zfs/lib/libzfs/libzfs_util.c

2034 lines
50 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright 2020 Joyent, Inc. All rights reserved.
* Copyright (c) 2011, 2020 by Delphix. All rights reserved.
* Copyright 2016 Igor Kozhukhov <ikozhukhov@gmail.com>
* Copyright (c) 2017 Datto Inc.
* Copyright (c) 2020 The FreeBSD Foundation
*
* Portions of this software were developed by Allan Jude
* under sponsorship from the FreeBSD Foundation.
*/
/*
* Internal utility routines for the ZFS library.
*/
#include <errno.h>
#include <fcntl.h>
#include <libintl.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <strings.h>
#include <unistd.h>
#include <math.h>
#if LIBFETCH_DYNAMIC
#include <dlfcn.h>
#endif
#include <sys/stat.h>
#include <sys/mnttab.h>
#include <sys/mntent.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <libzfs.h>
#include <libzfs_core.h>
#include "libzfs_impl.h"
#include "zfs_prop.h"
#include "zfeature_common.h"
#include <zfs_fletcher.h>
#include <libzutil.h>
/*
* We only care about the scheme in order to match the scheme
* with the handler. Each handler should validate the full URI
* as necessary.
*/
#define URI_REGEX "^\\([A-Za-z][A-Za-z0-9+.\\-]*\\):"
int
libzfs_errno(libzfs_handle_t *hdl)
{
return (hdl->libzfs_error);
}
const char *
libzfs_error_action(libzfs_handle_t *hdl)
{
return (hdl->libzfs_action);
}
const char *
libzfs_error_description(libzfs_handle_t *hdl)
{
if (hdl->libzfs_desc[0] != '\0')
return (hdl->libzfs_desc);
switch (hdl->libzfs_error) {
case EZFS_NOMEM:
return (dgettext(TEXT_DOMAIN, "out of memory"));
case EZFS_BADPROP:
return (dgettext(TEXT_DOMAIN, "invalid property value"));
case EZFS_PROPREADONLY:
return (dgettext(TEXT_DOMAIN, "read-only property"));
case EZFS_PROPTYPE:
return (dgettext(TEXT_DOMAIN, "property doesn't apply to "
"datasets of this type"));
case EZFS_PROPNONINHERIT:
return (dgettext(TEXT_DOMAIN, "property cannot be inherited"));
case EZFS_PROPSPACE:
return (dgettext(TEXT_DOMAIN, "invalid quota or reservation"));
case EZFS_BADTYPE:
return (dgettext(TEXT_DOMAIN, "operation not applicable to "
"datasets of this type"));
case EZFS_BUSY:
return (dgettext(TEXT_DOMAIN, "pool or dataset is busy"));
case EZFS_EXISTS:
return (dgettext(TEXT_DOMAIN, "pool or dataset exists"));
case EZFS_NOENT:
return (dgettext(TEXT_DOMAIN, "no such pool or dataset"));
case EZFS_BADSTREAM:
return (dgettext(TEXT_DOMAIN, "invalid backup stream"));
case EZFS_DSREADONLY:
return (dgettext(TEXT_DOMAIN, "dataset is read-only"));
case EZFS_VOLTOOBIG:
return (dgettext(TEXT_DOMAIN, "volume size exceeds limit for "
"this system"));
case EZFS_INVALIDNAME:
return (dgettext(TEXT_DOMAIN, "invalid name"));
case EZFS_BADRESTORE:
return (dgettext(TEXT_DOMAIN, "unable to restore to "
"destination"));
case EZFS_BADBACKUP:
return (dgettext(TEXT_DOMAIN, "backup failed"));
case EZFS_BADTARGET:
return (dgettext(TEXT_DOMAIN, "invalid target vdev"));
case EZFS_NODEVICE:
return (dgettext(TEXT_DOMAIN, "no such device in pool"));
case EZFS_BADDEV:
return (dgettext(TEXT_DOMAIN, "invalid device"));
case EZFS_NOREPLICAS:
return (dgettext(TEXT_DOMAIN, "no valid replicas"));
case EZFS_RESILVERING:
return (dgettext(TEXT_DOMAIN, "currently resilvering"));
case EZFS_BADVERSION:
return (dgettext(TEXT_DOMAIN, "unsupported version or "
"feature"));
case EZFS_POOLUNAVAIL:
return (dgettext(TEXT_DOMAIN, "pool is unavailable"));
case EZFS_DEVOVERFLOW:
return (dgettext(TEXT_DOMAIN, "too many devices in one vdev"));
case EZFS_BADPATH:
return (dgettext(TEXT_DOMAIN, "must be an absolute path"));
case EZFS_CROSSTARGET:
return (dgettext(TEXT_DOMAIN, "operation crosses datasets or "
"pools"));
case EZFS_ZONED:
return (dgettext(TEXT_DOMAIN, "dataset in use by local zone"));
case EZFS_MOUNTFAILED:
return (dgettext(TEXT_DOMAIN, "mount failed"));
case EZFS_UMOUNTFAILED:
return (dgettext(TEXT_DOMAIN, "unmount failed"));
case EZFS_UNSHARENFSFAILED:
return (dgettext(TEXT_DOMAIN, "NFS share removal failed"));
case EZFS_SHARENFSFAILED:
return (dgettext(TEXT_DOMAIN, "NFS share creation failed"));
case EZFS_UNSHARESMBFAILED:
return (dgettext(TEXT_DOMAIN, "SMB share removal failed"));
case EZFS_SHARESMBFAILED:
return (dgettext(TEXT_DOMAIN, "SMB share creation failed"));
case EZFS_PERM:
return (dgettext(TEXT_DOMAIN, "permission denied"));
case EZFS_NOSPC:
return (dgettext(TEXT_DOMAIN, "out of space"));
case EZFS_FAULT:
return (dgettext(TEXT_DOMAIN, "bad address"));
case EZFS_IO:
return (dgettext(TEXT_DOMAIN, "I/O error"));
case EZFS_INTR:
return (dgettext(TEXT_DOMAIN, "signal received"));
case EZFS_ISSPARE:
return (dgettext(TEXT_DOMAIN, "device is reserved as a hot "
"spare"));
case EZFS_INVALCONFIG:
return (dgettext(TEXT_DOMAIN, "invalid vdev configuration"));
case EZFS_RECURSIVE:
return (dgettext(TEXT_DOMAIN, "recursive dataset dependency"));
case EZFS_NOHISTORY:
return (dgettext(TEXT_DOMAIN, "no history available"));
case EZFS_POOLPROPS:
return (dgettext(TEXT_DOMAIN, "failed to retrieve "
"pool properties"));
case EZFS_POOL_NOTSUP:
return (dgettext(TEXT_DOMAIN, "operation not supported "
"on this type of pool"));
case EZFS_POOL_INVALARG:
return (dgettext(TEXT_DOMAIN, "invalid argument for "
"this pool operation"));
case EZFS_NAMETOOLONG:
return (dgettext(TEXT_DOMAIN, "dataset name is too long"));
case EZFS_OPENFAILED:
