733 lines
26 KiB
C
733 lines
26 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or https://opensource.org/licenses/CDDL-1.0.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
|
|
/*
|
|
* Based on BLAKE3 v1.3.1, https://github.com/BLAKE3-team/BLAKE3
|
|
* Copyright (c) 2019-2020 Samuel Neves and Jack O'Connor
|
|
* Copyright (c) 2021-2022 Tino Reichardt <milky-zfs@mcmilk.de>
|
|
*/
|
|
|
|
#include <sys/zfs_context.h>
|
|
#include <sys/blake3.h>
|
|
|
|
#include "blake3_impl.h"
|
|
|
|
/*
|
|
* We need 1056 byte stack for blake3_compress_subtree_wide()
|
|
* - we define this pragma to make gcc happy
|
|
*/
|
|
#if defined(__GNUC__)
|
|
#pragma GCC diagnostic ignored "-Wframe-larger-than="
|
|
#endif
|
|
|
|
/* internal used */
|
|
typedef struct {
|
|
uint32_t input_cv[8];
|
|
uint64_t counter;
|
|
uint8_t block[BLAKE3_BLOCK_LEN];
|
|
uint8_t block_len;
|
|
uint8_t flags;
|
|
} output_t;
|
|
|
|
/* internal flags */
|
|
enum blake3_flags {
|
|
CHUNK_START = 1 << 0,
|
|
CHUNK_END = 1 << 1,
|
|
PARENT = 1 << 2,
|
|
ROOT = 1 << 3,
|
|
KEYED_HASH = 1 << 4,
|
|
DERIVE_KEY_CONTEXT = 1 << 5,
|
|
DERIVE_KEY_MATERIAL = 1 << 6,
|
|
};
|
|
|
|
/* internal start */
|
|
static void chunk_state_init(blake3_chunk_state_t *ctx,
|
|
const uint32_t key[8], uint8_t flags)
|
|
{
|
|
memcpy(ctx->cv, key, BLAKE3_KEY_LEN);
|
|
ctx->chunk_counter = 0;
|
|
memset(ctx->buf, 0, BLAKE3_BLOCK_LEN);
|
|
ctx->buf_len = 0;
|
|
ctx->blocks_compressed = 0;
|
|
ctx->flags = flags;
|
|
}
|
|
|
|
static void chunk_state_reset(blake3_chunk_state_t *ctx,
|
|
const uint32_t key[8], uint64_t chunk_counter)
|
|
{
|
|
memcpy(ctx->cv, key, BLAKE3_KEY_LEN);
|
|
ctx->chunk_counter = chunk_counter;
|
|
ctx->blocks_compressed = 0;
|
|
memset(ctx->buf, 0, BLAKE3_BLOCK_LEN);
|
|
ctx->buf_len = 0;
|
|
}
|
|
|
|
static size_t chunk_state_len(const blake3_chunk_state_t *ctx)
|
|
{
|
|
return (BLAKE3_BLOCK_LEN * (size_t)ctx->blocks_compressed) +
|
|
((size_t)ctx->buf_len);
|
|
}
|
|
|
|
static size_t chunk_state_fill_buf(blake3_chunk_state_t *ctx,
|
|
const uint8_t *input, size_t input_len)
|
|
{
|
|
size_t take = BLAKE3_BLOCK_LEN - ((size_t)ctx->buf_len);
|
|
if (take > input_len) {
|
|
take = input_len;
|
|
}
|
|
uint8_t *dest = ctx->buf + ((size_t)ctx->buf_len);
|
|
memcpy(dest, input, take);
|
|
ctx->buf_len += (uint8_t)take;
|
|
return (take);
|
|
}
|
|
|
|
static uint8_t chunk_state_maybe_start_flag(const blake3_chunk_state_t *ctx)
|
|
{
|
|
if (ctx->blocks_compressed == 0) {
|
|
return (CHUNK_START);
|
|
} else {
|
|
return (0);
|
|
}
|
|
}
|
|
|
|
static output_t make_output(const uint32_t input_cv[8],
|
|
const uint8_t *block, uint8_t block_len,
|
|
uint64_t counter, uint8_t flags)
|
|
{
|
|
output_t ret;
|
|
memcpy(ret.input_cv, input_cv, 32);
|
|
memcpy(ret.block, block, BLAKE3_BLOCK_LEN);
|
|
ret.block_len = block_len;
|
|
ret.counter = counter;
|
|
ret.flags = flags;
|
|
return (ret);
|
|
}
|
|
|
|
/*
|
|
* Chaining values within a given chunk (specifically the compress_in_place
|
|
* interface) are represented as words. This avoids unnecessary bytes<->words
|
|
* conversion overhead in the portable implementation. However, the hash_many
|
|
* interface handles both user input and parent node blocks, so it accepts
|
|
* bytes. For that reason, chaining values in the CV stack are represented as
|
|
* bytes.
