zfs/module/icp/core/kcf_callprov.c

1568 lines
40 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2007 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#include <sys/crypto/common.h>
#include <sys/crypto/impl.h>
#include <sys/crypto/sched_impl.h>
static int kcf_emulate_dual(kcf_provider_desc_t *, crypto_ctx_t *,
kcf_req_params_t *);
void
kcf_free_triedlist(kcf_prov_tried_t *list)
{
kcf_prov_tried_t *l;
while ((l = list) != NULL) {
list = list->pt_next;
KCF_PROV_REFRELE(l->pt_pd);
kmem_free(l, sizeof (kcf_prov_tried_t));
}
}
kcf_prov_tried_t *
kcf_insert_triedlist(kcf_prov_tried_t **list, kcf_provider_desc_t *pd,
int kmflag)
{
kcf_prov_tried_t *l;
l = kmem_alloc(sizeof (kcf_prov_tried_t), kmflag);
if (l == NULL)
return (NULL);
l->pt_pd = pd;
l->pt_next = *list;
*list = l;
return (l);
}
static boolean_t
is_in_triedlist(kcf_provider_desc_t *pd, kcf_prov_tried_t *triedl)
{
while (triedl != NULL) {
if (triedl->pt_pd == pd)
return (B_TRUE);
triedl = triedl->pt_next;
};
return (B_FALSE);
}
/*
* Search a mech entry's hardware provider list for the specified
* provider. Return true if found.
*/
static boolean_t
is_valid_provider_for_mech(kcf_provider_desc_t *pd, kcf_mech_entry_t *me,
crypto_func_group_t fg)
{
kcf_prov_mech_desc_t *prov_chain;
prov_chain = me->me_hw_prov_chain;
if (prov_chain != NULL) {
ASSERT(me->me_num_hwprov > 0);
for (; prov_chain != NULL; prov_chain = prov_chain->pm_next) {
if (prov_chain->pm_prov_desc == pd &&
IS_FG_SUPPORTED(prov_chain, fg)) {
return (B_TRUE);
}
}
}
return (B_FALSE);
}
/*
* This routine, given a logical provider, returns the least loaded
* provider belonging to the logical provider. The provider must be
* able to do the specified mechanism, i.e. check that the mechanism
* hasn't been disabled. In addition, just in case providers are not
* entirely equivalent, the provider's entry point is checked for
* non-nullness. This is accomplished by having the caller pass, as
* arguments, the offset of the function group (offset_1), and the
* offset of the function within the function group (offset_2).
* Returns NULL if no provider can be found.
*/
int
kcf_get_hardware_provider(crypto_mech_type_t mech_type_1,
crypto_mech_type_t mech_type_2, boolean_t call_restrict,
kcf_provider_desc_t *old, kcf_provider_desc_t **new, crypto_func_group_t fg)
{
kcf_provider_desc_t *provider, *real_pd = old;
kcf_provider_desc_t *gpd = NULL; /* good provider */
kcf_provider_desc_t *bpd = NULL; /* busy provider */
kcf_provider_list_t *p;
kcf_ops_class_t class;
kcf_mech_entry_t *me;
const kcf_mech_entry_tab_t *me_tab;
int index, len, gqlen = INT_MAX, rv = CRYPTO_SUCCESS;
/* get the mech entry for the specified mechanism */
class = KCF_MECH2CLASS(mech_type_1);
if ((class < KCF_FIRST_OPSCLASS) || (class > KCF_LAST_OPSCLASS)) {
return (CRYPTO_MECHANISM_INVALID);
}
me_tab = &kcf_mech_tabs_tab[class];
index = KCF_MECH2INDEX(mech_type_1);
if ((index < 0) || (index >= me_tab->met_size)) {
return (CRYPTO_MECHANISM_INVALID);
}
me = &((me_tab->met_tab)[index]);
mutex_enter(&me->me_mutex);
/*
* We assume the provider descriptor will not go away because
* it is being held somewhere, i.e. its reference count has been
* incremented. In the case of the crypto module, the provider
* descriptor is held by the session structure.
*/
if (old->pd_prov_type == CRYPTO_LOGICAL_PROVIDER) {
if (old->pd_provider_list == NULL) {
real_pd = NULL;
rv = CRYPTO_DEVICE_ERROR;
goto out;
}
/*
* Find the least loaded real provider. KCF_PROV_LOAD gives
* the load (number of pending requests) of the provider.
*/
mutex_enter(&old->pd_lock);
p = old->pd_provider_list;
while (p != NULL) {
provider = p->pl_provider;
ASSERT(provider->pd_prov_type !=
CRYPTO_LOGICAL_PROVIDER);
if (call_restrict &&
(provider->pd_flags & KCF_PROV_RESTRICTED)) {
p = p->pl_next;
continue;
}
if (!is_valid_provider_for_mech(provider, me, fg)) {
p = p->pl_next;
continue;
}
/* provider does second mech */
if (mech_type_2 != CRYPTO_MECH_INVALID) {
int i;
i = KCF_TO_PROV_MECH_INDX(provider,
mech_type_2);
if (i == KCF_INVALID_INDX) {
p = p->pl_next;
continue;
}
}
if (provider->pd_state != KCF_PROV_READY) {
/* choose BUSY if no READY providers */
if (provider->pd_state == KCF_PROV_BUSY)
bpd = provider;
p = p->pl_next;
continue;
}
len = KCF_PROV_LOAD(provider);
if (len < gqlen) {
gqlen = len;
gpd = provider;
}
p = p->pl_next;
}
if (gpd != NULL) {
real_pd = gpd;
KCF_PROV_REFHOLD(real_pd);
} else if (bpd != NULL) {
real_pd = bpd;
KCF_PROV_REFHOLD(real_pd);
} else {
/* can't find provider */
real_pd = NULL;
rv = CRYPTO_MECHANISM_INVALID;
}
mutex_exit(&old->pd_lock);
} else {
if (!KCF_IS_PROV_USABLE(old) ||
(call_restrict && (old->pd_flags & KCF_PROV_RESTRICTED))) {
real_pd = NULL;
rv = CRYPTO_DEVICE_ERROR;
goto out;
}
if (!is_valid_provider_for_mech(old, me, fg)) {
real_pd = NULL;
rv = CRYPTO_MECHANISM_INVALID;
goto out;
}
KCF_PROV_REFHOLD(real_pd);
}
out:
mutex_exit(&me->me_mutex);
*new = real_pd;
return (rv);
}
/*
* Return the best provider for the specified mechanism. The provider
* is held and it is the caller's responsibility to release it when done.
