zfs/module/icp/algs/modes/gcm.c

1559 lines
42 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
*/
#include <sys/zfs_context.h>
#include <modes/modes.h>
#include <sys/crypto/common.h>
#include <sys/crypto/icp.h>
#include <sys/crypto/impl.h>
#include <sys/byteorder.h>
#include <sys/simd.h>
#include <modes/gcm_impl.h>
#ifdef CAN_USE_GCM_ASM
#include <aes/aes_impl.h>
#endif
#define GHASH(c, d, t, o) \
xor_block((uint8_t *)(d), (uint8_t *)(c)->gcm_ghash); \
(o)->mul((uint64_t *)(void *)(c)->gcm_ghash, (c)->gcm_H, \
(uint64_t *)(void *)(t));
/* Select GCM implementation */
#define IMPL_FASTEST (UINT32_MAX)
#define IMPL_CYCLE (UINT32_MAX-1)
#ifdef CAN_USE_GCM_ASM
#define IMPL_AVX (UINT32_MAX-2)
#endif
#define GCM_IMPL_READ(i) (*(volatile uint32_t *) &(i))
static uint32_t icp_gcm_impl = IMPL_FASTEST;
static uint32_t user_sel_impl = IMPL_FASTEST;
#ifdef CAN_USE_GCM_ASM
/*
* Whether to use the optimized openssl gcm and ghash implementations.
* Set to true if module parameter icp_gcm_impl == "avx".
*/
static boolean_t gcm_use_avx = B_FALSE;
#define GCM_IMPL_USE_AVX (*(volatile boolean_t *)&gcm_use_avx)
static inline boolean_t gcm_avx_will_work(void);
static inline void gcm_set_avx(boolean_t);
static inline boolean_t gcm_toggle_avx(void);
static int gcm_mode_encrypt_contiguous_blocks_avx(gcm_ctx_t *, char *, size_t,
crypto_data_t *, size_t);
static int gcm_encrypt_final_avx(gcm_ctx_t *, crypto_data_t *, size_t);
static int gcm_decrypt_final_avx(gcm_ctx_t *, crypto_data_t *, size_t);
static int gcm_init_avx(gcm_ctx_t *, unsigned char *, size_t, unsigned char *,
size_t, size_t);
#endif /* ifdef CAN_USE_GCM_ASM */
/*
* Encrypt multiple blocks of data in GCM mode. Decrypt for GCM mode
* is done in another function.
*/
int
gcm_mode_encrypt_contiguous_blocks(gcm_ctx_t *ctx, char *data, size_t length,
crypto_data_t *out, size_t block_size,
int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
void (*copy_block)(uint8_t *, uint8_t *),
void (*xor_block)(uint8_t *, uint8_t *))
{
#ifdef CAN_USE_GCM_ASM
if (ctx->gcm_use_avx == B_TRUE)
return (gcm_mode_encrypt_contiguous_blocks_avx(
ctx, data, length, out, block_size));
#endif
const gcm_impl_ops_t *gops;
size_t remainder = length;
size_t need = 0;
uint8_t *datap = (uint8_t *)data;
uint8_t *blockp;
uint8_t *lastp;
void *iov_or_mp;
offset_t offset;
uint8_t *out_data_1;
uint8_t *out_data_2;
size_t out_data_1_len;
uint64_t counter;
uint64_t counter_mask = ntohll(0x00000000ffffffffULL);
if (length + ctx->gcm_remainder_len < block_size) {
/* accumulate bytes here and return */
bcopy(datap,
(uint8_t *)ctx->gcm_remainder + ctx->gcm_remainder_len,
length);
ctx->gcm_remainder_len += length;
if (ctx->gcm_copy_to == NULL) {
ctx->gcm_copy_to = datap;
}
return (CRYPTO_SUCCESS);
}
lastp = (uint8_t *)ctx->gcm_cb;
if (out != NULL)
crypto_init_ptrs(out, &iov_or_mp, &offset);
gops = gcm_impl_get_ops();
do {
/* Unprocessed data from last call. */
if (ctx->gcm_remainder_len > 0) {
need = block_size - ctx->gcm_remainder_len;
if (need > remainder)
return (CRYPTO_DATA_LEN_RANGE);
bcopy(datap, &((uint8_t *)ctx->gcm_remainder)
[ctx->gcm_remainder_len], need);
blockp = (uint8_t *)ctx->gcm_remainder;
} else {
blockp = datap;
}
/*
* Increment counter. Counter bits are confined
* to the bottom 32 bits of the counter block.
*/
counter = ntohll(ctx->gcm_cb[1] & counter_mask);
counter = htonll(counter + 1);
counter &= counter_mask;
ctx->gcm_cb[1] = (ctx->gcm_cb[1] & ~counter_mask) | counter;
encrypt_block(ctx->gcm_keysched, (uint8_t *)ctx->gcm_cb,
(uint8_t *)ctx->gcm_tmp);
xor_block(blockp, (uint8_t *)ctx->gcm_tmp);
lastp = (uint8_t *)ctx->gcm_tmp;
ctx->gcm_processed_data_len += block_size;
/*
* The following copies a complete GCM block back to where it
* came from if there was a remainder in the last call and out
* is NULL. That doesn't seem to make sense. So we assert this
* can't happen and leave the code in for reference.
* See https://github.com/zfsonlinux/zfs/issues/9661
*/
ASSERT(out != NULL);
if (out == NULL) {
if (ctx->gcm_remainder_len > 0) {
bcopy(blockp, ctx->gcm_copy_to,
ctx->gcm_remainder_len);
bcopy(blockp + ctx->gcm_remainder_len, datap,
need);
}
} else {
crypto_get_ptrs(out, &iov_or_mp, &offset, &out_data_1,
&out_data_1_len, &out_data_2, block_size);
/* copy block to where it belongs */
if (out_data_1_len == block_size) {
copy_block(lastp, out_data_1);
} else {
bcopy(lastp, out_data_1, out_data_1_len);
if (out_data_2 != NULL) {
bcopy(lastp + out_data_1_len,
out_data_2,
block_size - out_data_1_len);
}
}
/* update offset */
out->cd_offset += block_size;
}
/* add ciphertext to the hash */
GHASH(ctx, ctx->gcm_tmp, ctx->gcm_ghash, gops);
/* Update pointer to next block of data to be processed. */
if (ctx->gcm_remainder_len != 0) {
datap += need;
ctx->gcm_remainder_len = 0;
} else {
datap += block_size;
}
remainder = (size_t)&data[length] - (size_t)datap;
/* Incomplete last block. */
if (remainder > 0 && remainder < block_size) {
bcopy(datap, ctx->gcm_remainder, remainder);
ctx->gcm_remainder_len = remainder;
ctx->gcm_copy_to = datap;
goto out;
}
ctx->gcm_copy_to = NULL;
} while (remainder > 0);
out:
return (CRYPTO_SUCCESS);
}
/* ARGSUSED */
int
gcm_encrypt_final(gcm_ctx_t *ctx, crypto_data_t *out, size_t block_size,
int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
void (*copy_block)(uint8_t *, uint8_t *),
void (*xor_block)(uint8_t *, uint8_t *))
{
#ifdef CAN_USE_GCM_ASM
if (ctx->gcm_use_avx == B_TRUE)
return (gcm_encrypt_final_avx(ctx, out, block_size));
#endif
const gcm_impl_ops_t *gops;
uint64_t counter_mask = ntohll(0x00000000ffffffffULL);
uint8_t *ghash, *macp = NULL;
int i, rv;
if (out->cd_length <
(ctx->gcm_remainder_len + ctx->gcm_tag_len)) {
return (CRYPTO_DATA_LEN_RANGE);
}
gops = gcm_impl_get_ops();
ghash = (uint8_t *)ctx->gcm_ghash;
if (ctx->gcm_remainder_len > 0) {
uint64_t counter;
uint8_t *tmpp = (uint8_t *)ctx->gcm_tmp;
/*
* Here is where we deal with data that is not a
* multiple of the block size.
