zfs/module/zfs/zap_leaf.c

873 lines
22 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
*/
/*
* The 512-byte leaf is broken into 32 16-byte chunks.
* chunk number n means l_chunk[n], even though the header precedes it.
* the names are stored null-terminated.
*/
#include <sys/zio.h>
#include <sys/spa.h>
#include <sys/dmu.h>
#include <sys/zfs_context.h>
#include <sys/fs/zfs.h>
#include <sys/zap.h>
#include <sys/zap_impl.h>
#include <sys/zap_leaf.h>
#include <sys/arc.h>
static uint16_t *zap_leaf_rehash_entry(zap_leaf_t *l, uint16_t entry);
#define CHAIN_END 0xffff /* end of the chunk chain */
/* half the (current) minimum block size */
#define MAX_ARRAY_BYTES (8<<10)
#define LEAF_HASH(l, h) \
((ZAP_LEAF_HASH_NUMENTRIES(l)-1) & \
((h) >> (64 - ZAP_LEAF_HASH_SHIFT(l)-(l)->l_phys->l_hdr.lh_prefix_len)))
#define LEAF_HASH_ENTPTR(l, h) (&(l)->l_phys->l_hash[LEAF_HASH(l, h)])
static void
zap_memset(void *a, int c, size_t n)
{
char *cp = a;
char *cpend = cp + n;
while (cp < cpend)
*cp++ = c;
}
static void
stv(int len, void *addr, uint64_t value)
{
switch (len) {
case 1:
*(uint8_t *)addr = value;
return;
case 2:
*(uint16_t *)addr = value;
return;
case 4:
*(uint32_t *)addr = value;
return;
case 8:
*(uint64_t *)addr = value;
return;
}
ASSERT(!"bad int len");
}
static uint64_t
ldv(int len, const void *addr)
{
switch (len) {
case 1:
return (*(uint8_t *)addr);
case 2:
return (*(uint16_t *)addr);
case 4:
return (*(uint32_t *)addr);
case 8:
return (*(uint64_t *)addr);
}
ASSERT(!"bad int len");
return (0xFEEDFACEDEADBEEFULL);
}
void
zap_leaf_byteswap(zap_leaf_phys_t *buf, int size)
{
int i;
zap_leaf_t l;
l.l_bs = highbit(size)-1;
l.l_phys = buf;
buf->l_hdr.lh_block_type = BSWAP_64(buf->l_hdr.lh_block_type);
buf->l_hdr.lh_prefix = BSWAP_64(buf->l_hdr.lh_prefix);
buf->l_hdr.lh_magic = BSWAP_32(buf->l_hdr.lh_magic);
buf->l_hdr.lh_nfree = BSWAP_16(buf->l_hdr.lh_nfree);
buf->l_hdr.lh_nentries = BSWAP_16(buf->l_hdr.lh_nentries);
buf->l_hdr.lh_prefix_len = BSWAP_16(buf->l_hdr.lh_prefix_len);
buf->l_hdr.lh_freelist = BSWAP_16(buf->l_hdr.lh_freelist);
for (i = 0; i < ZAP_LEAF_HASH_NUMENTRIES(&l); i++)
buf->l_hash[i] = BSWAP_16(buf->l_hash[i]);
for (i = 0; i < ZAP_LEAF_NUMCHUNKS(&l); i++) {
zap_leaf_chunk_t *lc = &ZAP_LEAF_CHUNK(&l, i);
struct zap_leaf_entry *le;
switch (lc->l_free.lf_type) {
case ZAP_CHUNK_ENTRY:
le = &lc->l_entry;
le->le_type = BSWAP_8(le->le_type);