* The fg input argument is used as a search criterion to pick a provider.
* A provider has to support this function group to be picked.
*
* Find the least loaded provider in the list of providers. We do a linear
* search to find one. This is fine as we assume there are only a few
* number of providers in this list. If this assumption ever changes,
* we should revisit this.
*
* call_restrict represents if the caller should not be allowed to
* use restricted providers.
*/
kcf_provider_desc_t *
kcf_get_mech_provider(crypto_mech_type_t mech_type, kcf_mech_entry_t **mepp,
int *error, kcf_prov_tried_t *triedl, crypto_func_group_t fg,
boolean_t call_restrict, size_t data_size)
{
kcf_provider_desc_t *pd = NULL, *gpd = NULL;
kcf_prov_mech_desc_t *prov_chain, *mdesc;
int len, gqlen = INT_MAX;
kcf_ops_class_t class;
int index;
kcf_mech_entry_t *me;
const kcf_mech_entry_tab_t *me_tab;
class = KCF_MECH2CLASS(mech_type);
if ((class < KCF_FIRST_OPSCLASS) || (class > KCF_LAST_OPSCLASS)) {
*error = CRYPTO_MECHANISM_INVALID;
return (NULL);
}
me_tab = &kcf_mech_tabs_tab[class];
index = KCF_MECH2INDEX(mech_type);
if ((index < 0) || (index >= me_tab->met_size)) {
*error = CRYPTO_MECHANISM_INVALID;
return (NULL);
}
me = &((me_tab->met_tab)[index]);
if (mepp != NULL)
*mepp = me;
mutex_enter(&me->me_mutex);
prov_chain = me->me_hw_prov_chain;
/*
* We check for the threshold for using a hardware provider for
* this amount of data. If there is no software provider available
* for the mechanism, then the threshold is ignored.
*/
if ((prov_chain != NULL) &&
((data_size == 0) || (me->me_threshold == 0) ||
(data_size >= me->me_threshold) ||
((mdesc = me->me_sw_prov) == NULL) ||
(!IS_FG_SUPPORTED(mdesc, fg)) ||
(!KCF_IS_PROV_USABLE(mdesc->pm_prov_desc)))) {
ASSERT(me->me_num_hwprov > 0);
/* there is at least one provider */
/*
* Find the least loaded real provider. KCF_PROV_LOAD gives
* the load (number of pending requests) of the provider.
*/
while (prov_chain != NULL) {
pd = prov_chain->pm_prov_desc;
if (!IS_FG_SUPPORTED(prov_chain, fg) ||
!KCF_IS_PROV_USABLE(pd) ||
IS_PROVIDER_TRIED(pd, triedl) ||
(call_restrict &&
(pd->pd_flags & KCF_PROV_RESTRICTED))) {
prov_chain = prov_chain->pm_next;
continue;
}
if ((len = KCF_PROV_LOAD(pd)) < gqlen) {
gqlen = len;
gpd = pd;
}
prov_chain = prov_chain->pm_next;
}
pd = gpd;
}
/* No HW provider for this mech, is there a SW provider? */
if (pd == NULL && (mdesc = me->me_sw_prov) != NULL) {
pd = mdesc->pm_prov_desc;
if (!IS_FG_SUPPORTED(mdesc, fg) ||
!KCF_IS_PROV_USABLE(pd) ||
IS_PROVIDER_TRIED(pd, triedl) ||
(call_restrict && (pd->pd_flags & KCF_PROV_RESTRICTED)))
pd = NULL;
}
if (pd == NULL) {
/*
* We do not want to report CRYPTO_MECH_NOT_SUPPORTED, when
* we are in the "fallback to the next provider" case. Rather
* we preserve the error, so that the client gets the right
* error code.
*/
if (triedl == NULL)
*error = CRYPTO_MECH_NOT_SUPPORTED;
} else
KCF_PROV_REFHOLD(pd);
mutex_exit(&me->me_mutex);
return (pd);
}
/*
* Very similar to kcf_get_mech_provider(). Finds the best provider capable of
* a dual operation with both me1 and me2.
* When no dual-ops capable providers are available, return the best provider
* for me1 only, and sets *prov_mt2 to CRYPTO_INVALID_MECHID;
* We assume/expect that a slower HW capable of the dual is still
* faster than the 2 fastest providers capable of the individual ops
* separately.
*/
kcf_provider_desc_t *
kcf_get_dual_provider(crypto_mechanism_t *mech1, crypto_mechanism_t *mech2,
kcf_mech_entry_t **mepp, crypto_mech_type_t *prov_mt1,
crypto_mech_type_t *prov_mt2, int *error, kcf_prov_tried_t *triedl,
crypto_func_group_t fg1, crypto_func_group_t fg2, boolean_t call_restrict,
size_t data_size)
{
kcf_provider_desc_t *pd = NULL, *pdm1 = NULL, *pdm1m2 = NULL;
kcf_prov_mech_desc_t *prov_chain, *mdesc;
int len, gqlen = INT_MAX, dgqlen = INT_MAX;
crypto_mech_info_list_t *mil;
crypto_mech_type_t m2id = mech2->cm_type;
kcf_mech_entry_t *me;
/* when mech is a valid mechanism, me will be its mech_entry */
if (kcf_get_mech_entry(mech1->cm_type, &me) != KCF_SUCCESS) {
*error = CRYPTO_MECHANISM_INVALID;
return (NULL);
}
*prov_mt2 = CRYPTO_MECH_INVALID;
if (mepp != NULL)
*mepp = me;
mutex_enter(&me->me_mutex);
prov_chain = me->me_hw_prov_chain;
/*
* We check the threshold for using a hardware provider for
* this amount of data. If there is no software provider available
* for the first mechanism, then the threshold is ignored.
*/
if ((prov_chain != NULL) &&
((data_size == 0) || (me->me_threshold == 0) ||
(data_size >= me->me_threshold) ||
((mdesc = me->me_sw_prov) == NULL) ||
(!IS_FG_SUPPORTED(mdesc, fg1)) ||
(!KCF_IS_PROV_USABLE(mdesc->pm_prov_desc)))) {
/* there is at least one provider */
ASSERT(me->me_num_hwprov > 0);
/*
* Find the least loaded provider capable of the combo
* me1 + me2, and save a pointer to the least loaded
* provider capable of me1 only.
