662 lines
19 KiB
C
662 lines
19 KiB
C
/*
|
|
* This file is part of the SPL: Solaris Porting Layer.
|
|
*
|
|
* Copyright (c) 2008 Lawrence Livermore National Security, LLC.
|
|
* Produced at Lawrence Livermore National Laboratory
|
|
* Written by:
|
|
* Brian Behlendorf <behlendorf1@llnl.gov>,
|
|
* Herb Wartens <wartens2@llnl.gov>,
|
|
* Jim Garlick <garlick@llnl.gov>
|
|
* UCRL-CODE-235197
|
|
*
|
|
* This is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program; if not, write to the Free Software Foundation, Inc.,
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*/
|
|
|
|
#include <sys/kmem.h>
|
|
|
|
#ifdef DEBUG_SUBSYSTEM
|
|
#undef DEBUG_SUBSYSTEM
|
|
#endif
|
|
|
|
#define DEBUG_SUBSYSTEM S_KMEM
|
|
|
|
/*
|
|
* Memory allocation interfaces
|
|
*/
|
|
#ifdef DEBUG_KMEM
|
|
/* Shim layer memory accounting */
|
|
atomic64_t kmem_alloc_used;
|
|
unsigned long kmem_alloc_max = 0;
|
|
atomic64_t vmem_alloc_used;
|
|
unsigned long vmem_alloc_max = 0;
|
|
int kmem_warning_flag = 1;
|
|
atomic64_t kmem_cache_alloc_failed;
|
|
|
|
spinlock_t kmem_lock;
|
|
struct hlist_head kmem_table[KMEM_TABLE_SIZE];
|
|
struct list_head kmem_list;
|
|
|
|
spinlock_t vmem_lock;
|
|
struct hlist_head vmem_table[VMEM_TABLE_SIZE];
|
|
struct list_head vmem_list;
|
|
|
|
EXPORT_SYMBOL(kmem_alloc_used);
|
|
EXPORT_SYMBOL(kmem_alloc_max);
|
|
EXPORT_SYMBOL(vmem_alloc_used);
|
|
EXPORT_SYMBOL(vmem_alloc_max);
|
|
EXPORT_SYMBOL(kmem_warning_flag);
|
|
|
|
EXPORT_SYMBOL(kmem_lock);
|
|
EXPORT_SYMBOL(kmem_table);
|
|
EXPORT_SYMBOL(kmem_list);
|
|
|
|
EXPORT_SYMBOL(vmem_lock);
|
|
EXPORT_SYMBOL(vmem_table);
|
|
EXPORT_SYMBOL(vmem_list);
|
|
|
|
int kmem_set_warning(int flag) { return (kmem_warning_flag = !!flag); }
|
|
#else
|
|
int kmem_set_warning(int flag) { return 0; }
|
|
#endif
|
|
EXPORT_SYMBOL(kmem_set_warning);
|
|
|
|
/*
|
|
* Slab allocation interfaces
|
|
*
|
|
* While the linux slab implementation was inspired by solaris they
|
|
* have made some changes to the API which complicates this shim
|
|
* layer. For one thing the same symbol names are used with different
|
|
* arguments for the prototypes. To deal with this we must use the
|
|
* preprocessor to re-order arguments. Happily for us standard C says,
|
|
* "Macro's appearing in their own expansion are not reexpanded" so
|
|
* this does not result in an infinite recursion. Additionally the
|
|
* function pointers registered by solarias differ from those used
|
|
* by linux so a lookup and mapping from linux style callback to a
|
|
* solaris style callback is needed. There is some overhead in this
|
|
* operation which isn't horibile but it needs to be kept in mind.
