zfs/module/zfs/zfs_acl.c

2851 lines
69 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#include <sys/types.h>
#include <sys/param.h>
#include <sys/time.h>
#include <sys/systm.h>
#include <sys/sysmacros.h>
#include <sys/resource.h>
#include <sys/vfs.h>
#include <sys/vnode.h>
#include <sys/sid.h>
#include <sys/file.h>
#include <sys/stat.h>
#include <sys/kmem.h>
#include <sys/cmn_err.h>
#include <sys/errno.h>
#include <sys/unistd.h>
#include <sys/sdt.h>
#include <sys/fs/zfs.h>
#include <sys/mode.h>
#include <sys/policy.h>
#include <sys/zfs_znode.h>
#include <sys/zfs_fuid.h>
#include <sys/zfs_acl.h>
#include <sys/zfs_dir.h>
#include <sys/zfs_vfsops.h>
#include <sys/dmu.h>
#include <sys/dnode.h>
#include <sys/zap.h>
#include "fs/fs_subr.h"
#include <acl/acl_common.h>
#define ALLOW ACE_ACCESS_ALLOWED_ACE_TYPE
#define DENY ACE_ACCESS_DENIED_ACE_TYPE
#define MAX_ACE_TYPE ACE_SYSTEM_ALARM_CALLBACK_OBJECT_ACE_TYPE
#define MIN_ACE_TYPE ALLOW
#define OWNING_GROUP (ACE_GROUP|ACE_IDENTIFIER_GROUP)
#define EVERYONE_ALLOW_MASK (ACE_READ_ACL|ACE_READ_ATTRIBUTES | \
ACE_READ_NAMED_ATTRS|ACE_SYNCHRONIZE)
#define EVERYONE_DENY_MASK (ACE_WRITE_ACL|ACE_WRITE_OWNER | \
ACE_WRITE_ATTRIBUTES|ACE_WRITE_NAMED_ATTRS)
#define OWNER_ALLOW_MASK (ACE_WRITE_ACL | ACE_WRITE_OWNER | \
ACE_WRITE_ATTRIBUTES|ACE_WRITE_NAMED_ATTRS)
#define ZFS_CHECKED_MASKS (ACE_READ_ACL|ACE_READ_ATTRIBUTES|ACE_READ_DATA| \
ACE_READ_NAMED_ATTRS|ACE_WRITE_DATA|ACE_WRITE_ATTRIBUTES| \
ACE_WRITE_NAMED_ATTRS|ACE_APPEND_DATA|ACE_EXECUTE|ACE_WRITE_OWNER| \
ACE_WRITE_ACL|ACE_DELETE|ACE_DELETE_CHILD|ACE_SYNCHRONIZE)
#define WRITE_MASK_DATA (ACE_WRITE_DATA|ACE_APPEND_DATA|ACE_WRITE_NAMED_ATTRS)
#define WRITE_MASK_ATTRS (ACE_WRITE_ACL|ACE_WRITE_OWNER|ACE_WRITE_ATTRIBUTES| \
ACE_DELETE|ACE_DELETE_CHILD)
#define WRITE_MASK (WRITE_MASK_DATA|WRITE_MASK_ATTRS)
#define OGE_CLEAR (ACE_READ_DATA|ACE_LIST_DIRECTORY|ACE_WRITE_DATA| \
ACE_ADD_FILE|ACE_APPEND_DATA|ACE_ADD_SUBDIRECTORY|ACE_EXECUTE)
#define OKAY_MASK_BITS (ACE_READ_DATA|ACE_LIST_DIRECTORY|ACE_WRITE_DATA| \
ACE_ADD_FILE|ACE_APPEND_DATA|ACE_ADD_SUBDIRECTORY|ACE_EXECUTE)
#define ALL_INHERIT (ACE_FILE_INHERIT_ACE|ACE_DIRECTORY_INHERIT_ACE | \
ACE_NO_PROPAGATE_INHERIT_ACE|ACE_INHERIT_ONLY_ACE|ACE_INHERITED_ACE)
#define RESTRICTED_CLEAR (ACE_WRITE_ACL|ACE_WRITE_OWNER)
#define V4_ACL_WIDE_FLAGS (ZFS_ACL_AUTO_INHERIT|ZFS_ACL_DEFAULTED|\
ZFS_ACL_PROTECTED)
#define ZFS_ACL_WIDE_FLAGS (V4_ACL_WIDE_FLAGS|ZFS_ACL_TRIVIAL|ZFS_INHERIT_ACE|\
ZFS_ACL_OBJ_ACE)
#define ALL_MODE_EXECS (S_IXUSR | S_IXGRP | S_IXOTH)
static uint16_t
zfs_ace_v0_get_type(void *acep)
{
return (((zfs_oldace_t *)acep)->z_type);
}
static uint16_t
zfs_ace_v0_get_flags(void *acep)
{
return (((zfs_oldace_t *)acep)->z_flags);
}
static uint32_t
zfs_ace_v0_get_mask(void *acep)
{
return (((zfs_oldace_t *)acep)->z_access_mask);
}
static uint64_t
zfs_ace_v0_get_who(void *acep)
{
return (((zfs_oldace_t *)acep)->z_fuid);
}
static void
zfs_ace_v0_set_type(void *acep, uint16_t type)
{
((zfs_oldace_t *)acep)->z_type = type;
}
static void
zfs_ace_v0_set_flags(void *acep, uint16_t flags)
{
((zfs_oldace_t *)acep)->z_flags = flags;
}
static void
zfs_ace_v0_set_mask(void *acep, uint32_t mask)
{
((zfs_oldace_t *)acep)->z_access_mask = mask;
}
static void
zfs_ace_v0_set_who(void *acep, uint64_t who)
{
((zfs_oldace_t *)acep)->z_fuid = who;
}
/*ARGSUSED*/
static size_t
zfs_ace_v0_size(void *acep)
{
return (sizeof (zfs_oldace_t));
}
static size_t
zfs_ace_v0_abstract_size(void)
{
return (sizeof (zfs_oldace_t));
}
static int
zfs_ace_v0_mask_off(void)
{
return (offsetof(zfs_oldace_t, z_access_mask));
}
/*ARGSUSED*/
static int
zfs_ace_v0_data(void *acep, void **datap)
{
*datap = NULL;
return (0);
}
static acl_ops_t zfs_acl_v0_ops = {
zfs_ace_v0_get_mask,
zfs_ace_v0_set_mask,
zfs_ace_v0_get_flags,
zfs_ace_v0_set_flags,
zfs_ace_v0_get_type,
zfs_ace_v0_set_type,
zfs_ace_v0_get_who,
zfs_ace_v0_set_who,
zfs_ace_v0_size,
zfs_ace_v0_abstract_size,
zfs_ace_v0_mask_off,
zfs_ace_v0_data
};
static uint16_t
zfs_ace_fuid_get_type(void *acep)
{
return (((zfs_ace_hdr_t *)acep)->z_type);
}
static uint16_t
zfs_ace_fuid_get_flags(void *acep)
{
return (((zfs_ace_hdr_t *)acep)->z_flags);
}
static uint32_t
zfs_ace_fuid_get_mask(void *acep)
{
return (((zfs_ace_hdr_t *)acep)->z_access_mask);
}
static uint64_t
zfs_ace_fuid_get_who(void *args)
{
uint16_t entry_type;
zfs_ace_t *acep = args;
entry_type = acep->z_hdr.z_flags & ACE_TYPE_FLAGS;
if (entry_type == ACE_OWNER || entry_type == OWNING_GROUP ||
entry_type == ACE_EVERYONE)
return (-1);
return (((zfs_ace_t *)acep)->z_fuid);
}
static void
zfs_ace_fuid_set_type(void *acep, uint16_t type)
{
((zfs_ace_hdr_t *)acep)->z_type = type;
}
static void
zfs_ace_fuid_set_flags(void *acep, uint16_t flags)
{
((zfs_ace_hdr_t *)acep)->z_flags = flags;
}
static void
zfs_ace_fuid_set_mask(void *acep, uint32_t mask)
{
((zfs_ace_hdr_t *)acep)->z_access_mask = mask;
}
static void
zfs_ace_fuid_set_who(void *arg, uint64_t who)
{
zfs_ace_t *acep = arg;
uint16_t entry_type = acep->z_hdr.z_flags & ACE_TYPE_FLAGS;
if (entry_type == ACE_OWNER || entry_type == OWNING_GROUP ||
entry_type == ACE_EVERYONE)
return;
acep->z_fuid = who;
}
static size_t
zfs_ace_fuid_size(void *acep)
{
zfs_ace_hdr_t *zacep = acep;
uint16_t entry_type;
switch (zacep->z_type) {
case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE:
case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE:
case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE:
case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE:
return (sizeof (zfs_object_ace_t));
case ALLOW:
case DENY:
entry_type =
(((zfs_ace_hdr_t *)acep)->z_flags & ACE_TYPE_FLAGS);
if (entry_type == ACE_OWNER ||
entry_type == OWNING_GROUP ||
entry_type == ACE_EVERYONE)
return (sizeof (zfs_ace_hdr_t));
/*FALLTHROUGH*/
default:
return (sizeof (zfs_ace_t));
}
}
static size_t
zfs_ace_fuid_abstract_size(void)
{
return (sizeof (zfs_ace_hdr_t));
}
static int
zfs_ace_fuid_mask_off(void)
{
return (offsetof(zfs_ace_hdr_t, z_access_mask));
}
static int
zfs_ace_fuid_data(void *acep, void **datap)
{
zfs_ace_t *zacep = acep;
zfs_object_ace_t *zobjp;
switch (zacep->z_hdr.z_type) {
case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE:
case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE:
case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE:
case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE:
zobjp = acep;
*datap = (caddr_t)zobjp + sizeof (zfs_ace_t);
return (sizeof (zfs_object_ace_t) - sizeof (zfs_ace_t));
default:
*datap = NULL;
return (0);
}
}
static acl_ops_t zfs_acl_fuid_ops = {
zfs_ace_fuid_get_mask,
zfs_ace_fuid_set_mask,
zfs_ace_fuid_get_flags,
zfs_ace_fuid_set_flags,
zfs_ace_fuid_get_type,
zfs_ace_fuid_set_type,
zfs_ace_fuid_get_who,
zfs_ace_fuid_set_who,
zfs_ace_fuid_size,
zfs_ace_fuid_abstract_size,
zfs_ace_fuid_mask_off,
zfs_ace_fuid_data
};
static int
zfs_acl_version(int version)
{
if (version < ZPL_VERSION_FUID)
return (ZFS_ACL_VERSION_INITIAL);
else
return (ZFS_ACL_VERSION_FUID);
}
static int
zfs_acl_version_zp(znode_t *zp)
{
return (zfs_acl_version(zp->z_zfsvfs->z_version));
}
static zfs_acl_t *
zfs_acl_alloc(int vers)
{
zfs_acl_t *aclp;
aclp = kmem_zalloc(sizeof (zfs_acl_t), KM_SLEEP);
list_create(&aclp->z_acl, sizeof (zfs_acl_node_t),
offsetof(zfs_acl_node_t, z_next));
aclp->z_version = vers;
if (vers == ZFS_ACL_VERSION_FUID)
aclp->z_ops = zfs_acl_fuid_ops;
else
aclp->z_ops = zfs_acl_v0_ops;
return (aclp);
}
static zfs_acl_node_t *
zfs_acl_node_alloc(size_t bytes)
{
zfs_acl_node_t *aclnode;
aclnode = kmem_zalloc(sizeof (zfs_acl_node_t), KM_SLEEP);
if (bytes) {
aclnode->z_acldata = kmem_alloc(bytes, KM_SLEEP);
aclnode->z_allocdata = aclnode->z_acldata;
aclnode->z_allocsize = bytes;
aclnode->z_size = bytes;
}
return (aclnode);
}
static void
zfs_acl_node_free(zfs_acl_node_t *aclnode)
