
if (unspare) {
ASSERT(cvd->vdev_isspare);
spa_spare_remove(cvd);
unspare_guid = cvd->vdev_guid;
(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
cvd->vdev_unspare = B_TRUE;
}
/*
* If the parent mirror/replacing vdev only has one child,
* the parent is no longer needed. Remove it from the tree.
*/
if (pvd->vdev_children == 1) {
if (pvd->vdev_ops == &vdev_spare_ops)
cvd->vdev_unspare = B_FALSE;
vdev_remove_parent(cvd);
}
/*
* We don't set tvd until now because the parent we just removed
* may have been the previous top-level vdev.
*/
tvd = cvd->vdev_top;
ASSERT(tvd->vdev_parent == rvd);
/*
* Reevaluate the parent vdev state.
*/
vdev_propagate_state(cvd);
/*
* If the 'autoexpand' property is set on the pool then automatically
* try to expand the size of the pool. For example if the device we
* just detached was smaller than the others, it may be possible to
* add metaslabs (i.e. grow the pool). We need to reopen the vdev
* first so that we can obtain the updated sizes of the leaf vdevs.
*/
if (spa->spa_autoexpand) {
vdev_reopen(tvd);
vdev_expand(tvd, txg);
}
vdev_config_dirty(tvd);
/*
* Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that
* vd->vdev_detached is set and free vd's DTL object in syncing context.
* But first make sure we're not on any *other* txg's DTL list, to
* prevent vd from being accessed after it's freed.
*/
vdpath = spa_strdup(vd->vdev_path ? vd->vdev_path : "none");
for (int t = 0; t < TXG_SIZE; t++)
(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
vd->vdev_detached = B_TRUE;
vdev_dirty(tvd, VDD_DTL, vd, txg);
spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE);
spa_notify_waiters(spa);
/* hang on to the spa before we release the lock */
spa_open_ref(spa, FTAG);
error = spa_vdev_exit(spa, vd, txg, 0);
spa_history_log_internal(spa, "detach", NULL,
"vdev=%s", vdpath);
spa_strfree(vdpath);
/*
* If this was the removal of the original device in a hot spare vdev,
* then we want to go through and remove the device from the hot spare
* list of every other pool.
*/
if (unspare) {
spa_t *altspa = NULL;
mutex_enter(&spa_namespace_lock);
while ((altspa = spa_next(altspa)) != NULL) {
if (altspa->spa_state != POOL_STATE_ACTIVE ||
altspa == spa)
continue;
spa_open_ref(altspa, FTAG);
mutex_exit(&spa_namespace_lock);
(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
mutex_enter(&spa_namespace_lock);
spa_close(altspa, FTAG);
}
mutex_exit(&spa_namespace_lock);
/* search the rest of the vdevs for spares to remove */
spa_vdev_resilver_done(spa);
}
/* all done with the spa; OK to release */
mutex_enter(&spa_namespace_lock);
spa_close(spa, FTAG);
mutex_exit(&spa_namespace_lock);
return (error);
}
static int
spa_vdev_initialize_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
list_t *vd_list)
{
ASSERT(MUTEX_HELD(&spa_namespace_lock));
spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
/* Look up vdev and ensure it's a leaf. */
vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
if (vd == NULL || vd->vdev_detached) {
spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
return (SET_ERROR(ENODEV));
} else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
return (SET_ERROR(EINVAL));
} else if (!vdev_writeable(vd)) {
spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
return (SET_ERROR(EROFS));
}
mutex_enter(&vd->vdev_initialize_lock);
spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
/*
* When we activate an initialize action we check to see
* if the vdev_initialize_thread is NULL. We do this instead
* of using the vdev_initialize_state since there might be
* a previous initialization process which has completed but
* the thread is not exited.
*/
if (cmd_type == POOL_INITIALIZE_START &&
(vd->vdev_initialize_thread != NULL ||
vd->vdev_top->vdev_removing)) {
mutex_exit(&vd->vdev_initialize_lock);
return (SET_ERROR(EBUSY));
} else if (cmd_type == POOL_INITIALIZE_CANCEL &&
(vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE &&
vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED)) {
mutex_exit(&vd->vdev_initialize_lock);
return (SET_ERROR(ESRCH));
} else if (cmd_type == POOL_INITIALIZE_SUSPEND &&
vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE) {
mutex_exit(&vd->vdev_initialize_lock);
return (SET_ERROR(ESRCH));
} else if (cmd_type == POOL_INITIALIZE_UNINIT &&
vd->vdev_initialize_thread != NULL) {
mutex_exit(&vd->vdev_initialize_lock);
return (SET_ERROR(EBUSY));
}
switch (cmd_type) {
case POOL_INITIALIZE_START:
vdev_initialize(vd);
break;
case POOL_INITIALIZE_CANCEL:
vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED, vd_list);
break;
case POOL_INITIALIZE_SUSPEND:
vdev_initialize_stop(vd, VDEV_INITIALIZE_SUSPENDED, vd_list);
break;
case POOL_INITIALIZE_UNINIT:
vdev_uninitialize(vd);
break;
default:
panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
}
mutex_exit(&vd->vdev_initialize_lock);
return (0);
}
int
spa_vdev_initialize(spa_t *spa, nvlist_t *nv, uint64_t cmd_type,
nvlist_t *vdev_errlist)
{
int total_errors = 0;
list_t vd_list;
list_create(&vd_list, sizeof (vdev_t),
offsetof(vdev_t, vdev_initialize_node));
/*
* We hold the namespace lock through the whole function
* to prevent any changes to the pool while we're starting or
* stopping initialization. The config and state locks are held so that
* we can properly assess the vdev state before we commit to
* the initializing operation.
*/
mutex_enter(&spa_namespace_lock);
for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
uint64_t vdev_guid = fnvpair_value_uint64(pair);
int error = spa_vdev_initialize_impl(spa, vdev_guid, cmd_type,
&vd_list);
if (error != 0) {
char guid_as_str[MAXNAMELEN];
(void) snprintf(guid_as_str, sizeof (guid_as_str),
"%llu", (unsigned long long)vdev_guid);
fnvlist_add_int64(vdev_errlist, guid_as_str, error);
total_errors++;
}
}
/* Wait for all initialize threads to stop. */
vdev_initialize_stop_wait(spa, &vd_list);
/* Sync out the initializing state */
txg_wait_synced(spa->spa_dsl_pool, 0);
mutex_exit(&spa_namespace_lock);
list_destroy(&vd_list);
return (total_errors);
}
static int
spa_vdev_trim_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
uint64_t rate, boolean_t partial, boolean_t secure, list_t *vd_list)
{
ASSERT(MUTEX_HELD(&spa_namespace_lock));
spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
/* Look up vdev and ensure it's a leaf. */
vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
if (vd == NULL || vd->vdev_detached) {
spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
return (SET_ERROR(ENODEV));
} else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
return (SET_ERROR(EINVAL));
} else if (!vdev_writeable(vd)) {
spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
return (SET_ERROR(EROFS));
} else if (!vd->vdev_has_trim) {
spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
return (SET_ERROR(EOPNOTSUPP));
} else if (secure && !vd->vdev_has_securetrim) {
spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
return (SET_ERROR(EOPNOTSUPP));
}
mutex_enter(&vd->vdev_trim_lock);
spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
/*
* When we activate a TRIM action we check to see if the
* vdev_trim_thread is NULL. We do this instead of using the
* vdev_trim_state since there might be a previous TRIM process
* which has completed but the thread is not exited.
*/
if (cmd_type == POOL_TRIM_START &&
(vd->vdev_trim_thread != NULL || vd->vdev_top->vdev_removing)) {
mutex_exit(&vd->vdev_trim_lock);
return (SET_ERROR(EBUSY));
} else if (cmd_type == POOL_TRIM_CANCEL &&
(vd->vdev_trim_state != VDEV_TRIM_ACTIVE &&
vd->vdev_trim_state != VDEV_TRIM_SUSPENDED)) {
mutex_exit(&vd->vdev_trim_lock);
return (SET_ERROR(ESRCH));
} else if (cmd_type == POOL_TRIM_SUSPEND &&
vd->vdev_trim_state != VDEV_TRIM_ACTIVE) {
mutex_exit(&vd->vdev_trim_lock);
return (SET_ERROR(ESRCH));
}
switch (cmd_type) {
case POOL_TRIM_START:
vdev_trim(vd, rate, partial, secure);
break;
case POOL_TRIM_CANCEL:
vdev_trim_stop(vd, VDEV_TRIM_CANCELED, vd_list);
break;
case POOL_TRIM_SUSPEND:
vdev_trim_stop(vd, VDEV_TRIM_SUSPENDED, vd_list);
break;
default:
panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
}
mutex_exit(&vd->vdev_trim_lock);
return (0);
}
/*
* Initiates a manual TRIM for the requested vdevs. This kicks off individual
* TRIM threads for each child vdev. These threads pass over all of the free
* space in the vdev's metaslabs and issues TRIM commands for that space.
*/
int
spa_vdev_trim(spa_t *spa, nvlist_t *nv, uint64_t cmd_type, uint64_t rate,
boolean_t partial, boolean_t secure, nvlist_t *vdev_errlist)
{
int total_errors = 0;
list_t vd_list;
list_create(&vd_list, sizeof (vdev_t),
offsetof(vdev_t, vdev_trim_node));
/*
* We hold the namespace lock through the whole function
* to prevent any changes to the pool while we're starting or
* stopping TRIM. The config and state locks are held so that
* we can properly assess the vdev state before we commit to
* the TRIM operation.
*/
mutex_enter(&spa_namespace_lock);
for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
uint64_t vdev_guid = fnvpair_value_uint64(pair);
int error = spa_vdev_trim_impl(spa, vdev_guid, cmd_type,
rate, partial, secure, &vd_list);
if (error != 0) {
char guid_as_str[MAXNAMELEN];
(void) snprintf(guid_as_str, sizeof (guid_as_str),
"%llu", (unsigned long long)vdev_guid);
fnvlist_add_int64(vdev_errlist, guid_as_str, error);
total_errors++;
}
}
/* Wait for all TRIM threads to stop. */
vdev_trim_stop_wait(spa, &vd_list);
/* Sync out the TRIM state */
txg_wait_synced(spa->spa_dsl_pool, 0);
mutex_exit(&spa_namespace_lock);
list_destroy(&vd_list);
return (total_errors);
}
/*
* Split a set of devices from their mirrors, and create a new pool from them.