return (dgettext(TEXT_DOMAIN, "open failed"));
case EZFS_NOCAP:
return (dgettext(TEXT_DOMAIN,
"disk capacity information could not be retrieved"));
case EZFS_LABELFAILED:
return (dgettext(TEXT_DOMAIN, "write of label failed"));
case EZFS_BADWHO:
return (dgettext(TEXT_DOMAIN, "invalid user/group"));
case EZFS_BADPERM:
return (dgettext(TEXT_DOMAIN, "invalid permission"));
case EZFS_BADPERMSET:
return (dgettext(TEXT_DOMAIN, "invalid permission set name"));
case EZFS_NODELEGATION:
return (dgettext(TEXT_DOMAIN, "delegated administration is "
"disabled on pool"));
case EZFS_BADCACHE:
return (dgettext(TEXT_DOMAIN, "invalid or missing cache file"));
case EZFS_ISL2CACHE:
return (dgettext(TEXT_DOMAIN, "device is in use as a cache"));
case EZFS_VDEVNOTSUP:
return (dgettext(TEXT_DOMAIN, "vdev specification is not "
"supported"));
case EZFS_NOTSUP:
return (dgettext(TEXT_DOMAIN, "operation not supported "
"on this dataset"));
case EZFS_IOC_NOTSUPPORTED:
return (dgettext(TEXT_DOMAIN, "operation not supported by "
"zfs kernel module"));
case EZFS_ACTIVE_SPARE:
return (dgettext(TEXT_DOMAIN, "pool has active shared spare "
"device"));
case EZFS_UNPLAYED_LOGS:
return (dgettext(TEXT_DOMAIN, "log device has unplayed intent "
"logs"));
case EZFS_REFTAG_RELE:
return (dgettext(TEXT_DOMAIN, "no such tag on this dataset"));
case EZFS_REFTAG_HOLD:
return (dgettext(TEXT_DOMAIN, "tag already exists on this "
"dataset"));
case EZFS_TAGTOOLONG:
return (dgettext(TEXT_DOMAIN, "tag too long"));
case EZFS_PIPEFAILED:
return (dgettext(TEXT_DOMAIN, "pipe create failed"));
case EZFS_THREADCREATEFAILED:
return (dgettext(TEXT_DOMAIN, "thread create failed"));
case EZFS_POSTSPLIT_ONLINE:
return (dgettext(TEXT_DOMAIN, "disk was split from this pool "
"into a new one"));
case EZFS_SCRUB_PAUSED:
return (dgettext(TEXT_DOMAIN, "scrub is paused; "
"use 'zpool scrub' to resume"));
case EZFS_SCRUBBING:
return (dgettext(TEXT_DOMAIN, "currently scrubbing; "
"use 'zpool scrub -s' to cancel current scrub"));
case EZFS_NO_SCRUB:
return (dgettext(TEXT_DOMAIN, "there is no active scrub"));
case EZFS_DIFF:
return (dgettext(TEXT_DOMAIN, "unable to generate diffs"));
case EZFS_DIFFDATA:
return (dgettext(TEXT_DOMAIN, "invalid diff data"));
case EZFS_POOLREADONLY:
return (dgettext(TEXT_DOMAIN, "pool is read-only"));
case EZFS_NO_PENDING:
return (dgettext(TEXT_DOMAIN, "operation is not "
"in progress"));
case EZFS_CHECKPOINT_EXISTS:
return (dgettext(TEXT_DOMAIN, "checkpoint exists"));
case EZFS_DISCARDING_CHECKPOINT:
return (dgettext(TEXT_DOMAIN, "currently discarding "
"checkpoint"));
case EZFS_NO_CHECKPOINT:
return (dgettext(TEXT_DOMAIN, "checkpoint does not exist"));
case EZFS_DEVRM_IN_PROGRESS:
return (dgettext(TEXT_DOMAIN, "device removal in progress"));
case EZFS_VDEV_TOO_BIG:
return (dgettext(TEXT_DOMAIN, "device exceeds supported size"));
case EZFS_ACTIVE_POOL:
return (dgettext(TEXT_DOMAIN, "pool is imported on a "
"different host"));
case EZFS_CRYPTOFAILED:
return (dgettext(TEXT_DOMAIN, "encryption failure"));
case EZFS_TOOMANY:
return (dgettext(TEXT_DOMAIN, "argument list too long"));
case EZFS_INITIALIZING:
return (dgettext(TEXT_DOMAIN, "currently initializing"));
case EZFS_NO_INITIALIZE:
return (dgettext(TEXT_DOMAIN, "there is no active "
"initialization"));
case EZFS_WRONG_PARENT:
return (dgettext(TEXT_DOMAIN, "invalid parent dataset"));
case EZFS_TRIMMING:
return (dgettext(TEXT_DOMAIN, "currently trimming"));
case EZFS_NO_TRIM:
return (dgettext(TEXT_DOMAIN, "there is no active trim"));
case EZFS_TRIM_NOTSUP:
return (dgettext(TEXT_DOMAIN, "trim operations are not "
"supported by this device"));
case EZFS_NO_RESILVER_DEFER:
return (dgettext(TEXT_DOMAIN, "this action requires the "
"resilver_defer feature"));
case EZFS_EXPORT_IN_PROGRESS:
return (dgettext(TEXT_DOMAIN, "pool export in progress"));
case EZFS_REBUILDING:
return (dgettext(TEXT_DOMAIN, "currently sequentially "
"resilvering"));
case EZFS_VDEV_NOTSUP:
return (dgettext(TEXT_DOMAIN, "operation not supported "
"on this type of vdev"));
case EZFS_NOT_USER_NAMESPACE:
return (dgettext(TEXT_DOMAIN, "the provided file "
"was not a user namespace file"));
case EZFS_UNKNOWN:
return (dgettext(TEXT_DOMAIN, "unknown error"));
default:
assert(hdl->libzfs_error == 0);
return (dgettext(TEXT_DOMAIN, "no error"));
}
}
void
zfs_error_aux(libzfs_handle_t *hdl, const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
(void) vsnprintf(hdl->libzfs_desc, sizeof (hdl->libzfs_desc),
fmt, ap);
hdl->libzfs_desc_active = 1;
va_end(ap);
}
static void
zfs_verror(libzfs_handle_t *hdl, int error, const char *fmt, va_list ap)
{
(void) vsnprintf(hdl->libzfs_action, sizeof (hdl->libzfs_action),
fmt, ap);
hdl->libzfs_error = error;
if (hdl->libzfs_desc_active)
hdl->libzfs_desc_active = 0;
else
hdl->libzfs_desc[0] = '\0';
if (hdl->libzfs_printerr) {
if (error == EZFS_UNKNOWN) {
(void) fprintf(stderr, dgettext(TEXT_DOMAIN, "internal "
"error: %s: %s\n"), hdl->libzfs_action,
libzfs_error_description(hdl));
abort();
}
(void) fprintf(stderr, "%s: %s\n", hdl->libzfs_action,
libzfs_error_description(hdl));
if (error == EZFS_NOMEM)
exit(1);
}
}
int
zfs_error(libzfs_handle_t *hdl, int error, const char *msg)
{
return (zfs_error_fmt(hdl, error, "%s", msg));
}
int
zfs_error_fmt(libzfs_handle_t *hdl, int error, const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