le->le_value_intlen = BSWAP_8(le->le_value_intlen);
le->le_next = BSWAP_16(le->le_next);
le->le_name_chunk = BSWAP_16(le->le_name_chunk);
le->le_name_numints = BSWAP_16(le->le_name_numints);
le->le_value_chunk = BSWAP_16(le->le_value_chunk);
le->le_value_numints = BSWAP_16(le->le_value_numints);
le->le_cd = BSWAP_32(le->le_cd);
le->le_hash = BSWAP_64(le->le_hash);
break;
case ZAP_CHUNK_FREE:
lc->l_free.lf_type = BSWAP_8(lc->l_free.lf_type);
lc->l_free.lf_next = BSWAP_16(lc->l_free.lf_next);
break;
case ZAP_CHUNK_ARRAY:
lc->l_array.la_type = BSWAP_8(lc->l_array.la_type);
lc->l_array.la_next = BSWAP_16(lc->l_array.la_next);
/* la_array doesn't need swapping */
break;
default:
ASSERT(!"bad leaf type");
}
}
}
void
zap_leaf_init(zap_leaf_t *l, boolean_t sort)
{
int i;
l->l_bs = highbit(l->l_dbuf->db_size)-1;
zap_memset(&l->l_phys->l_hdr, 0, sizeof (struct zap_leaf_header));
zap_memset(l->l_phys->l_hash, CHAIN_END, 2*ZAP_LEAF_HASH_NUMENTRIES(l));
for (i = 0; i < ZAP_LEAF_NUMCHUNKS(l); i++) {
ZAP_LEAF_CHUNK(l, i).l_free.lf_type = ZAP_CHUNK_FREE;
ZAP_LEAF_CHUNK(l, i).l_free.lf_next = i+1;
}
ZAP_LEAF_CHUNK(l, ZAP_LEAF_NUMCHUNKS(l)-1).l_free.lf_next = CHAIN_END;
l->l_phys->l_hdr.lh_block_type = ZBT_LEAF;
l->l_phys->l_hdr.lh_magic = ZAP_LEAF_MAGIC;
l->l_phys->l_hdr.lh_nfree = ZAP_LEAF_NUMCHUNKS(l);
if (sort)
l->l_phys->l_hdr.lh_flags |= ZLF_ENTRIES_CDSORTED;
}
/*
* Routines which manipulate leaf chunks (l_chunk[]).
*/
static uint16_t
zap_leaf_chunk_alloc(zap_leaf_t *l)
{
int chunk;
ASSERT(l->l_phys->l_hdr.lh_nfree > 0);
chunk = l->l_phys->l_hdr.lh_freelist;
ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
ASSERT3U(ZAP_LEAF_CHUNK(l, chunk).l_free.lf_type, ==, ZAP_CHUNK_FREE);
l->l_phys->l_hdr.lh_freelist = ZAP_LEAF_CHUNK(l, chunk).l_free.lf_next;
l->l_phys->l_hdr.lh_nfree--;
return (chunk);
}
static void
zap_leaf_chunk_free(zap_leaf_t *l, uint16_t chunk)
{
struct zap_leaf_free *zlf = &ZAP_LEAF_CHUNK(l, chunk).l_free;
ASSERT3U(l->l_phys->l_hdr.lh_nfree, <, ZAP_LEAF_NUMCHUNKS(l));
ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
ASSERT(zlf->lf_type != ZAP_CHUNK_FREE);
zlf->lf_type = ZAP_CHUNK_FREE;
zlf->lf_next = l->l_phys->l_hdr.lh_freelist;
bzero(zlf->lf_pad, sizeof (zlf->lf_pad)); /* help it to compress */
l->l_phys->l_hdr.lh_freelist = chunk;
l->l_phys->l_hdr.lh_nfree++;
}
/*
* Routines which manipulate leaf arrays (zap_leaf_array type chunks).
