524 lines
14 KiB
C
524 lines
14 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
|
|
* Use is subject to license terms.
|
|
*/
|
|
|
|
/*
|
|
* Fletcher Checksums
|
|
* ------------------
|
|
*
|
|
* ZFS's 2nd and 4th order Fletcher checksums are defined by the following
|
|
* recurrence relations:
|
|
*
|
|
* a = a + f
|
|
* i i-1 i-1
|
|
*
|
|
* b = b + a
|
|
* i i-1 i
|
|
*
|
|
* c = c + b (fletcher-4 only)
|
|
* i i-1 i
|
|
*
|
|
* d = d + c (fletcher-4 only)
|
|
* i i-1 i
|
|
*
|
|
* Where
|
|
* a_0 = b_0 = c_0 = d_0 = 0
|
|
* and
|
|
* f_0 .. f_(n-1) are the input data.
|
|
*
|
|
* Using standard techniques, these translate into the following series:
|
|
*
|
|
* __n_ __n_
|
|
* \ | \ |
|
|
* a = > f b = > i * f
|
|
* n /___| n - i n /___| n - i
|
|
* i = 1 i = 1
|
|
*
|
|
*
|
|
* __n_ __n_
|
|
* \ | i*(i+1) \ | i*(i+1)*(i+2)
|
|
* c = > ------- f d = > ------------- f
|
|
* n /___| 2 n - i n /___| 6 n - i
|
|
* i = 1 i = 1
|
|
*
|
|
* For fletcher-2, the f_is are 64-bit, and [ab]_i are 64-bit accumulators.
|
|
* Since the additions are done mod (2^64), errors in the high bits may not
|
|
* be noticed. For this reason, fletcher-2 is deprecated.
|
|
*
|
|
* For fletcher-4, the f_is are 32-bit, and [abcd]_i are 64-bit accumulators.
|
|
* A conservative estimate of how big the buffer can get before we overflow
|
|
* can be estimated using f_i = 0xffffffff for all i:
|
|
*
|
|
* % bc
|
|
* f=2^32-1;d=0; for (i = 1; d<2^64; i++) { d += f*i*(i+1)*(i+2)/6 }; (i-1)*4
|
|
* 2264
|
|
* quit
|
|
* %
|
|
*
|
|
* So blocks of up to 2k will not overflow. Our largest block size is
|
|
* 128k, which has 32k 4-byte words, so we can compute the largest possible
|
|
* accumulators, then divide by 2^64 to figure the max amount of overflow:
|
|
*
|
|
* % bc
|
|
* a=b=c=d=0; f=2^32-1; for (i=1; i<=32*1024; i++) { a+=f; b+=a; c+=b; d+=c }
|
|
* a/2^64;b/2^64;c/2^64;d/2^64
|
|
* 0
|
|
* 0
|
|
* 1365
|
|
* 11186858
|
|
* quit
|
|
* %
|
|
*
|
|
* So a and b cannot overflow. To make sure each bit of input has some
|
|
* effect on the contents of c and d, we can look at what the factors of
|
|
* the coefficients in the equations for c_n and d_n are. The number of 2s
|
|
* in the factors determines the lowest set bit in the multiplier. Running
|
|
* through the cases for n*(n+1)/2 reveals that the highest power of 2 is
|
|
* 2^14, and for n*(n+1)*(n+2)/6 it is 2^15. So while some data may overflow
|
|
* the 64-bit accumulators, every bit of every f_i effects every accumulator,
|
|
* even for 128k blocks.
|
|
*
|
|
* If we wanted to make a stronger version of fletcher4 (fletcher4c?),
|
|
* we could do our calculations mod (2^32 - 1) by adding in the carries
|
|
* periodically, and store the number of carries in the top 32-bits.
|
|
*
|
|
* --------------------
|
|
* Checksum Performance
|
|
* --------------------
|
|
*
|
|
* There are two interesting components to checksum performance: cached and
|
|
* uncached performance. With cached data, fletcher-2 is about four times
|
|
* faster than fletcher-4. With uncached data, the performance difference is
|
|
* negligible, since the cost of a cache fill dominates the processing time.
|
|
* Even though fletcher-4 is slower than fletcher-2, it is still a pretty
|
|
* efficient pass over the data.