*/
int
spa_vdev_split_mirror(spa_t *spa, const char *newname, nvlist_t *config,
nvlist_t *props, boolean_t exp)
{
int error = 0;
uint64_t txg, *glist;
spa_t *newspa;
uint_t c, children, lastlog;
nvlist_t **child, *nvl, *tmp;
dmu_tx_t *tx;
const char *altroot = NULL;
vdev_t *rvd, **vml = NULL; /* vdev modify list */
boolean_t activate_slog;
ASSERT(spa_writeable(spa));
txg = spa_vdev_enter(spa);
ASSERT(MUTEX_HELD(&spa_namespace_lock));
if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
error = (spa_has_checkpoint(spa)) ?
ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
return (spa_vdev_exit(spa, NULL, txg, error));
}
/* clear the log and flush everything up to now */
activate_slog = spa_passivate_log(spa);
(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
error = spa_reset_logs(spa);
txg = spa_vdev_config_enter(spa);
if (activate_slog)
spa_activate_log(spa);
if (error != 0)
return (spa_vdev_exit(spa, NULL, txg, error));
/* check new spa name before going any further */
if (spa_lookup(newname) != NULL)
return (spa_vdev_exit(spa, NULL, txg, EEXIST));
/*
* scan through all the children to ensure they're all mirrors
*/
if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
&children) != 0)
return (spa_vdev_exit(spa, NULL, txg, EINVAL));
/* first, check to ensure we've got the right child count */
rvd = spa->spa_root_vdev;
lastlog = 0;
for (c = 0; c < rvd->vdev_children; c++) {
vdev_t *vd = rvd->vdev_child[c];
/* don't count the holes & logs as children */
if (vd->vdev_islog || (vd->vdev_ops != &vdev_indirect_ops &&
!vdev_is_concrete(vd))) {
if (lastlog == 0)
lastlog = c;
continue;
}
lastlog = 0;
}
if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
return (spa_vdev_exit(spa, NULL, txg, EINVAL));
/* next, ensure no spare or cache devices are part of the split */
if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
return (spa_vdev_exit(spa, NULL, txg, EINVAL));
vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
/* then, loop over each vdev and validate it */
for (c = 0; c < children; c++) {
uint64_t is_hole = 0;
(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
&is_hole);
if (is_hole != 0) {
if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
continue;
} else {
error = SET_ERROR(EINVAL);
break;
}
}
/* deal with indirect vdevs */
if (spa->spa_root_vdev->vdev_child[c]->vdev_ops ==
&vdev_indirect_ops)
continue;
/* which disk is going to be split? */
if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
&glist[c]) != 0) {
error = SET_ERROR(EINVAL);
break;
}
/* look it up in the spa */
vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
if (vml[c] == NULL) {
error = SET_ERROR(ENODEV);
break;
}
/* make sure there's nothing stopping the split */
if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
vml[c]->vdev_islog ||
!vdev_is_concrete(vml[c]) ||
vml[c]->vdev_isspare ||
vml[c]->vdev_isl2cache ||
!vdev_writeable(vml[c]) ||
vml[c]->vdev_children != 0 ||
vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
error = SET_ERROR(EINVAL);
break;
}
if (vdev_dtl_required(vml[c]) ||
vdev_resilver_needed(vml[c], NULL, NULL)) {
error = SET_ERROR(EBUSY);
break;
}
/* we need certain info from the top level */
fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
vml[c]->vdev_top->vdev_ms_array);
fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
vml[c]->vdev_top->vdev_ms_shift);
fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
vml[c]->vdev_top->vdev_asize);
fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
vml[c]->vdev_top->vdev_ashift);
/* transfer per-vdev ZAPs */
ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
VERIFY0(nvlist_add_uint64(child[c],
ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
VERIFY0(nvlist_add_uint64(child[c],
ZPOOL_CONFIG_VDEV_TOP_ZAP,
vml[c]->vdev_parent->vdev_top_zap));
}
if (error != 0) {
kmem_free(vml, children * sizeof (vdev_t *));
kmem_free(glist, children * sizeof (uint64_t));
return (spa_vdev_exit(spa, NULL, txg, error));
}
/* stop writers from using the disks */
for (c = 0; c < children; c++) {
if (vml[c] != NULL)
vml[c]->vdev_offline = B_TRUE;
}
vdev_reopen(spa->spa_root_vdev);
/*
* Temporarily record the splitting vdevs in the spa config. This
* will disappear once the config is regenerated.
*/
nvl = fnvlist_alloc();
fnvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, glist, children);
kmem_free(glist, children * sizeof (uint64_t));
mutex_enter(&spa->spa_props_lock);
fnvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, nvl);
mutex_exit(&spa->spa_props_lock);
spa->spa_config_splitting = nvl;
vdev_config_dirty(spa->spa_root_vdev);
/* configure and create the new pool */
fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname);
fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE);
fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, spa_version(spa));
fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, spa->spa_config_txg);
fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
spa_generate_guid(NULL));
VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
(void) nvlist_lookup_string(props,
zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
/* add the new pool to the namespace */
newspa = spa_add(newname, config, altroot);
newspa->spa_avz_action = AVZ_ACTION_REBUILD;
newspa->spa_config_txg = spa->spa_config_txg;
spa_set_log_state(newspa, SPA_LOG_CLEAR);
/* release the spa config lock, retaining the namespace lock */
spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
if (zio_injection_enabled)
zio_handle_panic_injection(spa, FTAG, 1);
spa_activate(newspa, spa_mode_global);
spa_async_suspend(newspa);
/*
* Temporarily stop the initializing and TRIM activity. We set the
* state to ACTIVE so that we know to resume initializing or TRIM
* once the split has completed.
*/
list_t vd_initialize_list;
list_create(&vd_initialize_list, sizeof (vdev_t),
offsetof(vdev_t, vdev_initialize_node));
list_t vd_trim_list;
list_create(&vd_trim_list, sizeof (vdev_t),
offsetof(vdev_t, vdev_trim_node));
for (c = 0; c < children; c++) {
if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) {
mutex_enter(&vml[c]->vdev_initialize_lock);
vdev_initialize_stop(vml[c],
VDEV_INITIALIZE_ACTIVE, &vd_initialize_list);
mutex_exit(&vml[c]->vdev_initialize_lock);
mutex_enter(&vml[c]->vdev_trim_lock);
vdev_trim_stop(vml[c], VDEV_TRIM_ACTIVE, &vd_trim_list);
mutex_exit(&vml[c]->vdev_trim_lock);
}
}
vdev_initialize_stop_wait(spa, &vd_initialize_list);
vdev_trim_stop_wait(spa, &vd_trim_list);
list_destroy(&vd_initialize_list);
list_destroy(&vd_trim_list);
newspa->spa_config_source = SPA_CONFIG_SRC_SPLIT;
newspa->spa_is_splitting = B_TRUE;
/* create the new pool from the disks of the original pool */
error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE);
if (error)
goto out;
/* if that worked, generate a real config for the new pool */
if (newspa->spa_root_vdev != NULL) {
newspa->spa_config_splitting = fnvlist_alloc();
fnvlist_add_uint64(newspa->spa_config_splitting,
ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa));
spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
B_TRUE));
}
/* set the props */
if (props != NULL) {
spa_configfile_set(newspa, props, B_FALSE);
error = spa_prop_set(newspa, props);
if (error)
goto out;
}
/* flush everything */
txg = spa_vdev_config_enter(newspa);
vdev_config_dirty(newspa->spa_root_vdev);
(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
if (zio_injection_enabled)
zio_handle_panic_injection(spa, FTAG, 2);
spa_async_resume(newspa);
/* finally, update the original pool's config */
txg = spa_vdev_config_enter(spa);
tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
error = dmu_tx_assign(tx, TXG_WAIT);
if (error != 0)
dmu_tx_abort(tx);
for (c = 0; c < children; c++) {
if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) {
vdev_t *tvd = vml[c]->vdev_top;
/*
* Need to be sure the detachable VDEV is not
* on any *other* txg's DTL list to prevent it
* from being accessed after it's freed.
*/
for (int t = 0; t < TXG_SIZE; t++) {
(void) txg_list_remove_this(
&tvd->vdev_dtl_list, vml[c], t);
}
vdev_split(vml[c]);
if (error == 0)
spa_history_log_internal(spa, "detach", tx,
"vdev=%s", vml[c]->vdev_path);
vdev_free(vml[c]);
}
}
spa->spa_avz_action = AVZ_ACTION_REBUILD;
vdev_config_dirty(spa->spa_root_vdev);
spa->spa_config_splitting = NULL;
nvlist_free(nvl);
if (error == 0)
dmu_tx_commit(tx);
(void) spa_vdev_exit(spa, NULL, txg, 0);
if (zio_injection_enabled)
zio_handle_panic_injection(spa, FTAG, 3);
/* split is complete; log a history record */
spa_history_log_internal(newspa, "split", NULL,
"from pool %s", spa_name(spa));
newspa->spa_is_splitting = B_FALSE;
kmem_free(vml, children * sizeof (vdev_t *));
/* if we're not going to mount the filesystems in userland, export */
if (exp)
error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
B_FALSE, B_FALSE);
return (error);
out:
spa_unload(newspa);
spa_deactivate(newspa);
spa_remove(newspa);
txg = spa_vdev_config_enter(spa);
/* re-online all offlined disks */
for (c = 0; c < children; c++) {
if (vml[c] != NULL)
vml[c]->vdev_offline = B_FALSE;
}
/* restart initializing or trimming disks as necessary */
spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
spa_async_request(spa, SPA_ASYNC_TRIM_RESTART);
spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART);
vdev_reopen(spa->spa_root_vdev);
nvlist_free(spa->spa_config_splitting);
spa->spa_config_splitting = NULL;
(void) spa_vdev_exit(spa, NULL, txg, error);
kmem_free(vml, children * sizeof (vdev_t *));
return (error);
}
/*
* Find any device that's done replacing, or a vdev marked 'unspare' that's
* currently spared, so we can detach it.
*/
static vdev_t *
spa_vdev_resilver_done_hunt(vdev_t *vd)
{
vdev_t *newvd, *oldvd;
for (int c = 0; c < vd->vdev_children; c++) {
oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
if (oldvd != NULL)
return (oldvd);
}
/*
* Check for a completed replacement. We always consider the first
* vdev in the list to be the oldest vdev, and the last one to be
* the newest (see spa_vdev_attach() for how that works). In
* the case where the newest vdev is faulted, we will not automatically
* remove it after a resilver completes. This is OK as it will require
* user intervention to determine which disk the admin wishes to keep.