*/
static uint16_t
zap_leaf_array_create(zap_leaf_t *l, const char *buf,
int integer_size, int num_integers)
{
uint16_t chunk_head;
uint16_t *chunkp = &chunk_head;
int byten = 0;
uint64_t value = 0;
int shift = (integer_size-1)*8;
int len = num_integers;
ASSERT3U(num_integers * integer_size, <, MAX_ARRAY_BYTES);
while (len > 0) {
uint16_t chunk = zap_leaf_chunk_alloc(l);
struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array;
int i;
la->la_type = ZAP_CHUNK_ARRAY;
for (i = 0; i < ZAP_LEAF_ARRAY_BYTES; i++) {
if (byten == 0)
value = ldv(integer_size, buf);
la->la_array[i] = value >> shift;
value <<= 8;
if (++byten == integer_size) {
byten = 0;
buf += integer_size;
if (--len == 0)
break;
}
}
*chunkp = chunk;
chunkp = &la->la_next;
}
*chunkp = CHAIN_END;
return (chunk_head);
}
static void
zap_leaf_array_free(zap_leaf_t *l, uint16_t *chunkp)
{
uint16_t chunk = *chunkp;
*chunkp = CHAIN_END;
while (chunk != CHAIN_END) {
int nextchunk = ZAP_LEAF_CHUNK(l, chunk).l_array.la_next;
ASSERT3U(ZAP_LEAF_CHUNK(l, chunk).l_array.la_type, ==,
ZAP_CHUNK_ARRAY);
zap_leaf_chunk_free(l, chunk);
chunk = nextchunk;
}
}
/* array_len and buf_len are in integers, not bytes */
static void
zap_leaf_array_read(zap_leaf_t *l, uint16_t chunk,
int array_int_len, int array_len, int buf_int_len, uint64_t buf_len,
void *buf)
{
int len = MIN(array_len, buf_len);
int byten = 0;
uint64_t value = 0;
char *p = buf;
ASSERT3U(array_int_len, <=, buf_int_len);
/* Fast path for one 8-byte integer */
if (array_int_len == 8 && buf_int_len == 8 && len == 1) {
struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array;
uint8_t *ip = la->la_array;
uint64_t *buf64 = buf;
*buf64 = (uint64_t)ip[0] << 56 | (uint64_t)ip[1] << 48 |
(uint64_t)ip[2] << 40 | (uint64_t)ip[3] << 32 |
(uint64_t)ip[4] << 24 | (uint64_t)ip[5] << 16 |
(uint64_t)ip[6] << 8 | (uint64_t)ip[7];
return;
}
/* Fast path for an array of 1-byte integers (eg. the entry name) */
if (array_int_len == 1 && buf_int_len == 1 &&
buf_len > array_len + ZAP_LEAF_ARRAY_BYTES) {
while (chunk != CHAIN_END) {
struct zap_leaf_array *la =
&ZAP_LEAF_CHUNK(l, chunk).l_array;
bcopy(la->la_array, p, ZAP_LEAF_ARRAY_BYTES);
p += ZAP_LEAF_ARRAY_BYTES;
chunk = la->la_next;
}
return;
}
while (len > 0) {
struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array;
int i;
ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
for (i = 0; i < ZAP_LEAF_ARRAY_BYTES && len > 0; i++) {
value = (value << 8) | la->la_array[i];
byten++;
if (byten == array_int_len) {
stv(buf_int_len, p, value);
byten = 0;
len--;
if (len == 0)
return;
p += buf_int_len;
}
}
chunk = la->la_next;
}
}
static boolean_t
zap_leaf_array_match(zap_leaf_t *l, zap_name_t *zn,
int chunk, int array_numints)
{
int bseen = 0;
if (zap_getflags(zn->zn_zap) & ZAP_FLAG_UINT64_KEY) {
uint64_t *thiskey;
boolean_t match;
ASSERT(zn->zn_key_intlen == sizeof (*thiskey));
thiskey = kmem_alloc(array_numints * sizeof (*thiskey),
KM_PUSHPAGE);
zap_leaf_array_read(l, chunk, sizeof (*thiskey), array_numints,
sizeof (*thiskey), array_numints, thiskey);
match = bcmp(thiskey, zn->zn_key_orig,
array_numints * sizeof (*thiskey)) == 0;
kmem_free(thiskey, array_numints * sizeof (*thiskey));
return (match);
}
ASSERT(zn->zn_key_intlen == 1);
if (zn->zn_matchtype == MT_FIRST) {
char *thisname = kmem_alloc(array_numints, KM_PUSHPAGE);
boolean_t match;
zap_leaf_array_read(l, chunk, sizeof (char), array_numints,
sizeof (char), array_numints, thisname);
match = zap_match(zn, thisname);
kmem_free(thisname, array_numints);
return (match);
}
/*
* Fast path for exact matching.
* First check that the lengths match, so that we don't read
* past the end of the zn_key_orig array.
*/
if (array_numints != zn->zn_key_orig_numints)
return (B_FALSE);
while (bseen < array_numints) {
struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array;
int toread = MIN(array_numints - bseen, ZAP_LEAF_ARRAY_BYTES);
ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
if (bcmp(la->la_array, (char *)zn->zn_key_orig + bseen, toread))
break;
chunk = la->la_next;
bseen += toread;
}
return (bseen == array_numints);
}
/*
* Routines which manipulate leaf entries.