|
|
*/
|
|
#define KCC_MAGIC 0x7a7a7a7a
|
|
#define KCC_POISON 0x77
|
|
|
|
typedef struct kmem_cache_cb {
|
|
int kcc_magic;
|
|
struct hlist_node kcc_hlist;
|
|
struct list_head kcc_list;
|
|
kmem_cache_t * kcc_cache;
|
|
kmem_constructor_t kcc_constructor;
|
|
kmem_destructor_t kcc_destructor;
|
|
kmem_reclaim_t kcc_reclaim;
|
|
void * kcc_private;
|
|
void * kcc_vmp;
|
|
atomic_t kcc_ref;
|
|
} kmem_cache_cb_t;
|
|
|
|
#define KMEM_CACHE_HASH_BITS 10
|
|
#define KMEM_CACHE_TABLE_SIZE (1 << KMEM_CACHE_HASH_BITS)
|
|
|
|
struct hlist_head kmem_cache_table[KMEM_CACHE_TABLE_SIZE];
|
|
struct list_head kmem_cache_list;
|
|
static struct rw_semaphore kmem_cache_sem;
|
|
|
|
#ifdef HAVE_SET_SHRINKER
|
|
static struct shrinker *kmem_cache_shrinker;
|
|
#else
|
|
static int kmem_cache_generic_shrinker(int nr_to_scan, unsigned int gfp_mask);
|
|
static struct shrinker kmem_cache_shrinker = {
|
|
.shrink = kmem_cache_generic_shrinker,
|
|
.seeks = KMC_DEFAULT_SEEKS,
|
|
};
|
|
#endif
|
|
|
|
/* Function must be called while holding the kmem_cache_sem
|
|
* Because kmem_cache_t is an opaque datatype we're forced to
|
|
* match pointers to identify specific cache entires.
|
|
*/
|
|
static kmem_cache_cb_t *
|
|
kmem_cache_find_cache_cb(kmem_cache_t *cache)
|
|
{
|
|
struct hlist_head *head;
|
|
struct hlist_node *node;
|
|
kmem_cache_cb_t *kcc;
|
|
#ifdef CONFIG_RWSEM_GENERIC_SPINLOCK
|
|
ASSERT(rwsem_is_locked(&kmem_cache_sem));
|
|
#endif
|
|
|
|
head = &kmem_cache_table[hash_ptr(cache, KMEM_CACHE_HASH_BITS)];
|
|
hlist_for_each_entry_rcu(kcc, node, head, kcc_hlist)
|
|
if (kcc->kcc_cache == cache)
|
|
return kcc;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static kmem_cache_cb_t *
|
|
kmem_cache_add_cache_cb(kmem_cache_t *cache,
|
|
kmem_constructor_t constructor,
|
|
kmem_destructor_t destructor,
|
|
kmem_reclaim_t reclaim,
|
|
void *priv, void *vmp)
|
|
{
|
|
kmem_cache_cb_t *kcc;
|
|
|
|
kcc = (kmem_cache_cb_t *)kmalloc(sizeof(*kcc), GFP_KERNEL);
|
|
if (kcc) {
|
|
kcc->kcc_magic = KCC_MAGIC;
|
|
kcc->kcc_cache = cache;
|
|
kcc->kcc_constructor = constructor;
|
|
kcc->kcc_destructor = destructor;
|
|
kcc->kcc_reclaim = reclaim;
|
|
kcc->kcc_private = priv;
|
|
kcc->kcc_vmp = vmp;
|
|
atomic_set(&kcc->kcc_ref, 0);
|
|
down_write(&kmem_cache_sem);
|
|
hlist_add_head_rcu(&kcc->kcc_hlist, &kmem_cache_table[
|
|
hash_ptr(cache, KMEM_CACHE_HASH_BITS)]);
|
|
list_add_tail(&kcc->kcc_list, &kmem_cache_list);
|
|
up_write(&kmem_cache_sem);
|
|
}
|
|
|
|
return kcc;
|
|
}
|
|
|
|
static void
|
|
kmem_cache_remove_cache_cb(kmem_cache_cb_t *kcc)
|
|
{
|
|
down_write(&kmem_cache_sem);
|
|
ASSERT(atomic_read(&kcc->kcc_ref) == 0);
|
|
hlist_del_init(&kcc->kcc_hlist);
|
|
list_del_init(&kcc->kcc_list);
|
|
up_write(&kmem_cache_sem);
|
|
|
|
if (kcc) {
|
|
memset(kcc, KCC_POISON, sizeof(*kcc));
|
|
kfree(kcc);
|
|
}
|
|
}
|
|
|
|
#ifdef HAVE_3ARG_KMEM_CACHE_CREATE_CTOR
|
|
static void
|
|