|
|
*/
|
|
static void output_chaining_value(const blake3_ops_t *ops,
|
|
const output_t *ctx, uint8_t cv[32])
|
|
{
|
|
uint32_t cv_words[8];
|
|
memcpy(cv_words, ctx->input_cv, 32);
|
|
ops->compress_in_place(cv_words, ctx->block, ctx->block_len,
|
|
ctx->counter, ctx->flags);
|
|
store_cv_words(cv, cv_words);
|
|
}
|
|
|
|
static void output_root_bytes(const blake3_ops_t *ops, const output_t *ctx,
|
|
uint64_t seek, uint8_t *out, size_t out_len)
|
|
{
|
|
uint64_t output_block_counter = seek / 64;
|
|
size_t offset_within_block = seek % 64;
|
|
uint8_t wide_buf[64];
|
|
while (out_len > 0) {
|
|
ops->compress_xof(ctx->input_cv, ctx->block, ctx->block_len,
|
|
output_block_counter, ctx->flags | ROOT, wide_buf);
|
|
size_t available_bytes = 64 - offset_within_block;
|
|
size_t memcpy_len;
|
|
if (out_len > available_bytes) {
|
|
memcpy_len = available_bytes;
|
|
} else {
|
|
memcpy_len = out_len;
|
|
}
|
|
memcpy(out, wide_buf + offset_within_block, memcpy_len);
|
|
out += memcpy_len;
|
|
out_len -= memcpy_len;
|
|
output_block_counter += 1;
|
|
offset_within_block = 0;
|
|
}
|
|
}
|
|
|
|
static void chunk_state_update(const blake3_ops_t *ops,
|
|
blake3_chunk_state_t *ctx, const uint8_t *input, size_t input_len)
|
|
{
|
|
if (ctx->buf_len > 0) {
|
|
size_t take = chunk_state_fill_buf(ctx, input, input_len);
|
|
input += take;
|
|
input_len -= take;
|
|
if (input_len > 0) {
|
|
ops->compress_in_place(ctx->cv, ctx->buf,
|
|
BLAKE3_BLOCK_LEN, ctx->chunk_counter,
|
|
ctx->flags|chunk_state_maybe_start_flag(ctx));
|
|
ctx->blocks_compressed += 1;
|
|
ctx->buf_len = 0;
|
|
memset(ctx->buf, 0, BLAKE3_BLOCK_LEN);
|
|
}
|
|
}
|
|
|
|
while (input_len > BLAKE3_BLOCK_LEN) {
|
|
ops->compress_in_place(ctx->cv, input, BLAKE3_BLOCK_LEN,
|
|
ctx->chunk_counter,
|
|
ctx->flags|chunk_state_maybe_start_flag(ctx));
|
|
ctx->blocks_compressed += 1;
|
|
input += BLAKE3_BLOCK_LEN;
|
|
input_len -= BLAKE3_BLOCK_LEN;
|
|
}
|
|
|
|
size_t take = chunk_state_fill_buf(ctx, input, input_len);
|
|
input += take;
|
|
input_len -= take;
|
|
}
|
|
|
|
static output_t chunk_state_output(const blake3_chunk_state_t *ctx)
|
|
{
|
|
uint8_t block_flags =
|
|
ctx->flags | chunk_state_maybe_start_flag(ctx) | CHUNK_END;
|
|
return (make_output(ctx->cv, ctx->buf, ctx->buf_len, ctx->chunk_counter,
|
|
block_flags));
|
|
}
|
|
|
|
static output_t parent_output(const uint8_t block[BLAKE3_BLOCK_LEN],
|
|
const uint32_t key[8], uint8_t flags)
|
|
{
|
|
return (make_output(key, block, BLAKE3_BLOCK_LEN, 0, flags | PARENT));
|
|
}
|
|
|
|
/*
|
|
* Given some input larger than one chunk, return the number of bytes that
|
|
* should go in the left subtree. This is the largest power-of-2 number of
|
|
* chunks that leaves at least 1 byte for the right subtree.