{
if (aclnode->z_allocsize)
kmem_free(aclnode->z_allocdata, aclnode->z_allocsize);
kmem_free(aclnode, sizeof (zfs_acl_node_t));
}
static void
zfs_acl_release_nodes(zfs_acl_t *aclp)
{
zfs_acl_node_t *aclnode;
while (aclnode = list_head(&aclp->z_acl)) {
list_remove(&aclp->z_acl, aclnode);
zfs_acl_node_free(aclnode);
}
aclp->z_acl_count = 0;
aclp->z_acl_bytes = 0;
}
void
zfs_acl_free(zfs_acl_t *aclp)
{
zfs_acl_release_nodes(aclp);
list_destroy(&aclp->z_acl);
kmem_free(aclp, sizeof (zfs_acl_t));
}
static boolean_t
zfs_acl_valid_ace_type(uint_t type, uint_t flags)
{
uint16_t entry_type;
switch (type) {
case ALLOW:
case DENY:
case ACE_SYSTEM_AUDIT_ACE_TYPE:
case ACE_SYSTEM_ALARM_ACE_TYPE:
entry_type = flags & ACE_TYPE_FLAGS;
return (entry_type == ACE_OWNER ||
entry_type == OWNING_GROUP ||
entry_type == ACE_EVERYONE || entry_type == 0 ||
entry_type == ACE_IDENTIFIER_GROUP);
default:
if (type >= MIN_ACE_TYPE && type <= MAX_ACE_TYPE)
return (B_TRUE);
}
return (B_FALSE);
}
static boolean_t
zfs_ace_valid(vtype_t obj_type, zfs_acl_t *aclp, uint16_t type, uint16_t iflags)
{
/*
* first check type of entry
*/
if (!zfs_acl_valid_ace_type(type, iflags))
return (B_FALSE);
switch (type) {
case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE:
case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE:
case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE:
case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE:
if (aclp->z_version < ZFS_ACL_VERSION_FUID)
return (B_FALSE);
aclp->z_hints |= ZFS_ACL_OBJ_ACE;
}
/*
* next check inheritance level flags
*/
if (obj_type == VDIR &&
(iflags & (ACE_FILE_INHERIT_ACE|ACE_DIRECTORY_INHERIT_ACE)))
aclp->z_hints |= ZFS_INHERIT_ACE;
if (iflags & (ACE_INHERIT_ONLY_ACE|ACE_NO_PROPAGATE_INHERIT_ACE)) {
if ((iflags & (ACE_FILE_INHERIT_ACE|
ACE_DIRECTORY_INHERIT_ACE)) == 0) {
return (B_FALSE);
}
}
return (B_TRUE);
}
static void *
zfs_acl_next_ace(zfs_acl_t *aclp, void *start, uint64_t *who,
uint32_t *access_mask, uint16_t *iflags, uint16_t *type)
{
zfs_acl_node_t *aclnode;
if (start == NULL) {
aclnode = list_head(&aclp->z_acl);
if (aclnode == NULL)
return (NULL);
aclp->z_next_ace = aclnode->z_acldata;
aclp->z_curr_node = aclnode;
aclnode->z_ace_idx = 0;
}
aclnode = aclp->z_curr_node;
if (aclnode == NULL)
return (NULL);
if (aclnode->z_ace_idx >= aclnode->z_ace_count) {
aclnode = list_next(&aclp->z_acl, aclnode);
if (aclnode == NULL)
return (NULL);
else {
aclp->z_curr_node = aclnode;
aclnode->z_ace_idx = 0;
aclp->z_next_ace = aclnode->z_acldata;
}
}
if (aclnode->z_ace_idx < aclnode->z_ace_count) {
void *acep = aclp->z_next_ace;
size_t ace_size;
/*
* Make sure we don't overstep our bounds
*/
ace_size = aclp->z_ops.ace_size(acep);
if (((caddr_t)acep + ace_size) >
((caddr_t)aclnode->z_acldata + aclnode->z_size)) {
return (NULL);
}
*iflags = aclp->z_ops.ace_flags_get(acep);
*type = aclp->z_ops.ace_type_get(acep);
*access_mask = aclp->z_ops.ace_mask_get(acep);
*who = aclp->z_ops.ace_who_get(acep);
aclp->z_next_ace = (caddr_t)aclp->z_next_ace + ace_size;
aclnode->z_ace_idx++;
return ((void *)acep);
}
return (NULL);
}
/*ARGSUSED*/
static uint64_t
zfs_ace_walk(void *datap, uint64_t cookie, int aclcnt,
uint16_t *flags, uint16_t *type, uint32_t *mask)
{
zfs_acl_t *aclp = datap;
zfs_ace_hdr_t *acep = (zfs_ace_hdr_t *)(uintptr_t)cookie;
uint64_t who;
acep = zfs_acl_next_ace(aclp, acep, &who, mask,
flags, type);
return ((uint64_t)(uintptr_t)acep);
}
static zfs_acl_node_t *
zfs_acl_curr_node(zfs_acl_t *aclp)
{
ASSERT(aclp->z_curr_node);
return (aclp->z_curr_node);
}
/*
* Copy ACE to internal ZFS format.
* While processing the ACL each ACE will be validated for correctness.
* ACE FUIDs will be created later.
*/
int
zfs_copy_ace_2_fuid(zfsvfs_t *zfsvfs, vtype_t obj_type, zfs_acl_t *aclp,
void *datap, zfs_ace_t *z_acl, int aclcnt, size_t *size,
zfs_fuid_info_t **fuidp, cred_t *cr)
{
int i;
uint16_t entry_type;
zfs_ace_t *aceptr = z_acl;
ace_t *acep = datap;
zfs_object_ace_t *zobjacep;
ace_object_t *aceobjp;
for (i = 0; i != aclcnt; i++) {
aceptr->z_hdr.z_access_mask = acep->a_access_mask;
aceptr->z_hdr.z_flags = acep->a_flags;
aceptr->z_hdr.z_type = acep->a_type;
entry_type = aceptr->z_hdr.z_flags & ACE_TYPE_FLAGS;
if (entry_type != ACE_OWNER && entry_type != OWNING_GROUP &&
entry_type != ACE_EVERYONE) {
aceptr->z_fuid = zfs_fuid_create(zfsvfs, acep->a_who,
cr, (entry_type == 0) ?
ZFS_ACE_USER : ZFS_ACE_GROUP, fuidp);
}
/*
* Make sure ACE is valid
*/
if (zfs_ace_valid(obj_type, aclp, aceptr->z_hdr.z_type,
aceptr->z_hdr.z_flags) != B_TRUE)
return (EINVAL);
switch (acep->a_type) {
case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE:
case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE:
case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE:
case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE:
zobjacep = (zfs_object_ace_t *)aceptr;
aceobjp = (ace_object_t *)acep;
bcopy(aceobjp->a_obj_type, zobjacep->z_object_type,
sizeof (aceobjp->a_obj_type));
bcopy(aceobjp->a_inherit_obj_type,
zobjacep->z_inherit_type,
sizeof (aceobjp->a_inherit_obj_type));
acep = (ace_t *)((caddr_t)acep + sizeof (ace_object_t));
break;
default:
acep = (ace_t *)((caddr_t)acep + sizeof (ace_t));
}
aceptr = (zfs_ace_t *)((caddr_t)aceptr +
aclp->z_ops.ace_size(aceptr));
}
*size = (caddr_t)aceptr - (caddr_t)z_acl;
return (0);
}
/*
* Copy ZFS ACEs to fixed size ace_t layout
*/
static void
zfs_copy_fuid_2_ace(zfsvfs_t *zfsvfs, zfs_acl_t *aclp, cred_t *cr,
void *datap, int filter)
{
uint64_t who;
uint32_t access_mask;
uint16_t iflags, type;
zfs_ace_hdr_t *zacep = NULL;
ace_t *acep = datap;
ace_object_t *objacep;
zfs_object_ace_t *zobjacep;
size_t ace_size;
uint16_t entry_type;
while (zacep = zfs_acl_next_ace(aclp, zacep,
&who, &access_mask, &iflags, &type)) {
switch (type) {
case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE:
case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE:
case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE:
case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE:
if (filter) {
continue;
}
zobjacep = (zfs_object_ace_t *)zacep;
objacep = (ace_object_t *)acep;
bcopy(zobjacep->z_object_type,
objacep->a_obj_type,
sizeof (zobjacep->z_object_type));
bcopy(zobjacep->z_inherit_type,
objacep->a_inherit_obj_type,
sizeof (zobjacep->z_inherit_type));
ace_size = sizeof (ace_object_t);
break;
default:
ace_size = sizeof (ace_t);
break;
}
entry_type = (iflags & ACE_TYPE_FLAGS);
if ((entry_type != ACE_OWNER &&
entry_type != OWNING_GROUP &&
entry_type != ACE_EVERYONE)) {
acep->a_who = zfs_fuid_map_id(zfsvfs, who,
cr, (entry_type & ACE_IDENTIFIER_GROUP) ?
ZFS_ACE_GROUP : ZFS_ACE_USER);
} else {
acep->a_who = (uid_t)(int64_t)who;
}
acep->a_access_mask = access_mask;
acep->a_flags = iflags;
acep->a_type = type;
acep = (ace_t *)((caddr_t)acep + ace_size);
}
}
static int
zfs_copy_ace_2_oldace(vtype_t obj_type, zfs_acl_t *aclp, ace_t *acep,
zfs_oldace_t *z_acl, int aclcnt, size_t *size)
{
int i;
zfs_oldace_t *aceptr = z_acl;
for (i = 0; i != aclcnt; i++, aceptr++) {
aceptr->z_access_mask = acep[i].a_access_mask;
aceptr->z_type = acep[i].a_type;
aceptr->z_flags = acep[i].a_flags;
aceptr->z_fuid = acep[i].a_who;
/*
* Make sure ACE is valid
*/
if (zfs_ace_valid(obj_type, aclp, aceptr->z_type,
aceptr->z_flags) != B_TRUE)
return (EINVAL);
}
*size = (caddr_t)aceptr - (caddr_t)z_acl;
return (0);
}
/*
* convert old ACL format to new
*/
void
zfs_acl_xform(znode_t *zp, zfs_acl_t *aclp, cred_t *cr)
{
zfs_oldace_t *oldaclp;
int i;
uint16_t type, iflags;
uint32_t access_mask;
uint64_t who;
void *cookie = NULL;
zfs_acl_node_t *newaclnode;
ASSERT(aclp->z_version == ZFS_ACL_VERSION_INITIAL);
/*
* First create the ACE in a contiguous piece of memory
* for zfs_copy_ace_2_fuid().
*
* We only convert an ACL once, so this won't happen
* everytime.