*/
/*
* Increment counter.
*/
counter = ntohll(ctx->gcm_cb[1] & counter_mask);
counter = htonll(counter + 1);
counter &= counter_mask;
ctx->gcm_cb[1] = (ctx->gcm_cb[1] & ~counter_mask) | counter;
encrypt_block(ctx->gcm_keysched, (uint8_t *)ctx->gcm_cb,
(uint8_t *)ctx->gcm_tmp);
macp = (uint8_t *)ctx->gcm_remainder;
bzero(macp + ctx->gcm_remainder_len,
block_size - ctx->gcm_remainder_len);
/* XOR with counter block */
for (i = 0; i < ctx->gcm_remainder_len; i++) {
macp[i] ^= tmpp[i];
}
/* add ciphertext to the hash */
GHASH(ctx, macp, ghash, gops);
ctx->gcm_processed_data_len += ctx->gcm_remainder_len;
}
ctx->gcm_len_a_len_c[1] =
htonll(CRYPTO_BYTES2BITS(ctx->gcm_processed_data_len));
GHASH(ctx, ctx->gcm_len_a_len_c, ghash, gops);
encrypt_block(ctx->gcm_keysched, (uint8_t *)ctx->gcm_J0,
(uint8_t *)ctx->gcm_J0);
xor_block((uint8_t *)ctx->gcm_J0, ghash);
if (ctx->gcm_remainder_len > 0) {
rv = crypto_put_output_data(macp, out, ctx->gcm_remainder_len);
if (rv != CRYPTO_SUCCESS)
return (rv);
}
out->cd_offset += ctx->gcm_remainder_len;
ctx->gcm_remainder_len = 0;
rv = crypto_put_output_data(ghash, out, ctx->gcm_tag_len);
if (rv != CRYPTO_SUCCESS)
return (rv);
out->cd_offset += ctx->gcm_tag_len;
return (CRYPTO_SUCCESS);
}
/*
* This will only deal with decrypting the last block of the input that
* might not be a multiple of block length.
*/
static void
gcm_decrypt_incomplete_block(gcm_ctx_t *ctx, size_t block_size, size_t index,
int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
void (*xor_block)(uint8_t *, uint8_t *))
{
uint8_t *datap, *outp, *counterp;
uint64_t counter;
uint64_t counter_mask = ntohll(0x00000000ffffffffULL);
int i;
/*
* Increment counter.
* Counter bits are confined to the bottom 32 bits
*/
counter = ntohll(ctx->gcm_cb[1] & counter_mask);
counter = htonll(counter + 1);
counter &= counter_mask;
ctx->gcm_cb[1] = (ctx->gcm_cb[1] & ~counter_mask) | counter;
datap = (uint8_t *)ctx->gcm_remainder;
outp = &((ctx->gcm_pt_buf)[index]);
counterp = (uint8_t *)ctx->gcm_tmp;
/* authentication tag */
bzero((uint8_t *)ctx->gcm_tmp, block_size);
bcopy(datap, (uint8_t *)ctx->gcm_tmp, ctx->gcm_remainder_len);
/* add ciphertext to the hash */
GHASH(ctx, ctx->gcm_tmp, ctx->gcm_ghash, gcm_impl_get_ops());
/* decrypt remaining ciphertext */
encrypt_block(ctx->gcm_keysched, (uint8_t *)ctx->gcm_cb, counterp);
/* XOR with counter block */
for (i = 0; i < ctx->gcm_remainder_len; i++) {
outp[i] = datap[i] ^ counterp[i];
}
}
/* ARGSUSED */
int
gcm_mode_decrypt_contiguous_blocks(gcm_ctx_t *ctx, char *data, size_t length,
crypto_data_t *out, size_t block_size,
int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
void (*copy_block)(uint8_t *, uint8_t *),
void (*xor_block)(uint8_t *, uint8_t *))
{
size_t new_len;
uint8_t *new;
/*
* Copy contiguous ciphertext input blocks to plaintext buffer.
* Ciphertext will be decrypted in the final.
*/
if (length > 0) {
new_len = ctx->gcm_pt_buf_len + length;
new = vmem_alloc(new_len, ctx->gcm_kmflag);
if (new == NULL) {
vmem_free(ctx->gcm_pt_buf, ctx->gcm_pt_buf_len);
ctx->gcm_pt_buf = NULL;
return (CRYPTO_HOST_MEMORY);
}
bcopy(ctx->gcm_pt_buf, new, ctx->gcm_pt_buf_len);
vmem_free(ctx->gcm_pt_buf, ctx->gcm_pt_buf_len);
ctx->gcm_pt_buf = new;
ctx->gcm_pt_buf_len = new_len;
bcopy(data, &ctx->gcm_pt_buf[ctx->gcm_processed_data_len],
length);
ctx->gcm_processed_data_len += length;
}
ctx->gcm_remainder_len = 0;
return (CRYPTO_SUCCESS);
}
int
gcm_decrypt_final(gcm_ctx_t *ctx, crypto_data_t *out, size_t block_size,
int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
void (*xor_block)(uint8_t *, uint8_t *))
{
#ifdef CAN_USE_GCM_ASM
if (ctx->gcm_use_avx == B_TRUE)
return (gcm_decrypt_final_avx(ctx, out, block_size));
#endif
const gcm_impl_ops_t *gops;
size_t pt_len;
size_t remainder;
uint8_t *ghash;
uint8_t *blockp;
uint8_t *cbp;
uint64_t counter;
uint64_t counter_mask = ntohll(0x00000000ffffffffULL);
int processed = 0, rv;
ASSERT(ctx->gcm_processed_data_len == ctx->gcm_pt_buf_len);
gops = gcm_impl_get_ops();
pt_len = ctx->gcm_processed_data_len - ctx->gcm_tag_len;
ghash = (uint8_t *)ctx->gcm_ghash;
blockp = ctx->gcm_pt_buf;
remainder = pt_len;
while (remainder > 0) {
/* Incomplete last block */
if (remainder < block_size) {
bcopy(blockp, ctx->gcm_remainder, remainder);
ctx->gcm_remainder_len = remainder;
/*
* not expecting anymore ciphertext, just
* compute plaintext for the remaining input
*/
gcm_decrypt_incomplete_block(ctx, block_size,
processed, encrypt_block, xor_block);
ctx->gcm_remainder_len = 0;
goto out;
}
/* add ciphertext to the hash */
GHASH(ctx, blockp, ghash, gops);
/*
* Increment counter.