*/
while (prov_chain != NULL) {
pd = prov_chain->pm_prov_desc;
len = KCF_PROV_LOAD(pd);
if (!IS_FG_SUPPORTED(prov_chain, fg1) ||
!KCF_IS_PROV_USABLE(pd) ||
IS_PROVIDER_TRIED(pd, triedl) ||
(call_restrict &&
(pd->pd_flags & KCF_PROV_RESTRICTED))) {
prov_chain = prov_chain->pm_next;
continue;
}
/* Save the best provider capable of m1 */
if (len < gqlen) {
*prov_mt1 =
prov_chain->pm_mech_info.cm_mech_number;
gqlen = len;
pdm1 = pd;
}
/* See if pd can do me2 too */
for (mil = prov_chain->pm_mi_list;
mil != NULL; mil = mil->ml_next) {
if ((mil->ml_mech_info.cm_func_group_mask &
fg2) == 0)
continue;
if ((mil->ml_kcf_mechid == m2id) &&
(len < dgqlen)) {
/* Bingo! */
dgqlen = len;
pdm1m2 = pd;
*prov_mt2 =
mil->ml_mech_info.cm_mech_number;
*prov_mt1 = prov_chain->
pm_mech_info.cm_mech_number;
break;
}
}
prov_chain = prov_chain->pm_next;
}
pd = (pdm1m2 != NULL) ? pdm1m2 : pdm1;
}
/* no HW provider for this mech, is there a SW provider? */
if (pd == NULL && (mdesc = me->me_sw_prov) != NULL) {
pd = mdesc->pm_prov_desc;
if (!IS_FG_SUPPORTED(mdesc, fg1) ||
!KCF_IS_PROV_USABLE(pd) ||
IS_PROVIDER_TRIED(pd, triedl) ||
(call_restrict && (pd->pd_flags & KCF_PROV_RESTRICTED)))
pd = NULL;
else {
/* See if pd can do me2 too */
for (mil = me->me_sw_prov->pm_mi_list;
mil != NULL; mil = mil->ml_next) {
if ((mil->ml_mech_info.cm_func_group_mask &
fg2) == 0)
continue;
if (mil->ml_kcf_mechid == m2id) {
/* Bingo! */
*prov_mt2 =
mil->ml_mech_info.cm_mech_number;
break;
}
}
*prov_mt1 = me->me_sw_prov->pm_mech_info.cm_mech_number;
}
}
if (pd == NULL)
*error = CRYPTO_MECH_NOT_SUPPORTED;
else
KCF_PROV_REFHOLD(pd);
mutex_exit(&me->me_mutex);
return (pd);
}
/*
* Do the actual work of calling the provider routines.
*
* pd - Provider structure
* ctx - Context for this operation
* params - Parameters for this operation
* rhndl - Request handle to use for notification
*
* The return values are the same as that of the respective SPI.
*/
int
common_submit_request(kcf_provider_desc_t *pd, crypto_ctx_t *ctx,
kcf_req_params_t *params, crypto_req_handle_t rhndl)
{
int err = CRYPTO_ARGUMENTS_BAD;
kcf_op_type_t optype;
optype = params->rp_optype;
switch (params->rp_opgrp) {
case KCF_OG_DIGEST: {
kcf_digest_ops_params_t *dops = &params->rp_u.digest_params;
switch (optype) {
case KCF_OP_INIT:
/*
* We should do this only here and not in KCF_WRAP_*
* macros. This is because we may want to try other
* providers, in case we recover from a failure.
*/
KCF_SET_PROVIDER_MECHNUM(dops->do_framework_mechtype,
pd, &dops->do_mech);
err = KCF_PROV_DIGEST_INIT(pd, ctx, &dops->do_mech,
rhndl);
break;
case KCF_OP_SINGLE:
err = KCF_PROV_DIGEST(pd, ctx, dops->do_data,
dops->do_digest, rhndl);
break;
case KCF_OP_UPDATE:
err = KCF_PROV_DIGEST_UPDATE(pd, ctx,
dops->do_data, rhndl);
break;
case KCF_OP_FINAL:
err = KCF_PROV_DIGEST_FINAL(pd, ctx,
dops->do_digest, rhndl);
break;
case KCF_OP_ATOMIC:
ASSERT(ctx == NULL);
KCF_SET_PROVIDER_MECHNUM(dops->do_framework_mechtype,
pd, &dops->do_mech);
err = KCF_PROV_DIGEST_ATOMIC(pd, dops->do_sid,
&dops->do_mech, dops->do_data, dops->do_digest,
rhndl);
break;
case KCF_OP_DIGEST_KEY:
err = KCF_PROV_DIGEST_KEY(pd, ctx, dops->do_digest_key,
rhndl);
break;
default:
break;
}
break;
}
case KCF_OG_MAC: {
kcf_mac_ops_params_t *mops = &params->rp_u.mac_params;
switch (optype) {
case KCF_OP_INIT:
KCF_SET_PROVIDER_MECHNUM(mops->mo_framework_mechtype,
pd, &mops->mo_mech);
err = KCF_PROV_MAC_INIT(pd, ctx, &mops->mo_mech,
mops->mo_key, mops->mo_templ, rhndl);
break;
case KCF_OP_SINGLE:
err = KCF_PROV_MAC(pd, ctx, mops->mo_data,
mops->mo_mac, rhndl);
break;
case KCF_OP_UPDATE:
err = KCF_PROV_MAC_UPDATE(pd, ctx, mops->mo_data,
rhndl);
break;
case KCF_OP_FINAL:
err = KCF_PROV_MAC_FINAL(pd, ctx, mops->mo_mac, rhndl);
break;
case KCF_OP_ATOMIC:
ASSERT(ctx == NULL);
KCF_SET_PROVIDER_MECHNUM(mops->mo_framework_mechtype,
pd, &mops->mo_mech);
err = KCF_PROV_MAC_ATOMIC(pd, mops->mo_sid,
&mops->mo_mech, mops->mo_key, mops->mo_data,
mops->mo_mac, mops->mo_templ, rhndl);
break;
case KCF_OP_MAC_VERIFY_ATOMIC:
ASSERT(ctx == NULL);
KCF_SET_PROVIDER_MECHNUM(mops->mo_framework_mechtype,
pd, &mops->mo_mech);
err = KCF_PROV_MAC_VERIFY_ATOMIC(pd, mops->mo_sid,
&mops->mo_mech, mops->mo_key, mops->mo_data,
mops->mo_mac, mops->mo_templ, rhndl);
break;
default:
break;
}
break;
}
case KCF_OG_ENCRYPT: {
kcf_encrypt_ops_params_t *eops = &params->rp_u.encrypt_params;
switch (optype) {
case KCF_OP_INIT:
