1756 lines
42 KiB
C
1756 lines
42 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
|
|
* Copyright (c) 2011 by Delphix. All rights reserved.
|
|
* Copyright 2011 Nexenta Systems, Inc. All rights reserved.
|
|
*/
|
|
|
|
#include <sys/zfs_context.h>
|
|
#include <sys/spa_impl.h>
|
|
#include <sys/zio.h>
|
|
#include <sys/zio_checksum.h>
|
|
#include <sys/zio_compress.h>
|
|
#include <sys/dmu.h>
|
|
#include <sys/dmu_tx.h>
|
|
#include <sys/zap.h>
|
|
#include <sys/zil.h>
|
|
#include <sys/vdev_impl.h>
|
|
#include <sys/metaslab.h>
|
|
#include <sys/uberblock_impl.h>
|
|
#include <sys/txg.h>
|
|
#include <sys/avl.h>
|
|
#include <sys/unique.h>
|
|
#include <sys/dsl_pool.h>
|
|
#include <sys/dsl_dir.h>
|
|
#include <sys/dsl_prop.h>
|
|
#include <sys/fm/util.h>
|
|
#include <sys/dsl_scan.h>
|
|
#include <sys/fs/zfs.h>
|
|
#include <sys/metaslab_impl.h>
|
|
#include <sys/arc.h>
|
|
#include <sys/ddt.h>
|
|
#include "zfs_prop.h"
|
|
|
|
/*
|
|
* SPA locking
|
|
*
|
|
* There are four basic locks for managing spa_t structures:
|
|
*
|
|
* spa_namespace_lock (global mutex)
|
|
*
|
|
* This lock must be acquired to do any of the following:
|
|
*
|
|
* - Lookup a spa_t by name
|
|
* - Add or remove a spa_t from the namespace
|
|
* - Increase spa_refcount from non-zero
|
|
* - Check if spa_refcount is zero
|
|
* - Rename a spa_t
|
|
* - add/remove/attach/detach devices
|
|
* - Held for the duration of create/destroy/import/export
|
|
*
|
|
* It does not need to handle recursion. A create or destroy may
|
|
* reference objects (files or zvols) in other pools, but by
|
|
* definition they must have an existing reference, and will never need
|
|
* to lookup a spa_t by name.
|
|
*
|
|
* spa_refcount (per-spa refcount_t protected by mutex)
|
|
*
|
|
* This reference count keep track of any active users of the spa_t. The
|
|
* spa_t cannot be destroyed or freed while this is non-zero. Internally,
|
|
* the refcount is never really 'zero' - opening a pool implicitly keeps
|
|
* some references in the DMU. Internally we check against spa_minref, but
|
|
* present the image of a zero/non-zero value to consumers.
|
|
*
|
|
* spa_config_lock[] (per-spa array of rwlocks)
|
|
*
|
|
* This protects the spa_t from config changes, and must be held in
|
|
* the following circumstances:
|
|
*
|
|
* - RW_READER to perform I/O to the spa
|
|
* - RW_WRITER to change the vdev config
|
|
*
|
|
* The locking order is fairly straightforward:
|
|
*
|
|
* spa_namespace_lock -> spa_refcount
|
|
*
|
|
* The namespace lock must be acquired to increase the refcount from 0
|
|
* or to check if it is zero.
|
|
*
|
|
* spa_refcount -> spa_config_lock[]
|
|
*
|
|
* There must be at least one valid reference on the spa_t to acquire
|
|
* the config lock.
|
|
*
|
|
* spa_namespace_lock -> spa_config_lock[]
|
|
*
|
|
* The namespace lock must always be taken before the config lock.
|
|
*
|
|
*
|
|
* The spa_namespace_lock can be acquired directly and is globally visible.
|
|
*
|
|
* The namespace is manipulated using the following functions, all of which
|
|
* require the spa_namespace_lock to be held.
|
|
*
|
|
* spa_lookup() Lookup a spa_t by name.
|
|
*
|
|
* spa_add() Create a new spa_t in the namespace.
|
|
*
|
|
* spa_remove() Remove a spa_t from the namespace. This also
|
|
* frees up any memory associated with the spa_t.
|
|
*
|
|
* spa_next() Returns the next spa_t in the system, or the
|
|
* first if NULL is passed.
|
|
*
|
|
* spa_evict_all() Shutdown and remove all spa_t structures in
|
|
* the system.
|
|
*
|
|
* spa_guid_exists() Determine whether a pool/device guid exists.
|
|
*
|
|
* The spa_refcount is manipulated using the following functions:
|
|
*
|
|
* spa_open_ref() Adds a reference to the given spa_t. Must be
|
|
* called with spa_namespace_lock held if the
|
|
* refcount is currently zero.
|
|
*
|
|
* spa_close() Remove a reference from the spa_t. This will
|
|
* not free the spa_t or remove it from the
|
|
* namespace. No locking is required.
|
|
*
|
|
* spa_refcount_zero() Returns true if the refcount is currently
|
|
* zero. Must be called with spa_namespace_lock
|
|
* held.
|
|
*
|
|
* The spa_config_lock[] is an array of rwlocks, ordered as follows:
|
|
* SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
|
|
* spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
|
|
*
|
|
* To read the configuration, it suffices to hold one of these locks as reader.
|
|
* To modify the configuration, you must hold all locks as writer. To modify
|
|
* vdev state without altering the vdev tree's topology (e.g. online/offline),
|
|
* you must hold SCL_STATE and SCL_ZIO as writer.
|
|
*
|
|
* We use these distinct config locks to avoid recursive lock entry.
|
|
* For example, spa_sync() (which holds SCL_CONFIG as reader) induces
|
|
* block allocations (SCL_ALLOC), which may require reading space maps
|
|
* from disk (dmu_read() -> zio_read() -> SCL_ZIO).
|
|
*
|
|
* The spa config locks cannot be normal rwlocks because we need the
|
|
* ability to hand off ownership. For example, SCL_ZIO is acquired
|
|
* by the issuing thread and later released by an interrupt thread.
|
|
* They do, however, obey the usual write-wanted semantics to prevent
|
|
* writer (i.e. system administrator) starvation.
|
|
*
|
|
* The lock acquisition rules are as follows:
|
|
*
|
|
* SCL_CONFIG
|
|
* Protects changes to the vdev tree topology, such as vdev
|
|
* add/remove/attach/detach. Protects the dirty config list
|
|
* (spa_config_dirty_list) and the set of spares and l2arc devices.
|
|
*
|
|
* SCL_STATE
|
|
* Protects changes to pool state and vdev state, such as vdev
|
|
* online/offline/fault/degrade/clear. Protects the dirty state list
|
|
* (spa_state_dirty_list) and global pool state (spa_state).
|
|
*
|
|
* SCL_ALLOC
|
|
* Protects changes to metaslab groups and classes.
|
|
* Held as reader by metaslab_alloc() and metaslab_claim().
|
|
*
|
|
* SCL_ZIO
|
|
* Held by bp-level zios (those which have no io_vd upon entry)
|
|
* to prevent changes to the vdev tree. The bp-level zio implicitly
|
|
* protects all of its vdev child zios, which do not hold SCL_ZIO.
|
|
*
|
|
* SCL_FREE
|
|
* Protects changes to metaslab groups and classes.
|
|
* Held as reader by metaslab_free(). SCL_FREE is distinct from
|
|
* SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
|
|
* blocks in zio_done() while another i/o that holds either
|
|
* SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
|
|
*
|
|
* SCL_VDEV
|
|
* Held as reader to prevent changes to the vdev tree during trivial
|
|
* inquiries such as bp_get_dsize(). SCL_VDEV is distinct from the
|
|
* other locks, and lower than all of them, to ensure that it's safe
|
|
* to acquire regardless of caller context.