* Counter bits are confined to the bottom 32 bits
*/
counter = ntohll(ctx->gcm_cb[1] & counter_mask);
counter = htonll(counter + 1);
counter &= counter_mask;
ctx->gcm_cb[1] = (ctx->gcm_cb[1] & ~counter_mask) | counter;
cbp = (uint8_t *)ctx->gcm_tmp;
encrypt_block(ctx->gcm_keysched, (uint8_t *)ctx->gcm_cb, cbp);
/* XOR with ciphertext */
xor_block(cbp, blockp);
processed += block_size;
blockp += block_size;
remainder -= block_size;
}
out:
ctx->gcm_len_a_len_c[1] = htonll(CRYPTO_BYTES2BITS(pt_len));
GHASH(ctx, ctx->gcm_len_a_len_c, ghash, gops);
encrypt_block(ctx->gcm_keysched, (uint8_t *)ctx->gcm_J0,
(uint8_t *)ctx->gcm_J0);
xor_block((uint8_t *)ctx->gcm_J0, ghash);
/* compare the input authentication tag with what we calculated */
if (bcmp(&ctx->gcm_pt_buf[pt_len], ghash, ctx->gcm_tag_len)) {
/* They don't match */
return (CRYPTO_INVALID_MAC);
} else {
rv = crypto_put_output_data(ctx->gcm_pt_buf, out, pt_len);
if (rv != CRYPTO_SUCCESS)
return (rv);
out->cd_offset += pt_len;
}
return (CRYPTO_SUCCESS);
}
static int
gcm_validate_args(CK_AES_GCM_PARAMS *gcm_param)
{
size_t tag_len;
/*
* Check the length of the authentication tag (in bits).
*/
tag_len = gcm_param->ulTagBits;
switch (tag_len) {
case 32:
case 64:
case 96:
case 104:
case 112:
case 120:
case 128:
break;
default:
return (CRYPTO_MECHANISM_PARAM_INVALID);
}
if (gcm_param->ulIvLen == 0)
return (CRYPTO_MECHANISM_PARAM_INVALID);
return (CRYPTO_SUCCESS);
}
static void
gcm_format_initial_blocks(uchar_t *iv, ulong_t iv_len,
gcm_ctx_t *ctx, size_t block_size,
void (*copy_block)(uint8_t *, uint8_t *),
void (*xor_block)(uint8_t *, uint8_t *))
{
const gcm_impl_ops_t *gops;
uint8_t *cb;
ulong_t remainder = iv_len;
ulong_t processed = 0;
uint8_t *datap, *ghash;
uint64_t len_a_len_c[2];
gops = gcm_impl_get_ops();
ghash = (uint8_t *)ctx->gcm_ghash;
cb = (uint8_t *)ctx->gcm_cb;
if (iv_len == 12) {
bcopy(iv, cb, 12);
cb[12] = 0;
cb[13] = 0;
cb[14] = 0;
cb[15] = 1;
/* J0 will be used again in the final */
copy_block(cb, (uint8_t *)ctx->gcm_J0);
} else {
/* GHASH the IV */
do {
if (remainder < block_size) {
bzero(cb, block_size);
bcopy(&(iv[processed]), cb, remainder);
datap = (uint8_t *)cb;
remainder = 0;
} else {
datap = (uint8_t *)(&(iv[processed]));
processed += block_size;
remainder -= block_size;
}
GHASH(ctx, datap, ghash, gops);
} while (remainder > 0);
len_a_len_c[0] = 0;
len_a_len_c[1] = htonll(CRYPTO_BYTES2BITS(iv_len));
GHASH(ctx, len_a_len_c, ctx->gcm_J0, gops);
/* J0 will be used again in the final */
copy_block((uint8_t *)ctx->gcm_J0, (uint8_t *)cb);
}
}
/*
* The following function is called at encrypt or decrypt init time
* for AES GCM mode.
*/
int
gcm_init(gcm_ctx_t *ctx, unsigned char *iv, size_t iv_len,
unsigned char *auth_data, size_t auth_data_len, size_t block_size,
int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
void (*copy_block)(uint8_t *, uint8_t *),
void (*xor_block)(uint8_t *, uint8_t *))
{
const gcm_impl_ops_t *gops;
uint8_t *ghash, *datap, *authp;
size_t remainder, processed;
/* encrypt zero block to get subkey H */
bzero(ctx->gcm_H, sizeof (ctx->gcm_H));
encrypt_block(ctx->gcm_keysched, (uint8_t *)ctx->gcm_H,
(uint8_t *)ctx->gcm_H);
gcm_format_initial_blocks(iv, iv_len, ctx, block_size,
copy_block, xor_block);
gops = gcm_impl_get_ops();
authp = (uint8_t *)ctx->gcm_tmp;
ghash = (uint8_t *)ctx->gcm_ghash;
bzero(authp, block_size);
bzero(ghash, block_size);
processed = 0;
remainder = auth_data_len;
do {
if (remainder < block_size) {
/*
* There's not a block full of data, pad rest of
* buffer with zero
*/
bzero(authp, block_size);
bcopy(&(auth_data[processed]), authp, remainder);
datap = (uint8_t *)authp;
remainder = 0;
} else {
datap = (uint8_t *)(&(auth_data[processed]));
processed += block_size;
remainder -= block_size;
}
/* add auth data to the hash */
GHASH(ctx, datap, ghash, gops);
} while (remainder > 0);
return (CRYPTO_SUCCESS);
}
/*
* Init the GCM context struct. Handle the cycle and avx implementations here.
*/
int
gcm_init_ctx(gcm_ctx_t *gcm_ctx, char *param, size_t block_size,
int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
void (*copy_block)(uint8_t *, uint8_t *),
void (*xor_block)(uint8_t *, uint8_t *))
{
int rv;
CK_AES_GCM_PARAMS *gcm_param;
if (param != NULL) {
gcm_param = (CK_AES_GCM_PARAMS *)(void *)param;
if ((rv = gcm_validate_args(gcm_param)) != 0) {
return (rv);
}
gcm_ctx->gcm_tag_len = gcm_param->ulTagBits;
gcm_ctx->gcm_tag_len >>= 3;
gcm_ctx->gcm_processed_data_len = 0;
/* these values are in bits */
gcm_ctx->gcm_len_a_len_c[0]
= htonll(CRYPTO_BYTES2BITS(gcm_param->ulAADLen));
rv = CRYPTO_SUCCESS;
gcm_ctx->gcm_flags |= GCM_MODE;
} else {
return (CRYPTO_MECHANISM_PARAM_INVALID);
}
#ifdef CAN_USE_GCM_ASM
/*
* Handle the "cycle" implementation by creating avx and non avx
* contexts alternately.