|
|
*/
|
|
static size_t left_len(size_t content_len)
|
|
{
|
|
/*
|
|
* Subtract 1 to reserve at least one byte for the right side.
|
|
* content_len
|
|
* should always be greater than BLAKE3_CHUNK_LEN.
|
|
*/
|
|
size_t full_chunks = (content_len - 1) / BLAKE3_CHUNK_LEN;
|
|
return (round_down_to_power_of_2(full_chunks) * BLAKE3_CHUNK_LEN);
|
|
}
|
|
|
|
/*
|
|
* Use SIMD parallelism to hash up to MAX_SIMD_DEGREE chunks at the same time
|
|
* on a single thread. Write out the chunk chaining values and return the
|
|
* number of chunks hashed. These chunks are never the root and never empty;
|
|
* those cases use a different codepath.
|
|
*/
|
|
static size_t compress_chunks_parallel(const blake3_ops_t *ops,
|
|
const uint8_t *input, size_t input_len, const uint32_t key[8],
|
|
uint64_t chunk_counter, uint8_t flags, uint8_t *out)
|
|
{
|
|
const uint8_t *chunks_array[MAX_SIMD_DEGREE];
|
|
size_t input_position = 0;
|
|
size_t chunks_array_len = 0;
|
|
while (input_len - input_position >= BLAKE3_CHUNK_LEN) {
|
|
chunks_array[chunks_array_len] = &input[input_position];
|
|
input_position += BLAKE3_CHUNK_LEN;
|
|
chunks_array_len += 1;
|
|
}
|
|
|
|
ops->hash_many(chunks_array, chunks_array_len, BLAKE3_CHUNK_LEN /
|
|
BLAKE3_BLOCK_LEN, key, chunk_counter, B_TRUE, flags, CHUNK_START,
|
|
CHUNK_END, out);
|
|
|
|
/*
|
|
* Hash the remaining partial chunk, if there is one. Note that the
|
|
* empty chunk (meaning the empty message) is a different codepath.
|
|
*/
|
|
if (input_len > input_position) {
|
|
uint64_t counter = chunk_counter + (uint64_t)chunks_array_len;
|
|
blake3_chunk_state_t chunk_state;
|
|
chunk_state_init(&chunk_state, key, flags);
|
|
chunk_state.chunk_counter = counter;
|
|
chunk_state_update(ops, &chunk_state, &input[input_position],
|
|
input_len - input_position);
|
|
output_t output = chunk_state_output(&chunk_state);
|
|
output_chaining_value(ops, &output, &out[chunks_array_len *
|
|
BLAKE3_OUT_LEN]);
|
|
return (chunks_array_len + 1);
|
|
} else {
|
|
return (chunks_array_len);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Use SIMD parallelism to hash up to MAX_SIMD_DEGREE parents at the same time
|
|
* on a single thread. Write out the parent chaining values and return the
|
|
* number of parents hashed. (If there's an odd input chaining value left over,
|
|
* return it as an additional output.) These parents are never the root and
|
|
* never empty; those cases use a different codepath.
|
|
*/
|
|
static size_t compress_parents_parallel(const blake3_ops_t *ops,
|
|
const uint8_t *child_chaining_values, size_t num_chaining_values,
|
|
const uint32_t key[8], uint8_t flags, uint8_t *out)
|
|
{
|
|
const uint8_t *parents_array[MAX_SIMD_DEGREE_OR_2];
|
|
size_t parents_array_len = 0;
|
|
|
|
while (num_chaining_values - (2 * parents_array_len) >= 2) {
|
|
parents_array[parents_array_len] = &child_chaining_values[2 *
|
|
parents_array_len * BLAKE3_OUT_LEN];
|
|
parents_array_len += 1;
|
|
}
|
|
|
|
ops->hash_many(parents_array, parents_array_len, 1, key, 0, B_FALSE,
|
|
flags | PARENT, 0, 0, out);
|
|
|
|
/* If there's an odd child left over, it becomes an output. */
|
|
if (num_chaining_values > 2 * parents_array_len) {
|
|
memcpy(&out[parents_array_len * BLAKE3_OUT_LEN],
|
|
&child_chaining_values[2 * parents_array_len *
|
|
BLAKE3_OUT_LEN], BLAKE3_OUT_LEN);
|
|
return (parents_array_len + 1);
|
|
} else {
|
|
return (parents_array_len);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The wide helper function returns (writes out) an array of chaining values
|
|
* and returns the length of that array. The number of chaining values returned
|
|
* is the dyanmically detected SIMD degree, at most MAX_SIMD_DEGREE. Or fewer,
|
|
* if the input is shorter than that many chunks. The reason for maintaining a
|
|
* wide array of chaining values going back up the tree, is to allow the
|
|
* implementation to hash as many parents in parallel as possible.