|
|
*
|
|
* In normal operation, the data which is being checksummed is in a buffer
|
|
* which has been filled either by:
|
|
*
|
|
* 1. a compression step, which will be mostly cached, or
|
|
* 2. a bcopy() or copyin(), which will be uncached (because the
|
|
* copy is cache-bypassing).
|
|
*
|
|
* For both cached and uncached data, both fletcher checksums are much faster
|
|
* than sha-256, and slower than 'off', which doesn't touch the data at all.
|
|
*/
|
|
|
|
#include <sys/types.h>
|
|
#include <sys/sysmacros.h>
|
|
#include <sys/byteorder.h>
|
|
#include <sys/spa.h>
|
|
#include <sys/zfs_context.h>
|
|
#include <zfs_fletcher.h>
|
|
|
|
static void fletcher_4_scalar_init(zio_cksum_t *zcp);
|
|
static void fletcher_4_scalar(const void *buf, uint64_t size,
|
|
zio_cksum_t *zcp);
|
|
static void fletcher_4_scalar_byteswap(const void *buf, uint64_t size,
|
|
zio_cksum_t *zcp);
|
|
static boolean_t fletcher_4_scalar_valid(void);
|
|
|
|
static const fletcher_4_ops_t fletcher_4_scalar_ops = {
|
|
.init = fletcher_4_scalar_init,
|
|
.compute = fletcher_4_scalar,
|
|
.compute_byteswap = fletcher_4_scalar_byteswap,
|
|
.valid = fletcher_4_scalar_valid,
|
|
.name = "scalar"
|
|
};
|
|
|
|
static const fletcher_4_ops_t *fletcher_4_algos[] = {
|
|
&fletcher_4_scalar_ops,
|
|
#if defined(HAVE_SSE2)
|
|
&fletcher_4_sse2_ops,
|
|
#endif
|
|
#if defined(HAVE_SSE2) && defined(HAVE_SSSE3)
|
|
&fletcher_4_ssse3_ops,
|
|
#endif
|
|
#if defined(HAVE_AVX) && defined(HAVE_AVX2)
|
|
&fletcher_4_avx2_ops,
|
|
#endif
|
|
};
|
|
|
|
static enum fletcher_selector {
|
|
FLETCHER_FASTEST = 0,
|
|
FLETCHER_SCALAR,
|
|
#if defined(HAVE_SSE2)
|
|
FLETCHER_SSE2,
|
|
#endif
|
|
#if defined(HAVE_SSE2) && defined(HAVE_SSSE3)
|
|
FLETCHER_SSSE3,
|
|
#endif
|
|
#if defined(HAVE_AVX) && defined(HAVE_AVX2)
|
|
FLETCHER_AVX2,
|
|
#endif
|
|
FLETCHER_CYCLE
|
|
} fletcher_4_impl_chosen = FLETCHER_SCALAR;
|
|
|
|
static struct fletcher_4_impl_selector {
|
|
const char *fis_name;
|
|
const fletcher_4_ops_t *fis_ops;
|
|
} fletcher_4_impl_selectors[] = {
|
|
[ FLETCHER_FASTEST ] = { "fastest", NULL },
|
|
[ FLETCHER_SCALAR ] = { "scalar", &fletcher_4_scalar_ops },
|
|
#if defined(HAVE_SSE2)
|
|
[ FLETCHER_SSE2 ] = { "sse2", &fletcher_4_sse2_ops },
|
|
#endif
|
|
#if defined(HAVE_SSE2) && defined(HAVE_SSSE3)
|
|
[ FLETCHER_SSSE3 ] = { "ssse3", &fletcher_4_ssse3_ops },
|
|
#endif
|
|
#if defined(HAVE_AVX) && defined(HAVE_AVX2)
|
|
[ FLETCHER_AVX2 ] = { "avx2", &fletcher_4_avx2_ops },
|
|
#endif
|
|
#if !defined(_KERNEL)
|
|
[ FLETCHER_CYCLE ] = { "cycle", &fletcher_4_scalar_ops }
|
|
#endif
|
|
};
|
|
|
|
static kmutex_t fletcher_4_impl_lock;
|
|
|
|
static kstat_t *fletcher_4_kstat;
|
|
|
|
static kstat_named_t fletcher_4_kstat_data[ARRAY_SIZE(fletcher_4_algos)];
|
|
|
|
void
|
|
fletcher_2_native(const void *buf, uint64_t size, zio_cksum_t *zcp)
|
|
{
|