zfs_verror(hdl, error, fmt, ap);
va_end(ap);
return (-1);
}
static int
zfs_common_error(libzfs_handle_t *hdl, int error, const char *fmt,
va_list ap)
{
switch (error) {
case EPERM:
case EACCES:
zfs_verror(hdl, EZFS_PERM, fmt, ap);
return (-1);
case ECANCELED:
zfs_verror(hdl, EZFS_NODELEGATION, fmt, ap);
return (-1);
case EIO:
zfs_verror(hdl, EZFS_IO, fmt, ap);
return (-1);
case EFAULT:
zfs_verror(hdl, EZFS_FAULT, fmt, ap);
return (-1);
case EINTR:
zfs_verror(hdl, EZFS_INTR, fmt, ap);
return (-1);
}
return (0);
}
int
zfs_standard_error(libzfs_handle_t *hdl, int error, const char *msg)
{
return (zfs_standard_error_fmt(hdl, error, "%s", msg));
}
int
zfs_standard_error_fmt(libzfs_handle_t *hdl, int error, const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
if (zfs_common_error(hdl, error, fmt, ap) != 0) {
va_end(ap);
return (-1);
}
switch (error) {
case ENXIO:
case ENODEV:
case EPIPE:
zfs_verror(hdl, EZFS_IO, fmt, ap);
break;
case ENOENT:
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"dataset does not exist"));
zfs_verror(hdl, EZFS_NOENT, fmt, ap);
break;
case ENOSPC:
case EDQUOT:
zfs_verror(hdl, EZFS_NOSPC, fmt, ap);
break;
case EEXIST:
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"dataset already exists"));
zfs_verror(hdl, EZFS_EXISTS, fmt, ap);
break;
case EBUSY:
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"dataset is busy"));
zfs_verror(hdl, EZFS_BUSY, fmt, ap);
break;
case EROFS:
zfs_verror(hdl, EZFS_POOLREADONLY, fmt, ap);
break;
case ENAMETOOLONG:
zfs_verror(hdl, EZFS_NAMETOOLONG, fmt, ap);
break;
case ENOTSUP:
zfs_verror(hdl, EZFS_BADVERSION, fmt, ap);
break;
case EAGAIN:
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"pool I/O is currently suspended"));
zfs_verror(hdl, EZFS_POOLUNAVAIL, fmt, ap);
break;
case EREMOTEIO:
zfs_verror(hdl, EZFS_ACTIVE_POOL, fmt, ap);
break;
case ZFS_ERR_UNKNOWN_SEND_STREAM_FEATURE:
case ZFS_ERR_IOC_CMD_UNAVAIL:
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "the loaded zfs "
"module does not support this operation. A reboot may "
"be required to enable this operation."));
zfs_verror(hdl, EZFS_IOC_NOTSUPPORTED, fmt, ap);
break;
case ZFS_ERR_IOC_ARG_UNAVAIL:
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "the loaded zfs "
"module does not support an option for this operation. "
"A reboot may be required to enable this option."));
zfs_verror(hdl, EZFS_IOC_NOTSUPPORTED, fmt, ap);
break;
case ZFS_ERR_IOC_ARG_REQUIRED:
case ZFS_ERR_IOC_ARG_BADTYPE:
zfs_verror(hdl, EZFS_IOC_NOTSUPPORTED, fmt, ap);
break;
case ZFS_ERR_WRONG_PARENT:
zfs_verror(hdl, EZFS_WRONG_PARENT, fmt, ap);
break;
case ZFS_ERR_BADPROP:
zfs_verror(hdl, EZFS_BADPROP, fmt, ap);
break;
case ZFS_ERR_NOT_USER_NAMESPACE:
zfs_verror(hdl, EZFS_NOT_USER_NAMESPACE, fmt, ap);
break;
default:
zfs_error_aux(hdl, "%s", strerror(error));
zfs_verror(hdl, EZFS_UNKNOWN, fmt, ap);
break;
}
va_end(ap);
return (-1);
}
void
zfs_setprop_error(libzfs_handle_t *hdl, zfs_prop_t prop, int err,
char *errbuf)
{
switch (err) {
case ENOSPC:
/*
* For quotas and reservations, ENOSPC indicates
* something different; setting a quota or reservation
* doesn't use any disk space.
*/
switch (prop) {
case ZFS_PROP_QUOTA:
case ZFS_PROP_REFQUOTA:
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"size is less than current used or "
"reserved space"));
(void) zfs_error(hdl, EZFS_PROPSPACE, errbuf);
break;
case ZFS_PROP_RESERVATION:
case ZFS_PROP_REFRESERVATION:
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"size is greater than available space"));
(void) zfs_error(hdl, EZFS_PROPSPACE, errbuf);
break;
default:
(void) zfs_standard_error(hdl, err, errbuf);
break;
}
break;
case EBUSY:
(void) zfs_standard_error(hdl, EBUSY, errbuf);
break;
case EROFS:
(void) zfs_error(hdl, EZFS_DSREADONLY, errbuf);
break;
case E2BIG:
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"property value too long"));
(void) zfs_error(hdl, EZFS_BADPROP, errbuf);
break;
case ENOTSUP:
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"pool and or dataset must be upgraded to set this "
"property or value"));
(void) zfs_error(hdl, EZFS_BADVERSION, errbuf);
break;
case ERANGE:
if (prop == ZFS_PROP_COMPRESSION ||
prop == ZFS_PROP_DNODESIZE ||
prop == ZFS_PROP_RECORDSIZE) {
(void) zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"property setting is not allowed on "
"bootable datasets"));
(void) zfs_error(hdl, EZFS_NOTSUP, errbuf);
} else if (prop == ZFS_PROP_CHECKSUM ||
prop == ZFS_PROP_DEDUP) {
(void) zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"property setting is not allowed on "
"root pools"));
(void) zfs_error(hdl, EZFS_NOTSUP, errbuf);
} else {
(void) zfs_standard_error(hdl, err, errbuf);
}
break;
case EINVAL:
if (prop == ZPROP_INVAL) {
(void) zfs_error(hdl, EZFS_BADPROP, errbuf);
} else {
(void) zfs_standard_error(hdl, err, errbuf);
}
break;
case ZFS_ERR_BADPROP:
(void) zfs_error(hdl, EZFS_BADPROP, errbuf);
break;
case EACCES:
if (prop == ZFS_PROP_KEYLOCATION) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"keylocation may only be set on encryption roots"));
(void) zfs_error(hdl, EZFS_BADPROP, errbuf);
} else {
(void) zfs_standard_error(hdl, err, errbuf);
}
break;
case EOVERFLOW:
/*
* This platform can't address a volume this big.