*/
oldaclp = kmem_alloc(sizeof (zfs_oldace_t) * aclp->z_acl_count,
KM_SLEEP);
i = 0;
while (cookie = zfs_acl_next_ace(aclp, cookie, &who,
&access_mask, &iflags, &type)) {
oldaclp[i].z_flags = iflags;
oldaclp[i].z_type = type;
oldaclp[i].z_fuid = who;
oldaclp[i++].z_access_mask = access_mask;
}
newaclnode = zfs_acl_node_alloc(aclp->z_acl_count *
sizeof (zfs_object_ace_t));
aclp->z_ops = zfs_acl_fuid_ops;
VERIFY(zfs_copy_ace_2_fuid(zp->z_zfsvfs, ZTOV(zp)->v_type, aclp,
oldaclp, newaclnode->z_acldata, aclp->z_acl_count,
&newaclnode->z_size, NULL, cr) == 0);
newaclnode->z_ace_count = aclp->z_acl_count;
aclp->z_version = ZFS_ACL_VERSION;
kmem_free(oldaclp, aclp->z_acl_count * sizeof (zfs_oldace_t));
/*
* Release all previous ACL nodes
*/
zfs_acl_release_nodes(aclp);
list_insert_head(&aclp->z_acl, newaclnode);
aclp->z_acl_bytes = newaclnode->z_size;
aclp->z_acl_count = newaclnode->z_ace_count;
}
/*
* Convert unix access mask to v4 access mask
*/
static uint32_t
zfs_unix_to_v4(uint32_t access_mask)
{
uint32_t new_mask = 0;
if (access_mask & S_IXOTH)
new_mask |= ACE_EXECUTE;
if (access_mask & S_IWOTH)
new_mask |= ACE_WRITE_DATA;
if (access_mask & S_IROTH)
new_mask |= ACE_READ_DATA;
return (new_mask);
}
static void
zfs_set_ace(zfs_acl_t *aclp, void *acep, uint32_t access_mask,
uint16_t access_type, uint64_t fuid, uint16_t entry_type)
{
uint16_t type = entry_type & ACE_TYPE_FLAGS;
aclp->z_ops.ace_mask_set(acep, access_mask);
aclp->z_ops.ace_type_set(acep, access_type);
aclp->z_ops.ace_flags_set(acep, entry_type);
if ((type != ACE_OWNER && type != OWNING_GROUP &&
type != ACE_EVERYONE))
aclp->z_ops.ace_who_set(acep, fuid);
}
/*
* Determine mode of file based on ACL.
* Also, create FUIDs for any User/Group ACEs
*/
static uint64_t
zfs_mode_compute(znode_t *zp, zfs_acl_t *aclp)
{
int entry_type;
mode_t mode;
mode_t seen = 0;
zfs_ace_hdr_t *acep = NULL;
uint64_t who;
uint16_t iflags, type;
uint32_t access_mask;
boolean_t an_exec_denied = B_FALSE;
mode = (zp->z_phys->zp_mode & (S_IFMT | S_ISUID | S_ISGID | S_ISVTX));
while (acep = zfs_acl_next_ace(aclp, acep, &who,
&access_mask, &iflags, &type)) {
if (!zfs_acl_valid_ace_type(type, iflags))
continue;
entry_type = (iflags & ACE_TYPE_FLAGS);
/*
* Skip over owner@, group@ or everyone@ inherit only ACEs
*/
if ((iflags & ACE_INHERIT_ONLY_ACE) &&
(entry_type == ACE_OWNER || entry_type == ACE_EVERYONE ||
entry_type == OWNING_GROUP))
continue;
if (entry_type == ACE_OWNER) {
if ((access_mask & ACE_READ_DATA) &&
(!(seen & S_IRUSR))) {
seen |= S_IRUSR;
if (type == ALLOW) {
mode |= S_IRUSR;
}
}
if ((access_mask & ACE_WRITE_DATA) &&
(!(seen & S_IWUSR))) {
seen |= S_IWUSR;
if (type == ALLOW) {
mode |= S_IWUSR;
}
}
if ((access_mask & ACE_EXECUTE) &&
(!(seen & S_IXUSR))) {
seen |= S_IXUSR;
if (type == ALLOW) {
mode |= S_IXUSR;
}
}
} else if (entry_type == OWNING_GROUP) {
if ((access_mask & ACE_READ_DATA) &&
(!(seen & S_IRGRP))) {
seen |= S_IRGRP;
if (type == ALLOW) {
mode |= S_IRGRP;
}
}
if ((access_mask & ACE_WRITE_DATA) &&
(!(seen & S_IWGRP))) {
seen |= S_IWGRP;
if (type == ALLOW) {
mode |= S_IWGRP;
}
}
if ((access_mask & ACE_EXECUTE) &&
(!(seen & S_IXGRP))) {
seen |= S_IXGRP;
if (type == ALLOW) {
mode |= S_IXGRP;
}
}
} else if (entry_type == ACE_EVERYONE) {
if ((access_mask & ACE_READ_DATA)) {
if (!(seen & S_IRUSR)) {
seen |= S_IRUSR;
if (type == ALLOW) {
mode |= S_IRUSR;
}
}
if (!(seen & S_IRGRP)) {
seen |= S_IRGRP;
if (type == ALLOW) {
mode |= S_IRGRP;
}
}
if (!(seen & S_IROTH)) {
seen |= S_IROTH;
if (type == ALLOW) {
mode |= S_IROTH;
}
}
}
if ((access_mask & ACE_WRITE_DATA)) {
if (!(seen & S_IWUSR)) {
seen |= S_IWUSR;
if (type == ALLOW) {
mode |= S_IWUSR;
}
}
if (!(seen & S_IWGRP)) {
seen |= S_IWGRP;
if (type == ALLOW) {
mode |= S_IWGRP;
}
}
if (!(seen & S_IWOTH)) {
seen |= S_IWOTH;
if (type == ALLOW) {
mode |= S_IWOTH;
}
}
}
if ((access_mask & ACE_EXECUTE)) {
if (!(seen & S_IXUSR)) {
seen |= S_IXUSR;
if (type == ALLOW) {
mode |= S_IXUSR;
}
}
if (!(seen & S_IXGRP)) {
seen |= S_IXGRP;
if (type == ALLOW) {
mode |= S_IXGRP;
}
}
if (!(seen & S_IXOTH)) {
seen |= S_IXOTH;
if (type == ALLOW) {
mode |= S_IXOTH;
}
}
}
} else {
/*
* Only care if this IDENTIFIER_GROUP or
* USER ACE denies execute access to someone,
* mode is not affected
*/
if ((access_mask & ACE_EXECUTE) && type == DENY)
an_exec_denied = B_TRUE;
}
}
/*
* Failure to allow is effectively a deny, so execute permission
* is denied if it was never mentioned or if we explicitly
* weren't allowed it.
*/
if (!an_exec_denied &&
((seen & ALL_MODE_EXECS) != ALL_MODE_EXECS ||
(mode & ALL_MODE_EXECS) != ALL_MODE_EXECS))
an_exec_denied = B_TRUE;
if (an_exec_denied)
zp->z_phys->zp_flags &= ~ZFS_NO_EXECS_DENIED;
else
zp->z_phys->zp_flags |= ZFS_NO_EXECS_DENIED;
return (mode);
}
static zfs_acl_t *
zfs_acl_node_read_internal(znode_t *zp, boolean_t will_modify)
{
zfs_acl_t *aclp;
zfs_acl_node_t *aclnode;
aclp = zfs_acl_alloc(zp->z_phys->zp_acl.z_acl_version);
/*
* Version 0 to 1 znode_acl_phys has the size/count fields swapped.
* Version 0 didn't have a size field, only a count.
*/
if (zp->z_phys->zp_acl.z_acl_version == ZFS_ACL_VERSION_INITIAL) {
aclp->z_acl_count = zp->z_phys->zp_acl.z_acl_size;
aclp->z_acl_bytes = ZFS_ACL_SIZE(aclp->z_acl_count);
} else {
aclp->z_acl_count = zp->z_phys->zp_acl.z_acl_count;
aclp->z_acl_bytes = zp->z_phys->zp_acl.z_acl_size;
}
aclnode = zfs_acl_node_alloc(will_modify ? aclp->z_acl_bytes : 0);
aclnode->z_ace_count = aclp->z_acl_count;
if (will_modify) {
bcopy(zp->z_phys->zp_acl.z_ace_data, aclnode->z_acldata,
aclp->z_acl_bytes);
} else {
aclnode->z_size = aclp->z_acl_bytes;
aclnode->z_acldata = &zp->z_phys->zp_acl.z_ace_data[0];
}
list_insert_head(&aclp->z_acl, aclnode);
return (aclp);
}
/*
* Read an external acl object. If the intent is to modify, always
* create a new acl and leave any cached acl in place.
*/
static int
zfs_acl_node_read(znode_t *zp, zfs_acl_t **aclpp, boolean_t will_modify)
{
uint64_t extacl = zp->z_phys->zp_acl.z_acl_extern_obj;
zfs_acl_t *aclp;
size_t aclsize;
size_t acl_count;
zfs_acl_node_t *aclnode;
int error;
ASSERT(MUTEX_HELD(&zp->z_acl_lock));
if (zp->z_acl_cached && !will_modify) {
*aclpp = zp->z_acl_cached;
return (0);
}
if (zp->z_phys->zp_acl.z_acl_extern_obj == 0) {
*aclpp = zfs_acl_node_read_internal(zp, will_modify);
if (!will_modify)
zp->z_acl_cached = *aclpp;
return (0);
}
aclp = zfs_acl_alloc(zp->z_phys->zp_acl.z_acl_version);
if (zp->z_phys->zp_acl.z_acl_version == ZFS_ACL_VERSION_INITIAL) {
zfs_acl_phys_v0_t *zacl0 =
(zfs_acl_phys_v0_t *)&zp->z_phys->zp_acl;
aclsize = ZFS_ACL_SIZE(zacl0->z_acl_count);
acl_count = zacl0->z_acl_count;
} else {
aclsize = zp->z_phys->zp_acl.z_acl_size;
acl_count = zp->z_phys->zp_acl.z_acl_count;
if (aclsize == 0)
aclsize = acl_count * sizeof (zfs_ace_t);
}
aclnode = zfs_acl_node_alloc(aclsize);
list_insert_head(&aclp->z_acl, aclnode);
error = dmu_read(zp->z_zfsvfs->z_os, extacl, 0,
aclsize, aclnode->z_acldata, DMU_READ_PREFETCH);
aclnode->z_ace_count = acl_count;
aclp->z_acl_count = acl_count;
aclp->z_acl_bytes = aclsize;
if (error != 0) {
zfs_acl_free(aclp);
/* convert checksum errors into IO errors */
if (error == ECKSUM)
error = EIO;
return (error);
}
*aclpp = aclp;
if (!will_modify)
zp->z_acl_cached = aclp;
return (0);
}
/*
* common code for setting ACLs.
*
* This function is called from zfs_mode_update, zfs_perm_init, and zfs_setacl.
* zfs_setacl passes a non-NULL inherit pointer (ihp) to indicate that it's
* already checked the acl and knows whether to inherit.
*/
int
zfs_aclset_common(znode_t *zp, zfs_acl_t *aclp, cred_t *cr, dmu_tx_t *tx)
{
int error;
znode_phys_t *zphys = zp->z_phys;
zfs_acl_phys_t *zacl = &zphys->zp_acl;
zfsvfs_t *zfsvfs = zp->z_zfsvfs;
uint64_t aoid = zphys->zp_acl.z_acl_extern_obj;
uint64_t off = 0;
dmu_object_type_t otype;
zfs_acl_node_t *aclnode;
dmu_buf_will_dirty(zp->z_dbuf, tx);
if (zp->z_acl_cached) {
zfs_acl_free(zp->z_acl_cached);
zp->z_acl_cached = NULL;
}
zphys->zp_mode = zfs_mode_compute(zp, aclp);
/*
* Decide which object type to use. If we are forced to
* use old ACL format then transform ACL into zfs_oldace_t
* layout.
*/
if (!zfsvfs->z_use_fuids) {
otype = DMU_OT_OLDACL;
} else {
if ((aclp->z_version == ZFS_ACL_VERSION_INITIAL) &&
(zfsvfs->z_version >= ZPL_VERSION_FUID))
zfs_acl_xform(zp, aclp, cr);
ASSERT(aclp->z_version >= ZFS_ACL_VERSION_FUID);
otype = DMU_OT_ACL;
}
if (aclp->z_acl_bytes > ZFS_ACE_SPACE) {
/*
* If ACL was previously external and we are now
* converting to new ACL format then release old
* ACL object and create a new one.