KCF_SET_PROVIDER_MECHNUM(eops->eo_framework_mechtype,
pd, &eops->eo_mech);
err = KCF_PROV_ENCRYPT_INIT(pd, ctx, &eops->eo_mech,
eops->eo_key, eops->eo_templ, rhndl);
break;
case KCF_OP_SINGLE:
err = KCF_PROV_ENCRYPT(pd, ctx, eops->eo_plaintext,
eops->eo_ciphertext, rhndl);
break;
case KCF_OP_UPDATE:
err = KCF_PROV_ENCRYPT_UPDATE(pd, ctx,
eops->eo_plaintext, eops->eo_ciphertext, rhndl);
break;
case KCF_OP_FINAL:
err = KCF_PROV_ENCRYPT_FINAL(pd, ctx,
eops->eo_ciphertext, rhndl);
break;
case KCF_OP_ATOMIC:
ASSERT(ctx == NULL);
KCF_SET_PROVIDER_MECHNUM(eops->eo_framework_mechtype,
pd, &eops->eo_mech);
err = KCF_PROV_ENCRYPT_ATOMIC(pd, eops->eo_sid,
&eops->eo_mech, eops->eo_key, eops->eo_plaintext,
eops->eo_ciphertext, eops->eo_templ, rhndl);
break;
default:
break;
}
break;
}
case KCF_OG_DECRYPT: {
kcf_decrypt_ops_params_t *dcrops = &params->rp_u.decrypt_params;
switch (optype) {
case KCF_OP_INIT:
KCF_SET_PROVIDER_MECHNUM(dcrops->dop_framework_mechtype,
pd, &dcrops->dop_mech);
err = KCF_PROV_DECRYPT_INIT(pd, ctx, &dcrops->dop_mech,
dcrops->dop_key, dcrops->dop_templ, rhndl);
break;
case KCF_OP_SINGLE:
err = KCF_PROV_DECRYPT(pd, ctx, dcrops->dop_ciphertext,
dcrops->dop_plaintext, rhndl);
break;
case KCF_OP_UPDATE:
err = KCF_PROV_DECRYPT_UPDATE(pd, ctx,
dcrops->dop_ciphertext, dcrops->dop_plaintext,
rhndl);
break;
case KCF_OP_FINAL:
err = KCF_PROV_DECRYPT_FINAL(pd, ctx,
dcrops->dop_plaintext, rhndl);
break;
case KCF_OP_ATOMIC:
ASSERT(ctx == NULL);
KCF_SET_PROVIDER_MECHNUM(dcrops->dop_framework_mechtype,
pd, &dcrops->dop_mech);
err = KCF_PROV_DECRYPT_ATOMIC(pd, dcrops->dop_sid,
&dcrops->dop_mech, dcrops->dop_key,
dcrops->dop_ciphertext, dcrops->dop_plaintext,
dcrops->dop_templ, rhndl);
break;
default:
break;
}
break;
}
case KCF_OG_SIGN: {
kcf_sign_ops_params_t *sops = &params->rp_u.sign_params;
switch (optype) {
case KCF_OP_INIT:
KCF_SET_PROVIDER_MECHNUM(sops->so_framework_mechtype,
pd, &sops->so_mech);
err = KCF_PROV_SIGN_INIT(pd, ctx, &sops->so_mech,
sops->so_key, sops->so_templ, rhndl);
break;
case KCF_OP_SIGN_RECOVER_INIT:
KCF_SET_PROVIDER_MECHNUM(sops->so_framework_mechtype,
pd, &sops->so_mech);
err = KCF_PROV_SIGN_RECOVER_INIT(pd, ctx,
&sops->so_mech, sops->so_key, sops->so_templ,
rhndl);
break;
case KCF_OP_SINGLE:
err = KCF_PROV_SIGN(pd, ctx, sops->so_data,
sops->so_signature, rhndl);
break;
case KCF_OP_SIGN_RECOVER:
err = KCF_PROV_SIGN_RECOVER(pd, ctx,
sops->so_data, sops->so_signature, rhndl);
break;
case KCF_OP_UPDATE:
err = KCF_PROV_SIGN_UPDATE(pd, ctx, sops->so_data,
rhndl);
break;
case KCF_OP_FINAL:
err = KCF_PROV_SIGN_FINAL(pd, ctx, sops->so_signature,
rhndl);
break;
case KCF_OP_ATOMIC:
ASSERT(ctx == NULL);
KCF_SET_PROVIDER_MECHNUM(sops->so_framework_mechtype,
pd, &sops->so_mech);
err = KCF_PROV_SIGN_ATOMIC(pd, sops->so_sid,
&sops->so_mech, sops->so_key, sops->so_data,
sops->so_templ, sops->so_signature, rhndl);
break;
case KCF_OP_SIGN_RECOVER_ATOMIC:
ASSERT(ctx == NULL);
KCF_SET_PROVIDER_MECHNUM(sops->so_framework_mechtype,
pd, &sops->so_mech);
err = KCF_PROV_SIGN_RECOVER_ATOMIC(pd, sops->so_sid,
&sops->so_mech, sops->so_key, sops->so_data,
sops->so_templ, sops->so_signature, rhndl);
break;
default:
break;
}
break;
}
case KCF_OG_VERIFY: {
kcf_verify_ops_params_t *vops = &params->rp_u.verify_params;
switch (optype) {
case KCF_OP_INIT:
KCF_SET_PROVIDER_MECHNUM(vops->vo_framework_mechtype,
pd, &vops->vo_mech);
err = KCF_PROV_VERIFY_INIT(pd, ctx, &vops->vo_mech,
vops->vo_key, vops->vo_templ, rhndl);
break;
case KCF_OP_VERIFY_RECOVER_INIT:
KCF_SET_PROVIDER_MECHNUM(vops->vo_framework_mechtype,
pd, &vops->vo_mech);
err = KCF_PROV_VERIFY_RECOVER_INIT(pd, ctx,
&vops->vo_mech, vops->vo_key, vops->vo_templ,
rhndl);
break;
case KCF_OP_SINGLE:
err = KCF_PROV_VERIFY(pd, ctx, vops->vo_data,
vops->vo_signature, rhndl);
break;
case KCF_OP_VERIFY_RECOVER:
err = KCF_PROV_VERIFY_RECOVER(pd, ctx,
vops->vo_signature, vops->vo_data, rhndl);
break;
case KCF_OP_UPDATE:
err = KCF_PROV_VERIFY_UPDATE(pd, ctx, vops->vo_data,
rhndl);
break;
case KCF_OP_FINAL:
err = KCF_PROV_VERIFY_FINAL(pd, ctx, vops->vo_signature,
rhndl);
break;
case KCF_OP_ATOMIC:
ASSERT(ctx == NULL);
KCF_SET_PROVIDER_MECHNUM(vops->vo_framework_mechtype,
pd, &vops->vo_mech);
err = KCF_PROV_VERIFY_ATOMIC(pd, vops->vo_sid,
&vops->vo_mech, vops->vo_key, vops->vo_data,
vops->vo_templ, vops->vo_signature, rhndl);
break;
case KCF_OP_VERIFY_RECOVER_ATOMIC:
ASSERT(ctx == NULL);