|
|
*
|
|
* As a special case when the SIMD degree is 1, this function will still return
|
|
* at least 2 outputs. This guarantees that this function doesn't perform the
|
|
* root compression. (If it did, it would use the wrong flags, and also we
|
|
* wouldn't be able to implement exendable ouput.) Note that this function is
|
|
* not used when the whole input is only 1 chunk long; that's a different
|
|
* codepath.
|
|
*
|
|
* Why not just have the caller split the input on the first update(), instead
|
|
* of implementing this special rule? Because we don't want to limit SIMD or
|
|
* multi-threading parallelism for that update().
|
|
*/
|
|
static size_t blake3_compress_subtree_wide(const blake3_ops_t *ops,
|
|
const uint8_t *input, size_t input_len, const uint32_t key[8],
|
|
uint64_t chunk_counter, uint8_t flags, uint8_t *out)
|
|
{
|
|
/*
|
|
* Note that the single chunk case does *not* bump the SIMD degree up
|
|
* to 2 when it is 1. If this implementation adds multi-threading in
|
|
* the future, this gives us the option of multi-threading even the
|
|
* 2-chunk case, which can help performance on smaller platforms.
|
|
*/
|
|
if (input_len <= (size_t)(ops->degree * BLAKE3_CHUNK_LEN)) {
|
|
return (compress_chunks_parallel(ops, input, input_len, key,
|
|
chunk_counter, flags, out));
|
|
}
|
|
|
|
|
|
/*
|
|
* With more than simd_degree chunks, we need to recurse. Start by
|
|
* dividing the input into left and right subtrees. (Note that this is
|
|
* only optimal as long as the SIMD degree is a power of 2. If we ever
|
|
* get a SIMD degree of 3 or something, we'll need a more complicated
|
|
* strategy.)
|
|
*/
|
|
size_t left_input_len = left_len(input_len);
|
|
size_t right_input_len = input_len - left_input_len;
|
|
const uint8_t *right_input = &input[left_input_len];
|
|
uint64_t right_chunk_counter = chunk_counter +
|
|
(uint64_t)(left_input_len / BLAKE3_CHUNK_LEN);
|
|
|
|
/*
|
|
* Make space for the child outputs. Here we use MAX_SIMD_DEGREE_OR_2
|
|
* to account for the special case of returning 2 outputs when the
|
|
* SIMD degree is 1.
|
|
*/
|
|
uint8_t cv_array[2 * MAX_SIMD_DEGREE_OR_2 * BLAKE3_OUT_LEN];
|
|
size_t degree = ops->degree;
|
|
if (left_input_len > BLAKE3_CHUNK_LEN && degree == 1) {
|
|
|
|
/*
|
|
* The special case: We always use a degree of at least two,
|
|
* to make sure there are two outputs. Except, as noted above,
|
|
* at the chunk level, where we allow degree=1. (Note that the
|
|
* 1-chunk-input case is a different codepath.)
|
|
*/
|
|
degree = 2;
|
|
}
|
|
uint8_t *right_cvs = &cv_array[degree * BLAKE3_OUT_LEN];
|
|
|
|
/*
|
|
* Recurse! If this implementation adds multi-threading support in the
|
|
* future, this is where it will go.
|
|
*/
|
|
size_t left_n = blake3_compress_subtree_wide(ops, input, left_input_len,
|
|
key, chunk_counter, flags, cv_array);
|
|
size_t right_n = blake3_compress_subtree_wide(ops, right_input,
|
|
right_input_len, key, right_chunk_counter, flags, right_cvs);
|
|
|
|
/*
|
|
* The special case again. If simd_degree=1, then we'll have left_n=1
|
|
* and right_n=1. Rather than compressing them into a single output,
|
|
* return them directly, to make sure we always have at least two
|
|
* outputs.