*/
int
zap_leaf_lookup(zap_leaf_t *l, zap_name_t *zn, zap_entry_handle_t *zeh)
{
uint16_t *chunkp;
struct zap_leaf_entry *le;
ASSERT3U(l->l_phys->l_hdr.lh_magic, ==, ZAP_LEAF_MAGIC);
again:
for (chunkp = LEAF_HASH_ENTPTR(l, zn->zn_hash);
*chunkp != CHAIN_END; chunkp = &le->le_next) {
uint16_t chunk = *chunkp;
le = ZAP_LEAF_ENTRY(l, chunk);
ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
if (le->le_hash != zn->zn_hash)
continue;
/*
* NB: the entry chain is always sorted by cd on
* normalized zap objects, so this will find the
* lowest-cd match for MT_FIRST.
*/
ASSERT(zn->zn_matchtype == MT_EXACT ||
(l->l_phys->l_hdr.lh_flags & ZLF_ENTRIES_CDSORTED));
if (zap_leaf_array_match(l, zn, le->le_name_chunk,
le->le_name_numints)) {
zeh->zeh_num_integers = le->le_value_numints;
zeh->zeh_integer_size = le->le_value_intlen;
zeh->zeh_cd = le->le_cd;
zeh->zeh_hash = le->le_hash;
zeh->zeh_chunkp = chunkp;
zeh->zeh_leaf = l;
return (0);
}
}
/*
* NB: we could of course do this in one pass, but that would be
* a pain. We'll see if MT_BEST is even used much.
*/
if (zn->zn_matchtype == MT_BEST) {
zn->zn_matchtype = MT_FIRST;
goto again;
}
return (ENOENT);
}
/* Return (h1,cd1 >= h2,cd2) */
#define HCD_GTEQ(h1, cd1, h2, cd2) \
((h1 > h2) ? TRUE : ((h1 == h2 && cd1 >= cd2) ? TRUE : FALSE))
int
zap_leaf_lookup_closest(zap_leaf_t *l,
uint64_t h, uint32_t cd, zap_entry_handle_t *zeh)
{
uint16_t chunk;
uint64_t besth = -1ULL;
uint32_t bestcd = -1U;
uint16_t bestlh = ZAP_LEAF_HASH_NUMENTRIES(l)-1;
uint16_t lh;
struct zap_leaf_entry *le;
ASSERT3U(l->l_phys->l_hdr.lh_magic, ==, ZAP_LEAF_MAGIC);
for (lh = LEAF_HASH(l, h); lh <= bestlh; lh++) {
for (chunk = l->l_phys->l_hash[lh];
chunk != CHAIN_END; chunk = le->le_next) {
le = ZAP_LEAF_ENTRY(l, chunk);
ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
if (HCD_GTEQ(le->le_hash, le->le_cd, h, cd) &&
HCD_GTEQ(besth, bestcd, le->le_hash, le->le_cd)) {
ASSERT3U(bestlh, >=, lh);
bestlh = lh;
besth = le->le_hash;
bestcd = le->le_cd;
zeh->zeh_num_integers = le->le_value_numints;
zeh->zeh_integer_size = le->le_value_intlen;
zeh->zeh_cd = le->le_cd;
zeh->zeh_hash = le->le_hash;
zeh->zeh_fakechunk = chunk;
zeh->zeh_chunkp = &zeh->zeh_fakechunk;
zeh->zeh_leaf = l;
}
}
}
return (bestcd == -1U ? ENOENT : 0);
}
int
zap_entry_read(const zap_entry_handle_t *zeh,
uint8_t integer_size, uint64_t num_integers, void *buf)
{
struct zap_leaf_entry *le =
ZAP_LEAF_ENTRY(zeh->zeh_leaf, *zeh->zeh_chunkp);
ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
if (le->le_value_intlen > integer_size)
return (EINVAL);
zap_leaf_array_read(zeh->zeh_leaf, le->le_value_chunk,
le->le_value_intlen, le->le_value_numints,
integer_size, num_integers, buf);
if (zeh->zeh_num_integers > num_integers)
return (EOVERFLOW);
return (0);
}
int
zap_entry_read_name(zap_t *zap, const zap_entry_handle_t *zeh, uint16_t buflen,