*/
if (GCM_IMPL_READ(icp_gcm_impl) != IMPL_CYCLE) {
gcm_ctx->gcm_use_avx = GCM_IMPL_USE_AVX;
} else {
gcm_ctx->gcm_use_avx = gcm_toggle_avx();
}
/* We don't handle byte swapped key schedules in the avx code path. */
aes_key_t *ks = (aes_key_t *)gcm_ctx->gcm_keysched;
if (ks->ops->needs_byteswap == B_TRUE) {
gcm_ctx->gcm_use_avx = B_FALSE;
}
/* Avx and non avx context initialization differs from here on. */
if (gcm_ctx->gcm_use_avx == B_FALSE) {
#endif /* ifdef CAN_USE_GCM_ASM */
if (gcm_init(gcm_ctx, gcm_param->pIv, gcm_param->ulIvLen,
gcm_param->pAAD, gcm_param->ulAADLen, block_size,
encrypt_block, copy_block, xor_block) != 0) {
rv = CRYPTO_MECHANISM_PARAM_INVALID;
}
#ifdef CAN_USE_GCM_ASM
} else {
if (gcm_init_avx(gcm_ctx, gcm_param->pIv, gcm_param->ulIvLen,
gcm_param->pAAD, gcm_param->ulAADLen, block_size) != 0) {
rv = CRYPTO_MECHANISM_PARAM_INVALID;
}
}
#endif /* ifdef CAN_USE_GCM_ASM */
return (rv);
}
int
gmac_init_ctx(gcm_ctx_t *gcm_ctx, char *param, size_t block_size,
int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
void (*copy_block)(uint8_t *, uint8_t *),
void (*xor_block)(uint8_t *, uint8_t *))
{
int rv;
CK_AES_GMAC_PARAMS *gmac_param;
if (param != NULL) {
gmac_param = (CK_AES_GMAC_PARAMS *)(void *)param;
gcm_ctx->gcm_tag_len = CRYPTO_BITS2BYTES(AES_GMAC_TAG_BITS);
gcm_ctx->gcm_processed_data_len = 0;
/* these values are in bits */
gcm_ctx->gcm_len_a_len_c[0]
= htonll(CRYPTO_BYTES2BITS(gmac_param->ulAADLen));
rv = CRYPTO_SUCCESS;
gcm_ctx->gcm_flags |= GMAC_MODE;
} else {
return (CRYPTO_MECHANISM_PARAM_INVALID);
}
#ifdef CAN_USE_GCM_ASM
/*
* Handle the "cycle" implementation by creating avx and non avx
* contexts alternately.
*/
if (GCM_IMPL_READ(icp_gcm_impl) != IMPL_CYCLE) {
gcm_ctx->gcm_use_avx = GCM_IMPL_USE_AVX;
} else {
gcm_ctx->gcm_use_avx = gcm_toggle_avx();
}
/* We don't handle byte swapped key schedules in the avx code path. */
aes_key_t *ks = (aes_key_t *)gcm_ctx->gcm_keysched;
if (ks->ops->needs_byteswap == B_TRUE) {
gcm_ctx->gcm_use_avx = B_FALSE;
}
/* Avx and non avx context initialization differs from here on. */
if (gcm_ctx->gcm_use_avx == B_FALSE) {
#endif /* ifdef CAN_USE_GCM_ASM */
if (gcm_init(gcm_ctx, gmac_param->pIv, AES_GMAC_IV_LEN,
gmac_param->pAAD, gmac_param->ulAADLen, block_size,
encrypt_block, copy_block, xor_block) != 0) {
rv = CRYPTO_MECHANISM_PARAM_INVALID;
}
#ifdef CAN_USE_GCM_ASM
} else {
if (gcm_init_avx(gcm_ctx, gmac_param->pIv, AES_GMAC_IV_LEN,
gmac_param->pAAD, gmac_param->ulAADLen, block_size) != 0) {
rv = CRYPTO_MECHANISM_PARAM_INVALID;
}
}
#endif /* ifdef CAN_USE_GCM_ASM */
return (rv);
}
void *
gcm_alloc_ctx(int kmflag)
{
gcm_ctx_t *gcm_ctx;
if ((gcm_ctx = kmem_zalloc(sizeof (gcm_ctx_t), kmflag)) == NULL)
return (NULL);
gcm_ctx->gcm_flags = GCM_MODE;
return (gcm_ctx);
}
void *
gmac_alloc_ctx(int kmflag)
{
gcm_ctx_t *gcm_ctx;
if ((gcm_ctx = kmem_zalloc(sizeof (gcm_ctx_t), kmflag)) == NULL)
return (NULL);
gcm_ctx->gcm_flags = GMAC_MODE;
return (gcm_ctx);
}
void
gcm_set_kmflag(gcm_ctx_t *ctx, int kmflag)
{
ctx->gcm_kmflag = kmflag;
}
/* GCM implementation that contains the fastest methods */
static gcm_impl_ops_t gcm_fastest_impl = {
.name = "fastest"
};
/* All compiled in implementations */
const gcm_impl_ops_t *gcm_all_impl[] = {
&gcm_generic_impl,
#if defined(__x86_64) && defined(HAVE_PCLMULQDQ)
&gcm_pclmulqdq_impl,
#endif
};
/* Indicate that benchmark has been completed */
static boolean_t gcm_impl_initialized = B_FALSE;
/* Hold all supported implementations */
static size_t gcm_supp_impl_cnt = 0;
static gcm_impl_ops_t *gcm_supp_impl[ARRAY_SIZE(gcm_all_impl)];
/*
* Returns the GCM operations for encrypt/decrypt/key setup. When a
* SIMD implementation is not allowed in the current context, then
* fallback to the fastest generic implementation.
*/
const gcm_impl_ops_t *
gcm_impl_get_ops()
{
if (!kfpu_allowed())
return (&gcm_generic_impl);
const gcm_impl_ops_t *ops = NULL;
const uint32_t impl = GCM_IMPL_READ(icp_gcm_impl);
switch (impl) {
case IMPL_FASTEST:
ASSERT(gcm_impl_initialized);
ops = &gcm_fastest_impl;
break;
case IMPL_CYCLE:
/* Cycle through supported implementations */
ASSERT(gcm_impl_initialized);
ASSERT3U(gcm_supp_impl_cnt, >, 0);
static size_t cycle_impl_idx = 0;
size_t idx = (++cycle_impl_idx) % gcm_supp_impl_cnt;
ops = gcm_supp_impl[idx];
break;
#ifdef CAN_USE_GCM_ASM
case IMPL_AVX:
/*
* Make sure that we return a valid implementation while
* switching to the avx implementation since there still
* may be unfinished non-avx contexts around.