|
|
*/
|
|
if (left_n == 1) {
|
|
memcpy(out, cv_array, 2 * BLAKE3_OUT_LEN);
|
|
return (2);
|
|
}
|
|
|
|
/* Otherwise, do one layer of parent node compression. */
|
|
size_t num_chaining_values = left_n + right_n;
|
|
return compress_parents_parallel(ops, cv_array,
|
|
num_chaining_values, key, flags, out);
|
|
}
|
|
|
|
/*
|
|
* Hash a subtree with compress_subtree_wide(), and then condense the resulting
|
|
* list of chaining values down to a single parent node. Don't compress that
|
|
* last parent node, however. Instead, return its message bytes (the
|
|
* concatenated chaining values of its children). This is necessary when the
|
|
* first call to update() supplies a complete subtree, because the topmost
|
|
* parent node of that subtree could end up being the root. It's also necessary
|
|
* for extended output in the general case.
|
|
*
|
|
* As with compress_subtree_wide(), this function is not used on inputs of 1
|
|
* chunk or less. That's a different codepath.
|
|
*/
|
|
static void compress_subtree_to_parent_node(const blake3_ops_t *ops,
|
|
const uint8_t *input, size_t input_len, const uint32_t key[8],
|
|
uint64_t chunk_counter, uint8_t flags, uint8_t out[2 * BLAKE3_OUT_LEN])
|
|
{
|
|
uint8_t cv_array[MAX_SIMD_DEGREE_OR_2 * BLAKE3_OUT_LEN];
|
|
size_t num_cvs = blake3_compress_subtree_wide(ops, input, input_len,
|
|
key, chunk_counter, flags, cv_array);
|
|
|
|
/*
|
|
* If MAX_SIMD_DEGREE is greater than 2 and there's enough input,
|
|
* compress_subtree_wide() returns more than 2 chaining values. Condense
|
|
* them into 2 by forming parent nodes repeatedly.
|
|
*/
|
|
uint8_t out_array[MAX_SIMD_DEGREE_OR_2 * BLAKE3_OUT_LEN / 2];
|
|
while (num_cvs > 2) {
|
|
num_cvs = compress_parents_parallel(ops, cv_array, num_cvs, key,
|
|
flags, out_array);
|
|
memcpy(cv_array, out_array, num_cvs * BLAKE3_OUT_LEN);
|
|
}
|
|
memcpy(out, cv_array, 2 * BLAKE3_OUT_LEN);
|
|
}
|
|
|
|
static void hasher_init_base(BLAKE3_CTX *ctx, const uint32_t key[8],
|
|
uint8_t flags)
|
|
{
|
|
memcpy(ctx->key, key, BLAKE3_KEY_LEN);
|
|
chunk_state_init(&ctx->chunk, key, flags);
|
|
ctx->cv_stack_len = 0;
|
|
ctx->ops = blake3_impl_get_ops();
|
|
}
|
|
|
|
/*
|
|
* As described in hasher_push_cv() below, we do "lazy merging", delaying
|
|
* merges until right before the next CV is about to be added. This is
|
|
* different from the reference implementation. Another difference is that we
|
|
* aren't always merging 1 chunk at a time. Instead, each CV might represent
|
|
* any power-of-two number of chunks, as long as the smaller-above-larger
|
|
* stack order is maintained. Instead of the "count the trailing 0-bits"
|
|
* algorithm described in the spec, we use a "count the total number of
|
|
* 1-bits" variant that doesn't require us to retain the subtree size of the
|
|
* CV on top of the stack. The principle is the same: each CV that should
|
|
* remain in the stack is represented by a 1-bit in the total number of chunks
|
|
* (or bytes) so far.
|
|
*/
|
|
static void hasher_merge_cv_stack(BLAKE3_CTX *ctx, uint64_t total_len)
|
|
{
|
|
size_t post_merge_stack_len = (size_t)popcnt(total_len);
|
|
while (ctx->cv_stack_len > post_merge_stack_len) {
|
|
uint8_t *parent_node =
|
|
&ctx->cv_stack[(ctx->cv_stack_len - 2) * BLAKE3_OUT_LEN];
|
|
output_t output =
|
|
parent_output(parent_node, ctx->key, ctx->chunk.flags);
|
|
output_chaining_value(ctx->ops, &output, parent_node);
|
|
ctx->cv_stack_len -= 1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* In reference_impl.rs, we merge the new CV with existing CVs from the stack
|
|
* before pushing it. We can do that because we know more input is coming, so
|
|
* we know none of the merges are root.