char *buf)
{
struct zap_leaf_entry *le =
ZAP_LEAF_ENTRY(zeh->zeh_leaf, *zeh->zeh_chunkp);
ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
if (zap_getflags(zap) & ZAP_FLAG_UINT64_KEY) {
zap_leaf_array_read(zeh->zeh_leaf, le->le_name_chunk, 8,
le->le_name_numints, 8, buflen / 8, buf);
} else {
zap_leaf_array_read(zeh->zeh_leaf, le->le_name_chunk, 1,
le->le_name_numints, 1, buflen, buf);
}
if (le->le_name_numints > buflen)
return (EOVERFLOW);
return (0);
}
int
zap_entry_update(zap_entry_handle_t *zeh,
uint8_t integer_size, uint64_t num_integers, const void *buf)
{
int delta_chunks;
zap_leaf_t *l = zeh->zeh_leaf;
struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, *zeh->zeh_chunkp);
delta_chunks = ZAP_LEAF_ARRAY_NCHUNKS(num_integers * integer_size) -
ZAP_LEAF_ARRAY_NCHUNKS(le->le_value_numints * le->le_value_intlen);
if ((int)l->l_phys->l_hdr.lh_nfree < delta_chunks)
return (EAGAIN);
zap_leaf_array_free(l, &le->le_value_chunk);
le->le_value_chunk =
zap_leaf_array_create(l, buf, integer_size, num_integers);
le->le_value_numints = num_integers;
le->le_value_intlen = integer_size;
return (0);
}
void
zap_entry_remove(zap_entry_handle_t *zeh)
{
uint16_t entry_chunk;
struct zap_leaf_entry *le;
zap_leaf_t *l = zeh->zeh_leaf;
ASSERT3P(zeh->zeh_chunkp, !=, &zeh->zeh_fakechunk);
entry_chunk = *zeh->zeh_chunkp;
le = ZAP_LEAF_ENTRY(l, entry_chunk);
ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
zap_leaf_array_free(l, &le->le_name_chunk);
zap_leaf_array_free(l, &le->le_value_chunk);
*zeh->zeh_chunkp = le->le_next;
zap_leaf_chunk_free(l, entry_chunk);
l->l_phys->l_hdr.lh_nentries--;
}
int
zap_entry_create(zap_leaf_t *l, zap_name_t *zn, uint32_t cd,
uint8_t integer_size, uint64_t num_integers, const void *buf,
zap_entry_handle_t *zeh)
{
uint16_t chunk;
uint16_t *chunkp;
struct zap_leaf_entry *le;
uint64_t valuelen;
int numchunks;
uint64_t h = zn->zn_hash;
valuelen = integer_size * num_integers;
numchunks = 1 + ZAP_LEAF_ARRAY_NCHUNKS(zn->zn_key_orig_numints *
zn->zn_key_intlen) + ZAP_LEAF_ARRAY_NCHUNKS(valuelen);
if (numchunks > ZAP_LEAF_NUMCHUNKS(l))
return (E2BIG);
if (cd == ZAP_NEED_CD) {
/* find the lowest unused cd */
if (l->l_phys->l_hdr.lh_flags & ZLF_ENTRIES_CDSORTED) {
cd = 0;
for (chunk = *LEAF_HASH_ENTPTR(l, h);
chunk != CHAIN_END; chunk = le->le_next) {
le = ZAP_LEAF_ENTRY(l, chunk);
if (le->le_cd > cd)
break;
if (le->le_hash == h) {
ASSERT3U(cd, ==, le->le_cd);
cd++;
}
}
} else {
/* old unsorted format; do it the O(n^2) way */
for (cd = 0; ; cd++) {
for (chunk = *LEAF_HASH_ENTPTR(l, h);
chunk != CHAIN_END; chunk = le->le_next) {
le = ZAP_LEAF_ENTRY(l, chunk);
if (le->le_hash == h &&
le->le_cd == cd) {
break;
}
}
/* If this cd is not in use, we are good. */
if (chunk == CHAIN_END)
break;
}
}
/*
* We would run out of space in a block before we could
* store enough entries to run out of CD values.