|
const uint64_t *ip = buf;
|
|
const uint64_t *ipend = ip + (size / sizeof (uint64_t));
|
|
uint64_t a0, b0, a1, b1;
|
|
|
|
for (a0 = b0 = a1 = b1 = 0; ip < ipend; ip += 2) {
|
|
a0 += ip[0];
|
|
a1 += ip[1];
|
|
b0 += a0;
|
|
b1 += a1;
|
|
}
|
|
|
|
ZIO_SET_CHECKSUM(zcp, a0, a1, b0, b1);
|
|
}
|
|
|
|
void
|
|
fletcher_2_byteswap(const void *buf, uint64_t size, zio_cksum_t *zcp)
|
|
{
|
|
const uint64_t *ip = buf;
|
|
const uint64_t *ipend = ip + (size / sizeof (uint64_t));
|
|
uint64_t a0, b0, a1, b1;
|
|
|
|
for (a0 = b0 = a1 = b1 = 0; ip < ipend; ip += 2) {
|
|
a0 += BSWAP_64(ip[0]);
|
|
a1 += BSWAP_64(ip[1]);
|
|
b0 += a0;
|
|
b1 += a1;
|
|
}
|
|
|
|
ZIO_SET_CHECKSUM(zcp, a0, a1, b0, b1);
|
|
}
|
|
|
|
static void fletcher_4_scalar_init(zio_cksum_t *zcp)
|
|
{
|
|
ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0);
|
|
}
|
|
|
|
static void
|
|
fletcher_4_scalar(const void *buf, uint64_t size, zio_cksum_t *zcp)
|
|
{
|
|
const uint32_t *ip = buf;
|
|
const uint32_t *ipend = ip + (size / sizeof (uint32_t));
|
|
uint64_t a, b, c, d;
|
|
|
|
a = zcp->zc_word[0];
|
|
b = zcp->zc_word[1];
|
|
c = zcp->zc_word[2];
|
|
d = zcp->zc_word[3];
|
|
|
|
for (; ip < ipend; ip++) {
|
|
a += ip[0];
|
|
b += a;
|
|
c += b;
|
|
d += c;
|
|
}
|
|
|
|
ZIO_SET_CHECKSUM(zcp, a, b, c, d);
|
|
}
|
|
|
|
static void
|
|
fletcher_4_scalar_byteswap(const void *buf, uint64_t size, zio_cksum_t *zcp)
|
|
{
|
|
const uint32_t *ip = buf;
|
|
const uint32_t *ipend = ip + (size / sizeof (uint32_t));
|
|
uint64_t a, b, c, d;
|
|
|
|
a = zcp->zc_word[0];
|
|
b = zcp->zc_word[1];
|
|
c = zcp->zc_word[2];
|
|
d = zcp->zc_word[3];
|
|
|
|
for (; ip < ipend; ip++) {
|
|
a += BSWAP_32(ip[0]);
|
|
b += a;
|
|
c += b;
|
|
d += c;
|
|
}
|
|
|
|
ZIO_SET_CHECKSUM(zcp, a, b, c, d);
|
|
}
|
|
|
|
static boolean_t
|
|
fletcher_4_scalar_valid(void)
|
|
{
|
|
return (B_TRUE);
|
|
}
|
|
|
|
int
|
|
fletcher_4_impl_set(const char *val)
|
|
{
|
|
const fletcher_4_ops_t *ops;
|
|
enum fletcher_selector idx = FLETCHER_FASTEST;
|
|
size_t val_len;
|
|
unsigned i;
|
|
|
|
val_len = strlen(val);
|
|
while ((val_len > 0) && !!isspace(val[val_len-1])) /* trim '\n' */
|
|
val_len--;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(fletcher_4_impl_selectors); i++) {
|
|
const char *name = fletcher_4_impl_selectors[i].fis_name;
|
|
|
|
if (val_len == strlen(name) &&
|
|
strncmp(val, name, val_len) == 0) {
|
|
idx = i;
|
|
break;
|
|
}
|
|
}
|
|
if (i >= ARRAY_SIZE(fletcher_4_impl_selectors))
|
|
return (-EINVAL);
|
|
|
|
ops = fletcher_4_impl_selectors[idx].fis_ops;
|
|
if (ops == NULL || !ops->valid())
|
|
return (-ENOTSUP);
|
|
|
|
mutex_enter(&fletcher_4_impl_lock);
|
|
if (fletcher_4_impl_chosen != idx)
|
|
fletcher_4_impl_chosen = idx;
|
|
mutex_exit(&fletcher_4_impl_lock);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static inline const fletcher_4_ops_t *