*/
if (vd->vdev_ops == &vdev_replacing_ops) {
ASSERT(vd->vdev_children > 1);
newvd = vd->vdev_child[vd->vdev_children - 1];
oldvd = vd->vdev_child[0];
if (vdev_dtl_empty(newvd, DTL_MISSING) &&
vdev_dtl_empty(newvd, DTL_OUTAGE) &&
!vdev_dtl_required(oldvd))
return (oldvd);
}
/*
* Check for a completed resilver with the 'unspare' flag set.
* Also potentially update faulted state.
*/
if (vd->vdev_ops == &vdev_spare_ops) {
vdev_t *first = vd->vdev_child[0];
vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
if (last->vdev_unspare) {
oldvd = first;
newvd = last;
} else if (first->vdev_unspare) {
oldvd = last;
newvd = first;
} else {
oldvd = NULL;
}
if (oldvd != NULL &&
vdev_dtl_empty(newvd, DTL_MISSING) &&
vdev_dtl_empty(newvd, DTL_OUTAGE) &&
!vdev_dtl_required(oldvd))
return (oldvd);
vdev_propagate_state(vd);
/*
* If there are more than two spares attached to a disk,
* and those spares are not required, then we want to
* attempt to free them up now so that they can be used
* by other pools. Once we're back down to a single
* disk+spare, we stop removing them.
*/
if (vd->vdev_children > 2) {
newvd = vd->vdev_child[1];
if (newvd->vdev_isspare && last->vdev_isspare &&
vdev_dtl_empty(last, DTL_MISSING) &&
vdev_dtl_empty(last, DTL_OUTAGE) &&
!vdev_dtl_required(newvd))
return (newvd);
}
}
return (NULL);
}
static void
spa_vdev_resilver_done(spa_t *spa)
{
vdev_t *vd, *pvd, *ppvd;
uint64_t guid, sguid, pguid, ppguid;
spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
pvd = vd->vdev_parent;
ppvd = pvd->vdev_parent;
guid = vd->vdev_guid;
pguid = pvd->vdev_guid;
ppguid = ppvd->vdev_guid;
sguid = 0;
/*
* If we have just finished replacing a hot spared device, then
* we need to detach the parent's first child (the original hot
* spare) as well.
*/
if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
ppvd->vdev_children == 2) {
ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
sguid = ppvd->vdev_child[1]->vdev_guid;
}
ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
spa_config_exit(spa, SCL_ALL, FTAG);
if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
return;
if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
return;
spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
}
spa_config_exit(spa, SCL_ALL, FTAG);
/*
* If a detach was not performed above replace waiters will not have
* been notified. In which case we must do so now.
*/
spa_notify_waiters(spa);
}
/*
* Update the stored path or FRU for this vdev.
*/
static int
spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
boolean_t ispath)
{
vdev_t *vd;
boolean_t sync = B_FALSE;
ASSERT(spa_writeable(spa));
spa_vdev_state_enter(spa, SCL_ALL);
if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
return (spa_vdev_state_exit(spa, NULL, ENOENT));
if (!vd->vdev_ops->vdev_op_leaf)
return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
if (ispath) {
if (strcmp(value, vd->vdev_path) != 0) {
spa_strfree(vd->vdev_path);
vd->vdev_path = spa_strdup(value);
sync = B_TRUE;
}
} else {
if (vd->vdev_fru == NULL) {
vd->vdev_fru = spa_strdup(value);
sync = B_TRUE;
} else if (strcmp(value, vd->vdev_fru) != 0) {
spa_strfree(vd->vdev_fru);
vd->vdev_fru = spa_strdup(value);
sync = B_TRUE;
}
}
return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
}
int
spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
{
return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
}
int
spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
{
return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
}
/*
* ==========================================================================
* SPA Scanning
* ==========================================================================
*/
int
spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd)
{
ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
if (dsl_scan_resilvering(spa->spa_dsl_pool))
return (SET_ERROR(EBUSY));
return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd));
}
int
spa_scan_stop(spa_t *spa)
{
ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
if (dsl_scan_resilvering(spa->spa_dsl_pool))
return (SET_ERROR(EBUSY));
return (dsl_scan_cancel(spa->spa_dsl_pool));
}
int
spa_scan(spa_t *spa, pool_scan_func_t func)
{
ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
return (SET_ERROR(ENOTSUP));
if (func == POOL_SCAN_RESILVER &&
!spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER))
return (SET_ERROR(ENOTSUP));
/*
* If a resilver was requested, but there is no DTL on a
* writeable leaf device, we have nothing to do.
*/
if (func == POOL_SCAN_RESILVER &&
!vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
return (0);
}
if (func == POOL_SCAN_ERRORSCRUB &&
!spa_feature_is_enabled(spa, SPA_FEATURE_HEAD_ERRLOG))
return (SET_ERROR(ENOTSUP));
return (dsl_scan(spa->spa_dsl_pool, func));
}
/*
* ==========================================================================
* SPA async task processing
* ==========================================================================
*/
static void
spa_async_remove(spa_t *spa, vdev_t *vd)
{
if (vd->vdev_remove_wanted) {
vd->vdev_remove_wanted = B_FALSE;
vd->vdev_delayed_close = B_FALSE;
vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
/*
* We want to clear the stats, but we don't want to do a full
* vdev_clear() as that will cause us to throw away
* degraded/faulted state as well as attempt to reopen the
* device, all of which is a waste.
*/
vd->vdev_stat.vs_read_errors = 0;
vd->vdev_stat.vs_write_errors = 0;
vd->vdev_stat.vs_checksum_errors = 0;
vdev_state_dirty(vd->vdev_top);
/* Tell userspace that the vdev is gone. */
zfs_post_remove(spa, vd);
}
for (int c = 0; c < vd->vdev_children; c++)
spa_async_remove(spa, vd->vdev_child[c]);
}
static void
spa_async_probe(spa_t *spa, vdev_t *vd)
{
if (vd->vdev_probe_wanted) {
vd->vdev_probe_wanted = B_FALSE;
vdev_reopen(vd); /* vdev_open() does the actual probe */
}
for (int c = 0; c < vd->vdev_children; c++)
spa_async_probe(spa, vd->vdev_child[c]);
}
static void
spa_async_autoexpand(spa_t *spa, vdev_t *vd)
{
if (!spa->spa_autoexpand)
return;
for (int c = 0; c < vd->vdev_children; c++) {
vdev_t *cvd = vd->vdev_child[c];
spa_async_autoexpand(spa, cvd);
}
if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
return;
spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_AUTOEXPAND);
}
static __attribute__((noreturn)) void
spa_async_thread(void *arg)
{
spa_t *spa = (spa_t *)arg;
dsl_pool_t *dp = spa->spa_dsl_pool;
int tasks;
ASSERT(spa->spa_sync_on);
mutex_enter(&spa->spa_async_lock);
tasks = spa->spa_async_tasks;
spa->spa_async_tasks = 0;
mutex_exit(&spa->spa_async_lock);
/*
* See if the config needs to be updated.
*/
if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
uint64_t old_space, new_space;
mutex_enter(&spa_namespace_lock);
old_space = metaslab_class_get_space(spa_normal_class(spa));
old_space += metaslab_class_get_space(spa_special_class(spa));
old_space += metaslab_class_get_space(spa_dedup_class(spa));
old_space += metaslab_class_get_space(
spa_embedded_log_class(spa));
spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
new_space = metaslab_class_get_space(spa_normal_class(spa));
new_space += metaslab_class_get_space(spa_special_class(spa));
new_space += metaslab_class_get_space(spa_dedup_class(spa));
new_space += metaslab_class_get_space(
spa_embedded_log_class(spa));
mutex_exit(&spa_namespace_lock);
/*
* If the pool grew as a result of the config update,
* then log an internal history event.
*/
if (new_space != old_space) {
spa_history_log_internal(spa, "vdev online", NULL,
"pool '%s' size: %llu(+%llu)",
spa_name(spa), (u_longlong_t)new_space,
(u_longlong_t)(new_space - old_space));
}
}
/*
* See if any devices need to be marked REMOVED.
*/
if (tasks & SPA_ASYNC_REMOVE) {
spa_vdev_state_enter(spa, SCL_NONE);
spa_async_remove(spa, spa->spa_root_vdev);
for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
for (int i = 0; i < spa->spa_spares.sav_count; i++)
spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
(void) spa_vdev_state_exit(spa, NULL, 0);
}
if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
spa_async_autoexpand(spa, spa->spa_root_vdev);
spa_config_exit(spa, SCL_CONFIG, FTAG);
}
/*
* See if any devices need to be probed.
*/
if (tasks & SPA_ASYNC_PROBE) {
spa_vdev_state_enter(spa, SCL_NONE);
spa_async_probe(spa, spa->spa_root_vdev);
(void) spa_vdev_state_exit(spa, NULL, 0);
}
/*
* If any devices are done replacing, detach them.
*/
if (tasks & SPA_ASYNC_RESILVER_DONE ||
tasks & SPA_ASYNC_REBUILD_DONE ||
tasks & SPA_ASYNC_DETACH_SPARE) {
spa_vdev_resilver_done(spa);
}
/*
* Kick off a resilver.
*/
if (tasks & SPA_ASYNC_RESILVER &&
!vdev_rebuild_active(spa->spa_root_vdev) &&
(!dsl_scan_resilvering(dp) ||
!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)))
dsl_scan_restart_resilver(dp, 0);
if (tasks & SPA_ASYNC_INITIALIZE_RESTART) {
mutex_enter(&spa_namespace_lock);
spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
vdev_initialize_restart(spa->spa_root_vdev);
spa_config_exit(spa, SCL_CONFIG, FTAG);
mutex_exit(&spa_namespace_lock);
}
if (tasks & SPA_ASYNC_TRIM_RESTART) {
mutex_enter(&spa_namespace_lock);
spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
vdev_trim_restart(spa->spa_root_vdev);
spa_config_exit(spa, SCL_CONFIG, FTAG);
mutex_exit(&spa_namespace_lock);
}
if (tasks & SPA_ASYNC_AUTOTRIM_RESTART) {
mutex_enter(&spa_namespace_lock);
spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
vdev_autotrim_restart(spa);
spa_config_exit(spa, SCL_CONFIG, FTAG);
mutex_exit(&spa_namespace_lock);
}
/*
* Kick off L2 cache whole device TRIM.