kmem_cache_generic_constructor(void *ptr, kmem_cache_t *cache,
|
|
unsigned long flags)
|
|
{
|
|
kmem_cache_cb_t *kcc;
|
|
kmem_constructor_t constructor;
|
|
void *private;
|
|
|
|
/* Ensure constructor verifies are not passed to the registered
|
|
* constructors. This may not be safe due to the Solaris constructor
|
|
* not being aware of how to handle the SLAB_CTOR_VERIFY flag
|
|
*/
|
|
ASSERT(flags & SLAB_CTOR_CONSTRUCTOR);
|
|
|
|
if (flags & SLAB_CTOR_VERIFY)
|
|
return;
|
|
|
|
if (flags & SLAB_CTOR_ATOMIC)
|
|
flags = KM_NOSLEEP;
|
|
else
|
|
flags = KM_SLEEP;
|
|
#else
|
|
static void
|
|
kmem_cache_generic_constructor(kmem_cache_t *cache, void *ptr)
|
|
{
|
|
kmem_cache_cb_t *kcc;
|
|
kmem_constructor_t constructor;
|
|
void *private;
|
|
int flags = KM_NOSLEEP;
|
|
#endif
|
|
/* We can be called with interrupts disabled so it is critical that
|
|
* this function and the registered constructor never sleep.
|
|
*/
|
|
while (!down_read_trylock(&kmem_cache_sem));
|
|
|
|
/* Callback list must be in sync with linux slab caches */
|
|
kcc = kmem_cache_find_cache_cb(cache);
|
|
ASSERT(kcc);
|
|
ASSERT(kcc->kcc_magic == KCC_MAGIC);
|
|
atomic_inc(&kcc->kcc_ref);
|
|
|
|
constructor = kcc->kcc_constructor;
|
|
private = kcc->kcc_private;
|
|
|
|
up_read(&kmem_cache_sem);
|
|
|
|
if (constructor)
|
|
constructor(ptr, private, (int)flags);
|
|
|
|
atomic_dec(&kcc->kcc_ref);
|
|
|
|
/* Linux constructor has no return code, silently eat it */
|
|
}
|
|
|
|
static void
|
|
kmem_cache_generic_destructor(void *ptr, kmem_cache_t *cache, unsigned long flags)
|
|
{
|
|
kmem_cache_cb_t *kcc;
|
|
kmem_destructor_t destructor;
|
|
void *private;
|
|
|
|
/* No valid destructor flags */
|
|
ASSERT(flags == 0);
|
|
|
|
/* We can be called with interrupts disabled so it is critical that
|
|
* this function and the registered constructor never sleep.
|
|
*/
|
|
while (!down_read_trylock(&kmem_cache_sem));
|
|
|
|
/* Callback list must be in sync with linux slab caches */
|
|
kcc = kmem_cache_find_cache_cb(cache);
|
|
ASSERT(kcc);
|
|
ASSERT(kcc->kcc_magic == KCC_MAGIC);
|
|
atomic_inc(&kcc->kcc_ref);
|
|
|
|
destructor = kcc->kcc_destructor;
|
|
private = kcc->kcc_private;
|
|
|
|
up_read(&kmem_cache_sem);
|
|
|
|
/* Solaris destructor takes no flags, silently eat them */
|
|
if (destructor)
|
|
destructor(ptr, private);
|
|
|
|
atomic_dec(&kcc->kcc_ref);
|
|
}
|
|
|
|
/* Arguments are ignored */
|
|
static int
|
|
kmem_cache_generic_shrinker(int nr_to_scan, unsigned int gfp_mask)
|
|
{
|
|
kmem_cache_cb_t *kcc;
|
|
int total = 0;
|
|
|
|
/* Under linux a shrinker is not tightly coupled with a slab
|
|
* cache. In fact linux always systematically trys calling all
|
|
* registered shrinker callbacks until its target reclamation level
|
|
* is reached. Because of this we only register one shrinker
|
|
* function in the shim layer for all slab caches. And we always
|
|
* attempt to shrink all caches when this generic shrinker is called.