|
|
*
|
|
* This setting is different. We want to feed as much input as possible to
|
|
* compress_subtree_wide(), without setting aside anything for the chunk_state.
|
|
* If the user gives us 64 KiB, we want to parallelize over all 64 KiB at once
|
|
* as a single subtree, if at all possible.
|
|
*
|
|
* This leads to two problems:
|
|
* 1) This 64 KiB input might be the only call that ever gets made to update.
|
|
* In this case, the root node of the 64 KiB subtree would be the root node
|
|
* of the whole tree, and it would need to be ROOT finalized. We can't
|
|
* compress it until we know.
|
|
* 2) This 64 KiB input might complete a larger tree, whose root node is
|
|
* similarly going to be the the root of the whole tree. For example, maybe
|
|
* we have 196 KiB (that is, 128 + 64) hashed so far. We can't compress the
|
|
* node at the root of the 256 KiB subtree until we know how to finalize it.
|
|
*
|
|
* The second problem is solved with "lazy merging". That is, when we're about
|
|
* to add a CV to the stack, we don't merge it with anything first, as the
|
|
* reference impl does. Instead we do merges using the *previous* CV that was
|
|
* added, which is sitting on top of the stack, and we put the new CV
|
|
* (unmerged) on top of the stack afterwards. This guarantees that we never
|
|
* merge the root node until finalize().
|
|
*
|
|
* Solving the first problem requires an additional tool,
|
|
* compress_subtree_to_parent_node(). That function always returns the top
|
|
* *two* chaining values of the subtree it's compressing. We then do lazy
|
|
* merging with each of them separately, so that the second CV will always
|
|
* remain unmerged. (That also helps us support extendable output when we're
|
|
* hashing an input all-at-once.)
|
|
*/
|
|
static void hasher_push_cv(BLAKE3_CTX *ctx, uint8_t new_cv[BLAKE3_OUT_LEN],
|
|
uint64_t chunk_counter)
|
|
{
|
|
hasher_merge_cv_stack(ctx, chunk_counter);
|
|
memcpy(&ctx->cv_stack[ctx->cv_stack_len * BLAKE3_OUT_LEN], new_cv,
|
|
BLAKE3_OUT_LEN);
|
|
ctx->cv_stack_len += 1;
|
|
}
|
|
|
|
void
|
|
Blake3_Init(BLAKE3_CTX *ctx)
|
|
{
|
|
hasher_init_base(ctx, BLAKE3_IV, 0);
|
|
}
|
|
|
|
void
|
|
Blake3_InitKeyed(BLAKE3_CTX *ctx, const uint8_t key[BLAKE3_KEY_LEN])
|
|
{
|
|
uint32_t key_words[8];
|
|
load_key_words(key, key_words);
|
|
hasher_init_base(ctx, key_words, KEYED_HASH);
|
|
}
|
|
|
|
static void
|
|
Blake3_Update2(BLAKE3_CTX *ctx, const void *input, size_t input_len)
|
|
{
|
|
/*
|
|
* Explicitly checking for zero avoids causing UB by passing a null
|
|
* pointer to memcpy. This comes up in practice with things like:
|
|
* std::vector<uint8_t> v;
|
|
* blake3_hasher_update(&hasher, v.data(), v.size());
|
|
*/
|
|
if (input_len == 0) {
|
|
return;
|
|
}
|
|
|
|
const uint8_t *input_bytes = (const uint8_t *)input;
|
|
|
|
/*
|
|
* If we have some partial chunk bytes in the internal chunk_state, we
|
|
* need to finish that chunk first.
|
|
*/
|
|
if (chunk_state_len(&ctx->chunk) > 0) {
|
|
size_t take = BLAKE3_CHUNK_LEN - chunk_state_len(&ctx->chunk);
|
|
if (take > input_len) {
|
|
take = input_len;
|
|
}
|
|
chunk_state_update(ctx->ops, &ctx->chunk, input_bytes, take);
|
|
input_bytes += take;
|
|
input_len -= take;
|
|
/*
|
|
* If we've filled the current chunk and there's more coming,
|
|
* finalize this chunk and proceed. In this case we know it's
|
|
* not the root.