*/
ops = &gcm_generic_impl;
break;
#endif
default:
ASSERT3U(impl, <, gcm_supp_impl_cnt);
ASSERT3U(gcm_supp_impl_cnt, >, 0);
if (impl < ARRAY_SIZE(gcm_all_impl))
ops = gcm_supp_impl[impl];
break;
}
ASSERT3P(ops, !=, NULL);
return (ops);
}
/*
* Initialize all supported implementations.
*/
void
gcm_impl_init(void)
{
gcm_impl_ops_t *curr_impl;
int i, c;
/* Move supported implementations into gcm_supp_impls */
for (i = 0, c = 0; i < ARRAY_SIZE(gcm_all_impl); i++) {
curr_impl = (gcm_impl_ops_t *)gcm_all_impl[i];
if (curr_impl->is_supported())
gcm_supp_impl[c++] = (gcm_impl_ops_t *)curr_impl;
}
gcm_supp_impl_cnt = c;
/*
* Set the fastest implementation given the assumption that the
* hardware accelerated version is the fastest.
*/
#if defined(__x86_64) && defined(HAVE_PCLMULQDQ)
if (gcm_pclmulqdq_impl.is_supported()) {
memcpy(&gcm_fastest_impl, &gcm_pclmulqdq_impl,
sizeof (gcm_fastest_impl));
} else
#endif
{
memcpy(&gcm_fastest_impl, &gcm_generic_impl,
sizeof (gcm_fastest_impl));
}
strcpy(gcm_fastest_impl.name, "fastest");
#ifdef CAN_USE_GCM_ASM
/*
* Use the avx implementation if it's available and the implementation
* hasn't changed from its default value of fastest on module load.
*/
if (gcm_avx_will_work() &&
GCM_IMPL_READ(user_sel_impl) == IMPL_FASTEST) {
gcm_set_avx(B_TRUE);
}
#endif
/* Finish initialization */
atomic_swap_32(&icp_gcm_impl, user_sel_impl);
gcm_impl_initialized = B_TRUE;
}
static const struct {
char *name;
uint32_t sel;
} gcm_impl_opts[] = {
{ "cycle", IMPL_CYCLE },
{ "fastest", IMPL_FASTEST },
#ifdef CAN_USE_GCM_ASM
{ "avx", IMPL_AVX },
#endif
};
/*
* Function sets desired gcm implementation.
*
* If we are called before init(), user preference will be saved in
* user_sel_impl, and applied in later init() call. This occurs when module
* parameter is specified on module load. Otherwise, directly update
* icp_gcm_impl.
*
* @val Name of gcm implementation to use
* @param Unused.
*/
int
gcm_impl_set(const char *val)
{
int err = -EINVAL;
char req_name[GCM_IMPL_NAME_MAX];
uint32_t impl = GCM_IMPL_READ(user_sel_impl);
size_t i;
/* sanitize input */
i = strnlen(val, GCM_IMPL_NAME_MAX);
if (i == 0 || i >= GCM_IMPL_NAME_MAX)
return (err);
strlcpy(req_name, val, GCM_IMPL_NAME_MAX);
while (i > 0 && isspace(req_name[i-1]))
i--;
req_name[i] = '\0';
/* Check mandatory options */
for (i = 0; i < ARRAY_SIZE(gcm_impl_opts); i++) {
#ifdef CAN_USE_GCM_ASM
/* Ignore avx implementation if it won't work. */
if (gcm_impl_opts[i].sel == IMPL_AVX && !gcm_avx_will_work()) {
continue;
}
#endif
if (strcmp(req_name, gcm_impl_opts[i].name) == 0) {
impl = gcm_impl_opts[i].sel;
err = 0;
break;
}
}
/* check all supported impl if init() was already called */
if (err != 0 && gcm_impl_initialized) {
/* check all supported implementations */
for (i = 0; i < gcm_supp_impl_cnt; i++) {
if (strcmp(req_name, gcm_supp_impl[i]->name) == 0) {
impl = i;
err = 0;
break;
}
}
}
#ifdef CAN_USE_GCM_ASM
/*
* Use the avx implementation if available and the requested one is
* avx or fastest.
*/
if (gcm_avx_will_work() == B_TRUE &&
(impl == IMPL_AVX || impl == IMPL_FASTEST)) {
gcm_set_avx(B_TRUE);
} else {
gcm_set_avx(B_FALSE);
}
#endif
if (err == 0) {
if (gcm_impl_initialized)
atomic_swap_32(&icp_gcm_impl, impl);
else
atomic_swap_32(&user_sel_impl, impl);
}
return (err);
}
#if defined(_KERNEL)
static int
icp_gcm_impl_set(const char *val, zfs_kernel_param_t *kp)
{
return (gcm_impl_set(val));
}
static int
icp_gcm_impl_get(char *buffer, zfs_kernel_param_t *kp)
{
int i, cnt = 0;
char *fmt;
const uint32_t impl = GCM_IMPL_READ(icp_gcm_impl);
ASSERT(gcm_impl_initialized);
/* list mandatory options */
for (i = 0; i < ARRAY_SIZE(gcm_impl_opts); i++) {
#ifdef CAN_USE_GCM_ASM
/* Ignore avx implementation if it won't work. */
if (gcm_impl_opts[i].sel == IMPL_AVX && !gcm_avx_will_work()) {
continue;
}
#endif
fmt = (impl == gcm_impl_opts[i].sel) ? "[%s] " : "%s ";
cnt += sprintf(buffer + cnt, fmt, gcm_impl_opts[i].name);
}
/* list all supported implementations */
for (i = 0; i < gcm_supp_impl_cnt; i++) {
fmt = (i == impl) ? "[%s] " : "%s ";
cnt += sprintf(buffer + cnt, fmt, gcm_supp_impl[i]->name);
}
return (cnt);
}
module_param_call(icp_gcm_impl, icp_gcm_impl_set, icp_gcm_impl_get,
NULL, 0644);
MODULE_PARM_DESC(icp_gcm_impl, "Select gcm implementation.");
#endif /* defined(__KERNEL) */
#ifdef CAN_USE_GCM_ASM
#define GCM_BLOCK_LEN 16
/*
* The openssl asm routines are 6x aggregated and need that many bytes
* at minimum.
*/
#define GCM_AVX_MIN_DECRYPT_BYTES (GCM_BLOCK_LEN * 6)
#define GCM_AVX_MIN_ENCRYPT_BYTES (GCM_BLOCK_LEN * 6 * 3)
/*
* Ensure the chunk size is reasonable since we are allocating a
* GCM_AVX_MAX_CHUNK_SIZEd buffer and disabling preemption and interrupts.