KCF_SET_PROVIDER_MECHNUM(vops->vo_framework_mechtype,
pd, &vops->vo_mech);
err = KCF_PROV_VERIFY_RECOVER_ATOMIC(pd, vops->vo_sid,
&vops->vo_mech, vops->vo_key, vops->vo_signature,
vops->vo_templ, vops->vo_data, rhndl);
break;
default:
break;
}
break;
}
case KCF_OG_ENCRYPT_MAC: {
kcf_encrypt_mac_ops_params_t *eops =
&params->rp_u.encrypt_mac_params;
kcf_context_t *kcf_secondctx;
switch (optype) {
case KCF_OP_INIT:
kcf_secondctx = ((kcf_context_t *)
(ctx->cc_framework_private))->kc_secondctx;
if (kcf_secondctx != NULL) {
err = kcf_emulate_dual(pd, ctx, params);
break;
}
KCF_SET_PROVIDER_MECHNUM(
eops->em_framework_encr_mechtype,
pd, &eops->em_encr_mech);
KCF_SET_PROVIDER_MECHNUM(
eops->em_framework_mac_mechtype,
pd, &eops->em_mac_mech);
err = KCF_PROV_ENCRYPT_MAC_INIT(pd, ctx,
&eops->em_encr_mech, eops->em_encr_key,
&eops->em_mac_mech, eops->em_mac_key,
eops->em_encr_templ, eops->em_mac_templ,
rhndl);
break;
case KCF_OP_SINGLE:
err = KCF_PROV_ENCRYPT_MAC(pd, ctx,
eops->em_plaintext, eops->em_ciphertext,
eops->em_mac, rhndl);
break;
case KCF_OP_UPDATE:
kcf_secondctx = ((kcf_context_t *)
(ctx->cc_framework_private))->kc_secondctx;
if (kcf_secondctx != NULL) {
err = kcf_emulate_dual(pd, ctx, params);
break;
}
err = KCF_PROV_ENCRYPT_MAC_UPDATE(pd, ctx,
eops->em_plaintext, eops->em_ciphertext, rhndl);
break;
case KCF_OP_FINAL:
kcf_secondctx = ((kcf_context_t *)
(ctx->cc_framework_private))->kc_secondctx;
if (kcf_secondctx != NULL) {
err = kcf_emulate_dual(pd, ctx, params);
break;
}
err = KCF_PROV_ENCRYPT_MAC_FINAL(pd, ctx,
eops->em_ciphertext, eops->em_mac, rhndl);
break;
case KCF_OP_ATOMIC:
ASSERT(ctx == NULL);
KCF_SET_PROVIDER_MECHNUM(
eops->em_framework_encr_mechtype,
pd, &eops->em_encr_mech);
KCF_SET_PROVIDER_MECHNUM(
eops->em_framework_mac_mechtype,
pd, &eops->em_mac_mech);
err = KCF_PROV_ENCRYPT_MAC_ATOMIC(pd, eops->em_sid,
&eops->em_encr_mech, eops->em_encr_key,
&eops->em_mac_mech, eops->em_mac_key,
eops->em_plaintext, eops->em_ciphertext,
eops->em_mac,
eops->em_encr_templ, eops->em_mac_templ,
rhndl);
break;
default:
break;
}
break;
}
case KCF_OG_MAC_DECRYPT: {
kcf_mac_decrypt_ops_params_t *dops =
&params->rp_u.mac_decrypt_params;
kcf_context_t *kcf_secondctx;
switch (optype) {
case KCF_OP_INIT:
kcf_secondctx = ((kcf_context_t *)
(ctx->cc_framework_private))->kc_secondctx;
if (kcf_secondctx != NULL) {
err = kcf_emulate_dual(pd, ctx, params);
break;
}
KCF_SET_PROVIDER_MECHNUM(
dops->md_framework_mac_mechtype,
pd, &dops->md_mac_mech);
KCF_SET_PROVIDER_MECHNUM(
dops->md_framework_decr_mechtype,
pd, &dops->md_decr_mech);
err = KCF_PROV_MAC_DECRYPT_INIT(pd, ctx,
&dops->md_mac_mech, dops->md_mac_key,
&dops->md_decr_mech, dops->md_decr_key,
dops->md_mac_templ, dops->md_decr_templ,
rhndl);
break;
case KCF_OP_SINGLE:
err = KCF_PROV_MAC_DECRYPT(pd, ctx,
dops->md_ciphertext, dops->md_mac,
dops->md_plaintext, rhndl);
break;
case KCF_OP_UPDATE:
kcf_secondctx = ((kcf_context_t *)
(ctx->cc_framework_private))->kc_secondctx;
if (kcf_secondctx != NULL) {
err = kcf_emulate_dual(pd, ctx, params);
break;
}
err = KCF_PROV_MAC_DECRYPT_UPDATE(pd, ctx,
dops->md_ciphertext, dops->md_plaintext, rhndl);
break;
case KCF_OP_FINAL:
kcf_secondctx = ((kcf_context_t *)
(ctx->cc_framework_private))->kc_secondctx;
if (kcf_secondctx != NULL) {
err = kcf_emulate_dual(pd, ctx, params);
break;
}
err = KCF_PROV_MAC_DECRYPT_FINAL(pd, ctx,
dops->md_mac, dops->md_plaintext, rhndl);
break;
case KCF_OP_ATOMIC:
ASSERT(ctx == NULL);
KCF_SET_PROVIDER_MECHNUM(
dops->md_framework_mac_mechtype,
pd, &dops->md_mac_mech);
KCF_SET_PROVIDER_MECHNUM(
dops->md_framework_decr_mechtype,
pd, &dops->md_decr_mech);
err = KCF_PROV_MAC_DECRYPT_ATOMIC(pd, dops->md_sid,
&dops->md_mac_mech, dops->md_mac_key,
&dops->md_decr_mech, dops->md_decr_key,
dops->md_ciphertext, dops->md_mac,
dops->md_plaintext,
dops->md_mac_templ, dops->md_decr_templ,
rhndl);
break;
case KCF_OP_MAC_VERIFY_DECRYPT_ATOMIC:
ASSERT(ctx == NULL);
KCF_SET_PROVIDER_MECHNUM(
dops->md_framework_mac_mechtype,
pd, &dops->md_mac_mech);
KCF_SET_PROVIDER_MECHNUM(
dops->md_framework_decr_mechtype,
pd, &dops->md_decr_mech);
err = KCF_PROV_MAC_VERIFY_DECRYPT_ATOMIC(pd,
dops->md_sid, &dops->md_mac_mech, dops->md_mac_key,
&dops->md_decr_mech, dops->md_decr_key,
dops->md_ciphertext, dops->md_mac,
dops->md_plaintext,
dops->md_mac_templ, dops->md_decr_templ,
rhndl);
break;
default:
break;
}
break;
}
case KCF_OG_KEY: {
kcf_key_ops_params_t *kops = &params->rp_u.key_params;