|
|
*/
|
|
if (input_len > 0) {
|
|
output_t output = chunk_state_output(&ctx->chunk);
|
|
uint8_t chunk_cv[32];
|
|
output_chaining_value(ctx->ops, &output, chunk_cv);
|
|
hasher_push_cv(ctx, chunk_cv, ctx->chunk.chunk_counter);
|
|
chunk_state_reset(&ctx->chunk, ctx->key,
|
|
ctx->chunk.chunk_counter + 1);
|
|
} else {
|
|
return;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Now the chunk_state is clear, and we have more input. If there's
|
|
* more than a single chunk (so, definitely not the root chunk), hash
|
|
* the largest whole subtree we can, with the full benefits of SIMD
|
|
* (and maybe in the future, multi-threading) parallelism. Two
|
|
* restrictions:
|
|
* - The subtree has to be a power-of-2 number of chunks. Only
|
|
* subtrees along the right edge can be incomplete, and we don't know
|
|
* where the right edge is going to be until we get to finalize().
|
|
* - The subtree must evenly divide the total number of chunks up
|
|
* until this point (if total is not 0). If the current incomplete
|
|
* subtree is only waiting for 1 more chunk, we can't hash a subtree
|
|
* of 4 chunks. We have to complete the current subtree first.
|
|
* Because we might need to break up the input to form powers of 2, or
|
|
* to evenly divide what we already have, this part runs in a loop.
|
|
*/
|
|
while (input_len > BLAKE3_CHUNK_LEN) {
|
|
size_t subtree_len = round_down_to_power_of_2(input_len);
|
|
uint64_t count_so_far =
|
|
ctx->chunk.chunk_counter * BLAKE3_CHUNK_LEN;
|
|
/*
|
|
* Shrink the subtree_len until it evenly divides the count so
|
|
* far. We know that subtree_len itself is a power of 2, so we
|
|
* can use a bitmasking trick instead of an actual remainder
|
|
* operation. (Note that if the caller consistently passes
|
|
* power-of-2 inputs of the same size, as is hopefully
|
|
* typical, this loop condition will always fail, and
|
|
* subtree_len will always be the full length of the input.)
|
|
*
|
|
* An aside: We don't have to shrink subtree_len quite this
|
|
* much. For example, if count_so_far is 1, we could pass 2
|
|
* chunks to compress_subtree_to_parent_node. Since we'll get
|
|
* 2 CVs back, we'll still get the right answer in the end,
|
|
* and we might get to use 2-way SIMD parallelism. The problem
|
|
* with this optimization, is that it gets us stuck always
|
|
* hashing 2 chunks. The total number of chunks will remain
|
|
* odd, and we'll never graduate to higher degrees of
|
|
* parallelism. See
|
|
* https://github.com/BLAKE3-team/BLAKE3/issues/69.
|
|
*/
|
|
while ((((uint64_t)(subtree_len - 1)) & count_so_far) != 0) {
|
|
subtree_len /= 2;
|
|
}
|
|
/*
|
|
* The shrunken subtree_len might now be 1 chunk long. If so,
|
|
* hash that one chunk by itself. Otherwise, compress the
|
|
* subtree into a pair of CVs.
|
|
*/
|
|
uint64_t subtree_chunks = subtree_len / BLAKE3_CHUNK_LEN;
|
|
if (subtree_len <= BLAKE3_CHUNK_LEN) {
|
|
blake3_chunk_state_t chunk_state;
|
|
chunk_state_init(&chunk_state, ctx->key,
|
|
ctx->chunk.flags);
|
|
chunk_state.chunk_counter = ctx->chunk.chunk_counter;
|
|
chunk_state_update(ctx->ops, &chunk_state, input_bytes,
|
|
subtree_len);
|
|
output_t output = chunk_state_output(&chunk_state);
|
|
uint8_t cv[BLAKE3_OUT_LEN];
|
|
output_chaining_value(ctx->ops, &output, cv);
|
|
hasher_push_cv(ctx, cv, chunk_state.chunk_counter);
|
|
} else {
|
|
/*
|
|
* This is the high-performance happy path, though
|
|
* getting here depends on the caller giving us a long
|
|
* enough input.