|
|
*
|
|
* In addition, the following rules apply:
|
|
*
|
|
* (a) spa_props_lock protects pool properties, spa_config and spa_config_list.
|
|
* The lock ordering is SCL_CONFIG > spa_props_lock.
|
|
*
|
|
* (b) I/O operations on leaf vdevs. For any zio operation that takes
|
|
* an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
|
|
* or zio_write_phys() -- the caller must ensure that the config cannot
|
|
* cannot change in the interim, and that the vdev cannot be reopened.
|
|
* SCL_STATE as reader suffices for both.
|
|
*
|
|
* The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
|
|
*
|
|
* spa_vdev_enter() Acquire the namespace lock and the config lock
|
|
* for writing.
|
|
*
|
|
* spa_vdev_exit() Release the config lock, wait for all I/O
|
|
* to complete, sync the updated configs to the
|
|
* cache, and release the namespace lock.
|
|
*
|
|
* vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
|
|
* Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
|
|
* locking is, always, based on spa_namespace_lock and spa_config_lock[].
|
|
*
|
|
* spa_rename() is also implemented within this file since is requires
|
|
* manipulation of the namespace.
|
|
*/
|
|
|
|
static avl_tree_t spa_namespace_avl;
|
|
kmutex_t spa_namespace_lock;
|
|
static kcondvar_t spa_namespace_cv;
|
|
static int spa_active_count;
|
|
int spa_max_replication_override = SPA_DVAS_PER_BP;
|
|
|
|
static kmutex_t spa_spare_lock;
|
|
static avl_tree_t spa_spare_avl;
|
|
static kmutex_t spa_l2cache_lock;
|
|
static avl_tree_t spa_l2cache_avl;
|
|
|
|
kmem_cache_t *spa_buffer_pool;
|
|
int spa_mode_global;
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* SPA config locking
|
|
* ==========================================================================
|
|
*/
|
|
static void
|
|
spa_config_lock_init(spa_t *spa)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < SCL_LOCKS; i++) {
|
|
spa_config_lock_t *scl = &spa->spa_config_lock[i];
|
|
mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
|
|
refcount_create(&scl->scl_count);
|
|
scl->scl_writer = NULL;
|
|
scl->scl_write_wanted = 0;
|
|
}
|
|
}
|
|
|
|
static void
|
|
spa_config_lock_destroy(spa_t *spa)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < SCL_LOCKS; i++) {
|
|
spa_config_lock_t *scl = &spa->spa_config_lock[i];
|
|
mutex_destroy(&scl->scl_lock);
|
|
cv_destroy(&scl->scl_cv);
|
|
refcount_destroy(&scl->scl_count);
|
|
ASSERT(scl->scl_writer == NULL);
|
|
ASSERT(scl->scl_write_wanted == 0);
|
|
}
|
|
}
|
|
|
|
int
|
|
spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < SCL_LOCKS; i++) {
|
|
spa_config_lock_t *scl = &spa->spa_config_lock[i];
|
|
if (!(locks & (1 << i)))
|
|
continue;
|
|
mutex_enter(&scl->scl_lock);
|
|
if (rw == RW_READER) {
|
|
if (scl->scl_writer || scl->scl_write_wanted) {
|
|
mutex_exit(&scl->scl_lock);
|
|
spa_config_exit(spa, locks ^ (1 << i), tag);
|
|
return (0);
|
|
}
|
|
} else {
|
|
ASSERT(scl->scl_writer != curthread);
|
|
if (!refcount_is_zero(&scl->scl_count)) {
|
|
mutex_exit(&scl->scl_lock);
|
|
spa_config_exit(spa, locks ^ (1 << i), tag);
|
|
return (0);
|
|
}
|
|
scl->scl_writer = curthread;
|
|
}
|
|
(void) refcount_add(&scl->scl_count, tag);
|
|
mutex_exit(&scl->scl_lock);
|
|
}
|
|
return (1);
|
|
}
|
|
|
|
void
|
|
spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
|
|
{
|
|
int wlocks_held = 0;
|
|
int i;
|
|
|
|
for (i = 0; i < SCL_LOCKS; i++) {
|
|
spa_config_lock_t *scl = &spa->spa_config_lock[i];
|
|
if (scl->scl_writer == curthread)
|
|
wlocks_held |= (1 << i);
|
|
if (!(locks & (1 << i)))
|
|
continue;
|
|
mutex_enter(&scl->scl_lock);
|
|
if (rw == RW_READER) {
|
|
while (scl->scl_writer || scl->scl_write_wanted) {
|
|
cv_wait(&scl->scl_cv, &scl->scl_lock);
|
|
}
|
|
} else {
|
|
ASSERT(scl->scl_writer != curthread);
|
|
while (!refcount_is_zero(&scl->scl_count)) {
|
|
scl->scl_write_wanted++;
|
|
cv_wait(&scl->scl_cv, &scl->scl_lock);
|
|
scl->scl_write_wanted--;
|
|
}
|
|
scl->scl_writer = curthread;
|
|
}
|
|
(void) refcount_add(&scl->scl_count, tag);
|
|
mutex_exit(&scl->scl_lock);
|
|
}
|
|
ASSERT(wlocks_held <= locks);
|
|
}
|
|
|
|
void
|
|
spa_config_exit(spa_t *spa, int locks, void *tag)
|
|
{
|
|
int i;
|
|
|
|
for (i = SCL_LOCKS - 1; i >= 0; i--) {
|
|
spa_config_lock_t *scl = &spa->spa_config_lock[i];
|
|
if (!(locks & (1 << i)))
|
|
continue;
|
|
mutex_enter(&scl->scl_lock);
|
|
ASSERT(!refcount_is_zero(&scl->scl_count));
|
|
if (refcount_remove(&scl->scl_count, tag) == 0) {
|
|
ASSERT(scl->scl_writer == NULL ||
|
|
scl->scl_writer == curthread);
|
|
scl->scl_writer = NULL; /* OK in either case */
|
|
cv_broadcast(&scl->scl_cv);
|
|
}
|
|
mutex_exit(&scl->scl_lock);
|
|
}
|
|
}
|
|
|
|
int
|
|
spa_config_held(spa_t *spa, int locks, krw_t rw)
|
|
{
|
|
int i, locks_held = 0;
|
|
|
|
for (i = 0; i < SCL_LOCKS; i++) {
|
|
spa_config_lock_t *scl = &spa->spa_config_lock[i];
|
|
if (!(locks & (1 << i)))
|
|
continue;
|
|
if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) ||
|
|
(rw == RW_WRITER && scl->scl_writer == curthread))
|
|
locks_held |= 1 << i;
|
|
}
|
|
|
|
return (locks_held);
|
|
}
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* SPA namespace functions
|
|
* ==========================================================================
|
|
*/
|
|
|
|
/*
|
|
* Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held.
|
|
* Returns NULL if no matching spa_t is found.
|
|
*/
|
|
spa_t *
|
|
spa_lookup(const char *name)
|
|
{
|
|
static spa_t search; /* spa_t is large; don't allocate on stack */
|
|
spa_t *spa;
|
|
avl_index_t where;
|
|
char c = 0;
|
|
char *cp;
|
|
|
|
ASSERT(MUTEX_HELD(&spa_namespace_lock));
|
|
|
|
/*
|
|
* If it's a full dataset name, figure out the pool name and
|
|
* just use that.