*/
if (tasks & SPA_ASYNC_L2CACHE_TRIM) {
mutex_enter(&spa_namespace_lock);
spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
vdev_trim_l2arc(spa);
spa_config_exit(spa, SCL_CONFIG, FTAG);
mutex_exit(&spa_namespace_lock);
}
/*
* Kick off L2 cache rebuilding.
*/
if (tasks & SPA_ASYNC_L2CACHE_REBUILD) {
mutex_enter(&spa_namespace_lock);
spa_config_enter(spa, SCL_L2ARC, FTAG, RW_READER);
l2arc_spa_rebuild_start(spa);
spa_config_exit(spa, SCL_L2ARC, FTAG);
mutex_exit(&spa_namespace_lock);
}
/*
* Let the world know that we're done.
*/
mutex_enter(&spa->spa_async_lock);
spa->spa_async_thread = NULL;
cv_broadcast(&spa->spa_async_cv);
mutex_exit(&spa->spa_async_lock);
thread_exit();
}
void
spa_async_suspend(spa_t *spa)
{
mutex_enter(&spa->spa_async_lock);
spa->spa_async_suspended++;
while (spa->spa_async_thread != NULL)
cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
mutex_exit(&spa->spa_async_lock);
spa_vdev_remove_suspend(spa);
zthr_t *condense_thread = spa->spa_condense_zthr;
if (condense_thread != NULL)
zthr_cancel(condense_thread);
zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
if (discard_thread != NULL)
zthr_cancel(discard_thread);
zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr;
if (ll_delete_thread != NULL)
zthr_cancel(ll_delete_thread);
zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
if (ll_condense_thread != NULL)
zthr_cancel(ll_condense_thread);
}
void
spa_async_resume(spa_t *spa)
{
mutex_enter(&spa->spa_async_lock);
ASSERT(spa->spa_async_suspended != 0);
spa->spa_async_suspended--;
mutex_exit(&spa->spa_async_lock);
spa_restart_removal(spa);
zthr_t *condense_thread = spa->spa_condense_zthr;
if (condense_thread != NULL)
zthr_resume(condense_thread);
zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
if (discard_thread != NULL)
zthr_resume(discard_thread);
zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr;
if (ll_delete_thread != NULL)
zthr_resume(ll_delete_thread);
zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
if (ll_condense_thread != NULL)
zthr_resume(ll_condense_thread);
}
static boolean_t
spa_async_tasks_pending(spa_t *spa)
{
uint_t non_config_tasks;
uint_t config_task;
boolean_t config_task_suspended;
non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
if (spa->spa_ccw_fail_time == 0) {
config_task_suspended = B_FALSE;
} else {
config_task_suspended =
(gethrtime() - spa->spa_ccw_fail_time) <
((hrtime_t)zfs_ccw_retry_interval * NANOSEC);
}
return (non_config_tasks || (config_task && !config_task_suspended));
}
static void
spa_async_dispatch(spa_t *spa)
{
mutex_enter(&spa->spa_async_lock);
if (spa_async_tasks_pending(spa) &&
!spa->spa_async_suspended &&
spa->spa_async_thread == NULL)
spa->spa_async_thread = thread_create(NULL, 0,
spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
mutex_exit(&spa->spa_async_lock);
}
void
spa_async_request(spa_t *spa, int task)
{
zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
mutex_enter(&spa->spa_async_lock);
spa->spa_async_tasks |= task;
mutex_exit(&spa->spa_async_lock);
}
int
spa_async_tasks(spa_t *spa)
{
return (spa->spa_async_tasks);
}
/*
* ==========================================================================
* SPA syncing routines
* ==========================================================================
*/
static int
bpobj_enqueue_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
dmu_tx_t *tx)
{
bpobj_t *bpo = arg;
bpobj_enqueue(bpo, bp, bp_freed, tx);
return (0);
}
int
bpobj_enqueue_alloc_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
{
return (bpobj_enqueue_cb(arg, bp, B_FALSE, tx));
}
int
bpobj_enqueue_free_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
{
return (bpobj_enqueue_cb(arg, bp, B_TRUE, tx));
}
static int
spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
{
zio_t *pio = arg;
zio_nowait(zio_free_sync(pio, pio->io_spa, dmu_tx_get_txg(tx), bp,
pio->io_flags));
return (0);
}
static int
bpobj_spa_free_sync_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
dmu_tx_t *tx)
{
ASSERT(!bp_freed);
return (spa_free_sync_cb(arg, bp, tx));
}
/*
* Note: this simple function is not inlined to make it easier to dtrace the
* amount of time spent syncing frees.
*/
static void
spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
{
zio_t *zio = zio_root(spa, NULL, NULL, 0);
bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
VERIFY(zio_wait(zio) == 0);
}
/*
* Note: this simple function is not inlined to make it easier to dtrace the
* amount of time spent syncing deferred frees.
*/
static void
spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
{
if (spa_sync_pass(spa) != 1)
return;
/*
* Note:
* If the log space map feature is active, we stop deferring
* frees to the next TXG and therefore running this function
* would be considered a no-op as spa_deferred_bpobj should
* not have any entries.
*
* That said we run this function anyway (instead of returning
* immediately) for the edge-case scenario where we just
* activated the log space map feature in this TXG but we have
* deferred frees from the previous TXG.
*/
zio_t *zio = zio_root(spa, NULL, NULL, 0);
VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
bpobj_spa_free_sync_cb, zio, tx), ==, 0);
VERIFY0(zio_wait(zio));
}
static void
spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
{
char *packed = NULL;
size_t bufsize;
size_t nvsize = 0;
dmu_buf_t *db;
VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
/*
* Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
* information. This avoids the dmu_buf_will_dirty() path and
* saves us a pre-read to get data we don't actually care about.
*/
bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
packed = vmem_alloc(bufsize, KM_SLEEP);
VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
KM_SLEEP) == 0);
memset(packed + nvsize, 0, bufsize - nvsize);
dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
vmem_free(packed, bufsize);
VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
dmu_buf_will_dirty(db, tx);
*(uint64_t *)db->db_data = nvsize;
dmu_buf_rele(db, FTAG);
}
static void
spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
const char *config, const char *entry)
{
nvlist_t *nvroot;
nvlist_t **list;
int i;
if (!sav->sav_sync)
return;
/*
* Update the MOS nvlist describing the list of available devices.
* spa_validate_aux() will have already made sure this nvlist is
* valid and the vdevs are labeled appropriately.
*/
if (sav->sav_object == 0) {
sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
sizeof (uint64_t), tx);
VERIFY(zap_update(spa->spa_meta_objset,
DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
&sav->sav_object, tx) == 0);
}
nvroot = fnvlist_alloc();
if (sav->sav_count == 0) {
fnvlist_add_nvlist_array(nvroot, config,
(const nvlist_t * const *)NULL, 0);
} else {
list = kmem_alloc(sav->sav_count*sizeof (void *), KM_SLEEP);
for (i = 0; i < sav->sav_count; i++)
list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
B_FALSE, VDEV_CONFIG_L2CACHE);
fnvlist_add_nvlist_array(nvroot, config,
(const nvlist_t * const *)list, sav->sav_count);
for (i = 0; i < sav->sav_count; i++)
nvlist_free(list[i]);
kmem_free(list, sav->sav_count * sizeof (void *));
}
spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
nvlist_free(nvroot);
sav->sav_sync = B_FALSE;
}
/*
* Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
* The all-vdev ZAP must be empty.
*/
static void
spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
{
spa_t *spa = vd->vdev_spa;
if (vd->vdev_root_zap != 0 &&
spa_feature_is_active(spa, SPA_FEATURE_AVZ_V2)) {
VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
vd->vdev_root_zap, tx));
}
if (vd->vdev_top_zap != 0) {
VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
vd->vdev_top_zap, tx));
}
if (vd->vdev_leaf_zap != 0) {
VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
vd->vdev_leaf_zap, tx));
}
for (uint64_t i = 0; i < vd->vdev_children; i++) {
spa_avz_build(vd->vdev_child[i], avz, tx);
}
}
static void
spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
{
nvlist_t *config;
/*
* If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
* its config may not be dirty but we still need to build per-vdev ZAPs.
* Similarly, if the pool is being assembled (e.g. after a split), we
* need to rebuild the AVZ although the config may not be dirty.
*/
if (list_is_empty(&spa->spa_config_dirty_list) &&
spa->spa_avz_action == AVZ_ACTION_NONE)
return;
spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
spa->spa_avz_action == AVZ_ACTION_INITIALIZE ||
spa->spa_all_vdev_zaps != 0);
if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
/* Make and build the new AVZ */
uint64_t new_avz = zap_create(spa->spa_meta_objset,
DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
spa_avz_build(spa->spa_root_vdev, new_avz, tx);
/* Diff old AVZ with new one */
zap_cursor_t zc;
zap_attribute_t za;
for (zap_cursor_init(&zc, spa->spa_meta_objset,
spa->spa_all_vdev_zaps);
zap_cursor_retrieve(&zc, &za) == 0;
zap_cursor_advance(&zc)) {
uint64_t vdzap = za.za_first_integer;
if (zap_lookup_int(spa->spa_meta_objset, new_avz,
vdzap) == ENOENT) {
/*
* ZAP is listed in old AVZ but not in new one;
* destroy it
*/
VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
tx));
}
}
zap_cursor_fini(&zc);
/* Destroy the old AVZ */
VERIFY0(zap_destroy(spa->spa_meta_objset,
spa->spa_all_vdev_zaps, tx));
/* Replace the old AVZ in the dir obj with the new one */
VERIFY0(zap_update(spa->spa_meta_objset,
DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
sizeof (new_avz), 1, &new_avz, tx));
spa->spa_all_vdev_zaps = new_avz;
} else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
zap_cursor_t zc;
zap_attribute_t za;
/* Walk through the AVZ and destroy all listed ZAPs */
for (zap_cursor_init(&zc, spa->spa_meta_objset,
spa->spa_all_vdev_zaps);
zap_cursor_retrieve(&zc, &za) == 0;
zap_cursor_advance(&zc)) {
uint64_t zap = za.za_first_integer;
VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
}
zap_cursor_fini(&zc);
/* Destroy and unlink the AVZ itself */
VERIFY0(zap_destroy(spa->spa_meta_objset,
spa->spa_all_vdev_zaps, tx));
VERIFY0(zap_remove(spa->spa_meta_objset,
DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
spa->spa_all_vdev_zaps = 0;
}
if (spa->spa_all_vdev_zaps == 0) {
spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
DMU_POOL_VDEV_ZAP_MAP, tx);
}
spa->spa_avz_action = AVZ_ACTION_NONE;
/* Create ZAPs for vdevs that don't have them. */
vdev_construct_zaps(spa->spa_root_vdev, tx);
config = spa_config_generate(spa, spa->spa_root_vdev,
dmu_tx_get_txg(tx), B_FALSE);
/*
* If we're upgrading the spa version then make sure that
* the config object gets updated with the correct version.