*/
#ifdef _ILP32
if (prop == ZFS_PROP_VOLSIZE) {
(void) zfs_error(hdl, EZFS_VOLTOOBIG, errbuf);
break;
}
zfs_fallthrough;
#endif
default:
(void) zfs_standard_error(hdl, err, errbuf);
}
}
int
zpool_standard_error(libzfs_handle_t *hdl, int error, const char *msg)
{
return (zpool_standard_error_fmt(hdl, error, "%s", msg));
}
int
zpool_standard_error_fmt(libzfs_handle_t *hdl, int error, const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
if (zfs_common_error(hdl, error, fmt, ap) != 0) {
va_end(ap);
return (-1);
}
switch (error) {
case ENODEV:
zfs_verror(hdl, EZFS_NODEVICE, fmt, ap);
break;
case ENOENT:
zfs_error_aux(hdl,
dgettext(TEXT_DOMAIN, "no such pool or dataset"));
zfs_verror(hdl, EZFS_NOENT, fmt, ap);
break;
case EEXIST:
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"pool already exists"));
zfs_verror(hdl, EZFS_EXISTS, fmt, ap);
break;
case EBUSY:
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "pool is busy"));
zfs_verror(hdl, EZFS_BUSY, fmt, ap);
break;
/* There is no pending operation to cancel */
case ENOTACTIVE:
zfs_verror(hdl, EZFS_NO_PENDING, fmt, ap);
break;
case ENXIO:
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"one or more devices is currently unavailable"));
zfs_verror(hdl, EZFS_BADDEV, fmt, ap);
break;
case ENAMETOOLONG:
zfs_verror(hdl, EZFS_DEVOVERFLOW, fmt, ap);
break;
case ENOTSUP:
zfs_verror(hdl, EZFS_POOL_NOTSUP, fmt, ap);
break;
case EINVAL:
zfs_verror(hdl, EZFS_POOL_INVALARG, fmt, ap);
break;
case ENOSPC:
case EDQUOT:
zfs_verror(hdl, EZFS_NOSPC, fmt, ap);
return (-1);
case EAGAIN:
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"pool I/O is currently suspended"));
zfs_verror(hdl, EZFS_POOLUNAVAIL, fmt, ap);
break;
case EROFS:
zfs_verror(hdl, EZFS_POOLREADONLY, fmt, ap);
break;
case EDOM:
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"block size out of range or does not match"));
zfs_verror(hdl, EZFS_BADPROP, fmt, ap);
break;
case EREMOTEIO:
zfs_verror(hdl, EZFS_ACTIVE_POOL, fmt, ap);
break;
case ZFS_ERR_CHECKPOINT_EXISTS:
zfs_verror(hdl, EZFS_CHECKPOINT_EXISTS, fmt, ap);
break;
case ZFS_ERR_DISCARDING_CHECKPOINT:
zfs_verror(hdl, EZFS_DISCARDING_CHECKPOINT, fmt, ap);
break;
case ZFS_ERR_NO_CHECKPOINT:
zfs_verror(hdl, EZFS_NO_CHECKPOINT, fmt, ap);
break;
case ZFS_ERR_DEVRM_IN_PROGRESS:
zfs_verror(hdl, EZFS_DEVRM_IN_PROGRESS, fmt, ap);
break;
case ZFS_ERR_VDEV_TOO_BIG:
zfs_verror(hdl, EZFS_VDEV_TOO_BIG, fmt, ap);
break;
case ZFS_ERR_EXPORT_IN_PROGRESS:
zfs_verror(hdl, EZFS_EXPORT_IN_PROGRESS, fmt, ap);
break;
case ZFS_ERR_RESILVER_IN_PROGRESS:
zfs_verror(hdl, EZFS_RESILVERING, fmt, ap);
break;
case ZFS_ERR_REBUILD_IN_PROGRESS:
zfs_verror(hdl, EZFS_REBUILDING, fmt, ap);
break;
case ZFS_ERR_BADPROP:
zfs_verror(hdl, EZFS_BADPROP, fmt, ap);
break;
case ZFS_ERR_VDEV_NOTSUP:
zfs_verror(hdl, EZFS_VDEV_NOTSUP, fmt, ap);
break;
case ZFS_ERR_IOC_CMD_UNAVAIL:
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "the loaded zfs "
"module does not support this operation. A reboot may "
"be required to enable this operation."));
zfs_verror(hdl, EZFS_IOC_NOTSUPPORTED, fmt, ap);
break;
case ZFS_ERR_IOC_ARG_UNAVAIL:
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "the loaded zfs "
"module does not support an option for this operation. "
"A reboot may be required to enable this option."));
zfs_verror(hdl, EZFS_IOC_NOTSUPPORTED, fmt, ap);
break;
case ZFS_ERR_IOC_ARG_REQUIRED:
case ZFS_ERR_IOC_ARG_BADTYPE:
zfs_verror(hdl, EZFS_IOC_NOTSUPPORTED, fmt, ap);
break;
default:
zfs_error_aux(hdl, "%s", strerror(error));
zfs_verror(hdl, EZFS_UNKNOWN, fmt, ap);
}
va_end(ap);
return (-1);
}
/*
* Display an out of memory error message and abort the current program.
*/
int
no_memory(libzfs_handle_t *hdl)
{
return (zfs_error(hdl, EZFS_NOMEM, "internal error"));
}
/*
* A safe form of malloc() which will die if the allocation fails.
*/
void *
zfs_alloc(libzfs_handle_t *hdl, size_t size)
{
void *data;
if ((data = calloc(1, size)) == NULL)
(void) no_memory(hdl);
return (data);
}
/*
* A safe form of asprintf() which will die if the allocation fails.
*/
char *
zfs_asprintf(libzfs_handle_t *hdl, const char *fmt, ...)
{
va_list ap;
char *ret;
int err;
va_start(ap, fmt);
err = vasprintf(&ret, fmt, ap);
va_end(ap);
if (err < 0) {
(void) no_memory(hdl);
ret = NULL;
}
return (ret);
}
/*
* A safe form of realloc(), which also zeroes newly allocated space.
*/
void *
zfs_realloc(libzfs_handle_t *hdl, void *ptr, size_t oldsize, size_t newsize)
{
void *ret;
if ((ret = realloc(ptr, newsize)) == NULL) {
(void) no_memory(hdl);
return (NULL);
}
memset((char *)ret + oldsize, 0, newsize - oldsize);
return (ret);
}
/*
* A safe form of strdup() which will die if the allocation fails.
*/
char *
zfs_strdup(libzfs_handle_t *hdl, const char *str)
{
char *ret;
if ((ret = strdup(str)) == NULL)
(void) no_memory(hdl);
return (ret);
}
void
libzfs_print_on_error(libzfs_handle_t *hdl, boolean_t printerr)
{
hdl->libzfs_printerr = printerr;
}
/*
* Read lines from an open file descriptor and store them in an array of
* strings until EOF. lines[] will be allocated and populated with all the
* lines read. All newlines are replaced with NULL terminators for
* convenience. lines[] must be freed after use with libzfs_free_str_array().
*
* Returns the number of lines read.
*/
static int
libzfs_read_stdout_from_fd(int fd, char **lines[])
{
FILE *fp;
int lines_cnt = 0;
size_t len = 0;
char *line = NULL;
char **tmp_lines = NULL, **tmp;
fp = fdopen(fd, "r");
if (fp == NULL) {
close(fd);
return (0);
}
while (getline(&line, &len, fp) != -1) {
tmp = realloc(tmp_lines, sizeof (*tmp_lines) * (lines_cnt + 1));
if (tmp == NULL) {
/* Return the lines we were able to process */
break;
}
tmp_lines = tmp;
/* Remove newline if not EOF */
if (line[strlen(line) - 1] == '\n')
line[strlen(line) - 1] = '\0';
tmp_lines[lines_cnt] = strdup(line);
if (tmp_lines[lines_cnt] == NULL)
break;
++lines_cnt;
}
free(line);
fclose(fp);
*lines = tmp_lines;
return (lines_cnt);
}
static int
libzfs_run_process_impl(const char *path, char *argv[], char *env[], int flags,
char **lines[], int *lines_cnt)
{
pid_t pid;
int error, devnull_fd;
int link[2];
/*
* Setup a pipe between our child and parent process if we're
* reading stdout.
*/
if (lines != NULL && pipe2(link, O_NONBLOCK | O_CLOEXEC) == -1)
return (-EPIPE);
pid = fork();
if (pid == 0) {
/* Child process */
devnull_fd = open("/dev/null", O_WRONLY | O_CLOEXEC);
if (devnull_fd < 0)
_exit(-1);
if (!(flags & STDOUT_VERBOSE) && (lines == NULL))
(void) dup2(devnull_fd, STDOUT_FILENO);
else if (lines != NULL) {
/* Save the output to lines[] */
dup2(link[1], STDOUT_FILENO);
}
if (!(flags & STDERR_VERBOSE))
(void) dup2(devnull_fd, STDERR_FILENO);
if (flags & NO_DEFAULT_PATH) {
if (env == NULL)
execv(path, argv);
else
execve(path, argv, env);
} else {
if (env == NULL)
execvp(path, argv);
else
execvpe(path, argv, env);
}
_exit(-1);
} else if (pid > 0) {
/* Parent process */
int status;
while ((error = waitpid(pid, &status, 0)) == -1 &&
errno == EINTR)
;
if (error < 0 || !WIFEXITED(status))
return (-1);
if (lines != NULL) {
close(link[1]);
*lines_cnt = libzfs_read_stdout_from_fd(link[0], lines);
}
return (WEXITSTATUS(status));
}
return (-1);
}
int
libzfs_run_process(const char *path, char *argv[], int flags)
{
return (libzfs_run_process_impl(path, argv, NULL, flags, NULL, NULL));
}
/*
* Run a command and store its stdout lines in an array of strings (lines[]).