|
|
*/
|
|
cp = strpbrk(name, "/@");
|
|
if (cp) {
|
|
c = *cp;
|
|
*cp = '\0';
|
|
}
|
|
|
|
(void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
|
|
spa = avl_find(&spa_namespace_avl, &search, &where);
|
|
|
|
if (cp)
|
|
*cp = c;
|
|
|
|
return (spa);
|
|
}
|
|
|
|
/*
|
|
* Create an uninitialized spa_t with the given name. Requires
|
|
* spa_namespace_lock. The caller must ensure that the spa_t doesn't already
|
|
* exist by calling spa_lookup() first.
|
|
*/
|
|
spa_t *
|
|
spa_add(const char *name, nvlist_t *config, const char *altroot)
|
|
{
|
|
spa_t *spa;
|
|
spa_config_dirent_t *dp;
|
|
int t;
|
|
|
|
ASSERT(MUTEX_HELD(&spa_namespace_lock));
|
|
|
|
spa = kmem_zalloc(sizeof (spa_t), KM_PUSHPAGE | KM_NODEBUG);
|
|
|
|
mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
|
|
cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
|
|
cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
|
|
cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
|
|
cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
|
|
|
|
for (t = 0; t < TXG_SIZE; t++)
|
|
bplist_create(&spa->spa_free_bplist[t]);
|
|
|
|
(void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
|
|
spa->spa_state = POOL_STATE_UNINITIALIZED;
|
|
spa->spa_freeze_txg = UINT64_MAX;
|
|
spa->spa_final_txg = UINT64_MAX;
|
|
spa->spa_load_max_txg = UINT64_MAX;
|
|
spa->spa_proc = &p0;
|
|
spa->spa_proc_state = SPA_PROC_NONE;
|
|
|
|
refcount_create(&spa->spa_refcount);
|
|
spa_config_lock_init(spa);
|
|
|
|
avl_add(&spa_namespace_avl, spa);
|
|
|
|
/*
|
|
* Set the alternate root, if there is one.
|
|
*/
|
|
if (altroot) {
|
|
spa->spa_root = spa_strdup(altroot);
|
|
spa_active_count++;
|
|
}
|
|
|
|
/*
|
|
* Every pool starts with the default cachefile
|
|
*/
|
|
list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
|
|
offsetof(spa_config_dirent_t, scd_link));
|
|
|
|
dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_PUSHPAGE);
|
|
dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
|
|
list_insert_head(&spa->spa_config_list, dp);
|
|
|
|
VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
|
|
KM_PUSHPAGE) == 0);
|
|
|
|
if (config != NULL)
|
|
VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
|
|
|
|
return (spa);
|
|
}
|
|
|
|
/*
|
|
* Removes a spa_t from the namespace, freeing up any memory used. Requires
|
|
* spa_namespace_lock. This is called only after the spa_t has been closed and
|
|
* deactivated.
|
|
*/
|
|
void
|
|
spa_remove(spa_t *spa)
|
|
{
|
|
spa_config_dirent_t *dp;
|
|
int t;
|
|
|
|
ASSERT(MUTEX_HELD(&spa_namespace_lock));
|
|
ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
|
|
|
|
nvlist_free(spa->spa_config_splitting);
|
|
|
|
avl_remove(&spa_namespace_avl, spa);
|
|
cv_broadcast(&spa_namespace_cv);
|
|
|
|
if (spa->spa_root) {
|
|
spa_strfree(spa->spa_root);
|
|
spa_active_count--;
|
|
}
|
|
|
|
while ((dp = list_head(&spa->spa_config_list)) != NULL) {
|
|
list_remove(&spa->spa_config_list, dp);
|
|
if (dp->scd_path != NULL)
|
|
spa_strfree(dp->scd_path);
|
|
kmem_free(dp, sizeof (spa_config_dirent_t));
|
|
}
|
|
|
|
list_destroy(&spa->spa_config_list);
|
|
|
|
nvlist_free(spa->spa_load_info);
|
|
spa_config_set(spa, NULL);
|
|
|
|
refcount_destroy(&spa->spa_refcount);
|
|
|
|
spa_config_lock_destroy(spa);
|
|
|
|
for (t = 0; t < TXG_SIZE; t++)
|
|
bplist_destroy(&spa->spa_free_bplist[t]);
|
|
|
|
cv_destroy(&spa->spa_async_cv);
|
|
cv_destroy(&spa->spa_proc_cv);
|
|
cv_destroy(&spa->spa_scrub_io_cv);
|
|
cv_destroy(&spa->spa_suspend_cv);
|
|
|
|
mutex_destroy(&spa->spa_async_lock);
|
|
mutex_destroy(&spa->spa_errlist_lock);
|
|
mutex_destroy(&spa->spa_errlog_lock);
|
|
mutex_destroy(&spa->spa_history_lock);
|
|
mutex_destroy(&spa->spa_proc_lock);
|
|
mutex_destroy(&spa->spa_props_lock);
|
|
mutex_destroy(&spa->spa_scrub_lock);
|
|
mutex_destroy(&spa->spa_suspend_lock);
|
|
mutex_destroy(&spa->spa_vdev_top_lock);
|
|
|
|
kmem_free(spa, sizeof (spa_t));
|
|
}
|
|
|
|
/*
|
|
* Given a pool, return the next pool in the namespace, or NULL if there is
|
|
* none. If 'prev' is NULL, return the first pool.
|
|
*/
|
|
spa_t *
|
|
spa_next(spa_t *prev)
|
|
{
|
|
ASSERT(MUTEX_HELD(&spa_namespace_lock));
|
|
|
|
if (prev)
|
|
return (AVL_NEXT(&spa_namespace_avl, prev));
|
|
else
|
|
return (avl_first(&spa_namespace_avl));
|
|
}
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* SPA refcount functions
|
|
* ==========================================================================
|
|
*/
|
|
|
|
/*
|
|
* Add a reference to the given spa_t. Must have at least one reference, or
|
|
* have the namespace lock held.
|
|
*/
|
|
void
|
|
spa_open_ref(spa_t *spa, void *tag)
|
|
{
|
|
ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
|
|
MUTEX_HELD(&spa_namespace_lock));
|
|
(void) refcount_add(&spa->spa_refcount, tag);
|
|
}
|
|
|
|
/*
|
|
* Remove a reference to the given spa_t. Must have at least one reference, or
|
|
* have the namespace lock held.
|
|
*/
|
|
void
|
|
spa_close(spa_t *spa, void *tag)
|
|
{
|
|
ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref ||
|
|
MUTEX_HELD(&spa_namespace_lock));
|
|
(void) refcount_remove(&spa->spa_refcount, tag);
|
|
}
|
|
|
|
/*
|
|
* Check to see if the spa refcount is zero. Must be called with
|
|
* spa_namespace_lock held. We really compare against spa_minref, which is the
|
|
* number of references acquired when opening a pool
|
|
*/
|
|
boolean_t
|
|
spa_refcount_zero(spa_t *spa)
|
|
{
|
|
ASSERT(MUTEX_HELD(&spa_namespace_lock));
|
|
|
|
return (refcount_count(&spa->spa_refcount) == spa->spa_minref);
|
|
}
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* SPA spare and l2cache tracking
|
|
* ==========================================================================
|
|
*/
|
|
|
|
/*
|
|
* Hot spares and cache devices are tracked using the same code below,
|
|
* for 'auxiliary' devices.