*/
if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
spa->spa_uberblock.ub_version);
spa_config_exit(spa, SCL_STATE, FTAG);
nvlist_free(spa->spa_config_syncing);
spa->spa_config_syncing = config;
spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
}
static void
spa_sync_version(void *arg, dmu_tx_t *tx)
{
uint64_t *versionp = arg;
uint64_t version = *versionp;
spa_t *spa = dmu_tx_pool(tx)->dp_spa;
/*
* Setting the version is special cased when first creating the pool.
*/
ASSERT(tx->tx_txg != TXG_INITIAL);
ASSERT(SPA_VERSION_IS_SUPPORTED(version));
ASSERT(version >= spa_version(spa));
spa->spa_uberblock.ub_version = version;
vdev_config_dirty(spa->spa_root_vdev);
spa_history_log_internal(spa, "set", tx, "version=%lld",
(longlong_t)version);
}
/*
* Set zpool properties.
*/
static void
spa_sync_props(void *arg, dmu_tx_t *tx)
{
nvlist_t *nvp = arg;
spa_t *spa = dmu_tx_pool(tx)->dp_spa;
objset_t *mos = spa->spa_meta_objset;
nvpair_t *elem = NULL;
mutex_enter(&spa->spa_props_lock);
while ((elem = nvlist_next_nvpair(nvp, elem))) {
uint64_t intval;
const char *strval, *fname;
zpool_prop_t prop;
const char *propname;
const char *elemname = nvpair_name(elem);
zprop_type_t proptype;
spa_feature_t fid;
switch (prop = zpool_name_to_prop(elemname)) {
case ZPOOL_PROP_VERSION:
intval = fnvpair_value_uint64(elem);
/*
* The version is synced separately before other
* properties and should be correct by now.
*/
ASSERT3U(spa_version(spa), >=, intval);
break;
case ZPOOL_PROP_ALTROOT:
/*
* 'altroot' is a non-persistent property. It should
* have been set temporarily at creation or import time.
*/
ASSERT(spa->spa_root != NULL);
break;
case ZPOOL_PROP_READONLY:
case ZPOOL_PROP_CACHEFILE:
/*
* 'readonly' and 'cachefile' are also non-persistent
* properties.
*/
break;
case ZPOOL_PROP_COMMENT:
strval = fnvpair_value_string(elem);
if (spa->spa_comment != NULL)
spa_strfree(spa->spa_comment);
spa->spa_comment = spa_strdup(strval);
/*
* We need to dirty the configuration on all the vdevs
* so that their labels get updated. We also need to
* update the cache file to keep it in sync with the
* MOS version. It's unnecessary to do this for pool
* creation since the vdev's configuration has already
* been dirtied.
*/
if (tx->tx_txg != TXG_INITIAL) {
vdev_config_dirty(spa->spa_root_vdev);
spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
}
spa_history_log_internal(spa, "set", tx,
"%s=%s", elemname, strval);
break;
case ZPOOL_PROP_COMPATIBILITY:
strval = fnvpair_value_string(elem);
if (spa->spa_compatibility != NULL)
spa_strfree(spa->spa_compatibility);
spa->spa_compatibility = spa_strdup(strval);
/*
* Dirty the configuration on vdevs as above.
*/
if (tx->tx_txg != TXG_INITIAL) {
vdev_config_dirty(spa->spa_root_vdev);
spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
}
spa_history_log_internal(spa, "set", tx,
"%s=%s", nvpair_name(elem), strval);
break;
case ZPOOL_PROP_INVAL:
if (zpool_prop_feature(elemname)) {
fname = strchr(elemname, '@') + 1;
VERIFY0(zfeature_lookup_name(fname, &fid));
spa_feature_enable(spa, fid, tx);
spa_history_log_internal(spa, "set", tx,
"%s=enabled", elemname);
break;
} else if (!zfs_prop_user(elemname)) {
ASSERT(zpool_prop_feature(elemname));
break;
}
zfs_fallthrough;
default:
/*
* Set pool property values in the poolprops mos object.
*/
if (spa->spa_pool_props_object == 0) {
spa->spa_pool_props_object =
zap_create_link(mos, DMU_OT_POOL_PROPS,
DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
tx);
}
/* normalize the property name */
if (prop == ZPOOL_PROP_INVAL) {
propname = elemname;
proptype = PROP_TYPE_STRING;
} else {
propname = zpool_prop_to_name(prop);
proptype = zpool_prop_get_type(prop);
}
if (nvpair_type(elem) == DATA_TYPE_STRING) {
ASSERT(proptype == PROP_TYPE_STRING);
strval = fnvpair_value_string(elem);
VERIFY0(zap_update(mos,
spa->spa_pool_props_object, propname,
1, strlen(strval) + 1, strval, tx));
spa_history_log_internal(spa, "set", tx,
"%s=%s", elemname, strval);
} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
intval = fnvpair_value_uint64(elem);
if (proptype == PROP_TYPE_INDEX) {
const char *unused;
VERIFY0(zpool_prop_index_to_string(
prop, intval, &unused));
}
VERIFY0(zap_update(mos,
spa->spa_pool_props_object, propname,
8, 1, &intval, tx));
spa_history_log_internal(spa, "set", tx,
"%s=%lld", elemname,
(longlong_t)intval);
switch (prop) {
case ZPOOL_PROP_DELEGATION:
spa->spa_delegation = intval;
break;
case ZPOOL_PROP_BOOTFS:
spa->spa_bootfs = intval;
break;
case ZPOOL_PROP_FAILUREMODE:
spa->spa_failmode = intval;
break;
case ZPOOL_PROP_AUTOTRIM:
spa->spa_autotrim = intval;
spa_async_request(spa,
SPA_ASYNC_AUTOTRIM_RESTART);
break;
case ZPOOL_PROP_AUTOEXPAND:
spa->spa_autoexpand = intval;
if (tx->tx_txg != TXG_INITIAL)
spa_async_request(spa,
SPA_ASYNC_AUTOEXPAND);
break;
case ZPOOL_PROP_MULTIHOST:
spa->spa_multihost = intval;
break;
default:
break;
}
} else {
ASSERT(0); /* not allowed */
}
}
}
mutex_exit(&spa->spa_props_lock);
}
/*
* Perform one-time upgrade on-disk changes. spa_version() does not
* reflect the new version this txg, so there must be no changes this
* txg to anything that the upgrade code depends on after it executes.
* Therefore this must be called after dsl_pool_sync() does the sync
* tasks.
*/
static void
spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
{
if (spa_sync_pass(spa) != 1)
return;
dsl_pool_t *dp = spa->spa_dsl_pool;
rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
dsl_pool_create_origin(dp, tx);
/* Keeping the origin open increases spa_minref */
spa->spa_minref += 3;
}
if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
dsl_pool_upgrade_clones(dp, tx);
}
if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
dsl_pool_upgrade_dir_clones(dp, tx);
/* Keeping the freedir open increases spa_minref */
spa->spa_minref += 3;
}
if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
spa_feature_create_zap_objects(spa, tx);
}
/*
* LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
* when possibility to use lz4 compression for metadata was added
* Old pools that have this feature enabled must be upgraded to have
* this feature active
*/
if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
boolean_t lz4_en = spa_feature_is_enabled(spa,
SPA_FEATURE_LZ4_COMPRESS);
boolean_t lz4_ac = spa_feature_is_active(spa,
SPA_FEATURE_LZ4_COMPRESS);
if (lz4_en && !lz4_ac)
spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
}
/*
* If we haven't written the salt, do so now. Note that the
* feature may not be activated yet, but that's fine since
* the presence of this ZAP entry is backwards compatible.
*/
if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
DMU_POOL_CHECKSUM_SALT) == ENOENT) {
VERIFY0(zap_add(spa->spa_meta_objset,
DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
sizeof (spa->spa_cksum_salt.zcs_bytes),
spa->spa_cksum_salt.zcs_bytes, tx));
}
rrw_exit(&dp->dp_config_rwlock, FTAG);
}
static void
vdev_indirect_state_sync_verify(vdev_t *vd)
{
vdev_indirect_mapping_t *vim __maybe_unused = vd->vdev_indirect_mapping;
vdev_indirect_births_t *vib __maybe_unused = vd->vdev_indirect_births;
if (vd->vdev_ops == &vdev_indirect_ops) {
ASSERT(vim != NULL);
ASSERT(vib != NULL);
}
uint64_t obsolete_sm_object = 0;
ASSERT0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
if (obsolete_sm_object != 0) {
ASSERT(vd->vdev_obsolete_sm != NULL);
ASSERT(vd->vdev_removing ||
vd->vdev_ops == &vdev_indirect_ops);
ASSERT(vdev_indirect_mapping_num_entries(vim) > 0);
ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0);
ASSERT3U(obsolete_sm_object, ==,
space_map_object(vd->vdev_obsolete_sm));
ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=,
space_map_allocated(vd->vdev_obsolete_sm));
}
ASSERT(vd->vdev_obsolete_segments != NULL);
/*
* Since frees / remaps to an indirect vdev can only
* happen in syncing context, the obsolete segments
* tree must be empty when we start syncing.
*/
ASSERT0(range_tree_space(vd->vdev_obsolete_segments));
}
/*
* Set the top-level vdev's max queue depth. Evaluate each top-level's
* async write queue depth in case it changed. The max queue depth will
* not change in the middle of syncing out this txg.