ASSERT(ctx == NULL);
KCF_SET_PROVIDER_MECHNUM(kops->ko_framework_mechtype, pd,
&kops->ko_mech);
switch (optype) {
case KCF_OP_KEY_GENERATE:
err = KCF_PROV_KEY_GENERATE(pd, kops->ko_sid,
&kops->ko_mech,
kops->ko_key_template, kops->ko_key_attribute_count,
kops->ko_key_object_id_ptr, rhndl);
break;
case KCF_OP_KEY_GENERATE_PAIR:
err = KCF_PROV_KEY_GENERATE_PAIR(pd, kops->ko_sid,
&kops->ko_mech,
kops->ko_key_template, kops->ko_key_attribute_count,
kops->ko_private_key_template,
kops->ko_private_key_attribute_count,
kops->ko_key_object_id_ptr,
kops->ko_private_key_object_id_ptr, rhndl);
break;
case KCF_OP_KEY_WRAP:
err = KCF_PROV_KEY_WRAP(pd, kops->ko_sid,
&kops->ko_mech,
kops->ko_key, kops->ko_key_object_id_ptr,
kops->ko_wrapped_key, kops->ko_wrapped_key_len_ptr,
rhndl);
break;
case KCF_OP_KEY_UNWRAP:
err = KCF_PROV_KEY_UNWRAP(pd, kops->ko_sid,
&kops->ko_mech,
kops->ko_key, kops->ko_wrapped_key,
kops->ko_wrapped_key_len_ptr,
kops->ko_key_template, kops->ko_key_attribute_count,
kops->ko_key_object_id_ptr, rhndl);
break;
case KCF_OP_KEY_DERIVE:
err = KCF_PROV_KEY_DERIVE(pd, kops->ko_sid,
&kops->ko_mech,
kops->ko_key, kops->ko_key_template,
kops->ko_key_attribute_count,
kops->ko_key_object_id_ptr, rhndl);
break;
default:
break;
}
break;
}
case KCF_OG_RANDOM: {
kcf_random_number_ops_params_t *rops =
&params->rp_u.random_number_params;
ASSERT(ctx == NULL);
switch (optype) {
case KCF_OP_RANDOM_SEED:
err = KCF_PROV_SEED_RANDOM(pd, rops->rn_sid,
rops->rn_buf, rops->rn_buflen, rops->rn_entropy_est,
rops->rn_flags, rhndl);
break;
case KCF_OP_RANDOM_GENERATE:
err = KCF_PROV_GENERATE_RANDOM(pd, rops->rn_sid,
rops->rn_buf, rops->rn_buflen, rhndl);
break;
default:
break;
}
break;
}
case KCF_OG_SESSION: {
kcf_session_ops_params_t *sops = &params->rp_u.session_params;
ASSERT(ctx == NULL);
switch (optype) {
case KCF_OP_SESSION_OPEN:
/*
* so_pd may be a logical provider, in which case
* we need to check whether it has been removed.
*/
if (KCF_IS_PROV_REMOVED(sops->so_pd)) {
err = CRYPTO_DEVICE_ERROR;
break;
}
err = KCF_PROV_SESSION_OPEN(pd, sops->so_sid_ptr,
rhndl, sops->so_pd);
break;
case KCF_OP_SESSION_CLOSE:
/*
* so_pd may be a logical provider, in which case
* we need to check whether it has been removed.
*/
if (KCF_IS_PROV_REMOVED(sops->so_pd)) {
err = CRYPTO_DEVICE_ERROR;
break;
}
err = KCF_PROV_SESSION_CLOSE(pd, sops->so_sid,
rhndl, sops->so_pd);
break;
case KCF_OP_SESSION_LOGIN:
err = KCF_PROV_SESSION_LOGIN(pd, sops->so_sid,
sops->so_user_type, sops->so_pin,
sops->so_pin_len, rhndl);
break;
case KCF_OP_SESSION_LOGOUT:
err = KCF_PROV_SESSION_LOGOUT(pd, sops->so_sid, rhndl);
break;
default:
break;
}
break;
}
case KCF_OG_OBJECT: {
kcf_object_ops_params_t *jops = &params->rp_u.object_params;
ASSERT(ctx == NULL);
switch (optype) {
case KCF_OP_OBJECT_CREATE:
err = KCF_PROV_OBJECT_CREATE(pd, jops->oo_sid,
jops->oo_template, jops->oo_attribute_count,
jops->oo_object_id_ptr, rhndl);
break;
case KCF_OP_OBJECT_COPY:
err = KCF_PROV_OBJECT_COPY(pd, jops->oo_sid,
jops->oo_object_id,
jops->oo_template, jops->oo_attribute_count,
jops->oo_object_id_ptr, rhndl);
break;
case KCF_OP_OBJECT_DESTROY:
err = KCF_PROV_OBJECT_DESTROY(pd, jops->oo_sid,
jops->oo_object_id, rhndl);
break;
case KCF_OP_OBJECT_GET_SIZE:
err = KCF_PROV_OBJECT_GET_SIZE(pd, jops->oo_sid,
jops->oo_object_id, jops->oo_object_size, rhndl);
break;
case KCF_OP_OBJECT_GET_ATTRIBUTE_VALUE:
err = KCF_PROV_OBJECT_GET_ATTRIBUTE_VALUE(pd,
jops->oo_sid, jops->oo_object_id,
jops->oo_template, jops->oo_attribute_count, rhndl);
break;
case KCF_OP_OBJECT_SET_ATTRIBUTE_VALUE:
err = KCF_PROV_OBJECT_SET_ATTRIBUTE_VALUE(pd,
jops->oo_sid, jops->oo_object_id,
jops->oo_template, jops->oo_attribute_count, rhndl);
break;
case KCF_OP_OBJECT_FIND_INIT:
err = KCF_PROV_OBJECT_FIND_INIT(pd, jops->oo_sid,
jops->oo_template, jops->oo_attribute_count,
jops->oo_find_init_pp_ptr, rhndl);
break;
case KCF_OP_OBJECT_FIND:
err = KCF_PROV_OBJECT_FIND(pd, jops->oo_find_pp,
jops->oo_object_id_ptr, jops->oo_max_object_count,
jops->oo_object_count_ptr, rhndl);
break;
case KCF_OP_OBJECT_FIND_FINAL:
err = KCF_PROV_OBJECT_FIND_FINAL(pd, jops->oo_find_pp,
rhndl);
break;
default:
break;
}
break;
}
case KCF_OG_PROVMGMT: {
kcf_provmgmt_ops_params_t *pops = &params->rp_u.provmgmt_params;
ASSERT(ctx == NULL);
switch (optype) {
case KCF_OP_MGMT_EXTINFO:
/*
* po_pd may be a logical provider, in which case
* we need to check whether it has been removed.