|
|
*/
|
|
down_read(&kmem_cache_sem);
|
|
|
|
list_for_each_entry(kcc, &kmem_cache_list, kcc_list) {
|
|
ASSERT(kcc);
|
|
ASSERT(kcc->kcc_magic == KCC_MAGIC);
|
|
|
|
/* Take a reference on the cache in question. If that
|
|
* cache is contended simply skip it, it may already be
|
|
* in the process of a reclaim or the ctor/dtor may be
|
|
* running in either case it's best to skip it.
|
|
*/
|
|
atomic_inc(&kcc->kcc_ref);
|
|
if (atomic_read(&kcc->kcc_ref) > 1) {
|
|
atomic_dec(&kcc->kcc_ref);
|
|
continue;
|
|
}
|
|
|
|
/* Under linux the desired number and gfp type of objects
|
|
* is passed to the reclaiming function as a sugested reclaim
|
|
* target. I do not pass these args on because reclaim
|
|
* policy is entirely up to the owner under solaris. We only
|
|
* pass on the pre-registered private data.
|
|
*/
|
|
if (kcc->kcc_reclaim)
|
|
kcc->kcc_reclaim(kcc->kcc_private);
|
|
|
|
atomic_dec(&kcc->kcc_ref);
|
|
total += 1;
|
|
}
|
|
|
|
/* Under linux we should return the remaining number of entires in
|
|
* the cache. Unfortunately, I don't see an easy way to safely
|
|
* emulate this behavior so I'm returning one entry per cache which
|
|
* was registered with the generic shrinker. This should fake out
|
|
* the linux VM when it attempts to shrink caches.
|
|
*/
|
|
up_read(&kmem_cache_sem);
|
|
|
|
return total;
|
|
}
|
|
|
|
/* Ensure the __kmem_cache_create/__kmem_cache_destroy macros are
|
|
* removed here to prevent a recursive substitution, we want to call
|
|
* the native linux version.
|
|
*/
|
|
#undef kmem_cache_create
|
|
#undef kmem_cache_destroy
|
|
#undef kmem_cache_alloc
|
|
#undef kmem_cache_free
|
|
|
|
kmem_cache_t *
|
|
__kmem_cache_create(char *name, size_t size, size_t align,
|
|
kmem_constructor_t constructor,
|
|
kmem_destructor_t destructor,
|
|
kmem_reclaim_t reclaim,
|
|
void *priv, void *vmp, int flags)
|
|
{
|
|
kmem_cache_t *cache;
|
|
kmem_cache_cb_t *kcc;
|
|
int shrinker_flag = 0;
|
|
char *cache_name;
|
|
ENTRY;
|
|
|
|
/* XXX: - Option currently unsupported by shim layer */
|
|
ASSERT(!vmp);
|
|
ASSERT(flags == 0);
|
|
|
|
cache_name = kzalloc(strlen(name) + 1, GFP_KERNEL);
|
|
if (cache_name == NULL)
|
|
RETURN(NULL);
|
|
|
|
strcpy(cache_name, name);
|
|
|
|
/* When your slab is implemented in terms of the slub it
|
|
* is possible similarly sized slab caches will be merged.
|
|
* For our implementation we must make sure this never
|
|
* happens because we require a unique cache address to
|
|
* use as a hash key when looking up the constructor,
|
|
* destructor, and shrinker registered for each unique
|
|
* type of slab cache. Passing any of the following flags
|
|
* will prevent the slub merging.