|
|
*/
|
|
|
|
typedef struct spa_aux {
|
|
uint64_t aux_guid;
|
|
uint64_t aux_pool;
|
|
avl_node_t aux_avl;
|
|
int aux_count;
|
|
} spa_aux_t;
|
|
|
|
static int
|
|
spa_aux_compare(const void *a, const void *b)
|
|
{
|
|
const spa_aux_t *sa = a;
|
|
const spa_aux_t *sb = b;
|
|
|
|
if (sa->aux_guid < sb->aux_guid)
|
|
return (-1);
|
|
else if (sa->aux_guid > sb->aux_guid)
|
|
return (1);
|
|
else
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
spa_aux_add(vdev_t *vd, avl_tree_t *avl)
|
|
{
|
|
avl_index_t where;
|
|
spa_aux_t search;
|
|
spa_aux_t *aux;
|
|
|
|
search.aux_guid = vd->vdev_guid;
|
|
if ((aux = avl_find(avl, &search, &where)) != NULL) {
|
|
aux->aux_count++;
|
|
} else {
|
|
aux = kmem_zalloc(sizeof (spa_aux_t), KM_PUSHPAGE);
|
|
aux->aux_guid = vd->vdev_guid;
|
|
aux->aux_count = 1;
|
|
avl_insert(avl, aux, where);
|
|
}
|
|
}
|
|
|
|
void
|
|
spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
|
|
{
|
|
spa_aux_t search;
|
|
spa_aux_t *aux;
|
|
avl_index_t where;
|
|
|
|
search.aux_guid = vd->vdev_guid;
|
|
aux = avl_find(avl, &search, &where);
|
|
|
|
ASSERT(aux != NULL);
|
|
|
|
if (--aux->aux_count == 0) {
|
|
avl_remove(avl, aux);
|
|
kmem_free(aux, sizeof (spa_aux_t));
|
|
} else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
|
|
aux->aux_pool = 0ULL;
|
|
}
|
|
}
|
|
|
|
boolean_t
|
|
spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
|
|
{
|
|
spa_aux_t search, *found;
|
|
|
|
search.aux_guid = guid;
|
|
found = avl_find(avl, &search, NULL);
|
|
|
|
if (pool) {
|
|
if (found)
|
|
*pool = found->aux_pool;
|
|
else
|
|
*pool = 0ULL;
|
|
}
|
|
|
|
if (refcnt) {
|
|
if (found)
|
|
*refcnt = found->aux_count;
|
|
else
|
|
*refcnt = 0;
|
|
}
|
|
|
|
return (found != NULL);
|
|
}
|
|
|
|
void
|
|
spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
|
|
{
|
|
spa_aux_t search, *found;
|
|
avl_index_t where;
|
|
|
|
search.aux_guid = vd->vdev_guid;
|
|
found = avl_find(avl, &search, &where);
|
|
ASSERT(found != NULL);
|
|
ASSERT(found->aux_pool == 0ULL);
|
|
|
|
found->aux_pool = spa_guid(vd->vdev_spa);
|
|
}
|
|
|
|
/*
|
|
* Spares are tracked globally due to the following constraints:
|
|
*
|
|
* - A spare may be part of multiple pools.
|
|
* - A spare may be added to a pool even if it's actively in use within
|
|
* another pool.
|
|
* - A spare in use in any pool can only be the source of a replacement if
|
|
* the target is a spare in the same pool.
|
|
*
|
|
* We keep track of all spares on the system through the use of a reference
|
|
* counted AVL tree. When a vdev is added as a spare, or used as a replacement
|
|
* spare, then we bump the reference count in the AVL tree. In addition, we set
|
|
* the 'vdev_isspare' member to indicate that the device is a spare (active or
|
|
* inactive). When a spare is made active (used to replace a device in the
|
|
* pool), we also keep track of which pool its been made a part of.
|
|
*
|
|
* The 'spa_spare_lock' protects the AVL tree. These functions are normally
|
|
* called under the spa_namespace lock as part of vdev reconfiguration. The
|
|
* separate spare lock exists for the status query path, which does not need to
|
|
* be completely consistent with respect to other vdev configuration changes.
|
|
*/
|
|
|
|
static int
|
|
spa_spare_compare(const void *a, const void *b)
|
|
{
|
|
return (spa_aux_compare(a, b));
|
|
}
|
|
|
|
void
|
|
spa_spare_add(vdev_t *vd)
|
|
{
|
|
mutex_enter(&spa_spare_lock);
|
|
ASSERT(!vd->vdev_isspare);
|
|
spa_aux_add(vd, &spa_spare_avl);
|
|
vd->vdev_isspare = B_TRUE;
|
|
mutex_exit(&spa_spare_lock);
|
|
}
|
|
|
|
void
|
|
spa_spare_remove(vdev_t *vd)
|
|
{
|
|
mutex_enter(&spa_spare_lock);
|
|
ASSERT(vd->vdev_isspare);
|
|
spa_aux_remove(vd, &spa_spare_avl);
|
|
vd->vdev_isspare = B_FALSE;
|
|
mutex_exit(&spa_spare_lock);
|
|
}
|
|
|
|
boolean_t
|
|
spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
|
|
{
|
|
boolean_t found;
|
|
|
|
mutex_enter(&spa_spare_lock);
|
|
found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
|
|
mutex_exit(&spa_spare_lock);
|
|
|
|
return (found);
|
|
}
|
|
|
|
void
|
|
spa_spare_activate(vdev_t *vd)
|
|
{
|
|
mutex_enter(&spa_spare_lock);
|
|
ASSERT(vd->vdev_isspare);
|
|
spa_aux_activate(vd, &spa_spare_avl);
|
|
mutex_exit(&spa_spare_lock);
|
|
}
|
|
|
|
/*
|
|
* Level 2 ARC devices are tracked globally for the same reasons as spares.
|
|
* Cache devices currently only support one pool per cache device, and so
|
|
* for these devices the aux reference count is currently unused beyond 1.
|
|
*/
|
|
|
|
static int
|
|
spa_l2cache_compare(const void *a, const void *b)
|
|
{
|
|
return (spa_aux_compare(a, b));
|
|
}
|
|
|
|
void
|
|
spa_l2cache_add(vdev_t *vd)
|
|
{
|
|
mutex_enter(&spa_l2cache_lock);
|
|
ASSERT(!vd->vdev_isl2cache);
|
|
spa_aux_add(vd, &spa_l2cache_avl);
|
|
vd->vdev_isl2cache = B_TRUE;
|
|
mutex_exit(&spa_l2cache_lock);
|
|
}
|
|
|
|
void
|
|
spa_l2cache_remove(vdev_t *vd)
|
|
{
|
|
mutex_enter(&spa_l2cache_lock);
|
|
ASSERT(vd->vdev_isl2cache);
|
|
spa_aux_remove(vd, &spa_l2cache_avl);
|
|
vd->vdev_isl2cache = B_FALSE;
|
|
mutex_exit(&spa_l2cache_lock);
|
|
}
|
|
|
|
boolean_t
|
|
spa_l2cache_exists(uint64_t guid, uint64_t *pool)
|
|
{
|
|
boolean_t found;
|
|
|
|
mutex_enter(&spa_l2cache_lock);
|
|
found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
|
|
mutex_exit(&spa_l2cache_lock);
|
|
|
|
return (found);
|
|
}
|
|
|
|
void
|
|
spa_l2cache_activate(vdev_t *vd)
|
|
{
|
|
mutex_enter(&spa_l2cache_lock);
|
|
ASSERT(vd->vdev_isl2cache);
|
|
spa_aux_activate(vd, &spa_l2cache_avl);
|
|
mutex_exit(&spa_l2cache_lock);
|
|
}
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* SPA vdev locking
|
|
* ==========================================================================
|
|
*/
|
|
|
|
/*
|
|
* Lock the given spa_t for the purpose of adding or removing a vdev.