*/
if (KCF_IS_PROV_REMOVED(pops->po_pd)) {
err = CRYPTO_DEVICE_ERROR;
break;
}
err = KCF_PROV_EXT_INFO(pd, pops->po_ext_info, rhndl,
pops->po_pd);
break;
case KCF_OP_MGMT_INITTOKEN:
err = KCF_PROV_INIT_TOKEN(pd, pops->po_pin,
pops->po_pin_len, pops->po_label, rhndl);
break;
case KCF_OP_MGMT_INITPIN:
err = KCF_PROV_INIT_PIN(pd, pops->po_sid, pops->po_pin,
pops->po_pin_len, rhndl);
break;
case KCF_OP_MGMT_SETPIN:
err = KCF_PROV_SET_PIN(pd, pops->po_sid,
pops->po_old_pin, pops->po_old_pin_len,
pops->po_pin, pops->po_pin_len, rhndl);
break;
default:
break;
}
break;
}
case KCF_OG_NOSTORE_KEY: {
kcf_key_ops_params_t *kops = &params->rp_u.key_params;
ASSERT(ctx == NULL);
KCF_SET_PROVIDER_MECHNUM(kops->ko_framework_mechtype, pd,
&kops->ko_mech);
switch (optype) {
case KCF_OP_KEY_GENERATE:
err = KCF_PROV_NOSTORE_KEY_GENERATE(pd, kops->ko_sid,
&kops->ko_mech, kops->ko_key_template,
kops->ko_key_attribute_count,
kops->ko_out_template1,
kops->ko_out_attribute_count1, rhndl);
break;
case KCF_OP_KEY_GENERATE_PAIR:
err = KCF_PROV_NOSTORE_KEY_GENERATE_PAIR(pd,
kops->ko_sid, &kops->ko_mech,
kops->ko_key_template, kops->ko_key_attribute_count,
kops->ko_private_key_template,
kops->ko_private_key_attribute_count,
kops->ko_out_template1,
kops->ko_out_attribute_count1,
kops->ko_out_template2,
kops->ko_out_attribute_count2,
rhndl);
break;
case KCF_OP_KEY_DERIVE:
err = KCF_PROV_NOSTORE_KEY_DERIVE(pd, kops->ko_sid,
&kops->ko_mech, kops->ko_key,
kops->ko_key_template,
kops->ko_key_attribute_count,
kops->ko_out_template1,
kops->ko_out_attribute_count1, rhndl);
break;
default:
break;
}
break;
}
default:
break;
} /* end of switch(params->rp_opgrp) */
KCF_PROV_INCRSTATS(pd, err);
return (err);
}
/*
* Emulate the call for a multipart dual ops with 2 single steps.
* This routine is always called in the context of a working thread
* running kcf_svc_do_run().
* The single steps are submitted in a pure synchronous way (blocking).
* When this routine returns, kcf_svc_do_run() will call kcf_aop_done()
* so the originating consumer's callback gets invoked. kcf_aop_done()
* takes care of freeing the operation context. So, this routine does
* not free the operation context.
*
* The provider descriptor is assumed held by the callers.