*/
static void
spa_sync_adjust_vdev_max_queue_depth(spa_t *spa)
{
ASSERT(spa_writeable(spa));
vdev_t *rvd = spa->spa_root_vdev;
uint32_t max_queue_depth = zfs_vdev_async_write_max_active *
zfs_vdev_queue_depth_pct / 100;
metaslab_class_t *normal = spa_normal_class(spa);
metaslab_class_t *special = spa_special_class(spa);
metaslab_class_t *dedup = spa_dedup_class(spa);
uint64_t slots_per_allocator = 0;
for (int c = 0; c < rvd->vdev_children; c++) {
vdev_t *tvd = rvd->vdev_child[c];
metaslab_group_t *mg = tvd->vdev_mg;
if (mg == NULL || !metaslab_group_initialized(mg))
continue;
metaslab_class_t *mc = mg->mg_class;
if (mc != normal && mc != special && mc != dedup)
continue;
/*
* It is safe to do a lock-free check here because only async
* allocations look at mg_max_alloc_queue_depth, and async
* allocations all happen from spa_sync().
*/
for (int i = 0; i < mg->mg_allocators; i++) {
ASSERT0(zfs_refcount_count(
&(mg->mg_allocator[i].mga_alloc_queue_depth)));
}
mg->mg_max_alloc_queue_depth = max_queue_depth;
for (int i = 0; i < mg->mg_allocators; i++) {
mg->mg_allocator[i].mga_cur_max_alloc_queue_depth =
zfs_vdev_def_queue_depth;
}
slots_per_allocator += zfs_vdev_def_queue_depth;
}
for (int i = 0; i < spa->spa_alloc_count; i++) {
ASSERT0(zfs_refcount_count(&normal->mc_allocator[i].
mca_alloc_slots));
ASSERT0(zfs_refcount_count(&special->mc_allocator[i].
mca_alloc_slots));
ASSERT0(zfs_refcount_count(&dedup->mc_allocator[i].
mca_alloc_slots));
normal->mc_allocator[i].mca_alloc_max_slots =
slots_per_allocator;
special->mc_allocator[i].mca_alloc_max_slots =
slots_per_allocator;
dedup->mc_allocator[i].mca_alloc_max_slots =
slots_per_allocator;
}
normal->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
special->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
dedup->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
}
static void
spa_sync_condense_indirect(spa_t *spa, dmu_tx_t *tx)
{
ASSERT(spa_writeable(spa));
vdev_t *rvd = spa->spa_root_vdev;
for (int c = 0; c < rvd->vdev_children; c++) {
vdev_t *vd = rvd->vdev_child[c];
vdev_indirect_state_sync_verify(vd);
if (vdev_indirect_should_condense(vd)) {
spa_condense_indirect_start_sync(vd, tx);
break;
}
}
}
static void
spa_sync_iterate_to_convergence(spa_t *spa, dmu_tx_t *tx)
{
objset_t *mos = spa->spa_meta_objset;
dsl_pool_t *dp = spa->spa_dsl_pool;
uint64_t txg = tx->tx_txg;
bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
do {
int pass = ++spa->spa_sync_pass;
spa_sync_config_object(spa, tx);
spa_sync_aux_dev(spa, &spa->spa_spares, tx,
ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
spa_errlog_sync(spa, txg);
dsl_pool_sync(dp, txg);
if (pass < zfs_sync_pass_deferred_free ||
spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) {
/*
* If the log space map feature is active we don't
* care about deferred frees and the deferred bpobj
* as the log space map should effectively have the
* same results (i.e. appending only to one object).
*/
spa_sync_frees(spa, free_bpl, tx);
} else {
/*
* We can not defer frees in pass 1, because
* we sync the deferred frees later in pass 1.
*/
ASSERT3U(pass, >, 1);
bplist_iterate(free_bpl, bpobj_enqueue_alloc_cb,
&spa->spa_deferred_bpobj, tx);
}
brt_sync(spa, txg);
ddt_sync(spa, txg);
dsl_scan_sync(dp, tx);
dsl_errorscrub_sync(dp, tx);
svr_sync(spa, tx);
spa_sync_upgrades(spa, tx);
spa_flush_metaslabs(spa, tx);
vdev_t *vd = NULL;
while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
!= NULL)
vdev_sync(vd, txg);
/*
* Note: We need to check if the MOS is dirty because we could
* have marked the MOS dirty without updating the uberblock
* (e.g. if we have sync tasks but no dirty user data). We need
* to check the uberblock's rootbp because it is updated if we
* have synced out dirty data (though in this case the MOS will
* most likely also be dirty due to second order effects, we
* don't want to rely on that here).
*/
if (pass == 1 &&
spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
!dmu_objset_is_dirty(mos, txg)) {
/*
* Nothing changed on the first pass, therefore this
* TXG is a no-op. Avoid syncing deferred frees, so
* that we can keep this TXG as a no-op.
*/
ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
ASSERT(txg_list_empty(&dp->dp_early_sync_tasks, txg));
break;
}
spa_sync_deferred_frees(spa, tx);
} while (dmu_objset_is_dirty(mos, txg));
}
/*
* Rewrite the vdev configuration (which includes the uberblock) to
* commit the transaction group.
*
* If there are no dirty vdevs, we sync the uberblock to a few random
* top-level vdevs that are known to be visible in the config cache
* (see spa_vdev_add() for a complete description). If there *are* dirty
* vdevs, sync the uberblock to all vdevs.
*/
static void
spa_sync_rewrite_vdev_config(spa_t *spa, dmu_tx_t *tx)
{
vdev_t *rvd = spa->spa_root_vdev;
uint64_t txg = tx->tx_txg;
for (;;) {
int error = 0;
/*
* We hold SCL_STATE to prevent vdev open/close/etc.
* while we're attempting to write the vdev labels.
*/
spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
if (list_is_empty(&spa->spa_config_dirty_list)) {
vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
int svdcount = 0;
int children = rvd->vdev_children;
int c0 = random_in_range(children);
for (int c = 0; c < children; c++) {
vdev_t *vd =
rvd->vdev_child[(c0 + c) % children];
/* Stop when revisiting the first vdev */
if (c > 0 && svd[0] == vd)
break;
if (vd->vdev_ms_array == 0 ||
vd->vdev_islog ||
!vdev_is_concrete(vd))
continue;
svd[svdcount++] = vd;
if (svdcount == SPA_SYNC_MIN_VDEVS)
break;
}
error = vdev_config_sync(svd, svdcount, txg);
} else {
error = vdev_config_sync(rvd->vdev_child,
rvd->vdev_children, txg);
}
if (error == 0)
spa->spa_last_synced_guid = rvd->vdev_guid;
spa_config_exit(spa, SCL_STATE, FTAG);
if (error == 0)
break;
zio_suspend(spa, NULL, ZIO_SUSPEND_IOERR);
zio_resume_wait(spa);
}
}
/*
* Sync the specified transaction group. New blocks may be dirtied as
* part of the process, so we iterate until it converges.
*/
void
spa_sync(spa_t *spa, uint64_t txg)
{
vdev_t *vd = NULL;
VERIFY(spa_writeable(spa));
/*
* Wait for i/os issued in open context that need to complete
* before this txg syncs.
*/
(void) zio_wait(spa->spa_txg_zio[txg & TXG_MASK]);
spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL,
ZIO_FLAG_CANFAIL);
/*
* Now that there can be no more cloning in this transaction group,
* but we are still before issuing frees, we can process pending BRT
* updates.
*/
brt_pending_apply(spa, txg);
/*
* Lock out configuration changes.
*/
spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
spa->spa_syncing_txg = txg;
spa->spa_sync_pass = 0;
for (int i = 0; i < spa->spa_alloc_count; i++) {
mutex_enter(&spa->spa_allocs[i].spaa_lock);
VERIFY0(avl_numnodes(&spa->spa_allocs[i].spaa_tree));
mutex_exit(&spa->spa_allocs[i].spaa_lock);
}
/*
* If there are any pending vdev state changes, convert them
* into config changes that go out with this transaction group.
*/
spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
/* Avoid holding the write lock unless actually necessary */
if (vd->vdev_aux == NULL) {
vdev_state_clean(vd);
vdev_config_dirty(vd);
continue;
}
/*
* We need the write lock here because, for aux vdevs,
* calling vdev_config_dirty() modifies sav_config.
* This is ugly and will become unnecessary when we
* eliminate the aux vdev wart by integrating all vdevs
* into the root vdev tree.
*/
spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
vdev_state_clean(vd);
vdev_config_dirty(vd);
}
spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
}
spa_config_exit(spa, SCL_STATE, FTAG);
dsl_pool_t *dp = spa->spa_dsl_pool;
dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
spa->spa_sync_starttime = gethrtime();
taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq,
spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
NSEC_TO_TICK(spa->spa_deadman_synctime));
/*
* If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
* set spa_deflate if we have no raid-z vdevs.
*/
if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
vdev_t *rvd = spa->spa_root_vdev;
int i;
for (i = 0; i < rvd->vdev_children; i++) {
vd = rvd->vdev_child[i];
if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
break;
}
if (i == rvd->vdev_children) {
spa->spa_deflate = TRUE;
VERIFY0(zap_add(spa->spa_meta_objset,
DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
sizeof (uint64_t), 1, &spa->spa_deflate, tx));
}
}
spa_sync_adjust_vdev_max_queue_depth(spa);
spa_sync_condense_indirect(spa, tx);
spa_sync_iterate_to_convergence(spa, tx);
#ifdef ZFS_DEBUG
if (!list_is_empty(&spa->spa_config_dirty_list)) {
/*
* Make sure that the number of ZAPs for all the vdevs matches
* the number of ZAPs in the per-vdev ZAP list. This only gets
* called if the config is dirty; otherwise there may be
* outstanding AVZ operations that weren't completed in
* spa_sync_config_object.
*/
uint64_t all_vdev_zap_entry_count;
ASSERT0(zap_count(spa->spa_meta_objset,
spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
all_vdev_zap_entry_count);
}
#endif
if (spa->spa_vdev_removal != NULL) {
ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]);
}
spa_sync_rewrite_vdev_config(spa, tx);
dmu_tx_commit(tx);
taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
spa->spa_deadman_tqid = 0;
/*
* Clear the dirty config list.
*/
while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
vdev_config_clean(vd);
/*
* Now that the new config has synced transactionally,
* let it become visible to the config cache.