|
|
* Grabs the global spa_namespace_lock plus the spa config lock for writing.
|
|
* It returns the next transaction group for the spa_t.
|
|
*/
|
|
uint64_t
|
|
spa_vdev_enter(spa_t *spa)
|
|
{
|
|
mutex_enter(&spa->spa_vdev_top_lock);
|
|
mutex_enter(&spa_namespace_lock);
|
|
return (spa_vdev_config_enter(spa));
|
|
}
|
|
|
|
/*
|
|
* Internal implementation for spa_vdev_enter(). Used when a vdev
|
|
* operation requires multiple syncs (i.e. removing a device) while
|
|
* keeping the spa_namespace_lock held.
|
|
*/
|
|
uint64_t
|
|
spa_vdev_config_enter(spa_t *spa)
|
|
{
|
|
ASSERT(MUTEX_HELD(&spa_namespace_lock));
|
|
|
|
spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
|
|
|
|
return (spa_last_synced_txg(spa) + 1);
|
|
}
|
|
|
|
/*
|
|
* Used in combination with spa_vdev_config_enter() to allow the syncing
|
|
* of multiple transactions without releasing the spa_namespace_lock.
|
|
*/
|
|
void
|
|
spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
|
|
{
|
|
int config_changed = B_FALSE;
|
|
|
|
ASSERT(MUTEX_HELD(&spa_namespace_lock));
|
|
ASSERT(txg > spa_last_synced_txg(spa));
|
|
|
|
spa->spa_pending_vdev = NULL;
|
|
|
|
/*
|
|
* Reassess the DTLs.
|
|
*/
|
|
vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
|
|
|
|
if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
|
|
config_changed = B_TRUE;
|
|
spa->spa_config_generation++;
|
|
}
|
|
|
|
/*
|
|
* Verify the metaslab classes.
|
|
*/
|
|
ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
|
|
ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
|
|
|
|
spa_config_exit(spa, SCL_ALL, spa);
|
|
|
|
/*
|
|
* Panic the system if the specified tag requires it. This
|
|
* is useful for ensuring that configurations are updated
|
|
* transactionally.
|
|
*/
|
|
if (zio_injection_enabled)
|
|
zio_handle_panic_injection(spa, tag, 0);
|
|
|
|
/*
|
|
* Note: this txg_wait_synced() is important because it ensures
|
|
* that there won't be more than one config change per txg.
|
|
* This allows us to use the txg as the generation number.
|
|
*/
|
|
if (error == 0)
|
|
txg_wait_synced(spa->spa_dsl_pool, txg);
|
|
|
|
if (vd != NULL) {
|
|
ASSERT(!vd->vdev_detached || vd->vdev_dtl_smo.smo_object == 0);
|
|
spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
|
|
vdev_free(vd);
|
|
spa_config_exit(spa, SCL_ALL, spa);
|
|
}
|
|
|
|
/*
|
|
* If the config changed, update the config cache.
|
|
*/
|
|
if (config_changed)
|
|
spa_config_sync(spa, B_FALSE, B_TRUE);
|
|
}
|
|
|
|
/*
|
|
* Unlock the spa_t after adding or removing a vdev. Besides undoing the
|
|
* locking of spa_vdev_enter(), we also want make sure the transactions have
|
|
* synced to disk, and then update the global configuration cache with the new
|
|
* information.
|
|
*/
|
|
int
|
|
spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
|
|
{
|
|
spa_vdev_config_exit(spa, vd, txg, error, FTAG);
|
|
mutex_exit(&spa_namespace_lock);
|
|
mutex_exit(&spa->spa_vdev_top_lock);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Lock the given spa_t for the purpose of changing vdev state.
|
|
*/
|
|
void
|
|
spa_vdev_state_enter(spa_t *spa, int oplocks)
|
|
{
|
|
int locks = SCL_STATE_ALL | oplocks;
|
|
|
|
/*
|
|
* Root pools may need to read of the underlying devfs filesystem
|
|
* when opening up a vdev. Unfortunately if we're holding the
|
|
* SCL_ZIO lock it will result in a deadlock when we try to issue
|
|
* the read from the root filesystem. Instead we "prefetch"
|
|
* the associated vnodes that we need prior to opening the
|
|
* underlying devices and cache them so that we can prevent
|
|
* any I/O when we are doing the actual open.
|
|
*/
|
|
if (spa_is_root(spa)) {
|
|
int low = locks & ~(SCL_ZIO - 1);
|
|
int high = locks & ~low;
|
|
|
|
spa_config_enter(spa, high, spa, RW_WRITER);
|
|
vdev_hold(spa->spa_root_vdev);
|
|
spa_config_enter(spa, low, spa, RW_WRITER);
|
|
} else {
|
|
spa_config_enter(spa, locks, spa, RW_WRITER);
|
|
}
|
|
spa->spa_vdev_locks = locks;
|
|
}
|
|
|
|
int
|
|
spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
|
|
{
|
|
boolean_t config_changed = B_FALSE;
|
|
|
|
if (vd != NULL || error == 0)
|
|
vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev,
|
|
0, 0, B_FALSE);
|
|
|
|
if (vd != NULL) {
|
|
vdev_state_dirty(vd->vdev_top);
|
|
config_changed = B_TRUE;
|
|
spa->spa_config_generation++;
|
|
}
|
|
|
|
if (spa_is_root(spa))
|
|
vdev_rele(spa->spa_root_vdev);
|
|
|
|
ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
|
|
spa_config_exit(spa, spa->spa_vdev_locks, spa);
|
|
|
|
/*
|
|
* If anything changed, wait for it to sync. This ensures that,
|
|
* from the system administrator's perspective, zpool(1M) commands
|
|
* are synchronous. This is important for things like zpool offline:
|
|
* when the command completes, you expect no further I/O from ZFS.
|
|
*/
|
|
if (vd != NULL)
|
|
txg_wait_synced(spa->spa_dsl_pool, 0);
|
|
|
|
/*
|
|
* If the config changed, update the config cache.
|
|
*/
|
|
if (config_changed) {
|
|
mutex_enter(&spa_namespace_lock);
|
|
spa_config_sync(spa, B_FALSE, B_TRUE);
|
|
mutex_exit(&spa_namespace_lock);
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* Miscellaneous functions
|
|
* ==========================================================================
|
|
*/
|
|
|
|
/*
|
|
* Rename a spa_t.
|
|
*/
|
|
int
|
|
spa_rename(const char *name, const char *newname)
|
|
{
|
|
spa_t *spa;
|
|
int err;
|
|
|
|
/*
|
|
* Lookup the spa_t and grab the config lock for writing. We need to
|
|
* actually open the pool so that we can sync out the necessary labels.
|
|
* It's OK to call spa_open() with the namespace lock held because we
|
|
* allow recursive calls for other reasons.
|
|
*/
|
|
mutex_enter(&spa_namespace_lock);
|
|
if ((err = spa_open(name, &spa, FTAG)) != 0) {
|
|
mutex_exit(&spa_namespace_lock);
|
|
return (err);
|
|
}
|
|
|
|
spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
|
|
|
|
avl_remove(&spa_namespace_avl, spa);
|
|
(void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name));
|
|
avl_add(&spa_namespace_avl, spa);
|
|
|
|
/*
|
|
* Sync all labels to disk with the new names by marking the root vdev
|
|
* dirty and waiting for it to sync. It will pick up the new pool name
|
|
* during the sync.