|
|
*
|
|
* SLAB_RED_ZONE
|
|
* SLAB_POISON
|
|
* SLAB_STORE_USER
|
|
* SLAB_TRACE
|
|
* SLAB_DESTROY_BY_RCU
|
|
*/
|
|
#ifdef CONFIG_SLUB
|
|
flags |= SLAB_STORE_USER;
|
|
#endif
|
|
|
|
#ifdef HAVE_KMEM_CACHE_CREATE_DTOR
|
|
cache = kmem_cache_create(cache_name, size, align, flags,
|
|
kmem_cache_generic_constructor,
|
|
kmem_cache_generic_destructor);
|
|
#else
|
|
cache = kmem_cache_create(cache_name, size, align, flags, NULL);
|
|
#endif
|
|
if (cache == NULL)
|
|
RETURN(NULL);
|
|
|
|
/* Register shared shrinker function on initial cache create */
|
|
down_read(&kmem_cache_sem);
|
|
if (list_empty(&kmem_cache_list)) {
|
|
#ifdef HAVE_SET_SHRINKER
|
|
kmem_cache_shrinker = set_shrinker(KMC_DEFAULT_SEEKS,
|
|
kmem_cache_generic_shrinker);
|
|
if (kmem_cache_shrinker == NULL) {
|
|
kmem_cache_destroy(cache);
|
|
up_read(&kmem_cache_sem);
|
|
RETURN(NULL);
|
|
}
|
|
#else
|
|
register_shrinker(&kmem_cache_shrinker);
|
|
#endif
|
|
}
|
|
up_read(&kmem_cache_sem);
|
|
|
|
kcc = kmem_cache_add_cache_cb(cache, constructor, destructor,
|
|
reclaim, priv, vmp);
|
|
if (kcc == NULL) {
|
|
if (shrinker_flag) /* New shrinker registered must be removed */
|
|
#ifdef HAVE_SET_SHRINKER
|
|
remove_shrinker(kmem_cache_shrinker);
|
|
#else
|
|
unregister_shrinker(&kmem_cache_shrinker);
|
|
#endif
|
|
|
|
kmem_cache_destroy(cache);
|
|
RETURN(NULL);
|
|
}
|
|
|
|
RETURN(cache);
|
|
}
|
|
EXPORT_SYMBOL(__kmem_cache_create);
|
|
|
|
/* Return code provided despite Solaris's void return. There should be no
|
|
* harm here since the Solaris versions will ignore it anyway. */
|
|
int
|
|
__kmem_cache_destroy(kmem_cache_t *cache)
|
|
{
|
|
kmem_cache_cb_t *kcc;
|
|
char *name;
|
|
int rc;
|
|
ENTRY;
|
|
|
|
down_read(&kmem_cache_sem);
|
|
kcc = kmem_cache_find_cache_cb(cache);
|
|
if (kcc == NULL) {
|
|
up_read(&kmem_cache_sem);
|
|
RETURN(-EINVAL);
|
|
}
|
|
atomic_inc(&kcc->kcc_ref);
|
|
up_read(&kmem_cache_sem);
|
|
|
|
name = (char *)kmem_cache_name(cache);
|
|
|
|
#ifdef HAVE_KMEM_CACHE_DESTROY_INT
|
|
rc = kmem_cache_destroy(cache);
|
|
#else
|
|
kmem_cache_destroy(cache);
|
|
rc = 0;
|
|
#endif
|
|
|
|
atomic_dec(&kcc->kcc_ref);
|
|
kmem_cache_remove_cache_cb(kcc);
|
|
kfree(name);
|
|
|
|
/* Unregister generic shrinker on removal of all caches */
|
|
down_read(&kmem_cache_sem);
|
|
if (list_empty(&kmem_cache_list))
|
|
#ifdef HAVE_SET_SHRINKER
|
|
remove_shrinker(kmem_cache_shrinker);
|
|
#else
|
|
unregister_shrinker(&kmem_cache_shrinker);
|
|
#endif
|
|
|
|
up_read(&kmem_cache_sem);
|
|
RETURN(rc);
|
|
}
|
|
EXPORT_SYMBOL(__kmem_cache_destroy);
|
|
|
|
/* Under Solaris if the KM_SLEEP flag is passed we absolutely must
|
|
* sleep until we are allocated the memory. Under Linux you can still
|
|
* get a memory allocation failure, so I'm forced to keep requesting
|
|
* the memory even if the system is under substantial memory pressure
|
|
* of fragmentation prevents the allocation from succeeded. This is
|
|
* not the correct fix, or even a good one. But it will do for now.