*/
static int
kcf_emulate_dual(kcf_provider_desc_t *pd, crypto_ctx_t *ctx,
kcf_req_params_t *params)
{
int err = CRYPTO_ARGUMENTS_BAD;
kcf_op_type_t optype;
size_t save_len;
off_t save_offset;
optype = params->rp_optype;
switch (params->rp_opgrp) {
case KCF_OG_ENCRYPT_MAC: {
kcf_encrypt_mac_ops_params_t *cmops =
&params->rp_u.encrypt_mac_params;
kcf_context_t *encr_kcf_ctx;
crypto_ctx_t *mac_ctx;
kcf_req_params_t encr_params;
encr_kcf_ctx = (kcf_context_t *)(ctx->cc_framework_private);
switch (optype) {
case KCF_OP_INIT: {
encr_kcf_ctx->kc_secondctx = NULL;
KCF_WRAP_ENCRYPT_OPS_PARAMS(&encr_params, KCF_OP_INIT,
pd->pd_sid, &cmops->em_encr_mech,
cmops->em_encr_key, NULL, NULL,
cmops->em_encr_templ);
err = kcf_submit_request(pd, ctx, NULL, &encr_params,
B_FALSE);
/* It can't be CRYPTO_QUEUED */
if (err != CRYPTO_SUCCESS) {
break;
}
err = crypto_mac_init(&cmops->em_mac_mech,
cmops->em_mac_key, cmops->em_mac_templ,
(crypto_context_t *)&mac_ctx, NULL);
if (err == CRYPTO_SUCCESS) {
encr_kcf_ctx->kc_secondctx = (kcf_context_t *)
mac_ctx->cc_framework_private;
KCF_CONTEXT_REFHOLD((kcf_context_t *)
mac_ctx->cc_framework_private);
}
break;
}
case KCF_OP_UPDATE: {
crypto_dual_data_t *ct = cmops->em_ciphertext;
crypto_data_t *pt = cmops->em_plaintext;
kcf_context_t *mac_kcf_ctx = encr_kcf_ctx->kc_secondctx;
crypto_ctx_t *mac_ctx = &mac_kcf_ctx->kc_glbl_ctx;
KCF_WRAP_ENCRYPT_OPS_PARAMS(&encr_params, KCF_OP_UPDATE,
pd->pd_sid, NULL, NULL, pt, (crypto_data_t *)ct,
NULL);
err = kcf_submit_request(pd, ctx, NULL, &encr_params,
B_FALSE);
/* It can't be CRYPTO_QUEUED */
if (err != CRYPTO_SUCCESS) {
break;
}
save_offset = ct->dd_offset1;
save_len = ct->dd_len1;
if (ct->dd_len2 == 0) {
/*
* The previous encrypt step was an
* accumulation only and didn't produce any
* partial output
*/
if (ct->dd_len1 == 0)
break;
} else {
ct->dd_offset1 = ct->dd_offset2;
ct->dd_len1 = ct->dd_len2;
}
err = crypto_mac_update((crypto_context_t)mac_ctx,
(crypto_data_t *)ct, NULL);
ct->dd_offset1 = save_offset;
ct->dd_len1 = save_len;
break;
}
case KCF_OP_FINAL: {
crypto_dual_data_t *ct = cmops->em_ciphertext;
crypto_data_t *mac = cmops->em_mac;
kcf_context_t *mac_kcf_ctx = encr_kcf_ctx->kc_secondctx;
crypto_ctx_t *mac_ctx = &mac_kcf_ctx->kc_glbl_ctx;
crypto_context_t mac_context = mac_ctx;
KCF_WRAP_ENCRYPT_OPS_PARAMS(&encr_params, KCF_OP_FINAL,
pd->pd_sid, NULL, NULL, NULL, (crypto_data_t *)ct,
NULL);
err = kcf_submit_request(pd, ctx, NULL, &encr_params,
B_FALSE);
/* It can't be CRYPTO_QUEUED */
if (err != CRYPTO_SUCCESS) {
crypto_cancel_ctx(mac_context);
break;
}
if (ct->dd_len2 > 0) {
save_offset = ct->dd_offset1;
save_len = ct->dd_len1;
ct->dd_offset1 = ct->dd_offset2;
ct->dd_len1 = ct->dd_len2;
err = crypto_mac_update(mac_context,
(crypto_data_t *)ct, NULL);
ct->dd_offset1 = save_offset;
ct->dd_len1 = save_len;
if (err != CRYPTO_SUCCESS) {
crypto_cancel_ctx(mac_context);
return (err);
}
}
/* and finally, collect the MAC */
err = crypto_mac_final(mac_context, mac, NULL);
break;
}
default:
break;
}
KCF_PROV_INCRSTATS(pd, err);
break;
}
case KCF_OG_MAC_DECRYPT: {
kcf_mac_decrypt_ops_params_t *mdops =
&params->rp_u.mac_decrypt_params;
kcf_context_t *decr_kcf_ctx;
crypto_ctx_t *mac_ctx;
kcf_req_params_t decr_params;
decr_kcf_ctx = (kcf_context_t *)(ctx->cc_framework_private);
switch (optype) {
case KCF_OP_INIT: {
decr_kcf_ctx->kc_secondctx = NULL;
err = crypto_mac_init(&mdops->md_mac_mech,
mdops->md_mac_key, mdops->md_mac_templ,
(crypto_context_t *)&mac_ctx, NULL);
/* It can't be CRYPTO_QUEUED */
if (err != CRYPTO_SUCCESS) {
break;
}
KCF_WRAP_DECRYPT_OPS_PARAMS(&decr_params, KCF_OP_INIT,
pd->pd_sid, &mdops->md_decr_mech,
mdops->md_decr_key, NULL, NULL,
mdops->md_decr_templ);
err = kcf_submit_request(pd, ctx, NULL, &decr_params,
B_FALSE);
/* It can't be CRYPTO_QUEUED */
if (err != CRYPTO_SUCCESS) {
crypto_cancel_ctx((crypto_context_t)mac_ctx);
break;
}
decr_kcf_ctx->kc_secondctx = (kcf_context_t *)
mac_ctx->cc_framework_private;
KCF_CONTEXT_REFHOLD((kcf_context_t *)
mac_ctx->cc_framework_private);
break;
default:
break;
}
case KCF_OP_UPDATE: {
crypto_dual_data_t *ct = mdops->md_ciphertext;
crypto_data_t *pt = mdops->md_plaintext;
kcf_context_t *mac_kcf_ctx = decr_kcf_ctx->kc_secondctx;
crypto_ctx_t *mac_ctx = &mac_kcf_ctx->kc_glbl_ctx;
err = crypto_mac_update((crypto_context_t)mac_ctx,
(crypto_data_t *)ct, NULL);
if (err != CRYPTO_SUCCESS)
break;
save_offset = ct->dd_offset1;
save_len = ct->dd_len1;
/* zero ct->dd_len2 means decrypt everything */
if (ct->dd_len2 > 0) {
ct->dd_offset1 = ct->dd_offset2;
ct->dd_len1 = ct->dd_len2;
}
err = crypto_decrypt_update((crypto_context_t)ctx,
(crypto_data_t *)ct, pt, NULL);
ct->dd_offset1 = save_offset;
ct->dd_len1 = save_len;
break;
}
case KCF_OP_FINAL: {
crypto_data_t *pt = mdops->md_plaintext;
crypto_data_t *mac = mdops->md_mac;
kcf_context_t *mac_kcf_ctx = decr_kcf_ctx->kc_secondctx;
crypto_ctx_t *mac_ctx = &mac_kcf_ctx->kc_glbl_ctx;
err = crypto_mac_final((crypto_context_t)mac_ctx,
mac, NULL);
if (err != CRYPTO_SUCCESS) {
crypto_cancel_ctx(ctx);
break;
}
/* Get the last chunk of plaintext */
KCF_CONTEXT_REFHOLD(decr_kcf_ctx);
err = crypto_decrypt_final((crypto_context_t)ctx, pt,
NULL);
break;
}
}
break;
}
default:
break;
} /* end of switch(params->rp_opgrp) */
return (err);
}