|
|
*/
|
|
vdev_config_dirty(spa->spa_root_vdev);
|
|
|
|
spa_config_exit(spa, SCL_ALL, FTAG);
|
|
|
|
txg_wait_synced(spa->spa_dsl_pool, 0);
|
|
|
|
/*
|
|
* Sync the updated config cache.
|
|
*/
|
|
spa_config_sync(spa, B_FALSE, B_TRUE);
|
|
|
|
spa_close(spa, FTAG);
|
|
|
|
mutex_exit(&spa_namespace_lock);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Return the spa_t associated with given pool_guid, if it exists. If
|
|
* device_guid is non-zero, determine whether the pool exists *and* contains
|
|
* a device with the specified device_guid.
|
|
*/
|
|
spa_t *
|
|
spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
|
|
{
|
|
spa_t *spa;
|
|
avl_tree_t *t = &spa_namespace_avl;
|
|
|
|
ASSERT(MUTEX_HELD(&spa_namespace_lock));
|
|
|
|
for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
|
|
if (spa->spa_state == POOL_STATE_UNINITIALIZED)
|
|
continue;
|
|
if (spa->spa_root_vdev == NULL)
|
|
continue;
|
|
if (spa_guid(spa) == pool_guid) {
|
|
if (device_guid == 0)
|
|
break;
|
|
|
|
if (vdev_lookup_by_guid(spa->spa_root_vdev,
|
|
device_guid) != NULL)
|
|
break;
|
|
|
|
/*
|
|
* Check any devices we may be in the process of adding.
|
|
*/
|
|
if (spa->spa_pending_vdev) {
|
|
if (vdev_lookup_by_guid(spa->spa_pending_vdev,
|
|
device_guid) != NULL)
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return (spa);
|
|
}
|
|
|
|
/*
|
|
* Determine whether a pool with the given pool_guid exists.
|
|
*/
|
|
boolean_t
|
|
spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
|
|
{
|
|
return (spa_by_guid(pool_guid, device_guid) != NULL);
|
|
}
|
|
|
|
char *
|
|
spa_strdup(const char *s)
|
|
{
|
|
size_t len;
|
|
char *new;
|
|
|
|
len = strlen(s);
|
|
new = kmem_alloc(len + 1, KM_PUSHPAGE);
|
|
bcopy(s, new, len);
|
|
new[len] = '\0';
|
|
|
|
return (new);
|
|
}
|
|
|
|
void
|
|
spa_strfree(char *s)
|
|
{
|
|
kmem_free(s, strlen(s) + 1);
|
|
}
|
|
|
|
uint64_t
|
|
spa_get_random(uint64_t range)
|
|
{
|
|
uint64_t r;
|
|
|
|
ASSERT(range != 0);
|
|
|
|
(void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
|
|
|
|
return (r % range);
|
|
}
|
|
|
|
uint64_t
|
|
spa_generate_guid(spa_t *spa)
|
|
{
|
|
uint64_t guid = spa_get_random(-1ULL);
|
|
|
|
if (spa != NULL) {
|
|
while (guid == 0 || spa_guid_exists(spa_guid(spa), guid))
|
|
guid = spa_get_random(-1ULL);
|
|
} else {
|
|
while (guid == 0 || spa_guid_exists(guid, 0))
|
|
guid = spa_get_random(-1ULL);
|
|
}
|
|
|
|
return (guid);
|
|
}
|
|
|
|
void
|
|
sprintf_blkptr(char *buf, const blkptr_t *bp)
|
|
{
|
|
char *type = NULL;
|
|
char *checksum = NULL;
|
|
char *compress = NULL;
|
|
|
|
if (bp != NULL) {
|
|
type = dmu_ot[BP_GET_TYPE(bp)].ot_name;
|
|
checksum = zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
|
|
compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
|
|
}
|
|
|
|
SPRINTF_BLKPTR(snprintf, ' ', buf, bp, type, checksum, compress);
|
|
}
|
|
|
|
void
|
|
spa_freeze(spa_t *spa)
|
|
{
|
|
uint64_t freeze_txg = 0;
|
|
|
|
spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
|
|
if (spa->spa_freeze_txg == UINT64_MAX) {
|
|
freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
|
|
spa->spa_freeze_txg = freeze_txg;
|
|
}
|
|
spa_config_exit(spa, SCL_ALL, FTAG);
|
|
if (freeze_txg != 0)
|
|
txg_wait_synced(spa_get_dsl(spa), freeze_txg);
|
|
}
|
|
|
|
/*
|
|
* This is a stripped-down version of strtoull, suitable only for converting
|
|
* lowercase hexidecimal numbers that don't overflow.
|
|
*/
|
|
uint64_t
|
|
strtonum(const char *str, char **nptr)
|
|
{
|
|
uint64_t val = 0;
|
|
char c;
|
|
int digit;
|
|
|
|
while ((c = *str) != '\0') {
|
|
if (c >= '0' && c <= '9')
|
|
digit = c - '0';
|
|
else if (c >= 'a' && c <= 'f')
|
|
digit = 10 + c - 'a';
|
|
else
|
|
break;
|
|
|
|
val *= 16;
|
|
val += digit;
|
|
|
|
str++;
|
|
}
|
|
|
|
if (nptr)
|
|
*nptr = (char *)str;
|
|
|
|
return (val);
|
|
}
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* Accessor functions
|
|
* ==========================================================================
|
|
*/
|
|
|
|
boolean_t
|
|
spa_shutting_down(spa_t *spa)
|
|
{
|
|
return (spa->spa_async_suspended);
|
|
}
|
|
|
|
dsl_pool_t *
|
|
spa_get_dsl(spa_t *spa)
|
|
{
|
|
return (spa->spa_dsl_pool);
|
|
}
|
|
|
|
blkptr_t *
|
|
spa_get_rootblkptr(spa_t *spa)
|
|
{
|
|
return (&spa->spa_ubsync.ub_rootbp);
|
|
}
|
|
|
|
void
|
|
spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
|
|
{
|
|
spa->spa_uberblock.ub_rootbp = *bp;
|
|
}
|
|
|
|
void
|
|
spa_altroot(spa_t *spa, char *buf, size_t buflen)
|
|
{
|
|
if (spa->spa_root == NULL)
|
|
buf[0] = '\0';
|
|
else
|
|
(void) strncpy(buf, spa->spa_root, buflen);
|
|
}
|
|
|
|
int
|
|
spa_sync_pass(spa_t *spa)
|
|
{
|
|
return (spa->spa_sync_pass);
|
|
}
|
|
|
|
char *
|
|
spa_name(spa_t *spa)
|
|
{
|
|
return (spa->spa_name);
|
|
}
|
|
|
|
uint64_t
|
|
spa_guid(spa_t *spa)
|
|
{
|
|
/*
|
|
* If we fail to parse the config during spa_load(), we can go through
|
|
* the error path (which posts an ereport) and end up here with no root
|
|
* vdev. We stash the original pool guid in 'spa_config_guid' to handle
|
|
* this case.
|
|
*/
|
|
if (spa->spa_root_vdev != NULL)
|
|
return (spa->spa_root_vdev->vdev_guid);
|
|
else
|
|
return (spa->spa_config_guid);
|
|
}
|
|
|
|
uint64_t
|
|
spa_load_guid(spa_t *spa)
|
|
{
|
|
/*
|
|
* This is a GUID that exists solely as a reference for the
|
|
* purposes of the arc. It is generated at load time, and
|
|
* is never written to persistent storage.