* lines[] is allocated and populated for you, and the number of lines is set in
* lines_cnt. lines[] must be freed after use with libzfs_free_str_array().
* All newlines (\n) in lines[] are terminated for convenience.
*/
int
libzfs_run_process_get_stdout(const char *path, char *argv[], char *env[],
char **lines[], int *lines_cnt)
{
return (libzfs_run_process_impl(path, argv, env, 0, lines, lines_cnt));
}
/*
* Same as libzfs_run_process_get_stdout(), but run without $PATH set. This
* means that *path needs to be the full path to the executable.
*/
int
libzfs_run_process_get_stdout_nopath(const char *path, char *argv[],
char *env[], char **lines[], int *lines_cnt)
{
return (libzfs_run_process_impl(path, argv, env, NO_DEFAULT_PATH,
lines, lines_cnt));
}
/*
* Free an array of strings. Free both the strings contained in the array and
* the array itself.
*/
void
libzfs_free_str_array(char **strs, int count)
{
while (--count >= 0)
free(strs[count]);
free(strs);
}
/*
* Returns 1 if environment variable is set to "YES", "yes", "ON", "on", or
* a non-zero number.
*
* Returns 0 otherwise.
*/
boolean_t
libzfs_envvar_is_set(const char *envvar)
{
char *env = getenv(envvar);
return (env && (strtoul(env, NULL, 0) > 0 ||
(!strncasecmp(env, "YES", 3) && strnlen(env, 4) == 3) ||
(!strncasecmp(env, "ON", 2) && strnlen(env, 3) == 2)));
}
libzfs_handle_t *
libzfs_init(void)
{
libzfs_handle_t *hdl;
int error;
char *env;
if ((error = libzfs_load_module()) != 0) {
errno = error;
return (NULL);
}
if ((hdl = calloc(1, sizeof (libzfs_handle_t))) == NULL) {
return (NULL);
}
if (regcomp(&hdl->libzfs_urire, URI_REGEX, 0) != 0) {
free(hdl);
return (NULL);
}
if ((hdl->libzfs_fd = open(ZFS_DEV, O_RDWR|O_EXCL|O_CLOEXEC)) < 0) {
free(hdl);
return (NULL);
}
if (libzfs_core_init() != 0) {
(void) close(hdl->libzfs_fd);
free(hdl);
return (NULL);
}
zfs_prop_init();
zpool_prop_init();
zpool_feature_init();
vdev_prop_init();
libzfs_mnttab_init(hdl);
fletcher_4_init();
if (getenv("ZFS_PROP_DEBUG") != NULL) {
hdl->libzfs_prop_debug = B_TRUE;
}
if ((env = getenv("ZFS_SENDRECV_MAX_NVLIST")) != NULL) {
if ((error = zfs_nicestrtonum(hdl, env,
&hdl->libzfs_max_nvlist))) {
errno = error;
(void) close(hdl->libzfs_fd);
free(hdl);
return (NULL);
}
} else {
hdl->libzfs_max_nvlist = (SPA_MAXBLOCKSIZE * 4);
}
/*
* For testing, remove some settable properties and features
*/
if (libzfs_envvar_is_set("ZFS_SYSFS_PROP_SUPPORT_TEST")) {
zprop_desc_t *proptbl;
proptbl = zpool_prop_get_table();
proptbl[ZPOOL_PROP_COMMENT].pd_zfs_mod_supported = B_FALSE;
proptbl = zfs_prop_get_table();
proptbl[ZFS_PROP_DNODESIZE].pd_zfs_mod_supported = B_FALSE;
zfeature_info_t *ftbl = spa_feature_table;
ftbl[SPA_FEATURE_LARGE_BLOCKS].fi_zfs_mod_supported = B_FALSE;
}
return (hdl);
}
void
libzfs_fini(libzfs_handle_t *hdl)
{
(void) close(hdl->libzfs_fd);
zpool_free_handles(hdl);
namespace_clear(hdl);
libzfs_mnttab_fini(hdl);
libzfs_core_fini();
regfree(&hdl->libzfs_urire);
fletcher_4_fini();
#if LIBFETCH_DYNAMIC
if (hdl->libfetch != (void *)-1 && hdl->libfetch != NULL)
(void) dlclose(hdl->libfetch);
free(hdl->libfetch_load_error);
#endif
free(hdl);
}
libzfs_handle_t *
zpool_get_handle(zpool_handle_t *zhp)
{
return (zhp->zpool_hdl);
}
libzfs_handle_t *
zfs_get_handle(zfs_handle_t *zhp)
{
return (zhp->zfs_hdl);
}
zpool_handle_t *
zfs_get_pool_handle(const zfs_handle_t *zhp)
{
return (zhp->zpool_hdl);
}
/*
* Given a name, determine whether or not it's a valid path
* (starts with '/' or "./"). If so, walk the mnttab trying
* to match the device number. If not, treat the path as an
* fs/vol/snap/bkmark name.
*/
zfs_handle_t *
zfs_path_to_zhandle(libzfs_handle_t *hdl, const char *path, zfs_type_t argtype)
{
struct stat64 statbuf;
struct extmnttab entry;
if (path[0] != '/' && strncmp(path, "./", strlen("./")) != 0) {
/*
* It's not a valid path, assume it's a name of type 'argtype'.
*/
return (zfs_open(hdl, path, argtype));
}
if (getextmntent(path, &entry, &statbuf) != 0)
return (NULL);
if (strcmp(entry.mnt_fstype, MNTTYPE_ZFS) != 0) {
(void) fprintf(stderr, gettext("'%s': not a ZFS filesystem\n"),
path);
return (NULL);
}
return (zfs_open(hdl, entry.mnt_special, ZFS_TYPE_FILESYSTEM));
}
/*
* Initialize the zc_nvlist_dst member to prepare for receiving an nvlist from
* an ioctl().
*/
void
zcmd_alloc_dst_nvlist(libzfs_handle_t *hdl, zfs_cmd_t *zc, size_t len)
{
if (len == 0)
len = 256 * 1024;
zc->zc_nvlist_dst_size = len;
zc->zc_nvlist_dst =
(uint64_t)(uintptr_t)zfs_alloc(hdl, zc->zc_nvlist_dst_size);
}
/*
* Called when an ioctl() which returns an nvlist fails with ENOMEM. This will
* expand the nvlist to the size specified in 'zc_nvlist_dst_size', which was
* filled in by the kernel to indicate the actual required size.
*/
void
zcmd_expand_dst_nvlist(libzfs_handle_t *hdl, zfs_cmd_t *zc)
{
free((void *)(uintptr_t)zc->zc_nvlist_dst);
zc->zc_nvlist_dst =
(uint64_t)(uintptr_t)zfs_alloc(hdl, zc->zc_nvlist_dst_size);
}
/*
* Called to free the src and dst nvlists stored in the command structure.