*/
if (aoid && aclp->z_version != zacl->z_acl_version) {
error = dmu_object_free(zfsvfs->z_os,
zp->z_phys->zp_acl.z_acl_extern_obj, tx);
if (error)
return (error);
aoid = 0;
}
if (aoid == 0) {
aoid = dmu_object_alloc(zfsvfs->z_os,
otype, aclp->z_acl_bytes,
otype == DMU_OT_ACL ? DMU_OT_SYSACL : DMU_OT_NONE,
otype == DMU_OT_ACL ? DN_MAX_BONUSLEN : 0, tx);
} else {
(void) dmu_object_set_blocksize(zfsvfs->z_os, aoid,
aclp->z_acl_bytes, 0, tx);
}
zphys->zp_acl.z_acl_extern_obj = aoid;
for (aclnode = list_head(&aclp->z_acl); aclnode;
aclnode = list_next(&aclp->z_acl, aclnode)) {
if (aclnode->z_ace_count == 0)
continue;
dmu_write(zfsvfs->z_os, aoid, off,
aclnode->z_size, aclnode->z_acldata, tx);
off += aclnode->z_size;
}
} else {
void *start = zacl->z_ace_data;
/*
* Migrating back embedded?
*/
if (zphys->zp_acl.z_acl_extern_obj) {
error = dmu_object_free(zfsvfs->z_os,
zp->z_phys->zp_acl.z_acl_extern_obj, tx);
if (error)
return (error);
zphys->zp_acl.z_acl_extern_obj = 0;
}
for (aclnode = list_head(&aclp->z_acl); aclnode;
aclnode = list_next(&aclp->z_acl, aclnode)) {
if (aclnode->z_ace_count == 0)
continue;
bcopy(aclnode->z_acldata, start, aclnode->z_size);
start = (caddr_t)start + aclnode->z_size;
}
}
/*
* If Old version then swap count/bytes to match old
* layout of znode_acl_phys_t.
*/
if (aclp->z_version == ZFS_ACL_VERSION_INITIAL) {
zphys->zp_acl.z_acl_size = aclp->z_acl_count;
zphys->zp_acl.z_acl_count = aclp->z_acl_bytes;
} else {
zphys->zp_acl.z_acl_size = aclp->z_acl_bytes;
zphys->zp_acl.z_acl_count = aclp->z_acl_count;
}
zphys->zp_acl.z_acl_version = aclp->z_version;
/*
* Replace ACL wide bits, but first clear them.
*/
zp->z_phys->zp_flags &= ~ZFS_ACL_WIDE_FLAGS;
zp->z_phys->zp_flags |= aclp->z_hints;
if (ace_trivial_common(aclp, 0, zfs_ace_walk) == 0)
zp->z_phys->zp_flags |= ZFS_ACL_TRIVIAL;
return (0);
}
/*
* Update access mask for prepended ACE
*
* This applies the "groupmask" value for aclmode property.
*/
static void
zfs_acl_prepend_fixup(zfs_acl_t *aclp, void *acep, void *origacep,
mode_t mode, uint64_t owner)
{
int rmask, wmask, xmask;
int user_ace;
uint16_t aceflags;
uint32_t origmask, acepmask;
uint64_t fuid;
aceflags = aclp->z_ops.ace_flags_get(acep);
fuid = aclp->z_ops.ace_who_get(acep);
origmask = aclp->z_ops.ace_mask_get(origacep);
acepmask = aclp->z_ops.ace_mask_get(acep);
user_ace = (!(aceflags &
(ACE_OWNER|ACE_GROUP|ACE_IDENTIFIER_GROUP)));
if (user_ace && (fuid == owner)) {
rmask = S_IRUSR;
wmask = S_IWUSR;
xmask = S_IXUSR;
} else {
rmask = S_IRGRP;
wmask = S_IWGRP;
xmask = S_IXGRP;
}
if (origmask & ACE_READ_DATA) {
if (mode & rmask) {
acepmask &= ~ACE_READ_DATA;
} else {
acepmask |= ACE_READ_DATA;
}
}
if (origmask & ACE_WRITE_DATA) {
if (mode & wmask) {
acepmask &= ~ACE_WRITE_DATA;
} else {
acepmask |= ACE_WRITE_DATA;
}
}
if (origmask & ACE_APPEND_DATA) {
if (mode & wmask) {
acepmask &= ~ACE_APPEND_DATA;
} else {
acepmask |= ACE_APPEND_DATA;
}
}
if (origmask & ACE_EXECUTE) {
if (mode & xmask) {
acepmask &= ~ACE_EXECUTE;
} else {
acepmask |= ACE_EXECUTE;
}
}
aclp->z_ops.ace_mask_set(acep, acepmask);
}
/*
* Apply mode to canonical six ACEs.
*/
static void
zfs_acl_fixup_canonical_six(zfs_acl_t *aclp, mode_t mode)
{
zfs_acl_node_t *aclnode = list_tail(&aclp->z_acl);
void *acep;
int maskoff = aclp->z_ops.ace_mask_off();
size_t abstract_size = aclp->z_ops.ace_abstract_size();
ASSERT(aclnode != NULL);
acep = (void *)((caddr_t)aclnode->z_acldata +
aclnode->z_size - (abstract_size * 6));
/*
* Fixup final ACEs to match the mode
*/
adjust_ace_pair_common(acep, maskoff, abstract_size,
(mode & 0700) >> 6); /* owner@ */
acep = (caddr_t)acep + (abstract_size * 2);
adjust_ace_pair_common(acep, maskoff, abstract_size,
(mode & 0070) >> 3); /* group@ */
acep = (caddr_t)acep + (abstract_size * 2);
adjust_ace_pair_common(acep, maskoff,
abstract_size, mode); /* everyone@ */
}
static int
zfs_acl_ace_match(zfs_acl_t *aclp, void *acep, int allow_deny,
int entry_type, int accessmask)
{
uint32_t mask = aclp->z_ops.ace_mask_get(acep);
uint16_t type = aclp->z_ops.ace_type_get(acep);
uint16_t flags = aclp->z_ops.ace_flags_get(acep);
return (mask == accessmask && type == allow_deny &&
((flags & ACE_TYPE_FLAGS) == entry_type));
}
/*
* Can prepended ACE be reused?
*/
static int
zfs_reuse_deny(zfs_acl_t *aclp, void *acep, void *prevacep)
{
int okay_masks;
uint16_t prevtype;
uint16_t prevflags;
uint16_t flags;
uint32_t mask, prevmask;
if (prevacep == NULL)
return (B_FALSE);
prevtype = aclp->z_ops.ace_type_get(prevacep);
prevflags = aclp->z_ops.ace_flags_get(prevacep);
flags = aclp->z_ops.ace_flags_get(acep);
mask = aclp->z_ops.ace_mask_get(acep);
prevmask = aclp->z_ops.ace_mask_get(prevacep);
if (prevtype != DENY)
return (B_FALSE);
if (prevflags != (flags & ACE_IDENTIFIER_GROUP))
return (B_FALSE);
okay_masks = (mask & OKAY_MASK_BITS);
if (prevmask & ~okay_masks)
return (B_FALSE);
return (B_TRUE);
}
/*
* Insert new ACL node into chain of zfs_acl_node_t's
*
* This will result in two possible results.
* 1. If the ACL is currently just a single zfs_acl_node and
* we are prepending the entry then current acl node will have
* a new node inserted above it.
*
* 2. If we are inserting in the middle of current acl node then
* the current node will be split in two and new node will be inserted
* in between the two split nodes.
*/
static zfs_acl_node_t *
zfs_acl_ace_insert(zfs_acl_t *aclp, void *acep)
{
zfs_acl_node_t *newnode;
zfs_acl_node_t *trailernode = NULL;
zfs_acl_node_t *currnode = zfs_acl_curr_node(aclp);
int curr_idx = aclp->z_curr_node->z_ace_idx;
int trailer_count;
size_t oldsize;
newnode = zfs_acl_node_alloc(aclp->z_ops.ace_size(acep));
newnode->z_ace_count = 1;
oldsize = currnode->z_size;
if (curr_idx != 1) {
trailernode = zfs_acl_node_alloc(0);
trailernode->z_acldata = acep;
trailer_count = currnode->z_ace_count - curr_idx + 1;
currnode->z_ace_count = curr_idx - 1;
currnode->z_size = (caddr_t)acep - (caddr_t)currnode->z_acldata;
trailernode->z_size = oldsize - currnode->z_size;
trailernode->z_ace_count = trailer_count;
}
aclp->z_acl_count += 1;
aclp->z_acl_bytes += aclp->z_ops.ace_size(acep);
if (curr_idx == 1)
list_insert_before(&aclp->z_acl, currnode, newnode);
else
list_insert_after(&aclp->z_acl, currnode, newnode);
if (trailernode) {
list_insert_after(&aclp->z_acl, newnode, trailernode);
aclp->z_curr_node = trailernode;
trailernode->z_ace_idx = 1;
}
return (newnode);
}
/*
* Prepend deny ACE
*/
static void *
zfs_acl_prepend_deny(uint64_t uid, zfs_acl_t *aclp, void *acep,
mode_t mode)
{
zfs_acl_node_t *aclnode;
void *newacep;
uint64_t fuid;
uint16_t flags;
aclnode = zfs_acl_ace_insert(aclp, acep);
newacep = aclnode->z_acldata;
fuid = aclp->z_ops.ace_who_get(acep);
flags = aclp->z_ops.ace_flags_get(acep);
zfs_set_ace(aclp, newacep, 0, DENY, fuid, (flags & ACE_TYPE_FLAGS));
zfs_acl_prepend_fixup(aclp, newacep, acep, mode, uid);
return (newacep);
}
/*
* Split an inherited ACE into inherit_only ACE
* and original ACE with inheritance flags stripped off.
*/
static void
zfs_acl_split_ace(zfs_acl_t *aclp, zfs_ace_hdr_t *acep)
{
zfs_acl_node_t *aclnode;
zfs_acl_node_t *currnode;
void *newacep;
uint16_t type, flags;
uint32_t mask;
uint64_t fuid;
type = aclp->z_ops.ace_type_get(acep);
flags = aclp->z_ops.ace_flags_get(acep);
mask = aclp->z_ops.ace_mask_get(acep);
fuid = aclp->z_ops.ace_who_get(acep);
aclnode = zfs_acl_ace_insert(aclp, acep);
newacep = aclnode->z_acldata;
aclp->z_ops.ace_type_set(newacep, type);
aclp->z_ops.ace_flags_set(newacep, flags | ACE_INHERIT_ONLY_ACE);
aclp->z_ops.ace_mask_set(newacep, mask);
aclp->z_ops.ace_type_set(newacep, type);
aclp->z_ops.ace_who_set(newacep, fuid);
aclp->z_next_ace = acep;
flags &= ~ALL_INHERIT;
aclp->z_ops.ace_flags_set(acep, flags);
currnode = zfs_acl_curr_node(aclp);
ASSERT(currnode->z_ace_idx >= 1);
currnode->z_ace_idx -= 1;
}
/*
* Are ACES started at index i, the canonical six ACES?