|
|
*/
|
|
return (spa->spa_load_guid);
|
|
}
|
|
|
|
uint64_t
|
|
spa_last_synced_txg(spa_t *spa)
|
|
{
|
|
return (spa->spa_ubsync.ub_txg);
|
|
}
|
|
|
|
uint64_t
|
|
spa_first_txg(spa_t *spa)
|
|
{
|
|
return (spa->spa_first_txg);
|
|
}
|
|
|
|
uint64_t
|
|
spa_syncing_txg(spa_t *spa)
|
|
{
|
|
return (spa->spa_syncing_txg);
|
|
}
|
|
|
|
pool_state_t
|
|
spa_state(spa_t *spa)
|
|
{
|
|
return (spa->spa_state);
|
|
}
|
|
|
|
spa_load_state_t
|
|
spa_load_state(spa_t *spa)
|
|
{
|
|
return (spa->spa_load_state);
|
|
}
|
|
|
|
uint64_t
|
|
spa_freeze_txg(spa_t *spa)
|
|
{
|
|
return (spa->spa_freeze_txg);
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
uint64_t
|
|
spa_get_asize(spa_t *spa, uint64_t lsize)
|
|
{
|
|
/*
|
|
* The worst case is single-sector max-parity RAID-Z blocks, in which
|
|
* case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
|
|
* times the size; so just assume that. Add to this the fact that
|
|
* we can have up to 3 DVAs per bp, and one more factor of 2 because
|
|
* the block may be dittoed with up to 3 DVAs by ddt_sync().
|
|
*/
|
|
return (lsize * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2);
|
|
}
|
|
|
|
uint64_t
|
|
spa_get_dspace(spa_t *spa)
|
|
{
|
|
return (spa->spa_dspace);
|
|
}
|
|
|
|
void
|
|
spa_update_dspace(spa_t *spa)
|
|
{
|
|
spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
|
|
ddt_get_dedup_dspace(spa);
|
|
}
|
|
|
|
/*
|
|
* Return the failure mode that has been set to this pool. The default
|
|
* behavior will be to block all I/Os when a complete failure occurs.
|
|
*/
|
|
uint8_t
|
|
spa_get_failmode(spa_t *spa)
|
|
{
|
|
return (spa->spa_failmode);
|
|
}
|
|
|
|
boolean_t
|
|
spa_suspended(spa_t *spa)
|
|
{
|
|
return (spa->spa_suspended);
|
|
}
|
|
|
|
uint64_t
|
|
spa_version(spa_t *spa)
|
|
{
|
|
return (spa->spa_ubsync.ub_version);
|
|
}
|
|
|
|
boolean_t
|
|
spa_deflate(spa_t *spa)
|
|
{
|
|
return (spa->spa_deflate);
|
|
}
|
|
|
|
metaslab_class_t *
|
|
spa_normal_class(spa_t *spa)
|
|
{
|
|
return (spa->spa_normal_class);
|
|
}
|
|
|
|
metaslab_class_t *
|
|
spa_log_class(spa_t *spa)
|
|
{
|
|
return (spa->spa_log_class);
|
|
}
|
|
|
|
int
|
|
spa_max_replication(spa_t *spa)
|
|
{
|
|
/*
|
|
* As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
|
|
* handle BPs with more than one DVA allocated. Set our max
|
|
* replication level accordingly.
|
|
*/
|
|
if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
|
|
return (1);
|
|
return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
|
|
}
|
|
|
|
int
|
|
spa_prev_software_version(spa_t *spa)
|
|
{
|
|
return (spa->spa_prev_software_version);
|
|
}
|
|
|
|
uint64_t
|
|
dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
|
|
{
|
|
uint64_t asize = DVA_GET_ASIZE(dva);
|
|
uint64_t dsize = asize;
|
|
|
|
ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
|
|
|
|
if (asize != 0 && spa->spa_deflate) {
|
|
vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
|
|
dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio;
|
|
}
|
|
|
|
return (dsize);
|
|
}
|
|
|
|
uint64_t
|
|
bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
|
|
{
|
|
uint64_t dsize = 0;
|
|
int d;
|
|
|
|
for (d = 0; d < SPA_DVAS_PER_BP; d++)
|
|
dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
|
|
|
|
return (dsize);
|
|
}
|
|
|
|
uint64_t
|
|
bp_get_dsize(spa_t *spa, const blkptr_t *bp)
|
|
{
|
|
uint64_t dsize = 0;
|
|
int d;
|
|
|
|
spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
|
|
|
|
for (d = 0; d < SPA_DVAS_PER_BP; d++)
|
|
dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
|
|
|
|
spa_config_exit(spa, SCL_VDEV, FTAG);
|
|
|
|
return (dsize);
|
|
}
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* Initialization and Termination
|
|
* ==========================================================================
|
|
*/
|
|
|
|
static int
|
|
spa_name_compare(const void *a1, const void *a2)
|
|
{
|
|
const spa_t *s1 = a1;
|
|
const spa_t *s2 = a2;
|
|
int s;
|
|
|
|
s = strcmp(s1->spa_name, s2->spa_name);
|
|
if (s > 0)
|
|
return (1);
|
|
if (s < 0)
|
|
return (-1);
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
spa_boot_init(void)
|
|
{
|
|
spa_config_load();
|
|
}
|
|
|
|
void
|
|
spa_init(int mode)
|
|
{
|
|
mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
|
|
|
|
avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
|
|
offsetof(spa_t, spa_avl));
|
|
|
|
avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
|
|
offsetof(spa_aux_t, aux_avl));
|
|
|
|
avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
|
|
offsetof(spa_aux_t, aux_avl));
|
|
|
|
spa_mode_global = mode;
|
|
|
|
fm_init();
|
|
refcount_init();
|
|
unique_init();
|
|
zio_init();
|
|
dmu_init();
|
|
zil_init();
|
|
vdev_cache_stat_init();
|
|
zfs_prop_init();
|
|
zpool_prop_init();
|
|
spa_config_load();
|
|
l2arc_start();
|
|
}
|
|
|
|
void
|
|
spa_fini(void)
|
|
{
|
|
l2arc_stop();
|
|
|
|
spa_evict_all();
|
|
|
|
vdev_cache_stat_fini();
|
|
zil_fini();
|
|
dmu_fini();
|
|
zio_fini();
|
|
unique_fini();
|
|
refcount_fini();
|
|
fm_fini();
|
|
|
|
avl_destroy(&spa_namespace_avl);
|
|
avl_destroy(&spa_spare_avl);
|
|
avl_destroy(&spa_l2cache_avl);
|
|
|
|
cv_destroy(&spa_namespace_cv);
|
|
mutex_destroy(&spa_namespace_lock);
|
|
mutex_destroy(&spa_spare_lock);
|
|
mutex_destroy(&spa_l2cache_lock);
|
|
}
|
|
|
|
/*
|
|
* Return whether this pool has slogs. No locking needed.