*/
void
zcmd_free_nvlists(zfs_cmd_t *zc)
{
free((void *)(uintptr_t)zc->zc_nvlist_conf);
free((void *)(uintptr_t)zc->zc_nvlist_src);
free((void *)(uintptr_t)zc->zc_nvlist_dst);
zc->zc_nvlist_conf = 0;
zc->zc_nvlist_src = 0;
zc->zc_nvlist_dst = 0;
}
static void
zcmd_write_nvlist_com(libzfs_handle_t *hdl, uint64_t *outnv, uint64_t *outlen,
nvlist_t *nvl)
{
char *packed;
size_t len = fnvlist_size(nvl);
packed = zfs_alloc(hdl, len);
verify(nvlist_pack(nvl, &packed, &len, NV_ENCODE_NATIVE, 0) == 0);
*outnv = (uint64_t)(uintptr_t)packed;
*outlen = len;
}
void
zcmd_write_conf_nvlist(libzfs_handle_t *hdl, zfs_cmd_t *zc, nvlist_t *nvl)
{
zcmd_write_nvlist_com(hdl, &zc->zc_nvlist_conf,
&zc->zc_nvlist_conf_size, nvl);
}
void
zcmd_write_src_nvlist(libzfs_handle_t *hdl, zfs_cmd_t *zc, nvlist_t *nvl)
{
zcmd_write_nvlist_com(hdl, &zc->zc_nvlist_src,
&zc->zc_nvlist_src_size, nvl);
}
/*
* Unpacks an nvlist from the ZFS ioctl command structure.
*/
int
zcmd_read_dst_nvlist(libzfs_handle_t *hdl, zfs_cmd_t *zc, nvlist_t **nvlp)
{
if (nvlist_unpack((void *)(uintptr_t)zc->zc_nvlist_dst,
zc->zc_nvlist_dst_size, nvlp, 0) != 0)
return (no_memory(hdl));
return (0);
}
/*
* ================================================================
* API shared by zfs and zpool property management
* ================================================================
*/
static void
zprop_print_headers(zprop_get_cbdata_t *cbp, zfs_type_t type)
{
zprop_list_t *pl = cbp->cb_proplist;
int i;
char *title;
size_t len;
cbp->cb_first = B_FALSE;
if (cbp->cb_scripted)
return;
/*
* Start with the length of the column headers.
*/
cbp->cb_colwidths[GET_COL_NAME] = strlen(dgettext(TEXT_DOMAIN, "NAME"));
cbp->cb_colwidths[GET_COL_PROPERTY] = strlen(dgettext(TEXT_DOMAIN,
"PROPERTY"));
cbp->cb_colwidths[GET_COL_VALUE] = strlen(dgettext(TEXT_DOMAIN,
"VALUE"));
cbp->cb_colwidths[GET_COL_RECVD] = strlen(dgettext(TEXT_DOMAIN,
"RECEIVED"));
cbp->cb_colwidths[GET_COL_SOURCE] = strlen(dgettext(TEXT_DOMAIN,
"SOURCE"));
/* first property is always NAME */
assert(cbp->cb_proplist->pl_prop ==
((type == ZFS_TYPE_POOL) ? ZPOOL_PROP_NAME :
((type == ZFS_TYPE_VDEV) ? VDEV_PROP_NAME : ZFS_PROP_NAME)));
/*
* Go through and calculate the widths for each column. For the
* 'source' column, we kludge it up by taking the worst-case scenario of
* inheriting from the longest name. This is acceptable because in the
* majority of cases 'SOURCE' is the last column displayed, and we don't
* use the width anyway. Note that the 'VALUE' column can be oversized,
* if the name of the property is much longer than any values we find.
*/
for (pl = cbp->cb_proplist; pl != NULL; pl = pl->pl_next) {
/*
* 'PROPERTY' column
*/
if (pl->pl_prop != ZPROP_USERPROP) {
const char *propname = (type == ZFS_TYPE_POOL) ?
zpool_prop_to_name(pl->pl_prop) :
((type == ZFS_TYPE_VDEV) ?
vdev_prop_to_name(pl->pl_prop) :
zfs_prop_to_name(pl->pl_prop));
assert(propname != NULL);
len = strlen(propname);
if (len > cbp->cb_colwidths[GET_COL_PROPERTY])
cbp->cb_colwidths[GET_COL_PROPERTY] = len;
} else {
assert(pl->pl_user_prop != NULL);
len = strlen(pl->pl_user_prop);
if (len > cbp->cb_colwidths[GET_COL_PROPERTY])
cbp->cb_colwidths[GET_COL_PROPERTY] = len;
}
/*
* 'VALUE' column. The first property is always the 'name'
* property that was tacked on either by /sbin/zfs's
* zfs_do_get() or when calling zprop_expand_list(), so we
* ignore its width. If the user specified the name property
* to display, then it will be later in the list in any case.
*/
if (pl != cbp->cb_proplist &&
pl->pl_width > cbp->cb_colwidths[GET_COL_VALUE])
cbp->cb_colwidths[GET_COL_VALUE] = pl->pl_width;
/* 'RECEIVED' column. */
if (pl != cbp->cb_proplist &&
pl->pl_recvd_width > cbp->cb_colwidths[GET_COL_RECVD])
cbp->cb_colwidths[GET_COL_RECVD] = pl->pl_recvd_width;
/*
* 'NAME' and 'SOURCE' columns
*/
if (pl->pl_prop == ((type == ZFS_TYPE_POOL) ? ZPOOL_PROP_NAME :
((type == ZFS_TYPE_VDEV) ? VDEV_PROP_NAME :
ZFS_PROP_NAME)) && pl->pl_width >
cbp->cb_colwidths[GET_COL_NAME]) {
cbp->cb_colwidths[GET_COL_NAME] = pl->pl_width;
cbp->cb_colwidths[GET_COL_SOURCE] = pl->pl_width +
strlen(dgettext(TEXT_DOMAIN, "inherited from"));
}
}
/*
* Now go through and print the headers.
*/
for (i = 0; i < ZFS_GET_NCOLS; i++) {
switch (cbp->cb_columns[i]) {
case GET_COL_NAME:
title = dgettext(TEXT_DOMAIN, "NAME");
break;
case GET_COL_PROPERTY:
title = dgettext(TEXT_DOMAIN, "PROPERTY");
break;
case GET_COL_VALUE:
title = dgettext(TEXT_DOMAIN, "VALUE");
break;
case GET_COL_RECVD:
title = dgettext(TEXT_DOMAIN, "RECEIVED");
break;
case GET_COL_SOURCE:
title = dgettext(TEXT_DOMAIN, "SOURCE");
break;
default:
title = NULL;
}
if (title != NULL) {
if (i == (ZFS_GET_NCOLS - 1) ||
cbp->cb_columns[i + 1] == GET_COL_NONE)
(void) printf("%s", title);
else
(void) printf("%-*s ",
cbp->cb_colwidths[cbp->cb_columns[i]],
title);
}
}
(void) printf("\n");
}
/*
* Display a single line of output, according to the settings in the callback
* structure.
*/
void
zprop_print_one_property(const char *name, zprop_get_cbdata_t *cbp,
const char *propname, const char *value, zprop_source_t sourcetype,
const char *source, const char *recvd_value)
{
int i;
const char *str = NULL;
char buf[128];
/*
* Ignore those source types that the user has chosen to ignore.
*/
if ((sourcetype & cbp->cb_sources) == 0)
return;
if (cbp->cb_first)
zprop_print_headers(cbp, cbp->cb_type);
for (i = 0; i < ZFS_GET_NCOLS; i++) {
switch (cbp->cb_columns[i]) {
case GET_COL_NAME:
str = name;
break;
case GET_COL_PROPERTY:
str = propname;
break;
case GET_COL_VALUE:
str = value;
break;
case GET_COL_SOURCE:
switch (sourcetype) {
case ZPROP_SRC_NONE:
str = "-";
break;
case ZPROP_SRC_DEFAULT:
str = "default";
break;
case ZPROP_SRC_LOCAL:
str = "local";
break;
case ZPROP_SRC_TEMPORARY:
str = "temporary";
break;
case ZPROP_SRC_INHERITED:
(void) snprintf(buf, sizeof (buf),
"inherited from %s", source);
str = buf;
break;
case ZPROP_SRC_RECEIVED:
str = "received";
break;
default:
str = NULL;
assert(!"unhandled zprop_source_t");
}
break;
case GET_COL_RECVD:
str = (recvd_value == NULL ? "-" : recvd_value);
break;
default:
continue;
}
if (i == (ZFS_GET_NCOLS - 1) ||
cbp->cb_columns[i + 1] == GET_COL_NONE)
(void) printf("%s", str);
else if (cbp->cb_scripted)
(void) printf("%s\t", str);
else
(void) printf("%-*s ",
cbp->cb_colwidths[cbp->cb_columns[i]],
str);
}
(void) printf("\n");
}
/*
* Given a numeric suffix, convert the value into a number of bits that the
* resulting value must be shifted.