*/
ASSERT3U(cd, <, zap_maxcd(zn->zn_zap));
}
if (l->l_phys->l_hdr.lh_nfree < numchunks)
return (EAGAIN);
/* make the entry */
chunk = zap_leaf_chunk_alloc(l);
le = ZAP_LEAF_ENTRY(l, chunk);
le->le_type = ZAP_CHUNK_ENTRY;
le->le_name_chunk = zap_leaf_array_create(l, zn->zn_key_orig,
zn->zn_key_intlen, zn->zn_key_orig_numints);
le->le_name_numints = zn->zn_key_orig_numints;
le->le_value_chunk =
zap_leaf_array_create(l, buf, integer_size, num_integers);
le->le_value_numints = num_integers;
le->le_value_intlen = integer_size;
le->le_hash = h;
le->le_cd = cd;
/* link it into the hash chain */
/* XXX if we did the search above, we could just use that */
chunkp = zap_leaf_rehash_entry(l, chunk);
l->l_phys->l_hdr.lh_nentries++;
zeh->zeh_leaf = l;
zeh->zeh_num_integers = num_integers;
zeh->zeh_integer_size = le->le_value_intlen;
zeh->zeh_cd = le->le_cd;
zeh->zeh_hash = le->le_hash;
zeh->zeh_chunkp = chunkp;
return (0);
}
/*
* Determine if there is another entry with the same normalized form.
* For performance purposes, either zn or name must be provided (the
* other can be NULL). Note, there usually won't be any hash
* conflicts, in which case we don't need the concatenated/normalized
* form of the name. But all callers have one of these on hand anyway,
* so might as well take advantage. A cleaner but slower interface
* would accept neither argument, and compute the normalized name as
* needed (using zap_name_alloc(zap_entry_read_name(zeh))).
*/
boolean_t
zap_entry_normalization_conflict(zap_entry_handle_t *zeh, zap_name_t *zn,
const char *name, zap_t *zap)
{
uint64_t chunk;
struct zap_leaf_entry *le;
boolean_t allocdzn = B_FALSE;
if (zap->zap_normflags == 0)
return (B_FALSE);
for (chunk = *LEAF_HASH_ENTPTR(zeh->zeh_leaf, zeh->zeh_hash);
chunk != CHAIN_END; chunk = le->le_next) {
le = ZAP_LEAF_ENTRY(zeh->zeh_leaf, chunk);
if (le->le_hash != zeh->zeh_hash)
continue;
if (le->le_cd == zeh->zeh_cd)
continue;
if (zn == NULL) {
zn = zap_name_alloc(zap, name, MT_FIRST);
allocdzn = B_TRUE;
}
if (zap_leaf_array_match(zeh->zeh_leaf, zn,
le->le_name_chunk, le->le_name_numints)) {
if (allocdzn)
zap_name_free(zn);
return (B_TRUE);
}
}
if (allocdzn)
zap_name_free(zn);
return (B_FALSE);
}
/*
* Routines for transferring entries between leafs.
*/
static uint16_t *
zap_leaf_rehash_entry(zap_leaf_t *l, uint16_t entry)
{
struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, entry);
struct zap_leaf_entry *le2;
uint16_t *chunkp;
/*
* keep the entry chain sorted by cd
* NB: this will not cause problems for unsorted leafs, though
* it is unnecessary there.