|
|
* It's not a problem if the wrong answer is returned as it's only for
|
|
* performance and not correctness
|
|
*/
|
|
boolean_t
|
|
spa_has_slogs(spa_t *spa)
|
|
{
|
|
return (spa->spa_log_class->mc_rotor != NULL);
|
|
}
|
|
|
|
spa_log_state_t
|
|
spa_get_log_state(spa_t *spa)
|
|
{
|
|
return (spa->spa_log_state);
|
|
}
|
|
|
|
void
|
|
spa_set_log_state(spa_t *spa, spa_log_state_t state)
|
|
{
|
|
spa->spa_log_state = state;
|
|
}
|
|
|
|
boolean_t
|
|
spa_is_root(spa_t *spa)
|
|
{
|
|
return (spa->spa_is_root);
|
|
}
|
|
|
|
boolean_t
|
|
spa_writeable(spa_t *spa)
|
|
{
|
|
return (!!(spa->spa_mode & FWRITE));
|
|
}
|
|
|
|
int
|
|
spa_mode(spa_t *spa)
|
|
{
|
|
return (spa->spa_mode);
|
|
}
|
|
|
|
uint64_t
|
|
spa_bootfs(spa_t *spa)
|
|
{
|
|
return (spa->spa_bootfs);
|
|
}
|
|
|
|
uint64_t
|
|
spa_delegation(spa_t *spa)
|
|
{
|
|
return (spa->spa_delegation);
|
|
}
|
|
|
|
objset_t *
|
|
spa_meta_objset(spa_t *spa)
|
|
{
|
|
return (spa->spa_meta_objset);
|
|
}
|
|
|
|
enum zio_checksum
|
|
spa_dedup_checksum(spa_t *spa)
|
|
{
|
|
return (spa->spa_dedup_checksum);
|
|
}
|
|
|
|
/*
|
|
* Reset pool scan stat per scan pass (or reboot).
|
|
*/
|
|
void
|
|
spa_scan_stat_init(spa_t *spa)
|
|
{
|
|
/* data not stored on disk */
|
|
spa->spa_scan_pass_start = gethrestime_sec();
|
|
spa->spa_scan_pass_exam = 0;
|
|
vdev_scan_stat_init(spa->spa_root_vdev);
|
|
}
|
|
|
|
/*
|
|
* Get scan stats for zpool status reports
|
|
*/
|
|
int
|
|
spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
|
|
{
|
|
dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
|
|
|
|
if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
|
|
return (ENOENT);
|
|
bzero(ps, sizeof (pool_scan_stat_t));
|
|
|
|
/* data stored on disk */
|
|
ps->pss_func = scn->scn_phys.scn_func;
|
|
ps->pss_start_time = scn->scn_phys.scn_start_time;
|
|
ps->pss_end_time = scn->scn_phys.scn_end_time;
|
|
ps->pss_to_examine = scn->scn_phys.scn_to_examine;
|
|
ps->pss_examined = scn->scn_phys.scn_examined;
|
|
ps->pss_to_process = scn->scn_phys.scn_to_process;
|
|
ps->pss_processed = scn->scn_phys.scn_processed;
|
|
ps->pss_errors = scn->scn_phys.scn_errors;
|
|
ps->pss_state = scn->scn_phys.scn_state;
|
|
|
|
/* data not stored on disk */
|
|
ps->pss_pass_start = spa->spa_scan_pass_start;
|
|
ps->pss_pass_exam = spa->spa_scan_pass_exam;
|
|
|
|
return (0);
|
|
}
|
|
|
|
boolean_t
|
|
spa_debug_enabled(spa_t *spa)
|
|
{
|
|
return (spa->spa_debug);
|
|
}
|
|
|
|
#if defined(_KERNEL) && defined(HAVE_SPL)
|
|
/* Namespace manipulation */
|
|
EXPORT_SYMBOL(spa_lookup);
|
|
EXPORT_SYMBOL(spa_add);
|
|
EXPORT_SYMBOL(spa_remove);
|
|
EXPORT_SYMBOL(spa_next);
|
|
|
|
/* Refcount functions */
|
|
EXPORT_SYMBOL(spa_open_ref);
|
|
EXPORT_SYMBOL(spa_close);
|
|
EXPORT_SYMBOL(spa_refcount_zero);
|
|
|
|
/* Pool configuration lock */
|
|
EXPORT_SYMBOL(spa_config_tryenter);
|
|
EXPORT_SYMBOL(spa_config_enter);
|
|
EXPORT_SYMBOL(spa_config_exit);
|
|
EXPORT_SYMBOL(spa_config_held);
|
|
|
|
/* Pool vdev add/remove lock */
|
|
EXPORT_SYMBOL(spa_vdev_enter);
|
|
EXPORT_SYMBOL(spa_vdev_exit);
|
|
|
|
/* Pool vdev state change lock */
|
|
EXPORT_SYMBOL(spa_vdev_state_enter);
|
|
EXPORT_SYMBOL(spa_vdev_state_exit);
|
|
|
|
/* Accessor functions */
|
|
EXPORT_SYMBOL(spa_shutting_down);
|
|
EXPORT_SYMBOL(spa_get_dsl);
|
|
EXPORT_SYMBOL(spa_get_rootblkptr);
|
|
EXPORT_SYMBOL(spa_set_rootblkptr);
|
|
EXPORT_SYMBOL(spa_altroot);
|
|
EXPORT_SYMBOL(spa_sync_pass);
|
|
EXPORT_SYMBOL(spa_name);
|
|
EXPORT_SYMBOL(spa_guid);
|
|
EXPORT_SYMBOL(spa_last_synced_txg);
|
|
EXPORT_SYMBOL(spa_first_txg);
|
|
EXPORT_SYMBOL(spa_syncing_txg);
|
|
EXPORT_SYMBOL(spa_version);
|
|
EXPORT_SYMBOL(spa_state);
|
|
EXPORT_SYMBOL(spa_load_state);
|
|
EXPORT_SYMBOL(spa_freeze_txg);
|
|
EXPORT_SYMBOL(spa_get_asize);
|
|
EXPORT_SYMBOL(spa_get_dspace);
|
|
EXPORT_SYMBOL(spa_update_dspace);
|
|
EXPORT_SYMBOL(spa_deflate);
|
|
EXPORT_SYMBOL(spa_normal_class);
|
|
EXPORT_SYMBOL(spa_log_class);
|
|
EXPORT_SYMBOL(spa_max_replication);
|
|
EXPORT_SYMBOL(spa_prev_software_version);
|
|
EXPORT_SYMBOL(spa_get_failmode);
|
|
EXPORT_SYMBOL(spa_suspended);
|
|
EXPORT_SYMBOL(spa_bootfs);
|
|
EXPORT_SYMBOL(spa_delegation);
|
|
EXPORT_SYMBOL(spa_meta_objset);
|
|
|
|
/* Miscellaneous support routines */
|
|
EXPORT_SYMBOL(spa_rename);
|
|
EXPORT_SYMBOL(spa_guid_exists);
|
|
EXPORT_SYMBOL(spa_strdup);
|
|
EXPORT_SYMBOL(spa_strfree);
|
|
EXPORT_SYMBOL(spa_get_random);
|
|
EXPORT_SYMBOL(spa_generate_guid);
|
|
EXPORT_SYMBOL(sprintf_blkptr);
|
|
EXPORT_SYMBOL(spa_freeze);
|
|
EXPORT_SYMBOL(spa_upgrade);
|
|
EXPORT_SYMBOL(spa_evict_all);
|
|
EXPORT_SYMBOL(spa_lookup_by_guid);
|
|
EXPORT_SYMBOL(spa_has_spare);
|
|
EXPORT_SYMBOL(dva_get_dsize_sync);
|
|
EXPORT_SYMBOL(bp_get_dsize_sync);
|
|
EXPORT_SYMBOL(bp_get_dsize);
|
|
EXPORT_SYMBOL(spa_has_slogs);
|
|
EXPORT_SYMBOL(spa_is_root);
|
|
EXPORT_SYMBOL(spa_writeable);
|
|
EXPORT_SYMBOL(spa_mode);
|
|
|
|
EXPORT_SYMBOL(spa_namespace_lock);
|
|
#endif
|