*/
static int
str2shift(libzfs_handle_t *hdl, const char *buf)
{
const char *ends = "BKMGTPEZ";
int i;
if (buf[0] == '\0')
return (0);
for (i = 0; i < strlen(ends); i++) {
if (toupper(buf[0]) == ends[i])
break;
}
if (i == strlen(ends)) {
if (hdl)
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"invalid numeric suffix '%s'"), buf);
return (-1);
}
/*
* Allow 'G' = 'GB' = 'GiB', case-insensitively.
* However, 'BB' and 'BiB' are disallowed.
*/
if (buf[1] == '\0' ||
(toupper(buf[0]) != 'B' &&
((toupper(buf[1]) == 'B' && buf[2] == '\0') ||
(toupper(buf[1]) == 'I' && toupper(buf[2]) == 'B' &&
buf[3] == '\0'))))
return (10 * i);
if (hdl)
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"invalid numeric suffix '%s'"), buf);
return (-1);
}
/*
* Convert a string of the form '100G' into a real number. Used when setting
* properties or creating a volume. 'buf' is used to place an extended error
* message for the caller to use.
*/
int
zfs_nicestrtonum(libzfs_handle_t *hdl, const char *value, uint64_t *num)
{
char *end;
int shift;
*num = 0;
/* Check to see if this looks like a number. */
if ((value[0] < '0' || value[0] > '9') && value[0] != '.') {
if (hdl)
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"bad numeric value '%s'"), value);
return (-1);
}
/* Rely on strtoull() to process the numeric portion. */
errno = 0;
*num = strtoull(value, &end, 10);
/*
* Check for ERANGE, which indicates that the value is too large to fit
* in a 64-bit value.
*/
if (errno == ERANGE) {
if (hdl)
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"numeric value is too large"));
return (-1);
}
/*
* If we have a decimal value, then do the computation with floating
* point arithmetic. Otherwise, use standard arithmetic.
*/
if (*end == '.') {
double fval = strtod(value, &end);
if ((shift = str2shift(hdl, end)) == -1)
return (-1);
fval *= pow(2, shift);
/*
* UINT64_MAX is not exactly representable as a double.
* The closest representation is UINT64_MAX + 1, so we
* use a >= comparison instead of > for the bounds check.
*/
if (fval >= (double)UINT64_MAX) {
if (hdl)
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"numeric value is too large"));
return (-1);
}
*num = (uint64_t)fval;
} else {
if ((shift = str2shift(hdl, end)) == -1)
return (-1);
/* Check for overflow */
if (shift >= 64 || (*num << shift) >> shift != *num) {
if (hdl)
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"numeric value is too large"));
return (-1);
}
*num <<= shift;
}
return (0);
}
/*
* Given a propname=value nvpair to set, parse any numeric properties
* (index, boolean, etc) if they are specified as strings and add the
* resulting nvpair to the returned nvlist.
*
* At the DSL layer, all properties are either 64-bit numbers or strings.
* We want the user to be able to ignore this fact and specify properties
* as native values (numbers, for example) or as strings (to simplify
* command line utilities). This also handles converting index types
* (compression, checksum, etc) from strings to their on-disk index.
*/
int
zprop_parse_value(libzfs_handle_t *hdl, nvpair_t *elem, int prop,
zfs_type_t type, nvlist_t *ret, char **svalp, uint64_t *ivalp,
const char *errbuf)
{
data_type_t datatype = nvpair_type(elem);
zprop_type_t proptype;
const char *propname;
char *value;
boolean_t isnone = B_FALSE;
boolean_t isauto = B_FALSE;
int err = 0;
if (type == ZFS_TYPE_POOL) {
proptype = zpool_prop_get_type(prop);
propname = zpool_prop_to_name(prop);
} else if (type == ZFS_TYPE_VDEV) {
proptype = vdev_prop_get_type(prop);
propname = vdev_prop_to_name(prop);
} else {
proptype = zfs_prop_get_type(prop);
propname = zfs_prop_to_name(prop);
}
/*
* Convert any properties to the internal DSL value types.
*/
*svalp = NULL;
*ivalp = 0;
switch (proptype) {
case PROP_TYPE_STRING:
if (datatype != DATA_TYPE_STRING) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"'%s' must be a string"), nvpair_name(elem));
goto error;
}
err = nvpair_value_string(elem, svalp);
if (err != 0) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"'%s' is invalid"), nvpair_name(elem));
goto error;
}
if (strlen(*svalp) >= ZFS_MAXPROPLEN) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"'%s' is too long"), nvpair_name(elem));
goto error;
}
break;
case PROP_TYPE_NUMBER:
if (datatype == DATA_TYPE_STRING) {
(void) nvpair_value_string(elem, &value);
if (strcmp(value, "none") == 0) {
isnone = B_TRUE;
} else if (strcmp(value, "auto") == 0) {
isauto = B_TRUE;
} else if (zfs_nicestrtonum(hdl, value, ivalp) != 0) {
goto error;
}
} else if (datatype == DATA_TYPE_UINT64) {
(void) nvpair_value_uint64(elem, ivalp);
} else {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"'%s' must be a number"), nvpair_name(elem));
goto error;
}
/*
* Quota special: force 'none' and don't allow 0.
*/
if ((type & ZFS_TYPE_DATASET) && *ivalp == 0 && !isnone &&
(prop == ZFS_PROP_QUOTA || prop == ZFS_PROP_REFQUOTA)) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"use 'none' to disable quota/refquota"));
goto error;
}
/*
* Special handling for "*_limit=none". In this case it's not
* 0 but UINT64_MAX.
*/
if ((type & ZFS_TYPE_DATASET) && isnone &&
(prop == ZFS_PROP_FILESYSTEM_LIMIT ||
prop == ZFS_PROP_SNAPSHOT_LIMIT)) {
*ivalp = UINT64_MAX;
}
/*
* Special handling for setting 'refreservation' to 'auto'. Use
* UINT64_MAX to tell the caller to use zfs_fix_auto_resv().
* 'auto' is only allowed on volumes.
*/
if (isauto) {
switch (prop) {
case ZFS_PROP_REFRESERVATION:
if ((type & ZFS_TYPE_VOLUME) == 0) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"'%s=auto' only allowed on "
"volumes"), nvpair_name(elem));
goto error;
}
*ivalp = UINT64_MAX;
break;
default:
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"'auto' is invalid value for '%s'"),
nvpair_name(elem));
goto error;
}
}
break;
case PROP_TYPE_INDEX:
if (datatype != DATA_TYPE_STRING) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"'%s' must be a string"), nvpair_name(elem));
goto error;
}
(void) nvpair_value_string(elem, &value);
if (zprop_string_to_index(prop, value, ivalp, type) != 0) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"'%s' must be one of '%s'"), propname,
zprop_values(prop, type));
goto error;
}
break;
default:
abort();
}
/*
* Add the result to our return set of properties.