*/
static int
zfs_have_canonical_six(zfs_acl_t *aclp)
{
void *acep;
zfs_acl_node_t *aclnode = list_tail(&aclp->z_acl);
int i = 0;
size_t abstract_size = aclp->z_ops.ace_abstract_size();
ASSERT(aclnode != NULL);
if (aclnode->z_ace_count < 6)
return (0);
acep = (void *)((caddr_t)aclnode->z_acldata +
aclnode->z_size - (aclp->z_ops.ace_abstract_size() * 6));
if ((zfs_acl_ace_match(aclp, (caddr_t)acep + (abstract_size * i++),
DENY, ACE_OWNER, 0) &&
zfs_acl_ace_match(aclp, (caddr_t)acep + (abstract_size * i++),
ALLOW, ACE_OWNER, OWNER_ALLOW_MASK) &&
zfs_acl_ace_match(aclp, (caddr_t)acep + (abstract_size * i++), DENY,
OWNING_GROUP, 0) && zfs_acl_ace_match(aclp, (caddr_t)acep +
(abstract_size * i++),
ALLOW, OWNING_GROUP, 0) &&
zfs_acl_ace_match(aclp, (caddr_t)acep + (abstract_size * i++),
DENY, ACE_EVERYONE, EVERYONE_DENY_MASK) &&
zfs_acl_ace_match(aclp, (caddr_t)acep + (abstract_size * i++),
ALLOW, ACE_EVERYONE, EVERYONE_ALLOW_MASK))) {
return (1);
} else {
return (0);
}
}
/*
* Apply step 1g, to group entries
*
* Need to deal with corner case where group may have
* greater permissions than owner. If so then limit
* group permissions, based on what extra permissions
* group has.
*/
static void
zfs_fixup_group_entries(zfs_acl_t *aclp, void *acep, void *prevacep,
mode_t mode)
{
uint32_t prevmask = aclp->z_ops.ace_mask_get(prevacep);
uint32_t mask = aclp->z_ops.ace_mask_get(acep);
uint16_t prevflags = aclp->z_ops.ace_flags_get(prevacep);
mode_t extramode = (mode >> 3) & 07;
mode_t ownermode = (mode >> 6);
if (prevflags & ACE_IDENTIFIER_GROUP) {
extramode &= ~ownermode;
if (extramode) {
if (extramode & S_IROTH) {
prevmask &= ~ACE_READ_DATA;
mask &= ~ACE_READ_DATA;
}
if (extramode & S_IWOTH) {
prevmask &= ~(ACE_WRITE_DATA|ACE_APPEND_DATA);
mask &= ~(ACE_WRITE_DATA|ACE_APPEND_DATA);
}
if (extramode & S_IXOTH) {
prevmask &= ~ACE_EXECUTE;
mask &= ~ACE_EXECUTE;
}
}
}
aclp->z_ops.ace_mask_set(acep, mask);
aclp->z_ops.ace_mask_set(prevacep, prevmask);
}
/*
* Apply the chmod algorithm as described
* in PSARC/2002/240
*/
static void
zfs_acl_chmod(zfsvfs_t *zfsvfs, uint64_t uid,
uint64_t mode, zfs_acl_t *aclp)
{
void *acep = NULL, *prevacep = NULL;
uint64_t who;
int i;
int entry_type;
int reuse_deny;
int need_canonical_six = 1;
uint16_t iflags, type;
uint32_t access_mask;
/*
* If discard then just discard all ACL nodes which
* represent the ACEs.
*
* New owner@/group@/everone@ ACEs will be added
* later.
*/
if (zfsvfs->z_acl_mode == ZFS_ACL_DISCARD)
zfs_acl_release_nodes(aclp);
while (acep = zfs_acl_next_ace(aclp, acep, &who, &access_mask,
&iflags, &type)) {
entry_type = (iflags & ACE_TYPE_FLAGS);
iflags = (iflags & ALL_INHERIT);
if ((type != ALLOW && type != DENY) ||
(iflags & ACE_INHERIT_ONLY_ACE)) {
if (iflags)
aclp->z_hints |= ZFS_INHERIT_ACE;
switch (type) {
case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE:
case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE:
case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE:
case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE:
aclp->z_hints |= ZFS_ACL_OBJ_ACE;
break;
}
goto nextace;
}
/*
* Need to split ace into two?
*/
if ((iflags & (ACE_FILE_INHERIT_ACE|
ACE_DIRECTORY_INHERIT_ACE)) &&
(!(iflags & ACE_INHERIT_ONLY_ACE))) {
zfs_acl_split_ace(aclp, acep);
aclp->z_hints |= ZFS_INHERIT_ACE;
goto nextace;
}
if (entry_type == ACE_OWNER || entry_type == ACE_EVERYONE ||
(entry_type == OWNING_GROUP)) {
access_mask &= ~OGE_CLEAR;
aclp->z_ops.ace_mask_set(acep, access_mask);
goto nextace;
} else {
reuse_deny = B_TRUE;
if (type == ALLOW) {
/*
* Check preceding ACE if any, to see
* if we need to prepend a DENY ACE.
* This is only applicable when the acl_mode
* property == groupmask.
*/
if (zfsvfs->z_acl_mode == ZFS_ACL_GROUPMASK) {
reuse_deny = zfs_reuse_deny(aclp, acep,
prevacep);
if (!reuse_deny) {
prevacep =
zfs_acl_prepend_deny(uid,
aclp, acep, mode);
} else {
zfs_acl_prepend_fixup(
aclp, prevacep,
acep, mode, uid);
}
zfs_fixup_group_entries(aclp, acep,
prevacep, mode);
}
}
}
nextace:
prevacep = acep;
}
/*
* Check out last six aces, if we have six.
*/
if (aclp->z_acl_count >= 6) {
if (zfs_have_canonical_six(aclp)) {
need_canonical_six = 0;
}
}
if (need_canonical_six) {
size_t abstract_size = aclp->z_ops.ace_abstract_size();
void *zacep;
zfs_acl_node_t *aclnode =
zfs_acl_node_alloc(abstract_size * 6);
aclnode->z_size = abstract_size * 6;
aclnode->z_ace_count = 6;
aclp->z_acl_bytes += aclnode->z_size;
list_insert_tail(&aclp->z_acl, aclnode);
zacep = aclnode->z_acldata;
i = 0;
zfs_set_ace(aclp, (caddr_t)zacep + (abstract_size * i++),
0, DENY, -1, ACE_OWNER);
zfs_set_ace(aclp, (caddr_t)zacep + (abstract_size * i++),
OWNER_ALLOW_MASK, ALLOW, -1, ACE_OWNER);
zfs_set_ace(aclp, (caddr_t)zacep + (abstract_size * i++), 0,
DENY, -1, OWNING_GROUP);
zfs_set_ace(aclp, (caddr_t)zacep + (abstract_size * i++), 0,
ALLOW, -1, OWNING_GROUP);
zfs_set_ace(aclp, (caddr_t)zacep + (abstract_size * i++),
EVERYONE_DENY_MASK, DENY, -1, ACE_EVERYONE);
zfs_set_ace(aclp, (caddr_t)zacep + (abstract_size * i++),
EVERYONE_ALLOW_MASK, ALLOW, -1, ACE_EVERYONE);
aclp->z_acl_count += 6;
}
zfs_acl_fixup_canonical_six(aclp, mode);
}
int
zfs_acl_chmod_setattr(znode_t *zp, zfs_acl_t **aclp, uint64_t mode)
{
int error;
mutex_enter(&zp->z_lock);
mutex_enter(&zp->z_acl_lock);
*aclp = NULL;
error = zfs_acl_node_read(zp, aclp, B_TRUE);
if (error == 0) {
(*aclp)->z_hints = zp->z_phys->zp_flags & V4_ACL_WIDE_FLAGS;
zfs_acl_chmod(zp->z_zfsvfs, zp->z_phys->zp_uid, mode, *aclp);
}
mutex_exit(&zp->z_acl_lock);
mutex_exit(&zp->z_lock);
return (error);
}
/*
* strip off write_owner and write_acl
*/
static void
zfs_restricted_update(zfsvfs_t *zfsvfs, zfs_acl_t *aclp, void *acep)
{
uint32_t mask = aclp->z_ops.ace_mask_get(acep);
if ((zfsvfs->z_acl_inherit == ZFS_ACL_RESTRICTED) &&
(aclp->z_ops.ace_type_get(acep) == ALLOW)) {
mask &= ~RESTRICTED_CLEAR;
aclp->z_ops.ace_mask_set(acep, mask);
}
}
/*
* Should ACE be inherited?
*/
static int
zfs_ace_can_use(vtype_t vtype, uint16_t acep_flags)
{
int iflags = (acep_flags & 0xf);
if ((vtype == VDIR) && (iflags & ACE_DIRECTORY_INHERIT_ACE))
return (1);
else if (iflags & ACE_FILE_INHERIT_ACE)
return (!((vtype == VDIR) &&
(iflags & ACE_NO_PROPAGATE_INHERIT_ACE)));
return (0);
}
/*
* inherit inheritable ACEs from parent
*/
static zfs_acl_t *
zfs_acl_inherit(zfsvfs_t *zfsvfs, vtype_t vtype, zfs_acl_t *paclp,
uint64_t mode, boolean_t *need_chmod)
{
void *pacep;
void *acep, *acep2;
zfs_acl_node_t *aclnode, *aclnode2;
zfs_acl_t *aclp = NULL;
uint64_t who;
uint32_t access_mask;
uint16_t iflags, newflags, type;
size_t ace_size;
void *data1, *data2;
size_t data1sz, data2sz;
boolean_t vdir = vtype == VDIR;
boolean_t vreg = vtype == VREG;
boolean_t passthrough, passthrough_x, noallow;
passthrough_x =
zfsvfs->z_acl_inherit == ZFS_ACL_PASSTHROUGH_X;
passthrough = passthrough_x ||
zfsvfs->z_acl_inherit == ZFS_ACL_PASSTHROUGH;
noallow =
zfsvfs->z_acl_inherit == ZFS_ACL_NOALLOW;
*need_chmod = B_TRUE;
pacep = NULL;
aclp = zfs_acl_alloc(paclp->z_version);
if (zfsvfs->z_acl_inherit == ZFS_ACL_DISCARD)
return (aclp);
while (pacep = zfs_acl_next_ace(paclp, pacep, &who,
&access_mask, &iflags, &type)) {
/*
* don't inherit bogus ACEs
*/
if (!zfs_acl_valid_ace_type(type, iflags))
continue;
if (noallow && type == ALLOW)
continue;
ace_size = aclp->z_ops.ace_size(pacep);
if (!zfs_ace_can_use(vtype, iflags))
continue;
/*
* If owner@, group@, or everyone@ inheritable
* then zfs_acl_chmod() isn't needed.