|
|
*/
|
|
void *
|
|
__kmem_cache_alloc(kmem_cache_t *cache, gfp_t flags)
|
|
{
|
|
void *obj;
|
|
ENTRY;
|
|
|
|
restart:
|
|
obj = kmem_cache_alloc(cache, flags);
|
|
if ((obj == NULL) && (flags & KM_SLEEP)) {
|
|
#ifdef DEBUG_KMEM
|
|
atomic64_inc(&kmem_cache_alloc_failed);
|
|
#endif /* DEBUG_KMEM */
|
|
GOTO(restart, obj);
|
|
}
|
|
|
|
/* When destructor support is removed we must be careful not to
|
|
* use the provided constructor which will end up being called
|
|
* more often than the destructor which we only call on free. Thus
|
|
* we many call the proper constructor when there is no destructor.
|
|
*/
|
|
#ifndef HAVE_KMEM_CACHE_CREATE_DTOR
|
|
#ifdef HAVE_3ARG_KMEM_CACHE_CREATE_CTOR
|
|
kmem_cache_generic_constructor(obj, cache, flags);
|
|
#else
|
|
kmem_cache_generic_constructor(cache, obj);
|
|
#endif /* HAVE_KMEM_CACHE_CREATE_DTOR */
|
|
#endif /* HAVE_3ARG_KMEM_CACHE_CREATE_CTOR */
|
|
|
|
RETURN(obj);
|
|
}
|
|
EXPORT_SYMBOL(__kmem_cache_alloc);
|
|
|
|
void
|
|
__kmem_cache_free(kmem_cache_t *cache, void *obj)
|
|
{
|
|
#ifndef HAVE_KMEM_CACHE_CREATE_DTOR
|
|
kmem_cache_generic_destructor(obj, cache, 0);
|
|
#endif
|
|
kmem_cache_free(cache, obj);
|
|
}
|
|
EXPORT_SYMBOL(__kmem_cache_free);
|
|
|
|
void
|
|
__kmem_reap(void)
|
|
{
|
|
ENTRY;
|
|
/* Since there's no easy hook in to linux to force all the registered
|
|
* shrinkers to run we just run the ones registered for this shim */
|
|
kmem_cache_generic_shrinker(KMC_REAP_CHUNK, GFP_KERNEL);
|
|
EXIT;
|
|
}
|
|
EXPORT_SYMBOL(__kmem_reap);
|
|
|
|
int
|
|
kmem_init(void)
|
|
{
|
|
int i;
|
|
ENTRY;
|
|
|
|
init_rwsem(&kmem_cache_sem);
|
|
INIT_LIST_HEAD(&kmem_cache_list);
|
|
|
|
for (i = 0; i < KMEM_CACHE_TABLE_SIZE; i++)
|
|
INIT_HLIST_HEAD(&kmem_cache_table[i]);
|
|
|
|
#ifdef DEBUG_KMEM
|
|
atomic64_set(&kmem_alloc_used, 0);
|
|
atomic64_set(&vmem_alloc_used, 0);
|
|
|
|
spin_lock_init(&kmem_lock);
|
|
INIT_LIST_HEAD(&kmem_list);
|
|
|
|
for (i = 0; i < KMEM_TABLE_SIZE; i++)
|
|
INIT_HLIST_HEAD(&kmem_table[i]);
|
|
|
|
spin_lock_init(&vmem_lock);
|
|
INIT_LIST_HEAD(&vmem_list);
|
|
|
|
for (i = 0; i < VMEM_TABLE_SIZE; i++)
|
|
INIT_HLIST_HEAD(&vmem_table[i]);
|
|
|
|
atomic64_set(&kmem_cache_alloc_failed, 0);
|
|
#endif
|
|
RETURN(0);
|
|
}
|
|
|
|
#ifdef DEBUG_KMEM
|
|
static char *
|
|
sprintf_addr(kmem_debug_t *kd, char *str, int len, int min)
|
|
{
|
|
int size = ((len - 1) < kd->kd_size) ? (len - 1) : kd->kd_size;
|
|
int i, flag = 1;
|
|
|
|