*/
#define GCM_AVX_MAX_CHUNK_SIZE \
(((128*1024)/GCM_AVX_MIN_DECRYPT_BYTES) * GCM_AVX_MIN_DECRYPT_BYTES)
/* Get the chunk size module parameter. */
#define GCM_CHUNK_SIZE_READ *(volatile uint32_t *) &gcm_avx_chunk_size
/* Clear the FPU registers since they hold sensitive internal state. */
#define clear_fpu_regs() clear_fpu_regs_avx()
#define GHASH_AVX(ctx, in, len) \
gcm_ghash_avx((ctx)->gcm_ghash, (const uint64_t (*)[2])(ctx)->gcm_Htable, \
in, len)
#define gcm_incr_counter_block(ctx) gcm_incr_counter_block_by(ctx, 1)
/*
* Module parameter: number of bytes to process at once while owning the FPU.
* Rounded down to the next GCM_AVX_MIN_DECRYPT_BYTES byte boundary and is
* ensured to be greater or equal than GCM_AVX_MIN_DECRYPT_BYTES.
*/
static uint32_t gcm_avx_chunk_size =
((32 * 1024) / GCM_AVX_MIN_DECRYPT_BYTES) * GCM_AVX_MIN_DECRYPT_BYTES;
extern boolean_t atomic_toggle_boolean_nv(volatile boolean_t *);
extern void clear_fpu_regs_avx(void);
extern void gcm_xor_avx(const uint8_t *src, uint8_t *dst);
extern void aes_encrypt_intel(const uint32_t rk[], int nr,
const uint32_t pt[4], uint32_t ct[4]);
extern void gcm_init_htab_avx(uint64_t Htable[16][2], const uint64_t H[2]);
extern void gcm_ghash_avx(uint64_t ghash[2], const uint64_t Htable[16][2],
const uint8_t *in, size_t len);
extern size_t aesni_gcm_encrypt(const uint8_t *, uint8_t *, size_t,
const void *, uint64_t *, uint64_t *);
extern size_t aesni_gcm_decrypt(const uint8_t *, uint8_t *, size_t,
const void *, uint64_t *, uint64_t *);
static inline boolean_t
gcm_avx_will_work(void)
{
/* Avx should imply aes-ni and pclmulqdq, but make sure anyhow. */
return (kfpu_allowed() &&
zfs_avx_available() && zfs_movbe_available() &&
zfs_aes_available() && zfs_pclmulqdq_available());
}
static inline void
gcm_set_avx(boolean_t val)
{
if (gcm_avx_will_work() == B_TRUE) {
atomic_swap_32(&gcm_use_avx, val);
}
}
static inline boolean_t
gcm_toggle_avx(void)
{
if (gcm_avx_will_work() == B_TRUE) {
return (atomic_toggle_boolean_nv(&GCM_IMPL_USE_AVX));
} else {
return (B_FALSE);
}
}
/*
* Clear senssitve data in the context.
*
* ctx->gcm_remainder may contain a plaintext remainder. ctx->gcm_H and
* ctx->gcm_Htable contain the hash sub key which protects authentication.
*
* Although extremely unlikely, ctx->gcm_J0 and ctx->gcm_tmp could be used for
* a known plaintext attack, they consists of the IV and the first and last
* counter respectively. If they should be cleared is debatable.
*/
static inline void
gcm_clear_ctx(gcm_ctx_t *ctx)
{
bzero(ctx->gcm_remainder, sizeof (ctx->gcm_remainder));
bzero(ctx->gcm_H, sizeof (ctx->gcm_H));
bzero(ctx->gcm_Htable, sizeof (ctx->gcm_Htable));
bzero(ctx->gcm_J0, sizeof (ctx->gcm_J0));
bzero(ctx->gcm_tmp, sizeof (ctx->gcm_tmp));
}
/* Increment the GCM counter block by n. */
static inline void
gcm_incr_counter_block_by(gcm_ctx_t *ctx, int n)
{
uint64_t counter_mask = ntohll(0x00000000ffffffffULL);
uint64_t counter = ntohll(ctx->gcm_cb[1] & counter_mask);
counter = htonll(counter + n);
counter &= counter_mask;
ctx->gcm_cb[1] = (ctx->gcm_cb[1] & ~counter_mask) | counter;
}
/*
* Encrypt multiple blocks of data in GCM mode.
* This is done in gcm_avx_chunk_size chunks, utilizing AVX assembler routines
* if possible. While processing a chunk the FPU is "locked".
*/
static int
gcm_mode_encrypt_contiguous_blocks_avx(gcm_ctx_t *ctx, char *data,
size_t length, crypto_data_t *out, size_t block_size)
{
size_t bleft = length;
size_t need = 0;
size_t done = 0;
uint8_t *datap = (uint8_t *)data;
size_t chunk_size = (size_t)GCM_CHUNK_SIZE_READ;
const aes_key_t *key = ((aes_key_t *)ctx->gcm_keysched);
uint64_t *ghash = ctx->gcm_ghash;
uint64_t *cb = ctx->gcm_cb;
uint8_t *ct_buf = NULL;
uint8_t *tmp = (uint8_t *)ctx->gcm_tmp;
int rv = CRYPTO_SUCCESS;
ASSERT(block_size == GCM_BLOCK_LEN);
/*
* If the last call left an incomplete block, try to fill
* it first.
*/
if (ctx->gcm_remainder_len > 0) {
need = block_size - ctx->gcm_remainder_len;
if (length < need) {
/* Accumulate bytes here and return. */
bcopy(datap, (uint8_t *)ctx->gcm_remainder +
ctx->gcm_remainder_len, length);
ctx->gcm_remainder_len += length;
if (ctx->gcm_copy_to == NULL) {
ctx->gcm_copy_to = datap;
}
return (CRYPTO_SUCCESS);
} else {
/* Complete incomplete block. */
bcopy(datap, (uint8_t *)ctx->gcm_remainder +
ctx->gcm_remainder_len, need);
ctx->gcm_copy_to = NULL;
}
}
/* Allocate a buffer to encrypt to if there is enough input. */
if (bleft >= GCM_AVX_MIN_ENCRYPT_BYTES) {
ct_buf = vmem_alloc(chunk_size, ctx->gcm_kmflag);
if (ct_buf == NULL) {
return (CRYPTO_HOST_MEMORY);
}
}
/* If we completed an incomplete block, encrypt and write it out. */
if (ctx->gcm_remainder_len > 0) {
kfpu_begin();
aes_encrypt_intel(key->encr_ks.ks32, key->nr,
(const uint32_t *)cb, (uint32_t *)tmp);
gcm_xor_avx((const uint8_t *) ctx->gcm_remainder, tmp);
GHASH_AVX(ctx, tmp, block_size);
clear_fpu_regs();
kfpu_end();
/*
* We don't follow gcm_mode_encrypt_contiguous_blocks() here
* but assert that out is not null.