*/
if (passthrough &&
((iflags & (ACE_OWNER|ACE_EVERYONE)) ||
((iflags & OWNING_GROUP) ==
OWNING_GROUP)) && (vreg || (vdir && (iflags &
ACE_DIRECTORY_INHERIT_ACE)))) {
*need_chmod = B_FALSE;
if (!vdir && passthrough_x &&
((mode & (S_IXUSR | S_IXGRP | S_IXOTH)) == 0)) {
access_mask &= ~ACE_EXECUTE;
}
}
aclnode = zfs_acl_node_alloc(ace_size);
list_insert_tail(&aclp->z_acl, aclnode);
acep = aclnode->z_acldata;
zfs_set_ace(aclp, acep, access_mask, type,
who, iflags|ACE_INHERITED_ACE);
/*
* Copy special opaque data if any
*/
if ((data1sz = paclp->z_ops.ace_data(pacep, &data1)) != 0) {
VERIFY((data2sz = aclp->z_ops.ace_data(acep,
&data2)) == data1sz);
bcopy(data1, data2, data2sz);
}
aclp->z_acl_count++;
aclnode->z_ace_count++;
aclp->z_acl_bytes += aclnode->z_size;
newflags = aclp->z_ops.ace_flags_get(acep);
if (vdir)
aclp->z_hints |= ZFS_INHERIT_ACE;
if ((iflags & ACE_NO_PROPAGATE_INHERIT_ACE) || !vdir) {
newflags &= ~ALL_INHERIT;
aclp->z_ops.ace_flags_set(acep,
newflags|ACE_INHERITED_ACE);
zfs_restricted_update(zfsvfs, aclp, acep);
continue;
}
ASSERT(vdir);
newflags = aclp->z_ops.ace_flags_get(acep);
if ((iflags & (ACE_FILE_INHERIT_ACE |
ACE_DIRECTORY_INHERIT_ACE)) !=
ACE_FILE_INHERIT_ACE) {
aclnode2 = zfs_acl_node_alloc(ace_size);
list_insert_tail(&aclp->z_acl, aclnode2);
acep2 = aclnode2->z_acldata;
zfs_set_ace(aclp, acep2,
access_mask, type, who,
iflags|ACE_INHERITED_ACE);
newflags |= ACE_INHERIT_ONLY_ACE;
aclp->z_ops.ace_flags_set(acep, newflags);
newflags &= ~ALL_INHERIT;
aclp->z_ops.ace_flags_set(acep2,
newflags|ACE_INHERITED_ACE);
/*
* Copy special opaque data if any
*/
if ((data1sz = aclp->z_ops.ace_data(acep,
&data1)) != 0) {
VERIFY((data2sz =
aclp->z_ops.ace_data(acep2,
&data2)) == data1sz);
bcopy(data1, data2, data1sz);
}
aclp->z_acl_count++;
aclnode2->z_ace_count++;
aclp->z_acl_bytes += aclnode->z_size;
zfs_restricted_update(zfsvfs, aclp, acep2);
} else {
newflags |= ACE_INHERIT_ONLY_ACE;
aclp->z_ops.ace_flags_set(acep,
newflags|ACE_INHERITED_ACE);
}
}
return (aclp);
}
/*
* Create file system object initial permissions
* including inheritable ACEs.
*/
int
zfs_acl_ids_create(znode_t *dzp, int flag, vattr_t *vap, cred_t *cr,
vsecattr_t *vsecp, zfs_acl_ids_t *acl_ids)
{
int error;
zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
zfs_acl_t *paclp;
gid_t gid;
boolean_t need_chmod = B_TRUE;
bzero(acl_ids, sizeof (zfs_acl_ids_t));
acl_ids->z_mode = MAKEIMODE(vap->va_type, vap->va_mode);
if (vsecp)
if ((error = zfs_vsec_2_aclp(zfsvfs, vap->va_type, vsecp, cr,
&acl_ids->z_fuidp, &acl_ids->z_aclp)) != 0)
return (error);
/*
* Determine uid and gid.
*/
if ((flag & (IS_ROOT_NODE | IS_REPLAY)) ||
((flag & IS_XATTR) && (vap->va_type == VDIR))) {
acl_ids->z_fuid = zfs_fuid_create(zfsvfs,
(uint64_t)vap->va_uid, cr,
ZFS_OWNER, &acl_ids->z_fuidp);
acl_ids->z_fgid = zfs_fuid_create(zfsvfs,
(uint64_t)vap->va_gid, cr,
ZFS_GROUP, &acl_ids->z_fuidp);
gid = vap->va_gid;
} else {
acl_ids->z_fuid = zfs_fuid_create_cred(zfsvfs, ZFS_OWNER,
cr, &acl_ids->z_fuidp);
acl_ids->z_fgid = 0;
if (vap->va_mask & AT_GID) {
acl_ids->z_fgid = zfs_fuid_create(zfsvfs,
(uint64_t)vap->va_gid,
cr, ZFS_GROUP, &acl_ids->z_fuidp);
gid = vap->va_gid;
if (acl_ids->z_fgid != dzp->z_phys->zp_gid &&
!groupmember(vap->va_gid, cr) &&
secpolicy_vnode_create_gid(cr) != 0)
acl_ids->z_fgid = 0;
}
if (acl_ids->z_fgid == 0) {
if (dzp->z_phys->zp_mode & S_ISGID) {
acl_ids->z_fgid = dzp->z_phys->zp_gid;
gid = zfs_fuid_map_id(zfsvfs, acl_ids->z_fgid,
cr, ZFS_GROUP);
} else {
acl_ids->z_fgid = zfs_fuid_create_cred(zfsvfs,
ZFS_GROUP, cr, &acl_ids->z_fuidp);
gid = crgetgid(cr);
}
}
}
/*
* If we're creating a directory, and the parent directory has the
* set-GID bit set, set in on the new directory.
* Otherwise, if the user is neither privileged nor a member of the
* file's new group, clear the file's set-GID bit.
*/
if (!(flag & IS_ROOT_NODE) && (dzp->z_phys->zp_mode & S_ISGID) &&
(vap->va_type == VDIR)) {
acl_ids->z_mode |= S_ISGID;
} else {
if ((acl_ids->z_mode & S_ISGID) &&
secpolicy_vnode_setids_setgids(cr, gid) != 0)
acl_ids->z_mode &= ~S_ISGID;
}
if (acl_ids->z_aclp == NULL) {
mutex_enter(&dzp->z_lock);
if (!(flag & IS_ROOT_NODE) && (ZTOV(dzp)->v_type == VDIR &&
(dzp->z_phys->zp_flags & ZFS_INHERIT_ACE)) &&
!(dzp->z_phys->zp_flags & ZFS_XATTR)) {
mutex_enter(&dzp->z_acl_lock);
VERIFY(0 == zfs_acl_node_read(dzp, &paclp, B_FALSE));
mutex_exit(&dzp->z_acl_lock);
acl_ids->z_aclp = zfs_acl_inherit(zfsvfs,
vap->va_type, paclp, acl_ids->z_mode, &need_chmod);
} else {
acl_ids->z_aclp =
zfs_acl_alloc(zfs_acl_version_zp(dzp));
}
mutex_exit(&dzp->z_lock);
if (need_chmod) {
acl_ids->z_aclp->z_hints = (vap->va_type == VDIR) ?
ZFS_ACL_AUTO_INHERIT : 0;
zfs_acl_chmod(zfsvfs, acl_ids->z_fuid,
acl_ids->z_mode, acl_ids->z_aclp);
}
}
return (0);
}
/*
* Free ACL and fuid_infop, but not the acl_ids structure
*/
void
zfs_acl_ids_free(zfs_acl_ids_t *acl_ids)
{
if (acl_ids->z_aclp)
zfs_acl_free(acl_ids->z_aclp);
if (acl_ids->z_fuidp)
zfs_fuid_info_free(acl_ids->z_fuidp);
acl_ids->z_aclp = NULL;
acl_ids->z_fuidp = NULL;
}
boolean_t
zfs_acl_ids_overquota(zfsvfs_t *zfsvfs, zfs_acl_ids_t *acl_ids)
{
return (zfs_usergroup_overquota(zfsvfs, B_FALSE, acl_ids->z_fuid) ||
zfs_usergroup_overquota(zfsvfs, B_TRUE, acl_ids->z_fgid));
}
/*
* Retrieve a files ACL
*/
int
zfs_getacl(znode_t *zp, vsecattr_t *vsecp, boolean_t skipaclchk, cred_t *cr)
{
zfs_acl_t *aclp;
ulong_t mask;
int error;
int count = 0;
int largeace = 0;
mask = vsecp->vsa_mask & (VSA_ACE | VSA_ACECNT |
VSA_ACE_ACLFLAGS | VSA_ACE_ALLTYPES);
if (error = zfs_zaccess(zp, ACE_READ_ACL, 0, skipaclchk, cr))
return (error);
if (mask == 0)
return (ENOSYS);
mutex_enter(&zp->z_acl_lock);
error = zfs_acl_node_read(zp, &aclp, B_FALSE);
if (error != 0) {
mutex_exit(&zp->z_acl_lock);
return (error);
}
/*
* Scan ACL to determine number of ACEs
*/
if ((zp->z_phys->zp_flags & ZFS_ACL_OBJ_ACE) &&
!(mask & VSA_ACE_ALLTYPES)) {
void *zacep = NULL;
uint64_t who;
uint32_t access_mask;
uint16_t type, iflags;
while (zacep = zfs_acl_next_ace(aclp, zacep,
&who, &access_mask, &iflags, &type)) {
switch (type) {
case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE:
case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE:
case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE:
case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE:
largeace++;
continue;
default:
count++;
}
}
vsecp->vsa_aclcnt = count;
} else
count = aclp->z_acl_count;
if (mask & VSA_ACECNT) {
vsecp->vsa_aclcnt = count;
}
if (mask & VSA_ACE) {
size_t aclsz;
zfs_acl_node_t *aclnode = list_head(&aclp->z_acl);
aclsz = count * sizeof (ace_t) +
sizeof (ace_object_t) * largeace;
vsecp->vsa_aclentp = kmem_alloc(aclsz, KM_SLEEP);
vsecp->vsa_aclentsz = aclsz;
if (aclp->z_version == ZFS_ACL_VERSION_FUID)
zfs_copy_fuid_2_ace(zp->z_zfsvfs, aclp, cr,
vsecp->vsa_aclentp, !(mask & VSA_ACE_ALLTYPES));
else {
bcopy(aclnode->z_acldata, vsecp->vsa_aclentp,
count * sizeof (ace_t));
}
}
if (mask & VSA_ACE_ACLFLAGS) {
vsecp->vsa_aclflags = 0;
if (zp->z_phys->zp_flags & ZFS_ACL_DEFAULTED)
vsecp->vsa_aclflags |= ACL_DEFAULTED;
if (zp->z_phys->zp_flags & ZFS_ACL_PROTECTED)
vsecp->vsa_aclflags |= ACL_PROTECTED;
if (zp->z_phys->zp_flags & ZFS_ACL_AUTO_INHERIT)
vsecp->vsa_aclflags |= ACL_AUTO_INHERIT;
}
mutex_exit(&zp->z_acl_lock);
return (0);
}
int
zfs_vsec_2_aclp(zfsvfs_t *zfsvfs, vtype_t obj_type,
vsecattr_t *vsecp, cred_t *cr, zfs_fuid_info_t **fuidp, zfs_acl_t **zaclp)
{
zfs_acl_t *aclp;
zfs_acl_node_t *aclnode;
int aclcnt = vsecp->vsa_aclcnt;
int error;
if (vsecp->vsa_aclcnt > MAX_ACL_ENTRIES || vsecp->vsa_aclcnt <= 0)
return (EINVAL);
aclp = zfs_acl_alloc(zfs_acl_version(zfsvfs->z_version));
aclp->z_hints = 0;
aclnode = zfs_acl_node_alloc(aclcnt * sizeof (zfs_object_ace_t));
if (aclp->z_version == ZFS_ACL_VERSION_INITIAL) {
if ((error = zfs_copy_ace_2_oldace(obj_type, aclp,
(ace_t *)vsecp->vsa_aclentp, aclnode->z_acldata,
aclcnt, &aclnode->z_size)) != 0) {
zfs_acl_free(aclp);
zfs_acl_node_free(aclnode);
return (error);
}
} else {
if ((error = zfs_copy_ace_2_fuid(zfsvfs, obj_type, aclp,
vsecp->vsa_aclentp, aclnode->z_acldata, aclcnt,
&aclnode->z_size, fuidp, cr)) != 0) {
zfs_acl_free(aclp);
zfs_acl_node_free(aclnode);
return (error);
}
}
aclp->z_acl_bytes = aclnode->z_size;
aclnode->z_ace_count = aclcnt;
aclp->z_acl_count = aclcnt;
list_insert_head(&aclp->z_acl, aclnode);
/*
* If flags are being set then add them to z_hints
*/
if (vsecp->vsa_mask & VSA_ACE_ACLFLAGS) {
if (vsecp->vsa_aclflags & ACL_PROTECTED)
aclp->z_hints |= ZFS_ACL_PROTECTED;
if (vsecp->vsa_aclflags & ACL_DEFAULTED)
aclp->z_hints |= ZFS_ACL_DEFAULTED;
if (vsecp->vsa_aclflags & ACL_AUTO_INHERIT)
aclp->z_hints |= ZFS_ACL_AUTO_INHERIT;
}
*zaclp = aclp;
return (0);
}
/*
* Set a files ACL
*/
int
zfs_setacl(znode_t *zp, vsecattr_t *vsecp, boolean_t skipaclchk, cred_t *cr)
{
zfsvfs_t *zfsvfs = zp->z_zfsvfs;
zilog_t *zilog = zfsvfs->z_log;
ulong_t mask = vsecp->vsa_mask & (VSA_ACE | VSA_ACECNT);
dmu_tx_t *tx;
int error;
zfs_acl_t *aclp;
zfs_fuid_info_t *fuidp = NULL;
boolean_t fuid_dirtied;
if (mask == 0)
return (ENOSYS);
if (zp->z_phys->zp_flags & ZFS_IMMUTABLE)
return (EPERM);
if (error = zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr))
return (error);
error = zfs_vsec_2_aclp(zfsvfs, ZTOV(zp)->v_type, vsecp, cr, &fuidp,
&aclp);
if (error)
return (error);
/*
* If ACL wide flags aren't being set then preserve any
* existing flags.