|
|
*/
|
|
uint8_t cv_pair[2 * BLAKE3_OUT_LEN];
|
|
compress_subtree_to_parent_node(ctx->ops, input_bytes,
|
|
subtree_len, ctx->key, ctx-> chunk.chunk_counter,
|
|
ctx->chunk.flags, cv_pair);
|
|
hasher_push_cv(ctx, cv_pair, ctx->chunk.chunk_counter);
|
|
hasher_push_cv(ctx, &cv_pair[BLAKE3_OUT_LEN],
|
|
ctx->chunk.chunk_counter + (subtree_chunks / 2));
|
|
}
|
|
ctx->chunk.chunk_counter += subtree_chunks;
|
|
input_bytes += subtree_len;
|
|
input_len -= subtree_len;
|
|
}
|
|
|
|
/*
|
|
* If there's any remaining input less than a full chunk, add it to
|
|
* the chunk state. In that case, also do a final merge loop to make
|
|
* sure the subtree stack doesn't contain any unmerged pairs. The
|
|
* remaining input means we know these merges are non-root. This merge
|
|
* loop isn't strictly necessary here, because hasher_push_chunk_cv
|
|
* already does its own merge loop, but it simplifies
|
|
* blake3_hasher_finalize below.
|
|
*/
|
|
if (input_len > 0) {
|
|
chunk_state_update(ctx->ops, &ctx->chunk, input_bytes,
|
|
input_len);
|
|
hasher_merge_cv_stack(ctx, ctx->chunk.chunk_counter);
|
|
}
|
|
}
|
|
|
|
void
|
|
Blake3_Update(BLAKE3_CTX *ctx, const void *input, size_t todo)
|
|
{
|
|
size_t done = 0;
|
|
const uint8_t *data = input;
|
|
const size_t block_max = 1024 * 64;
|
|
|
|
/* max feed buffer to leave the stack size small */
|
|
while (todo != 0) {
|
|
size_t block = (todo >= block_max) ? block_max : todo;
|
|
Blake3_Update2(ctx, data + done, block);
|
|
done += block;
|
|
todo -= block;
|
|
}
|
|
}
|
|
|
|
void
|
|
Blake3_Final(const BLAKE3_CTX *ctx, uint8_t *out)
|
|
{
|
|
Blake3_FinalSeek(ctx, 0, out, BLAKE3_OUT_LEN);
|
|
}
|
|
|
|
void
|
|
Blake3_FinalSeek(const BLAKE3_CTX *ctx, uint64_t seek, uint8_t *out,
|
|
size_t out_len)
|
|
{
|
|
/*
|
|
* Explicitly checking for zero avoids causing UB by passing a null
|
|
* pointer to memcpy. This comes up in practice with things like:
|
|
* std::vector<uint8_t> v;
|
|
* blake3_hasher_finalize(&hasher, v.data(), v.size());
|
|
*/
|
|
if (out_len == 0) {
|
|
return;
|
|
}
|
|
/* If the subtree stack is empty, then the current chunk is the root. */
|
|
if (ctx->cv_stack_len == 0) {
|
|
output_t output = chunk_state_output(&ctx->chunk);
|
|
output_root_bytes(ctx->ops, &output, seek, out, out_len);
|
|
return;
|
|
}
|
|
/*
|
|
* If there are any bytes in the chunk state, finalize that chunk and
|
|
* do a roll-up merge between that chunk hash and every subtree in the
|
|
* stack. In this case, the extra merge loop at the end of
|
|
* blake3_hasher_update guarantees that none of the subtrees in the
|
|
* stack need to be merged with each other first. Otherwise, if there
|
|
* are no bytes in the chunk state, then the top of the stack is a
|
|
* chunk hash, and we start the merge from that.
|
|
*/
|
|
output_t output;
|
|
size_t cvs_remaining;
|
|
if (chunk_state_len(&ctx->chunk) > 0) {
|
|
cvs_remaining = ctx->cv_stack_len;
|
|
output = chunk_state_output(&ctx->chunk);
|
|
} else {
|
|
/* There are always at least 2 CVs in the stack in this case. */
|
|
cvs_remaining = ctx->cv_stack_len - 2;
|
|
output = parent_output(&ctx->cv_stack[cvs_remaining * 32],
|
|
ctx->key, ctx->chunk.flags);
|
|
}
|
|
while (cvs_remaining > 0) {
|
|
cvs_remaining -= 1;
|
|
uint8_t parent_block[BLAKE3_BLOCK_LEN];
|
|
memcpy(parent_block, &ctx->cv_stack[cvs_remaining * 32], 32);
|
|
output_chaining_value(ctx->ops, &output, &parent_block[32]);
|
|
output = parent_output(parent_block, ctx->key,
|
|
ctx->chunk.flags);
|
|
}
|
|
output_root_bytes(ctx->ops, &output, seek, out, out_len);
|
|
}
|