ASSERT(str != NULL && len >= 17);
|
|
memset(str, 0, len);
|
|
|
|
/* Check for a fully printable string, and while we are at
|
|
* it place the printable characters in the passed buffer. */
|
|
for (i = 0; i < size; i++) {
|
|
str[i] = ((char *)(kd->kd_addr))[i];
|
|
if (isprint(str[i])) {
|
|
continue;
|
|
} else {
|
|
/* Minimum number of printable characters found
|
|
* to make it worthwhile to print this as ascii. */
|
|
if (i > min)
|
|
break;
|
|
|
|
flag = 0;
|
|
break;
|
|
}
|
|
|
|
}
|
|
|
|
if (!flag) {
|
|
sprintf(str, "%02x%02x%02x%02x%02x%02x%02x%02x",
|
|
*((uint8_t *)kd->kd_addr),
|
|
*((uint8_t *)kd->kd_addr + 2),
|
|
*((uint8_t *)kd->kd_addr + 4),
|
|
*((uint8_t *)kd->kd_addr + 6),
|
|
*((uint8_t *)kd->kd_addr + 8),
|
|
*((uint8_t *)kd->kd_addr + 10),
|
|
*((uint8_t *)kd->kd_addr + 12),
|
|
*((uint8_t *)kd->kd_addr + 14));
|
|
}
|
|
|
|
return str;
|
|
}
|
|
#endif /* DEBUG_KMEM */
|
|
|
|
void
|
|
kmem_fini(void)
|
|
{
|
|
ENTRY;
|
|
#ifdef DEBUG_KMEM
|
|
{
|
|
unsigned long flags;
|
|
kmem_debug_t *kd;
|
|
char str[17];
|
|
|
|
/* Display all unreclaimed memory addresses, including the
|
|
* allocation size and the first few bytes of what's located
|
|
* at that address to aid in debugging. Performance is not
|
|
* a serious concern here since it is module unload time. */
|
|
if (atomic64_read(&kmem_alloc_used) != 0)
|
|
CWARN("kmem leaked %ld/%ld bytes\n",
|
|
atomic_read(&kmem_alloc_used), kmem_alloc_max);
|
|
|
|
spin_lock_irqsave(&kmem_lock, flags);
|
|
if (!list_empty(&kmem_list))
|
|
CDEBUG(D_WARNING, "%-16s %-5s %-16s %s:%s\n",
|
|
"address", "size", "data", "func", "line");
|
|
|
|
list_for_each_entry(kd, &kmem_list, kd_list)
|
|
CDEBUG(D_WARNING, "%p %-5d %-16s %s:%d\n",
|
|
kd->kd_addr, kd->kd_size,
|
|
sprintf_addr(kd, str, 17, 8),
|
|
kd->kd_func, kd->kd_line);
|
|
|
|
spin_unlock_irqrestore(&kmem_lock, flags);
|
|
|
|
if (atomic64_read(&vmem_alloc_used) != 0)
|
|
CWARN("vmem leaked %ld/%ld bytes\n",
|
|
atomic_read(&vmem_alloc_used), vmem_alloc_max);
|
|
|
|
spin_lock_irqsave(&vmem_lock, flags);
|
|
if (!list_empty(&vmem_list))
|
|
CDEBUG(D_WARNING, "%-16s %-5s %-16s %s:%s\n",
|
|
"address", "size", "data", "func", "line");
|
|
|
|
list_for_each_entry(kd, &vmem_list, kd_list)
|
|
CDEBUG(D_WARNING, "%p %-5d %-16s %s:%d\n",
|
|
kd->kd_addr, kd->kd_size,
|
|
sprintf_addr(kd, str, 17, 8),
|
|
kd->kd_func, kd->kd_line);
|
|
|
|
spin_unlock_irqrestore(&vmem_lock, flags);
|
|
}
|
|
#endif
|
|
EXIT;
|
|
}
|