*/
if (*svalp != NULL) {
if (nvlist_add_string(ret, propname, *svalp) != 0) {
(void) no_memory(hdl);
return (-1);
}
} else {
if (nvlist_add_uint64(ret, propname, *ivalp) != 0) {
(void) no_memory(hdl);
return (-1);
}
}
return (0);
error:
(void) zfs_error(hdl, EZFS_BADPROP, errbuf);
return (-1);
}
static int
addlist(libzfs_handle_t *hdl, const char *propname, zprop_list_t **listp,
zfs_type_t type)
{
int prop = zprop_name_to_prop(propname, type);
if (prop != ZPROP_INVAL && !zprop_valid_for_type(prop, type, B_FALSE))
prop = ZPROP_INVAL;
/*
* Return failure if no property table entry was found and this isn't
* a user-defined property.
*/
if (prop == ZPROP_USERPROP && ((type == ZFS_TYPE_POOL &&
!zpool_prop_feature(propname) &&
!zpool_prop_unsupported(propname)) ||
((type == ZFS_TYPE_DATASET) && !zfs_prop_user(propname) &&
!zfs_prop_userquota(propname) && !zfs_prop_written(propname)) ||
((type == ZFS_TYPE_VDEV) && !vdev_prop_user(propname)))) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"invalid property '%s'"), propname);
return (zfs_error(hdl, EZFS_BADPROP,
dgettext(TEXT_DOMAIN, "bad property list")));
}
zprop_list_t *entry = zfs_alloc(hdl, sizeof (*entry));
entry->pl_prop = prop;
if (prop == ZPROP_USERPROP) {
entry->pl_user_prop = zfs_strdup(hdl, propname);
entry->pl_width = strlen(propname);
} else {
entry->pl_width = zprop_width(prop, &entry->pl_fixed,
type);
}
*listp = entry;
return (0);
}
/*
* Given a comma-separated list of properties, construct a property list
* containing both user-defined and native properties. This function will
* return a NULL list if 'all' is specified, which can later be expanded
* by zprop_expand_list().
*/
int
zprop_get_list(libzfs_handle_t *hdl, char *props, zprop_list_t **listp,
zfs_type_t type)
{
*listp = NULL;
/*
* If 'all' is specified, return a NULL list.
*/
if (strcmp(props, "all") == 0)
return (0);
/*
* If no props were specified, return an error.
*/
if (props[0] == '\0') {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"no properties specified"));
return (zfs_error(hdl, EZFS_BADPROP, dgettext(TEXT_DOMAIN,
"bad property list")));
}
for (char *p; (p = strsep(&props, ",")); )
if (strcmp(p, "space") == 0) {
static const char *const spaceprops[] = {
"name", "avail", "used", "usedbysnapshots",
"usedbydataset", "usedbyrefreservation",
"usedbychildren"
};
for (int i = 0; i < ARRAY_SIZE(spaceprops); i++) {
if (addlist(hdl, spaceprops[i], listp, type))
return (-1);
listp = &(*listp)->pl_next;
}
} else {
if (addlist(hdl, p, listp, type))
return (-1);
listp = &(*listp)->pl_next;
}
return (0);
}
void
zprop_free_list(zprop_list_t *pl)
{
zprop_list_t *next;
while (pl != NULL) {
next = pl->pl_next;
free(pl->pl_user_prop);
free(pl);
pl = next;
}
}
typedef struct expand_data {
zprop_list_t **last;
libzfs_handle_t *hdl;
zfs_type_t type;
} expand_data_t;
static int
zprop_expand_list_cb(int prop, void *cb)
{
zprop_list_t *entry;
expand_data_t *edp = cb;
entry = zfs_alloc(edp->hdl, sizeof (zprop_list_t));
entry->pl_prop = prop;
entry->pl_width = zprop_width(prop, &entry->pl_fixed, edp->type);
entry->pl_all = B_TRUE;
*(edp->last) = entry;
edp->last = &entry->pl_next;
return (ZPROP_CONT);
}
int
zprop_expand_list(libzfs_handle_t *hdl, zprop_list_t **plp, zfs_type_t type)
{
zprop_list_t *entry;
zprop_list_t **last;
expand_data_t exp;
if (*plp == NULL) {
/*
* If this is the very first time we've been called for an 'all'
* specification, expand the list to include all native
* properties.
*/
last = plp;
exp.last = last;
exp.hdl = hdl;
exp.type = type;
if (zprop_iter_common(zprop_expand_list_cb, &exp, B_FALSE,
B_FALSE, type) == ZPROP_INVAL)
return (-1);
/*
* Add 'name' to the beginning of the list, which is handled
* specially.
*/
entry = zfs_alloc(hdl, sizeof (zprop_list_t));
entry->pl_prop = ((type == ZFS_TYPE_POOL) ? ZPOOL_PROP_NAME :
((type == ZFS_TYPE_VDEV) ? VDEV_PROP_NAME : ZFS_PROP_NAME));
entry->pl_width = zprop_width(entry->pl_prop,
&entry->pl_fixed, type);
entry->pl_all = B_TRUE;
entry->pl_next = *plp;
*plp = entry;
}
return (0);
}
int
zprop_iter(zprop_func func, void *cb, boolean_t show_all, boolean_t ordered,
zfs_type_t type)
{
return (zprop_iter_common(func, cb, show_all, ordered, type));
}
const char *
zfs_version_userland(void)
{
return (ZFS_META_ALIAS);
}
/*
* Prints both zfs userland and kernel versions
* Returns 0 on success, and -1 on error
*/
int
zfs_version_print(void)
{
(void) puts(ZFS_META_ALIAS);
char *kver = zfs_version_kernel();
if (kver == NULL) {
fprintf(stderr, "zfs_version_kernel() failed: %s\n",
strerror(errno));
return (-1);
}
(void) printf("zfs-kmod-%s\n", kver);
free(kver);
return (0);
}
/*
* Return 1 if the user requested ANSI color output, and our terminal supports
* it. Return 0 for no color.
*/
static int
use_color(void)
{
static int use_color = -1;
char *term;
/*
* Optimization:
*
* For each zpool invocation, we do a single check to see if we should
* be using color or not, and cache that value for the lifetime of the
* the zpool command. That makes it cheap to call use_color() when
* we're printing with color. We assume that the settings are not going
* to change during the invocation of a zpool command (the user isn't
* going to change the ZFS_COLOR value while zpool is running, for
* example).
*/
if (use_color != -1) {
/*
* We've already figured out if we should be using color or
* not. Return the cached value.
*/
return (use_color);
}
term = getenv("TERM");
/*
* The user sets the ZFS_COLOR env var set to enable zpool ANSI color
* output. However if NO_COLOR is set (https://no-color.org/) then
* don't use it. Also, don't use color if terminal doesn't support
* it.
*/
if (libzfs_envvar_is_set("ZFS_COLOR") &&
!libzfs_envvar_is_set("NO_COLOR") &&
isatty(STDOUT_FILENO) && term && strcmp("dumb", term) != 0 &&
strcmp("unknown", term) != 0) {
/* Color supported */
use_color = 1;
} else {
use_color = 0;
}
return (use_color);
}
/*
* color_start() and color_end() are used for when you want to colorize a block
* of text. For example:
*
* color_start(ANSI_RED_FG)
* printf("hello");
* printf("world");
* color_end();
*/
void
color_start(const char *color)
{
if (use_color())
fputs(color, stdout);
}
void
color_end(void)
{
if (use_color())
fputs(ANSI_RESET, stdout);
}
/* printf() with a color. If color is NULL, then do a normal printf. */
int
printf_color(const char *color, const char *format, ...)
{
va_list aptr;
int rc;
if (color)
color_start(color);
va_start(aptr, format);
rc = vprintf(format, aptr);
va_end(aptr);
if (color)
color_end();
return (rc);
}