zfs/include/sys/arc_impl.h

163 lines
4.9 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2013 by Delphix. All rights reserved.
* Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
* Copyright 2013 Nexenta Systems, Inc. All rights reserved.
*/
#ifndef _SYS_ARC_IMPL_H
#define _SYS_ARC_IMPL_H
#include <sys/arc.h>
#ifdef __cplusplus
extern "C" {
#endif
/*
* Note that buffers can be in one of 6 states:
* ARC_anon - anonymous (discussed below)
* ARC_mru - recently used, currently cached
* ARC_mru_ghost - recentely used, no longer in cache
* ARC_mfu - frequently used, currently cached
* ARC_mfu_ghost - frequently used, no longer in cache
* ARC_l2c_only - exists in L2ARC but not other states
* When there are no active references to the buffer, they are
* are linked onto a list in one of these arc states. These are
* the only buffers that can be evicted or deleted. Within each
* state there are multiple lists, one for meta-data and one for
* non-meta-data. Meta-data (indirect blocks, blocks of dnodes,
* etc.) is tracked separately so that it can be managed more
* explicitly: favored over data, limited explicitly.
*
* Anonymous buffers are buffers that are not associated with
* a DVA. These are buffers that hold dirty block copies
* before they are written to stable storage. By definition,
* they are "ref'd" and are considered part of arc_mru
* that cannot be freed. Generally, they will aquire a DVA
* as they are written and migrate onto the arc_mru list.
*
* The ARC_l2c_only state is for buffers that are in the second
* level ARC but no longer in any of the ARC_m* lists. The second
* level ARC itself may also contain buffers that are in any of
* the ARC_m* states - meaning that a buffer can exist in two
* places. The reason for the ARC_l2c_only state is to keep the
* buffer header in the hash table, so that reads that hit the
* second level ARC benefit from these fast lookups.
*/
typedef struct arc_state {
list_t arcs_list[ARC_BUFC_NUMTYPES]; /* list of evictable buffers */
uint64_t arcs_lsize[ARC_BUFC_NUMTYPES]; /* amount of evictable data */
uint64_t arcs_size; /* total amount of data in this state */
kmutex_t arcs_mtx;
arc_state_type_t arcs_state;
} arc_state_t;
typedef struct l2arc_buf_hdr l2arc_buf_hdr_t;
typedef struct arc_callback arc_callback_t;
struct arc_callback {
void *acb_private;
arc_done_func_t *acb_done;
arc_buf_t *acb_buf;
zio_t *acb_zio_dummy;
arc_callback_t *acb_next;
};
typedef struct arc_write_callback arc_write_callback_t;
struct arc_write_callback {
void *awcb_private;
arc_done_func_t *awcb_ready;
arc_done_func_t *awcb_physdone;
arc_done_func_t *awcb_done;
arc_buf_t *awcb_buf;
};
struct arc_buf_hdr {
/* protected by hash lock */
dva_t b_dva;
uint64_t b_birth;
uint64_t b_cksum0;
kmutex_t b_freeze_lock;
zio_cksum_t *b_freeze_cksum;
arc_buf_hdr_t *b_hash_next;
arc_buf_t *b_buf;
uint32_t b_flags;
uint32_t b_datacnt;
arc_callback_t *b_acb;
kcondvar_t b_cv;
/* immutable */
arc_buf_contents_t b_type;
uint64_t b_size;
uint64_t b_spa;
/* protected by arc state mutex */
arc_state_t *b_state;
list_node_t b_arc_node;
/* updated atomically */
clock_t b_arc_access;
uint32_t b_mru_hits;
uint32_t b_mru_ghost_hits;
uint32_t b_mfu_hits;
uint32_t b_mfu_ghost_hits;
uint32_t b_l2_hits;
/* self protecting */
refcount_t b_refcnt;
l2arc_buf_hdr_t *b_l2hdr;
list_node_t b_l2node;
};
typedef struct l2arc_dev {
vdev_t *l2ad_vdev; /* vdev */
spa_t *l2ad_spa; /* spa */
uint64_t l2ad_hand; /* next write location */
uint64_t l2ad_start; /* first addr on device */
uint64_t l2ad_end; /* last addr on device */
uint64_t l2ad_evict; /* last addr eviction reached */
boolean_t l2ad_first; /* first sweep through */
boolean_t l2ad_writing; /* currently writing */
list_t *l2ad_buflist; /* buffer list */
list_node_t l2ad_node; /* device list node */
} l2arc_dev_t;
typedef struct l2arc_write_callback {
l2arc_dev_t *l2wcb_dev; /* device info */
arc_buf_hdr_t *l2wcb_head; /* head of write buflist */
} l2arc_write_callback_t;
#ifdef __cplusplus
}
#endif
#endif /* _SYS_ARC_IMPL_H */