*/
if (!(vsecp->vsa_mask & VSA_ACE_ACLFLAGS)) {
aclp->z_hints |= (zp->z_phys->zp_flags & V4_ACL_WIDE_FLAGS);
}
top:
mutex_enter(&zp->z_lock);
mutex_enter(&zp->z_acl_lock);
tx = dmu_tx_create(zfsvfs->z_os);
dmu_tx_hold_bonus(tx, zp->z_id);
if (zp->z_phys->zp_acl.z_acl_extern_obj) {
/* Are we upgrading ACL? */
if (zfsvfs->z_version <= ZPL_VERSION_FUID &&
zp->z_phys->zp_acl.z_acl_version ==
ZFS_ACL_VERSION_INITIAL) {
dmu_tx_hold_free(tx,
zp->z_phys->zp_acl.z_acl_extern_obj,
0, DMU_OBJECT_END);
dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
0, aclp->z_acl_bytes);
} else {
dmu_tx_hold_write(tx,
zp->z_phys->zp_acl.z_acl_extern_obj,
0, aclp->z_acl_bytes);
}
} else if (aclp->z_acl_bytes > ZFS_ACE_SPACE) {
dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, aclp->z_acl_bytes);
}
fuid_dirtied = zfsvfs->z_fuid_dirty;
if (fuid_dirtied)
zfs_fuid_txhold(zfsvfs, tx);
error = dmu_tx_assign(tx, TXG_NOWAIT);
if (error) {
mutex_exit(&zp->z_acl_lock);
mutex_exit(&zp->z_lock);
if (error == ERESTART) {
dmu_tx_wait(tx);
dmu_tx_abort(tx);
goto top;
}
dmu_tx_abort(tx);
zfs_acl_free(aclp);
return (error);
}
error = zfs_aclset_common(zp, aclp, cr, tx);
ASSERT(error == 0);
zp->z_acl_cached = aclp;
if (fuid_dirtied)
zfs_fuid_sync(zfsvfs, tx);
zfs_time_stamper_locked(zp, STATE_CHANGED, tx);
zfs_log_acl(zilog, tx, zp, vsecp, fuidp);
if (fuidp)
zfs_fuid_info_free(fuidp);
dmu_tx_commit(tx);
done:
mutex_exit(&zp->z_acl_lock);
mutex_exit(&zp->z_lock);
return (error);
}
/*
* Check accesses of interest (AoI) against attributes of the dataset
* such as read-only. Returns zero if no AoI conflict with dataset
* attributes, otherwise an appropriate errno is returned.
*/
static int
zfs_zaccess_dataset_check(znode_t *zp, uint32_t v4_mode)
{
if ((v4_mode & WRITE_MASK) &&
(zp->z_zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) &&
(!IS_DEVVP(ZTOV(zp)) ||
(IS_DEVVP(ZTOV(zp)) && (v4_mode & WRITE_MASK_ATTRS)))) {
return (EROFS);
}
/*
* Only check for READONLY on non-directories.
*/
if ((v4_mode & WRITE_MASK_DATA) &&
(((ZTOV(zp)->v_type != VDIR) &&
(zp->z_phys->zp_flags & (ZFS_READONLY | ZFS_IMMUTABLE))) ||
(ZTOV(zp)->v_type == VDIR &&
(zp->z_phys->zp_flags & ZFS_IMMUTABLE)))) {
return (EPERM);
}
if ((v4_mode & (ACE_DELETE | ACE_DELETE_CHILD)) &&
(zp->z_phys->zp_flags & ZFS_NOUNLINK)) {
return (EPERM);
}
if (((v4_mode & (ACE_READ_DATA|ACE_EXECUTE)) &&
(zp->z_phys->zp_flags & ZFS_AV_QUARANTINED))) {
return (EACCES);
}
return (0);
}
/*
* The primary usage of this function is to loop through all of the
* ACEs in the znode, determining what accesses of interest (AoI) to
* the caller are allowed or denied. The AoI are expressed as bits in
* the working_mode parameter. As each ACE is processed, bits covered
* by that ACE are removed from the working_mode. This removal
* facilitates two things. The first is that when the working mode is
* empty (= 0), we know we've looked at all the AoI. The second is
* that the ACE interpretation rules don't allow a later ACE to undo
* something granted or denied by an earlier ACE. Removing the
* discovered access or denial enforces this rule. At the end of
* processing the ACEs, all AoI that were found to be denied are
* placed into the working_mode, giving the caller a mask of denied
* accesses. Returns:
* 0 if all AoI granted
* EACCESS if the denied mask is non-zero
* other error if abnormal failure (e.g., IO error)
*
* A secondary usage of the function is to determine if any of the
* AoI are granted. If an ACE grants any access in
* the working_mode, we immediately short circuit out of the function.
* This mode is chosen by setting anyaccess to B_TRUE. The
* working_mode is not a denied access mask upon exit if the function
* is used in this manner.
*/
static int
zfs_zaccess_aces_check(znode_t *zp, uint32_t *working_mode,
boolean_t anyaccess, cred_t *cr)
{
zfsvfs_t *zfsvfs = zp->z_zfsvfs;
zfs_acl_t *aclp;
int error;
uid_t uid = crgetuid(cr);
uint64_t who;
uint16_t type, iflags;
uint16_t entry_type;
uint32_t access_mask;
uint32_t deny_mask = 0;
zfs_ace_hdr_t *acep = NULL;
boolean_t checkit;
uid_t fowner;
uid_t gowner;
zfs_fuid_map_ids(zp, cr, &fowner, &gowner);
mutex_enter(&zp->z_acl_lock);
error = zfs_acl_node_read(zp, &aclp, B_FALSE);
if (error != 0) {
mutex_exit(&zp->z_acl_lock);
return (error);
}
while (acep = zfs_acl_next_ace(aclp, acep, &who, &access_mask,
&iflags, &type)) {
uint32_t mask_matched;
if (!zfs_acl_valid_ace_type(type, iflags))
continue;
if (ZTOV(zp)->v_type == VDIR && (iflags & ACE_INHERIT_ONLY_ACE))
continue;
/* Skip ACE if it does not affect any AoI */
mask_matched = (access_mask & *working_mode);
if (!mask_matched)
continue;
entry_type = (iflags & ACE_TYPE_FLAGS);
checkit = B_FALSE;
switch (entry_type) {
case ACE_OWNER:
if (uid == fowner)
checkit = B_TRUE;
break;
case OWNING_GROUP:
who = gowner;
/*FALLTHROUGH*/
case ACE_IDENTIFIER_GROUP:
checkit = zfs_groupmember(zfsvfs, who, cr);
break;
case ACE_EVERYONE:
checkit = B_TRUE;
break;
/* USER Entry */
default:
if (entry_type == 0) {
uid_t newid;
newid = zfs_fuid_map_id(zfsvfs, who, cr,
ZFS_ACE_USER);
if (newid != IDMAP_WK_CREATOR_OWNER_UID &&
uid == newid)
checkit = B_TRUE;
break;
} else {
mutex_exit(&zp->z_acl_lock);
return (EIO);
}
}
if (checkit) {
if (type == DENY) {
DTRACE_PROBE3(zfs__ace__denies,
znode_t *, zp,
zfs_ace_hdr_t *, acep,
uint32_t, mask_matched);
deny_mask |= mask_matched;
} else {
DTRACE_PROBE3(zfs__ace__allows,
znode_t *, zp,
zfs_ace_hdr_t *, acep,
uint32_t, mask_matched);
if (anyaccess) {
mutex_exit(&zp->z_acl_lock);
return (0);
}
}
*working_mode &= ~mask_matched;
}
/* Are we done? */
if (*working_mode == 0)
break;
}
mutex_exit(&zp->z_acl_lock);
/* Put the found 'denies' back on the working mode */
if (deny_mask) {
*working_mode |= deny_mask;
return (EACCES);
} else if (*working_mode) {
return (-1);
}
return (0);
}
/*
* Return true if any access whatsoever granted, we don't actually
* care what access is granted.
*/
boolean_t
zfs_has_access(znode_t *zp, cred_t *cr)
{
uint32_t have = ACE_ALL_PERMS;
if (zfs_zaccess_aces_check(zp, &have, B_TRUE, cr) != 0) {
uid_t owner;
owner = zfs_fuid_map_id(zp->z_zfsvfs,
zp->z_phys->zp_uid, cr, ZFS_OWNER);
return (
secpolicy_vnode_access(cr, ZTOV(zp), owner, VREAD) == 0 ||
secpolicy_vnode_access(cr, ZTOV(zp), owner, VWRITE) == 0 ||
secpolicy_vnode_access(cr, ZTOV(zp), owner, VEXEC) == 0 ||
secpolicy_vnode_chown(cr, owner) == 0 ||
secpolicy_vnode_setdac(cr, owner) == 0 ||
secpolicy_vnode_remove(cr) == 0);
}
return (B_TRUE);
}
static int
zfs_zaccess_common(znode_t *zp, uint32_t v4_mode, uint32_t *working_mode,
boolean_t *check_privs, boolean_t skipaclchk, cred_t *cr)
{
zfsvfs_t *zfsvfs = zp->z_zfsvfs;
int err;
*working_mode = v4_mode;
*check_privs = B_TRUE;
/*
* Short circuit empty requests
*/
if (v4_mode == 0 || zfsvfs->z_replay) {
*working_mode = 0;
return (0);
}
if ((err = zfs_zaccess_dataset_check(zp, v4_mode)) != 0) {
*check_privs = B_FALSE;
return (err);
}
/*
* The caller requested that the ACL check be skipped. This
* would only happen if the caller checked VOP_ACCESS() with a
* 32 bit ACE mask and already had the appropriate permissions.