|
|
fletcher_4_impl_get(void)
|
|
{
|
|
#if !defined(_KERNEL)
|
|
if (fletcher_4_impl_chosen == FLETCHER_CYCLE) {
|
|
static volatile unsigned int cycle_count = 0;
|
|
const fletcher_4_ops_t *ops = NULL;
|
|
unsigned int index;
|
|
|
|
while (1) {
|
|
index = atomic_inc_uint_nv(&cycle_count);
|
|
ops = fletcher_4_algos[
|
|
index % ARRAY_SIZE(fletcher_4_algos)];
|
|
if (ops->valid())
|
|
break;
|
|
}
|
|
return (ops);
|
|
}
|
|
#endif
|
|
membar_producer();
|
|
return (fletcher_4_impl_selectors[fletcher_4_impl_chosen].fis_ops);
|
|
}
|
|
|
|
void
|
|
fletcher_4_native(const void *buf, uint64_t size, zio_cksum_t *zcp)
|
|
{
|
|
const fletcher_4_ops_t *ops;
|
|
|
|
if (IS_P2ALIGNED(size, 4 * sizeof (uint32_t)))
|
|
ops = fletcher_4_impl_get();
|
|
else
|
|
ops = &fletcher_4_scalar_ops;
|
|
|
|
ops->init(zcp);
|
|
ops->compute(buf, size, zcp);
|
|
if (ops->fini != NULL)
|
|
ops->fini(zcp);
|
|
}
|
|
|
|
void
|
|
fletcher_4_byteswap(const void *buf, uint64_t size, zio_cksum_t *zcp)
|
|
{
|
|
const fletcher_4_ops_t *ops;
|
|
|
|
if (IS_P2ALIGNED(size, 4 * sizeof (uint32_t)))
|
|
ops = fletcher_4_impl_get();
|
|
else
|
|
ops = &fletcher_4_scalar_ops;
|
|
|
|
ops->init(zcp);
|
|
ops->compute_byteswap(buf, size, zcp);
|
|
if (ops->fini != NULL)
|
|
ops->fini(zcp);
|
|
}
|
|
|
|
void
|
|
fletcher_4_incremental_native(const void *buf, uint64_t size,
|
|
zio_cksum_t *zcp)
|
|
{
|
|
fletcher_4_scalar(buf, size, zcp);
|
|
}
|
|
|
|
void
|
|
fletcher_4_incremental_byteswap(const void *buf, uint64_t size,
|
|
zio_cksum_t *zcp)
|
|
{
|
|
fletcher_4_scalar_byteswap(buf, size, zcp);
|
|
}
|
|
|
|
void
|
|
fletcher_4_init(void)
|
|
{
|
|
const uint64_t const bench_ns = (50 * MICROSEC); /* 50ms */
|
|
unsigned long best_run_count = 0;
|
|
unsigned long best_run_index = 0;
|
|
const unsigned data_size = 4096;
|
|
char *databuf;
|
|
int i;
|
|
|
|
databuf = kmem_alloc(data_size, KM_SLEEP);
|
|
for (i = 0; i < ARRAY_SIZE(fletcher_4_algos); i++) {
|
|
const fletcher_4_ops_t *ops = fletcher_4_algos[i];
|
|
kstat_named_t *stat = &fletcher_4_kstat_data[i];
|
|
unsigned long run_count = 0;
|
|
hrtime_t start;
|
|
zio_cksum_t zc;
|
|
|
|
strncpy(stat->name, ops->name, sizeof (stat->name) - 1);
|
|
stat->data_type = KSTAT_DATA_UINT64;
|
|
stat->value.ui64 = 0;
|
|
|
|
if (!ops->valid())
|
|
continue;
|
|
|
|
kpreempt_disable();
|
|
start = gethrtime();
|
|
ops->init(&zc);
|
|
do {
|
|
ops->compute(databuf, data_size, &zc);
|
|
ops->compute_byteswap(databuf, data_size, &zc);
|
|
run_count++;
|
|
} while (gethrtime() < start + bench_ns);
|
|
if (ops->fini != NULL)
|
|
ops->fini(&zc);
|
|
kpreempt_enable();
|
|
|
|
if (run_count > best_run_count) {
|
|
best_run_count = run_count;
|
|
best_run_index = i;
|
|
}
|
|
|
|
/*
|
|
* Due to high overhead of gethrtime(), the performance data
|
|
* here is inaccurate and much slower than it could be.