* See gcm_mode_encrypt_contiguous_blocks() above and
* https://github.com/zfsonlinux/zfs/issues/9661
*/
ASSERT(out != NULL);
rv = crypto_put_output_data(tmp, out, block_size);
out->cd_offset += block_size;
gcm_incr_counter_block(ctx);
ctx->gcm_processed_data_len += block_size;
bleft -= need;
datap += need;
ctx->gcm_remainder_len = 0;
}
/* Do the bulk encryption in chunk_size blocks. */
for (; bleft >= chunk_size; bleft -= chunk_size) {
kfpu_begin();
done = aesni_gcm_encrypt(
datap, ct_buf, chunk_size, key, cb, ghash);
clear_fpu_regs();
kfpu_end();
if (done != chunk_size) {
rv = CRYPTO_FAILED;
goto out_nofpu;
}
if (out != NULL) {
rv = crypto_put_output_data(ct_buf, out, chunk_size);
if (rv != CRYPTO_SUCCESS) {
goto out_nofpu;
}
out->cd_offset += chunk_size;
}
datap += chunk_size;
ctx->gcm_processed_data_len += chunk_size;
}
/* Check if we are already done. */
if (bleft == 0) {
goto out_nofpu;
}
/* Bulk encrypt the remaining data. */
kfpu_begin();
if (bleft >= GCM_AVX_MIN_ENCRYPT_BYTES) {
done = aesni_gcm_encrypt(datap, ct_buf, bleft, key, cb, ghash);
if (done == 0) {
rv = CRYPTO_FAILED;
goto out;
}
if (out != NULL) {
rv = crypto_put_output_data(ct_buf, out, done);
if (rv != CRYPTO_SUCCESS) {
goto out;
}
out->cd_offset += done;
}
ctx->gcm_processed_data_len += done;
datap += done;
bleft -= done;
}
/* Less than GCM_AVX_MIN_ENCRYPT_BYTES remain, operate on blocks. */
while (bleft > 0) {
if (bleft < block_size) {
bcopy(datap, ctx->gcm_remainder, bleft);
ctx->gcm_remainder_len = bleft;
ctx->gcm_copy_to = datap;
goto out;
}
/* Encrypt, hash and write out. */
aes_encrypt_intel(key->encr_ks.ks32, key->nr,
(const uint32_t *)cb, (uint32_t *)tmp);
gcm_xor_avx(datap, tmp);
GHASH_AVX(ctx, tmp, block_size);
if (out != NULL) {
rv = crypto_put_output_data(tmp, out, block_size);
if (rv != CRYPTO_SUCCESS) {
goto out;
}
out->cd_offset += block_size;
}
gcm_incr_counter_block(ctx);
ctx->gcm_processed_data_len += block_size;
datap += block_size;
bleft -= block_size;
}
out:
clear_fpu_regs();
kfpu_end();
out_nofpu:
if (ct_buf != NULL) {
vmem_free(ct_buf, chunk_size);
}
return (rv);
}
/*
* Finalize the encryption: Zero fill, encrypt, hash and write out an eventual
* incomplete last block. Encrypt the ICB. Calculate the tag and write it out.
*/
static int
gcm_encrypt_final_avx(gcm_ctx_t *ctx, crypto_data_t *out, size_t block_size)
{
uint8_t *ghash = (uint8_t *)ctx->gcm_ghash;
uint32_t *J0 = (uint32_t *)ctx->gcm_J0;
uint8_t *remainder = (uint8_t *)ctx->gcm_remainder;
size_t rem_len = ctx->gcm_remainder_len;
const void *keysched = ((aes_key_t *)ctx->gcm_keysched)->encr_ks.ks32;
int aes_rounds = ((aes_key_t *)keysched)->nr;
int rv;
ASSERT(block_size == GCM_BLOCK_LEN);
if (out->cd_length < (rem_len + ctx->gcm_tag_len)) {
return (CRYPTO_DATA_LEN_RANGE);
}
kfpu_begin();
/* Pad last incomplete block with zeros, encrypt and hash. */
if (rem_len > 0) {
uint8_t *tmp = (uint8_t *)ctx->gcm_tmp;
const uint32_t *cb = (uint32_t *)ctx->gcm_cb;
aes_encrypt_intel(keysched, aes_rounds, cb, (uint32_t *)tmp);
bzero(remainder + rem_len, block_size - rem_len);
for (int i = 0; i < rem_len; i++) {
remainder[i] ^= tmp[i];
}
GHASH_AVX(ctx, remainder, block_size);
ctx->gcm_processed_data_len += rem_len;
/* No need to increment counter_block, it's the last block. */
}
/* Finish tag. */
ctx->gcm_len_a_len_c[1] =
htonll(CRYPTO_BYTES2BITS(ctx->gcm_processed_data_len));
GHASH_AVX(ctx, (const uint8_t *)ctx->gcm_len_a_len_c, block_size);
aes_encrypt_intel(keysched, aes_rounds, J0, J0);
gcm_xor_avx((uint8_t *)J0, ghash);
clear_fpu_regs();
kfpu_end();
/* Output remainder. */
if (rem_len > 0) {
rv = crypto_put_output_data(remainder, out, rem_len);
if (rv != CRYPTO_SUCCESS)
return (rv);
}
out->cd_offset += rem_len;
ctx->gcm_remainder_len = 0;
rv = crypto_put_output_data(ghash, out, ctx->gcm_tag_len);
if (rv != CRYPTO_SUCCESS)
return (rv);
out->cd_offset += ctx->gcm_tag_len;
/* Clear sensitive data in the context before returning. */
gcm_clear_ctx(ctx);
return (CRYPTO_SUCCESS);
}
/*
* Finalize decryption: We just have accumulated crypto text, so now we
* decrypt it here inplace.
*/
static int
gcm_decrypt_final_avx(gcm_ctx_t *ctx, crypto_data_t *out, size_t block_size)
{
ASSERT3U(ctx->gcm_processed_data_len, ==, ctx->gcm_pt_buf_len);
ASSERT3U(block_size, ==, 16);
size_t chunk_size = (size_t)GCM_CHUNK_SIZE_READ;
size_t pt_len = ctx->gcm_processed_data_len - ctx->gcm_tag_len;
uint8_t *datap = ctx->gcm_pt_buf;
const aes_key_t *key = ((aes_key_t *)ctx->gcm_keysched);
uint32_t *cb = (uint32_t *)ctx->gcm_cb;
uint64_t *ghash = ctx->gcm_ghash;
uint32_t *tmp = (uint32_t *)ctx->gcm_tmp;
int rv = CRYPTO_SUCCESS;
size_t bleft, done;
/*
* Decrypt in chunks of gcm_avx_chunk_size, which is asserted to be
* greater or equal than GCM_AVX_MIN_ENCRYPT_BYTES, and a multiple of
* GCM_AVX_MIN_DECRYPT_BYTES.