*/
if (skipaclchk) {
*working_mode = 0;
return (0);
}
return (zfs_zaccess_aces_check(zp, working_mode, B_FALSE, cr));
}
static int
zfs_zaccess_append(znode_t *zp, uint32_t *working_mode, boolean_t *check_privs,
cred_t *cr)
{
if (*working_mode != ACE_WRITE_DATA)
return (EACCES);
return (zfs_zaccess_common(zp, ACE_APPEND_DATA, working_mode,
check_privs, B_FALSE, cr));
}
int
zfs_fastaccesschk_execute(znode_t *zdp, cred_t *cr)
{
boolean_t owner = B_FALSE;
boolean_t groupmbr = B_FALSE;
boolean_t is_attr;
uid_t fowner;
uid_t gowner;
uid_t uid = crgetuid(cr);
int error;
if (zdp->z_phys->zp_flags & ZFS_AV_QUARANTINED)
return (EACCES);
is_attr = ((zdp->z_phys->zp_flags & ZFS_XATTR) &&
(ZTOV(zdp)->v_type == VDIR));
if (is_attr)
goto slow;
mutex_enter(&zdp->z_acl_lock);
if (zdp->z_phys->zp_flags & ZFS_NO_EXECS_DENIED) {
mutex_exit(&zdp->z_acl_lock);
return (0);
}
if (FUID_INDEX(zdp->z_phys->zp_uid) != 0 ||
FUID_INDEX(zdp->z_phys->zp_gid) != 0) {
mutex_exit(&zdp->z_acl_lock);
goto slow;
}
fowner = (uid_t)zdp->z_phys->zp_uid;
gowner = (uid_t)zdp->z_phys->zp_gid;
if (uid == fowner) {
owner = B_TRUE;
if (zdp->z_phys->zp_mode & S_IXUSR) {
mutex_exit(&zdp->z_acl_lock);
return (0);
} else {
mutex_exit(&zdp->z_acl_lock);
goto slow;
}
}
if (groupmember(gowner, cr)) {
groupmbr = B_TRUE;
if (zdp->z_phys->zp_mode & S_IXGRP) {
mutex_exit(&zdp->z_acl_lock);
return (0);
} else {
mutex_exit(&zdp->z_acl_lock);
goto slow;
}
}
if (!owner && !groupmbr) {
if (zdp->z_phys->zp_mode & S_IXOTH) {
mutex_exit(&zdp->z_acl_lock);
return (0);
}
}
mutex_exit(&zdp->z_acl_lock);
slow:
DTRACE_PROBE(zfs__fastpath__execute__access__miss);
ZFS_ENTER(zdp->z_zfsvfs);
error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr);
ZFS_EXIT(zdp->z_zfsvfs);
return (error);
}
/*
* Determine whether Access should be granted/denied, invoking least
* priv subsytem when a deny is determined.
*/
int
zfs_zaccess(znode_t *zp, int mode, int flags, boolean_t skipaclchk, cred_t *cr)
{
uint32_t working_mode;
int error;
int is_attr;
zfsvfs_t *zfsvfs = zp->z_zfsvfs;
boolean_t check_privs;
znode_t *xzp;
znode_t *check_zp = zp;
is_attr = ((zp->z_phys->zp_flags & ZFS_XATTR) &&
(ZTOV(zp)->v_type == VDIR));
/*
* If attribute then validate against base file
*/
if (is_attr) {
if ((error = zfs_zget(zp->z_zfsvfs,
zp->z_phys->zp_parent, &xzp)) != 0) {
return (error);
}
check_zp = xzp;
/*
* fixup mode to map to xattr perms
*/
if (mode & (ACE_WRITE_DATA|ACE_APPEND_DATA)) {
mode &= ~(ACE_WRITE_DATA|ACE_APPEND_DATA);
mode |= ACE_WRITE_NAMED_ATTRS;
}
if (mode & (ACE_READ_DATA|ACE_EXECUTE)) {
mode &= ~(ACE_READ_DATA|ACE_EXECUTE);
mode |= ACE_READ_NAMED_ATTRS;
}
}
if ((error = zfs_zaccess_common(check_zp, mode, &working_mode,
&check_privs, skipaclchk, cr)) == 0) {
if (is_attr)
VN_RELE(ZTOV(xzp));
return (0);
}
if (error && !check_privs) {
if (is_attr)
VN_RELE(ZTOV(xzp));
return (error);
}
if (error && (flags & V_APPEND)) {
error = zfs_zaccess_append(zp, &working_mode, &check_privs, cr);
}
if (error && check_privs) {
uid_t owner;
mode_t checkmode = 0;
owner = zfs_fuid_map_id(zfsvfs, check_zp->z_phys->zp_uid, cr,
ZFS_OWNER);
/*
* First check for implicit owner permission on
* read_acl/read_attributes
*/
error = 0;
ASSERT(working_mode != 0);
if ((working_mode & (ACE_READ_ACL|ACE_READ_ATTRIBUTES) &&
owner == crgetuid(cr)))
working_mode &= ~(ACE_READ_ACL|ACE_READ_ATTRIBUTES);
if (working_mode & (ACE_READ_DATA|ACE_READ_NAMED_ATTRS|
ACE_READ_ACL|ACE_READ_ATTRIBUTES|ACE_SYNCHRONIZE))
checkmode |= VREAD;
if (working_mode & (ACE_WRITE_DATA|ACE_WRITE_NAMED_ATTRS|
ACE_APPEND_DATA|ACE_WRITE_ATTRIBUTES|ACE_SYNCHRONIZE))
checkmode |= VWRITE;
if (working_mode & ACE_EXECUTE)
checkmode |= VEXEC;
if (checkmode)
error = secpolicy_vnode_access(cr, ZTOV(check_zp),
owner, checkmode);
if (error == 0 && (working_mode & ACE_WRITE_OWNER))
error = secpolicy_vnode_chown(cr, owner);
if (error == 0 && (working_mode & ACE_WRITE_ACL))
error = secpolicy_vnode_setdac(cr, owner);
if (error == 0 && (working_mode &
(ACE_DELETE|ACE_DELETE_CHILD)))
error = secpolicy_vnode_remove(cr);
if (error == 0 && (working_mode & ACE_SYNCHRONIZE)) {
error = secpolicy_vnode_chown(cr, owner);
}
if (error == 0) {
/*
* See if any bits other than those already checked
* for are still present. If so then return EACCES
*/
if (working_mode & ~(ZFS_CHECKED_MASKS)) {
error = EACCES;
}
}
}
if (is_attr)
VN_RELE(ZTOV(xzp));
return (error);
}
/*
* Translate traditional unix VREAD/VWRITE/VEXEC mode into
* native ACL format and call zfs_zaccess()
*/
int
zfs_zaccess_rwx(znode_t *zp, mode_t mode, int flags, cred_t *cr)
{
return (zfs_zaccess(zp, zfs_unix_to_v4(mode >> 6), flags, B_FALSE, cr));
}
/*
* Access function for secpolicy_vnode_setattr
*/
int
zfs_zaccess_unix(znode_t *zp, mode_t mode, cred_t *cr)
{
int v4_mode = zfs_unix_to_v4(mode >> 6);
return (zfs_zaccess(zp, v4_mode, 0, B_FALSE, cr));
}
static int
zfs_delete_final_check(znode_t *zp, znode_t *dzp,
mode_t missing_perms, cred_t *cr)
{
int error;
uid_t downer;
zfsvfs_t *zfsvfs = zp->z_zfsvfs;
downer = zfs_fuid_map_id(zfsvfs, dzp->z_phys->zp_uid, cr, ZFS_OWNER);
error = secpolicy_vnode_access(cr, ZTOV(dzp), downer, missing_perms);
if (error == 0)
error = zfs_sticky_remove_access(dzp, zp, cr);
return (error);
}
/*
* Determine whether Access should be granted/deny, without
* consulting least priv subsystem.
*
*
* The following chart is the recommended NFSv4 enforcement for
* ability to delete an object.
*
* -------------------------------------------------------
* | Parent Dir | Target Object Permissions |
* | permissions | |
* -------------------------------------------------------
* | | ACL Allows | ACL Denies| Delete |
* | | Delete | Delete | unspecified|
* -------------------------------------------------------
* | ACL Allows | Permit | Permit | Permit |
* | DELETE_CHILD | |
* -------------------------------------------------------
* | ACL Denies | Permit | Deny | Deny |
* | DELETE_CHILD | | | |
* -------------------------------------------------------
* | ACL specifies | | | |
* | only allow | Permit | Permit | Permit |
* | write and | | | |
* | execute | | | |
* -------------------------------------------------------
* | ACL denies | | | |
* | write and | Permit | Deny | Deny |
* | execute | | | |
* -------------------------------------------------------
* ^
* |
* No search privilege, can't even look up file?
*
*/
int
zfs_zaccess_delete(znode_t *dzp, znode_t *zp, cred_t *cr)
{
uint32_t dzp_working_mode = 0;
uint32_t zp_working_mode = 0;
int dzp_error, zp_error;
mode_t missing_perms;
boolean_t dzpcheck_privs = B_TRUE;
boolean_t zpcheck_privs = B_TRUE;
/*
* We want specific DELETE permissions to
* take precedence over WRITE/EXECUTE. We don't
* want an ACL such as this to mess us up.
* user:joe:write_data:deny,user:joe:delete:allow
*
* However, deny permissions may ultimately be overridden
* by secpolicy_vnode_access().
*
* We will ask for all of the necessary permissions and then
* look at the working modes from the directory and target object
* to determine what was found.
*/
if (zp->z_phys->zp_flags & (ZFS_IMMUTABLE | ZFS_NOUNLINK))
return (EPERM);
/*
* First row
* If the directory permissions allow the delete, we are done.
*/
if ((dzp_error = zfs_zaccess_common(dzp, ACE_DELETE_CHILD,
&dzp_working_mode, &dzpcheck_privs, B_FALSE, cr)) == 0)
return (0);
/*
* If target object has delete permission then we are done
*/
if ((zp_error = zfs_zaccess_common(zp, ACE_DELETE, &zp_working_mode,
&zpcheck_privs, B_FALSE, cr)) == 0)
return (0);
ASSERT(dzp_error && zp_error);
if (!dzpcheck_privs)
return (dzp_error);
if (!zpcheck_privs)
return (zp_error);
/*
* Second row
*
* If directory returns EACCES then delete_child was denied
* due to deny delete_child. In this case send the request through
* secpolicy_vnode_remove(). We don't use zfs_delete_final_check()
* since that *could* allow the delete based on write/execute permission
* and we want delete permissions to override write/execute.
*/
if (dzp_error == EACCES)
return (secpolicy_vnode_remove(cr));
/*
* Third Row
* only need to see if we have write/execute on directory.
*/
if ((dzp_error = zfs_zaccess_common(dzp, ACE_EXECUTE|ACE_WRITE_DATA,
&dzp_working_mode, &dzpcheck_privs, B_FALSE, cr)) == 0)
return (zfs_sticky_remove_access(dzp, zp, cr));
if (!dzpcheck_privs)
return (dzp_error);
/*
* Fourth row
*/
missing_perms = (dzp_working_mode & ACE_WRITE_DATA) ? VWRITE : 0;
missing_perms |= (dzp_working_mode & ACE_EXECUTE) ? VEXEC : 0;
ASSERT(missing_perms);
return (zfs_delete_final_check(zp, dzp, missing_perms, cr));
}
int
zfs_zaccess_rename(znode_t *sdzp, znode_t *szp, znode_t *tdzp,
znode_t *tzp, cred_t *cr)
{
int add_perm;
int error;
if (szp->z_phys->zp_flags & ZFS_AV_QUARANTINED)
return (EACCES);
add_perm = (ZTOV(szp)->v_type == VDIR) ?
ACE_ADD_SUBDIRECTORY : ACE_ADD_FILE;
/*
* Rename permissions are combination of delete permission +
* add file/subdir permission.
*/
/*
* first make sure we do the delete portion.
*
* If that succeeds then check for add_file/add_subdir permissions
*/
if (error = zfs_zaccess_delete(sdzp, szp, cr))
return (error);
/*
* If we have a tzp, see if we can delete it?
*/
if (tzp) {
if (error = zfs_zaccess_delete(tdzp, tzp, cr))
return (error);
}
/*
* Now check for add permissions
*/
error = zfs_zaccess(tdzp, add_perm, 0, B_FALSE, cr);
return (error);
}