*/
for (chunkp = LEAF_HASH_ENTPTR(l, le->le_hash);
*chunkp != CHAIN_END; chunkp = &le2->le_next) {
le2 = ZAP_LEAF_ENTRY(l, *chunkp);
if (le2->le_cd > le->le_cd)
break;
}
le->le_next = *chunkp;
*chunkp = entry;
return (chunkp);
}
static uint16_t
zap_leaf_transfer_array(zap_leaf_t *l, uint16_t chunk, zap_leaf_t *nl)
{
uint16_t new_chunk;
uint16_t *nchunkp = &new_chunk;
while (chunk != CHAIN_END) {
uint16_t nchunk = zap_leaf_chunk_alloc(nl);
struct zap_leaf_array *nla =
&ZAP_LEAF_CHUNK(nl, nchunk).l_array;
struct zap_leaf_array *la =
&ZAP_LEAF_CHUNK(l, chunk).l_array;
int nextchunk = la->la_next;
ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
ASSERT3U(nchunk, <, ZAP_LEAF_NUMCHUNKS(l));
*nla = *la; /* structure assignment */
zap_leaf_chunk_free(l, chunk);
chunk = nextchunk;
*nchunkp = nchunk;
nchunkp = &nla->la_next;
}
*nchunkp = CHAIN_END;
return (new_chunk);
}
static void
zap_leaf_transfer_entry(zap_leaf_t *l, int entry, zap_leaf_t *nl)
{
struct zap_leaf_entry *le, *nle;
uint16_t chunk;
le = ZAP_LEAF_ENTRY(l, entry);
ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
chunk = zap_leaf_chunk_alloc(nl);
nle = ZAP_LEAF_ENTRY(nl, chunk);
*nle = *le; /* structure assignment */
(void) zap_leaf_rehash_entry(nl, chunk);
nle->le_name_chunk = zap_leaf_transfer_array(l, le->le_name_chunk, nl);
nle->le_value_chunk =
zap_leaf_transfer_array(l, le->le_value_chunk, nl);
zap_leaf_chunk_free(l, entry);
l->l_phys->l_hdr.lh_nentries--;
nl->l_phys->l_hdr.lh_nentries++;
}
/*
* Transfer the entries whose hash prefix ends in 1 to the new leaf.
*/
void
zap_leaf_split(zap_leaf_t *l, zap_leaf_t *nl, boolean_t sort)
{
int i;
int bit = 64 - 1 - l->l_phys->l_hdr.lh_prefix_len;
/* set new prefix and prefix_len */
l->l_phys->l_hdr.lh_prefix <<= 1;
l->l_phys->l_hdr.lh_prefix_len++;
nl->l_phys->l_hdr.lh_prefix = l->l_phys->l_hdr.lh_prefix | 1;
nl->l_phys->l_hdr.lh_prefix_len = l->l_phys->l_hdr.lh_prefix_len;
/* break existing hash chains */
zap_memset(l->l_phys->l_hash, CHAIN_END, 2*ZAP_LEAF_HASH_NUMENTRIES(l));
if (sort)
l->l_phys->l_hdr.lh_flags |= ZLF_ENTRIES_CDSORTED;
/*
* Transfer entries whose hash bit 'bit' is set to nl; rehash
* the remaining entries
*
* NB: We could find entries via the hashtable instead. That
* would be O(hashents+numents) rather than O(numblks+numents),
* but this accesses memory more sequentially, and when we're
* called, the block is usually pretty full.
*/
for (i = 0; i < ZAP_LEAF_NUMCHUNKS(l); i++) {
struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, i);
if (le->le_type != ZAP_CHUNK_ENTRY)
continue;
if (le->le_hash & (1ULL << bit))
zap_leaf_transfer_entry(l, i, nl);
else
(void) zap_leaf_rehash_entry(l, i);
}
}
void
zap_leaf_stats(zap_t *zap, zap_leaf_t *l, zap_stats_t *zs)
{
int i, n;
n = zap->zap_f.zap_phys->zap_ptrtbl.zt_shift -
l->l_phys->l_hdr.lh_prefix_len;
n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
zs->zs_leafs_with_2n_pointers[n]++;
n = l->l_phys->l_hdr.lh_nentries/5;
n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
zs->zs_blocks_with_n5_entries[n]++;
n = ((1<<FZAP_BLOCK_SHIFT(zap)) -
l->l_phys->l_hdr.lh_nfree * (ZAP_LEAF_ARRAY_BYTES+1))*10 /
(1<<FZAP_BLOCK_SHIFT(zap));
n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
zs->zs_blocks_n_tenths_full[n]++;
for (i = 0; i < ZAP_LEAF_HASH_NUMENTRIES(l); i++) {
int nentries = 0;
int chunk = l->l_phys->l_hash[i];
while (chunk != CHAIN_END) {
struct zap_leaf_entry *le =
ZAP_LEAF_ENTRY(l, chunk);
n = 1 + ZAP_LEAF_ARRAY_NCHUNKS(le->le_name_numints) +
ZAP_LEAF_ARRAY_NCHUNKS(le->le_value_numints *
le->le_value_intlen);
n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
zs->zs_entries_using_n_chunks[n]++;
chunk = le->le_next;
nentries++;
}
n = nentries;
n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
zs->zs_buckets_with_n_entries[n]++;
}
}