*/
for (bleft = pt_len; bleft >= chunk_size; bleft -= chunk_size) {
kfpu_begin();
done = aesni_gcm_decrypt(datap, datap, chunk_size,
(const void *)key, ctx->gcm_cb, ghash);
clear_fpu_regs();
kfpu_end();
if (done != chunk_size) {
return (CRYPTO_FAILED);
}
datap += done;
}
/* Decrypt remainder, which is less then chunk size, in one go. */
kfpu_begin();
if (bleft >= GCM_AVX_MIN_DECRYPT_BYTES) {
done = aesni_gcm_decrypt(datap, datap, bleft,
(const void *)key, ctx->gcm_cb, ghash);
if (done == 0) {
clear_fpu_regs();
kfpu_end();
return (CRYPTO_FAILED);
}
datap += done;
bleft -= done;
}
ASSERT(bleft < GCM_AVX_MIN_DECRYPT_BYTES);
/*
* Now less then GCM_AVX_MIN_DECRYPT_BYTES bytes remain,
* decrypt them block by block.
*/
while (bleft > 0) {
/* Incomplete last block. */
if (bleft < block_size) {
uint8_t *lastb = (uint8_t *)ctx->gcm_remainder;
bzero(lastb, block_size);
bcopy(datap, lastb, bleft);
/* The GCM processing. */
GHASH_AVX(ctx, lastb, block_size);
aes_encrypt_intel(key->encr_ks.ks32, key->nr, cb, tmp);
for (size_t i = 0; i < bleft; i++) {
datap[i] = lastb[i] ^ ((uint8_t *)tmp)[i];
}
break;
}
/* The GCM processing. */
GHASH_AVX(ctx, datap, block_size);
aes_encrypt_intel(key->encr_ks.ks32, key->nr, cb, tmp);
gcm_xor_avx((uint8_t *)tmp, datap);
gcm_incr_counter_block(ctx);
datap += block_size;
bleft -= block_size;
}
if (rv != CRYPTO_SUCCESS) {
clear_fpu_regs();
kfpu_end();
return (rv);
}
/* Decryption done, finish the tag. */
ctx->gcm_len_a_len_c[1] = htonll(CRYPTO_BYTES2BITS(pt_len));
GHASH_AVX(ctx, (uint8_t *)ctx->gcm_len_a_len_c, block_size);
aes_encrypt_intel(key->encr_ks.ks32, key->nr, (uint32_t *)ctx->gcm_J0,
(uint32_t *)ctx->gcm_J0);
gcm_xor_avx((uint8_t *)ctx->gcm_J0, (uint8_t *)ghash);
/* We are done with the FPU, restore its state. */
clear_fpu_regs();
kfpu_end();
/* Compare the input authentication tag with what we calculated. */
if (bcmp(&ctx->gcm_pt_buf[pt_len], ghash, ctx->gcm_tag_len)) {
/* They don't match. */
return (CRYPTO_INVALID_MAC);
}
rv = crypto_put_output_data(ctx->gcm_pt_buf, out, pt_len);
if (rv != CRYPTO_SUCCESS) {
return (rv);
}
out->cd_offset += pt_len;
gcm_clear_ctx(ctx);
return (CRYPTO_SUCCESS);
}
/*
* Initialize the GCM params H, Htabtle and the counter block. Save the
* initial counter block.
*/
static int
gcm_init_avx(gcm_ctx_t *ctx, unsigned char *iv, size_t iv_len,
unsigned char *auth_data, size_t auth_data_len, size_t block_size)
{
uint8_t *cb = (uint8_t *)ctx->gcm_cb;
uint64_t *H = ctx->gcm_H;
const void *keysched = ((aes_key_t *)ctx->gcm_keysched)->encr_ks.ks32;
int aes_rounds = ((aes_key_t *)ctx->gcm_keysched)->nr;
uint8_t *datap = auth_data;
size_t chunk_size = (size_t)GCM_CHUNK_SIZE_READ;
size_t bleft;
ASSERT(block_size == GCM_BLOCK_LEN);
/* Init H (encrypt zero block) and create the initial counter block. */
bzero(ctx->gcm_ghash, sizeof (ctx->gcm_ghash));
bzero(H, sizeof (ctx->gcm_H));
kfpu_begin();
aes_encrypt_intel(keysched, aes_rounds,
(const uint32_t *)H, (uint32_t *)H);
gcm_init_htab_avx(ctx->gcm_Htable, H);
if (iv_len == 12) {
bcopy(iv, cb, 12);
cb[12] = 0;
cb[13] = 0;
cb[14] = 0;
cb[15] = 1;
/* We need the ICB later. */
bcopy(cb, ctx->gcm_J0, sizeof (ctx->gcm_J0));
} else {
/*
* Most consumers use 12 byte IVs, so it's OK to use the
* original routines for other IV sizes, just avoid nesting
* kfpu_begin calls.
*/
clear_fpu_regs();
kfpu_end();
gcm_format_initial_blocks(iv, iv_len, ctx, block_size,
aes_copy_block, aes_xor_block);
kfpu_begin();
}
/* Openssl post increments the counter, adjust for that. */
gcm_incr_counter_block(ctx);
/* Ghash AAD in chunk_size blocks. */
for (bleft = auth_data_len; bleft >= chunk_size; bleft -= chunk_size) {
GHASH_AVX(ctx, datap, chunk_size);
datap += chunk_size;
clear_fpu_regs();
kfpu_end();
kfpu_begin();
}
/* Ghash the remainder and handle possible incomplete GCM block. */
if (bleft > 0) {
size_t incomp = bleft % block_size;
bleft -= incomp;
if (bleft > 0) {
GHASH_AVX(ctx, datap, bleft);
datap += bleft;
}
if (incomp > 0) {
/* Zero pad and hash incomplete last block. */
uint8_t *authp = (uint8_t *)ctx->gcm_tmp;
bzero(authp, block_size);
bcopy(datap, authp, incomp);
GHASH_AVX(ctx, authp, block_size);
}
}
clear_fpu_regs();
kfpu_end();
return (CRYPTO_SUCCESS);
}
#if defined(_KERNEL)
static int
icp_gcm_avx_set_chunk_size(const char *buf, zfs_kernel_param_t *kp)
{
unsigned long val;
char val_rounded[16];
int error = 0;
error = kstrtoul(buf, 0, &val);
if (error)
return (error);
val = (val / GCM_AVX_MIN_DECRYPT_BYTES) * GCM_AVX_MIN_DECRYPT_BYTES;
if (val < GCM_AVX_MIN_ENCRYPT_BYTES || val > GCM_AVX_MAX_CHUNK_SIZE)
return (-EINVAL);
snprintf(val_rounded, 16, "%u", (uint32_t)val);
error = param_set_uint(val_rounded, kp);
return (error);
}
module_param_call(icp_gcm_avx_chunk_size, icp_gcm_avx_set_chunk_size,
param_get_uint, &gcm_avx_chunk_size, 0644);
MODULE_PARM_DESC(icp_gcm_avx_chunk_size,
"How many bytes to process while owning the FPU");
#endif /* defined(__KERNEL) */
#endif /* ifdef CAN_USE_GCM_ASM */