*/
if (spa->spa_config_syncing != NULL) {
spa_config_set(spa, spa->spa_config_syncing);
spa->spa_config_txg = txg;
spa->spa_config_syncing = NULL;
}
dsl_pool_sync_done(dp, txg);
for (int i = 0; i < spa->spa_alloc_count; i++) {
mutex_enter(&spa->spa_allocs[i].spaa_lock);
VERIFY0(avl_numnodes(&spa->spa_allocs[i].spaa_tree));
mutex_exit(&spa->spa_allocs[i].spaa_lock);
}
/*
* Update usable space statistics.
*/
while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
!= NULL)
vdev_sync_done(vd, txg);
metaslab_class_evict_old(spa->spa_normal_class, txg);
metaslab_class_evict_old(spa->spa_log_class, txg);
spa_sync_close_syncing_log_sm(spa);
spa_update_dspace(spa);
if (spa_get_autotrim(spa) == SPA_AUTOTRIM_ON)
vdev_autotrim_kick(spa);
/*
* It had better be the case that we didn't dirty anything
* since vdev_config_sync().
*/
ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
while (zfs_pause_spa_sync)
delay(1);
spa->spa_sync_pass = 0;
/*
* Update the last synced uberblock here. We want to do this at
* the end of spa_sync() so that consumers of spa_last_synced_txg()
* will be guaranteed that all the processing associated with
* that txg has been completed.
*/
spa->spa_ubsync = spa->spa_uberblock;
spa_config_exit(spa, SCL_CONFIG, FTAG);
spa_handle_ignored_writes(spa);
/*
* If any async tasks have been requested, kick them off.
*/
spa_async_dispatch(spa);
}
/*
* Sync all pools. We don't want to hold the namespace lock across these
* operations, so we take a reference on the spa_t and drop the lock during the
* sync.
*/
void
spa_sync_allpools(void)
{
spa_t *spa = NULL;
mutex_enter(&spa_namespace_lock);
while ((spa = spa_next(spa)) != NULL) {
if (spa_state(spa) != POOL_STATE_ACTIVE ||
!spa_writeable(spa) || spa_suspended(spa))
continue;
spa_open_ref(spa, FTAG);
mutex_exit(&spa_namespace_lock);
txg_wait_synced(spa_get_dsl(spa), 0);
mutex_enter(&spa_namespace_lock);
spa_close(spa, FTAG);
}
mutex_exit(&spa_namespace_lock);
}
/*
* ==========================================================================
* Miscellaneous routines
* ==========================================================================
*/
/*
* Remove all pools in the system.
*/
void
spa_evict_all(void)
{
spa_t *spa;
/*
* Remove all cached state. All pools should be closed now,
* so every spa in the AVL tree should be unreferenced.
*/
mutex_enter(&spa_namespace_lock);
while ((spa = spa_next(NULL)) != NULL) {
/*
* Stop async tasks. The async thread may need to detach
* a device that's been replaced, which requires grabbing
* spa_namespace_lock, so we must drop it here.
*/
spa_open_ref(spa, FTAG);
mutex_exit(&spa_namespace_lock);
spa_async_suspend(spa);
mutex_enter(&spa_namespace_lock);
spa_close(spa, FTAG);
if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
spa_unload(spa);
spa_deactivate(spa);
}
spa_remove(spa);
}
mutex_exit(&spa_namespace_lock);
}
vdev_t *
spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
{
vdev_t *vd;
int i;
if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
return (vd);
if (aux) {
for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
vd = spa->spa_l2cache.sav_vdevs[i];
if (vd->vdev_guid == guid)
return (vd);
}
for (i = 0; i < spa->spa_spares.sav_count; i++) {
vd = spa->spa_spares.sav_vdevs[i];
if (vd->vdev_guid == guid)
return (vd);
}
}
return (NULL);
}
void
spa_upgrade(spa_t *spa, uint64_t version)
{
ASSERT(spa_writeable(spa));
spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
/*
* This should only be called for a non-faulted pool, and since a
* future version would result in an unopenable pool, this shouldn't be
* possible.
*/
ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
spa->spa_uberblock.ub_version = version;
vdev_config_dirty(spa->spa_root_vdev);
spa_config_exit(spa, SCL_ALL, FTAG);
txg_wait_synced(spa_get_dsl(spa), 0);
}
static boolean_t
spa_has_aux_vdev(spa_t *spa, uint64_t guid, spa_aux_vdev_t *sav)
{
(void) spa;
int i;
uint64_t vdev_guid;
for (i = 0; i < sav->sav_count; i++)
if (sav->sav_vdevs[i]->vdev_guid == guid)
return (B_TRUE);
for (i = 0; i < sav->sav_npending; i++) {
if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
&vdev_guid) == 0 && vdev_guid == guid)
return (B_TRUE);
}
return (B_FALSE);
}
boolean_t
spa_has_l2cache(spa_t *spa, uint64_t guid)
{
return (spa_has_aux_vdev(spa, guid, &spa->spa_l2cache));
}
boolean_t
spa_has_spare(spa_t *spa, uint64_t guid)
{
return (spa_has_aux_vdev(spa, guid, &spa->spa_spares));
}
/*
* Check if a pool has an active shared spare device.
* Note: reference count of an active spare is 2, as a spare and as a replace
*/
static boolean_t
spa_has_active_shared_spare(spa_t *spa)
{
int i, refcnt;
uint64_t pool;
spa_aux_vdev_t *sav = &spa->spa_spares;
for (i = 0; i < sav->sav_count; i++) {
if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
&refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
refcnt > 2)
return (B_TRUE);
}
return (B_FALSE);
}
uint64_t
spa_total_metaslabs(spa_t *spa)
{
vdev_t *rvd = spa->spa_root_vdev;
uint64_t m = 0;
for (uint64_t c = 0; c < rvd->vdev_children; c++) {
vdev_t *vd = rvd->vdev_child[c];
if (!vdev_is_concrete(vd))
continue;
m += vd->vdev_ms_count;
}
return (m);
}
/*
* Notify any waiting threads that some activity has switched from being in-
* progress to not-in-progress so that the thread can wake up and determine
* whether it is finished waiting.
*/
void
spa_notify_waiters(spa_t *spa)
{
/*
* Acquiring spa_activities_lock here prevents the cv_broadcast from
* happening between the waiting thread's check and cv_wait.
*/
mutex_enter(&spa->spa_activities_lock);
cv_broadcast(&spa->spa_activities_cv);
mutex_exit(&spa->spa_activities_lock);
}
/*
* Notify any waiting threads that the pool is exporting, and then block until
* they are finished using the spa_t.
*/
void
spa_wake_waiters(spa_t *spa)
{
mutex_enter(&spa->spa_activities_lock);
spa->spa_waiters_cancel = B_TRUE;
cv_broadcast(&spa->spa_activities_cv);
while (spa->spa_waiters != 0)
cv_wait(&spa->spa_waiters_cv, &spa->spa_activities_lock);
spa->spa_waiters_cancel = B_FALSE;
mutex_exit(&spa->spa_activities_lock);
}
/* Whether the vdev or any of its descendants are being initialized/trimmed. */
static boolean_t
spa_vdev_activity_in_progress_impl(vdev_t *vd, zpool_wait_activity_t activity)
{
spa_t *spa = vd->vdev_spa;
ASSERT(spa_config_held(spa, SCL_CONFIG | SCL_STATE, RW_READER));
ASSERT(MUTEX_HELD(&spa->spa_activities_lock));
ASSERT(activity == ZPOOL_WAIT_INITIALIZE ||
activity == ZPOOL_WAIT_TRIM);
kmutex_t *lock = activity == ZPOOL_WAIT_INITIALIZE ?
&vd->vdev_initialize_lock : &vd->vdev_trim_lock;
mutex_exit(&spa->spa_activities_lock);
mutex_enter(lock);
mutex_enter(&spa->spa_activities_lock);
boolean_t in_progress = (activity == ZPOOL_WAIT_INITIALIZE) ?
(vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) :
(vd->vdev_trim_state == VDEV_TRIM_ACTIVE);
mutex_exit(lock);
if (in_progress)
return (B_TRUE);
for (int i = 0; i < vd->vdev_children; i++) {
if (spa_vdev_activity_in_progress_impl(vd->vdev_child[i],
activity))
return (B_TRUE);
}
return (B_FALSE);
}
/*
* If use_guid is true, this checks whether the vdev specified by guid is
* being initialized/trimmed. Otherwise, it checks whether any vdev in the pool
* is being initialized/trimmed. The caller must hold the config lock and
* spa_activities_lock.
*/
static int
spa_vdev_activity_in_progress(spa_t *spa, boolean_t use_guid, uint64_t guid,
zpool_wait_activity_t activity, boolean_t *in_progress)
{
mutex_exit(&spa->spa_activities_lock);
spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
mutex_enter(&spa->spa_activities_lock);
vdev_t *vd;
if (use_guid) {
vd = spa_lookup_by_guid(spa, guid, B_FALSE);
if (vd == NULL || !vd->vdev_ops->vdev_op_leaf) {
spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
return (EINVAL);
}
} else {
vd = spa->spa_root_vdev;
}
*in_progress = spa_vdev_activity_in_progress_impl(vd, activity);
spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
return (0);
}
/*
* Locking for waiting threads
* ---------------------------
*
* Waiting threads need a way to check whether a given activity is in progress,
* and then, if it is, wait for it to complete. Each activity will have some
* in-memory representation of the relevant on-disk state which can be used to
* determine whether or not the activity is in progress. The in-memory state and
* the locking used to protect it will be different for each activity, and may
* not be suitable for use with a cvar (e.g., some state is protected by the
* config lock). To allow waiting threads to wait without any races, another
* lock, spa_activities_lock, is used.
*
* When the state is checked, both the activity-specific lock (if there is one)
* and spa_activities_lock are held. In some cases, the activity-specific lock
* is acquired explicitly (e.g. the config lock). In others, the locking is
* internal to some check (e.g. bpobj_is_empty). After checking, the waiting
* thread releases the activity-specific lock and, if the activity is in
* progress, then cv_waits using spa_activities_lock.
*
* The waiting thread is woken when another thread, one completing some
* activity, updates the state of the activity and then calls
* spa_notify_waiters, which will cv_broadcast. This 'completing' thread only
* needs to hold its activity-specific lock when updating the state, and this
* lock can (but doesn't have to) be dropped before calling spa_notify_waiters.