|
|
* It's fine for our use though because only relative speed
|
|
* is important.
|
|
*/
|
|
stat->value.ui64 = data_size * run_count *
|
|
(NANOSEC / bench_ns) >> 20; /* by MB/s */
|
|
}
|
|
kmem_free(databuf, data_size);
|
|
|
|
fletcher_4_impl_selectors[FLETCHER_FASTEST].fis_ops =
|
|
fletcher_4_algos[best_run_index];
|
|
|
|
mutex_init(&fletcher_4_impl_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
fletcher_4_impl_set("fastest");
|
|
|
|
fletcher_4_kstat = kstat_create("zfs", 0, "fletcher_4_bench",
|
|
"misc", KSTAT_TYPE_NAMED, ARRAY_SIZE(fletcher_4_algos),
|
|
KSTAT_FLAG_VIRTUAL);
|
|
if (fletcher_4_kstat != NULL) {
|
|
fletcher_4_kstat->ks_data = fletcher_4_kstat_data;
|
|
kstat_install(fletcher_4_kstat);
|
|
}
|
|
}
|
|
|
|
void
|
|
fletcher_4_fini(void)
|
|
{
|
|
mutex_destroy(&fletcher_4_impl_lock);
|
|
if (fletcher_4_kstat != NULL) {
|
|
kstat_delete(fletcher_4_kstat);
|
|
fletcher_4_kstat = NULL;
|
|
}
|
|
}
|
|
|
|
#if defined(_KERNEL) && defined(HAVE_SPL)
|
|
|
|
static int
|
|
fletcher_4_param_get(char *buffer, struct kernel_param *unused)
|
|
{
|
|
int i, cnt = 0;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(fletcher_4_impl_selectors); i++) {
|
|
const fletcher_4_ops_t *ops;
|
|
|
|
ops = fletcher_4_impl_selectors[i].fis_ops;
|
|
if (!ops->valid())
|
|
continue;
|
|
|
|
cnt += sprintf(buffer + cnt,
|
|
fletcher_4_impl_chosen == i ? "[%s] " : "%s ",
|
|
fletcher_4_impl_selectors[i].fis_name);
|
|
}
|
|
|
|
return (cnt);
|
|
}
|
|
|
|
static int
|
|
fletcher_4_param_set(const char *val, struct kernel_param *unused)
|
|
{
|
|
return (fletcher_4_impl_set(val));
|
|
}
|
|
|
|
/*
|
|
* Choose a fletcher 4 implementation in ZFS.
|
|
* Users can choose the "fastest" algorithm, or "scalar" and "avx2" which means
|
|
* to compute fletcher 4 by CPU or vector instructions respectively.
|
|
* Users can also choose "cycle" to exercise all implementions, but this is
|
|
* for testing purpose therefore it can only be set in user space.
|
|
*/
|
|
module_param_call(zfs_fletcher_4_impl,
|
|
fletcher_4_param_set, fletcher_4_param_get, NULL, 0644);
|
|
MODULE_PARM_DESC(zfs_fletcher_4_impl, "Select fletcher 4 algorithm");
|
|
|
|
EXPORT_SYMBOL(fletcher_4_init);
|
|
EXPORT_SYMBOL(fletcher_4_fini);
|
|
EXPORT_SYMBOL(fletcher_2_native);
|
|
EXPORT_SYMBOL(fletcher_2_byteswap);
|
|
EXPORT_SYMBOL(fletcher_4_native);
|
|
EXPORT_SYMBOL(fletcher_4_byteswap);
|
|
EXPORT_SYMBOL(fletcher_4_incremental_native);
|
|
EXPORT_SYMBOL(fletcher_4_incremental_byteswap);
|
|
#endif
|