*
* Because spa_notify_waiters acquires spa_activities_lock before broadcasting,
* and because it is held when the waiting thread checks the state of the
* activity, it can never be the case that the completing thread both updates
* the activity state and cv_broadcasts in between the waiting thread's check
* and cv_wait. Thus, a waiting thread can never miss a wakeup.
*
* In order to prevent deadlock, when the waiting thread does its check, in some
* cases it will temporarily drop spa_activities_lock in order to acquire the
* activity-specific lock. The order in which spa_activities_lock and the
* activity specific lock are acquired in the waiting thread is determined by
* the order in which they are acquired in the completing thread; if the
* completing thread calls spa_notify_waiters with the activity-specific lock
* held, then the waiting thread must also acquire the activity-specific lock
* first.
*/
static int
spa_activity_in_progress(spa_t *spa, zpool_wait_activity_t activity,
boolean_t use_tag, uint64_t tag, boolean_t *in_progress)
{
int error = 0;
ASSERT(MUTEX_HELD(&spa->spa_activities_lock));
switch (activity) {
case ZPOOL_WAIT_CKPT_DISCARD:
*in_progress =
(spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT) &&
zap_contains(spa_meta_objset(spa),
DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ZPOOL_CHECKPOINT) ==
ENOENT);
break;
case ZPOOL_WAIT_FREE:
*in_progress = ((spa_version(spa) >= SPA_VERSION_DEADLISTS &&
!bpobj_is_empty(&spa->spa_dsl_pool->dp_free_bpobj)) ||
spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY) ||
spa_livelist_delete_check(spa));
break;
case ZPOOL_WAIT_INITIALIZE:
case ZPOOL_WAIT_TRIM:
error = spa_vdev_activity_in_progress(spa, use_tag, tag,
activity, in_progress);
break;
case ZPOOL_WAIT_REPLACE:
mutex_exit(&spa->spa_activities_lock);
spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
mutex_enter(&spa->spa_activities_lock);
*in_progress = vdev_replace_in_progress(spa->spa_root_vdev);
spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
break;
case ZPOOL_WAIT_REMOVE:
*in_progress = (spa->spa_removing_phys.sr_state ==
DSS_SCANNING);
break;
case ZPOOL_WAIT_RESILVER:
if ((*in_progress = vdev_rebuild_active(spa->spa_root_vdev)))
break;
zfs_fallthrough;
case ZPOOL_WAIT_SCRUB:
{
boolean_t scanning, paused, is_scrub;
dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
is_scrub = (scn->scn_phys.scn_func == POOL_SCAN_SCRUB);
scanning = (scn->scn_phys.scn_state == DSS_SCANNING);
paused = dsl_scan_is_paused_scrub(scn);
*in_progress = (scanning && !paused &&
is_scrub == (activity == ZPOOL_WAIT_SCRUB));
break;
}
default:
panic("unrecognized value for activity %d", activity);
}
return (error);
}
static int
spa_wait_common(const char *pool, zpool_wait_activity_t activity,
boolean_t use_tag, uint64_t tag, boolean_t *waited)
{
/*
* The tag is used to distinguish between instances of an activity.
* 'initialize' and 'trim' are the only activities that we use this for.
* The other activities can only have a single instance in progress in a
* pool at one time, making the tag unnecessary.
*
* There can be multiple devices being replaced at once, but since they
* all finish once resilvering finishes, we don't bother keeping track
* of them individually, we just wait for them all to finish.
*/
if (use_tag && activity != ZPOOL_WAIT_INITIALIZE &&
activity != ZPOOL_WAIT_TRIM)
return (EINVAL);
if (activity < 0 || activity >= ZPOOL_WAIT_NUM_ACTIVITIES)
return (EINVAL);
spa_t *spa;
int error = spa_open(pool, &spa, FTAG);
if (error != 0)
return (error);
/*
* Increment the spa's waiter count so that we can call spa_close and
* still ensure that the spa_t doesn't get freed before this thread is
* finished with it when the pool is exported. We want to call spa_close
* before we start waiting because otherwise the additional ref would
* prevent the pool from being exported or destroyed throughout the
* potentially long wait.
*/
mutex_enter(&spa->spa_activities_lock);
spa->spa_waiters++;
spa_close(spa, FTAG);
*waited = B_FALSE;
for (;;) {
boolean_t in_progress;
error = spa_activity_in_progress(spa, activity, use_tag, tag,
&in_progress);
if (error || !in_progress || spa->spa_waiters_cancel)
break;
*waited = B_TRUE;
if (cv_wait_sig(&spa->spa_activities_cv,
&spa->spa_activities_lock) == 0) {
error = EINTR;
break;
}
}
spa->spa_waiters--;
cv_signal(&spa->spa_waiters_cv);
mutex_exit(&spa->spa_activities_lock);
return (error);
}
/*
* Wait for a particular instance of the specified activity to complete, where
* the instance is identified by 'tag'
*/
int
spa_wait_tag(const char *pool, zpool_wait_activity_t activity, uint64_t tag,
boolean_t *waited)
{
return (spa_wait_common(pool, activity, B_TRUE, tag, waited));
}
/*
* Wait for all instances of the specified activity complete
*/
int
spa_wait(const char *pool, zpool_wait_activity_t activity, boolean_t *waited)
{
return (spa_wait_common(pool, activity, B_FALSE, 0, waited));
}
sysevent_t *
spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
{
sysevent_t *ev = NULL;
#ifdef _KERNEL
nvlist_t *resource;
resource = zfs_event_create(spa, vd, FM_SYSEVENT_CLASS, name, hist_nvl);
if (resource) {
ev = kmem_alloc(sizeof (sysevent_t), KM_SLEEP);
ev->resource = resource;
}
#else
(void) spa, (void) vd, (void) hist_nvl, (void) name;
#endif
return (ev);
}
void
spa_event_post(sysevent_t *ev)
{
#ifdef _KERNEL
if (ev) {
zfs_zevent_post(ev->resource, NULL, zfs_zevent_post_cb);
kmem_free(ev, sizeof (*ev));
}
#else
(void) ev;
#endif
}
/*
* Post a zevent corresponding to the given sysevent. The 'name' must be one
* of the event definitions in sys/sysevent/eventdefs.h. The payload will be
* filled in from the spa and (optionally) the vdev. This doesn't do anything
* in the userland libzpool, as we don't want consumers to misinterpret ztest
* or zdb as real changes.
*/
void
spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
{
spa_event_post(spa_event_create(spa, vd, hist_nvl, name));
}
/* state manipulation functions */
EXPORT_SYMBOL(spa_open);
EXPORT_SYMBOL(spa_open_rewind);
EXPORT_SYMBOL(spa_get_stats);
EXPORT_SYMBOL(spa_create);
EXPORT_SYMBOL(spa_import);
EXPORT_SYMBOL(spa_tryimport);
EXPORT_SYMBOL(spa_destroy);
EXPORT_SYMBOL(spa_export);
EXPORT_SYMBOL(spa_reset);
EXPORT_SYMBOL(spa_async_request);
EXPORT_SYMBOL(spa_async_suspend);
EXPORT_SYMBOL(spa_async_resume);
EXPORT_SYMBOL(spa_inject_addref);
EXPORT_SYMBOL(spa_inject_delref);
EXPORT_SYMBOL(spa_scan_stat_init);
EXPORT_SYMBOL(spa_scan_get_stats);
/* device manipulation */
EXPORT_SYMBOL(spa_vdev_add);
EXPORT_SYMBOL(spa_vdev_attach);
EXPORT_SYMBOL(spa_vdev_detach);
EXPORT_SYMBOL(spa_vdev_setpath);
EXPORT_SYMBOL(spa_vdev_setfru);
EXPORT_SYMBOL(spa_vdev_split_mirror);
/* spare statech is global across all pools) */
EXPORT_SYMBOL(spa_spare_add);
EXPORT_SYMBOL(spa_spare_remove);
EXPORT_SYMBOL(spa_spare_exists);
EXPORT_SYMBOL(spa_spare_activate);
/* L2ARC statech is global across all pools) */
EXPORT_SYMBOL(spa_l2cache_add);
EXPORT_SYMBOL(spa_l2cache_remove);
EXPORT_SYMBOL(spa_l2cache_exists);
EXPORT_SYMBOL(spa_l2cache_activate);
EXPORT_SYMBOL(spa_l2cache_drop);
/* scanning */
EXPORT_SYMBOL(spa_scan);
EXPORT_SYMBOL(spa_scan_stop);
/* spa syncing */
EXPORT_SYMBOL(spa_sync); /* only for DMU use */
EXPORT_SYMBOL(spa_sync_allpools);
/* properties */
EXPORT_SYMBOL(spa_prop_set);
EXPORT_SYMBOL(spa_prop_get);
EXPORT_SYMBOL(spa_prop_clear_bootfs);
/* asynchronous event notification */
EXPORT_SYMBOL(spa_event_notify);
/* BEGIN CSTYLED */
ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_shift, UINT, ZMOD_RW,
"log2 fraction of arc that can be used by inflight I/Os when "
"verifying pool during import");
/* END CSTYLED */
ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_metadata, INT, ZMOD_RW,
"Set to traverse metadata on pool import");
ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_data, INT, ZMOD_RW,
"Set to traverse data on pool import");
ZFS_MODULE_PARAM(zfs_spa, spa_, load_print_vdev_tree, INT, ZMOD_RW,
"Print vdev tree to zfs_dbgmsg during pool import");
ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_pct, UINT, ZMOD_RD,
"Percentage of CPUs to run an IO worker thread");
ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_tpq, UINT, ZMOD_RD,
"Number of threads per IO worker taskqueue");
/* BEGIN CSTYLED */
ZFS_MODULE_PARAM(zfs, zfs_, max_missing_tvds, U64, ZMOD_RW,
"Allow importing pool with up to this number of missing top-level "
"vdevs (in read-only mode)");
/* END CSTYLED */
ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_pause, INT,
ZMOD_RW, "Set the livelist condense zthr to pause");
ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_pause, INT,
ZMOD_RW, "Set the livelist condense synctask to pause");
/* BEGIN CSTYLED */
ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_cancel,
INT, ZMOD_RW,
"Whether livelist condensing was canceled in the synctask");
ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_cancel,
INT, ZMOD_RW,
"Whether livelist condensing was canceled in the zthr function");
ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, new_alloc, INT,
ZMOD_RW,
"Whether extra ALLOC blkptrs were added to a livelist entry while it "
"was being condensed");
/* END CSTYLED */