zfs/lib/libzfs/libzfs_import.c

1887 lines
46 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2015 Nexenta Systems, Inc. All rights reserved.
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2012 by Delphix. All rights reserved.
* Copyright 2015 RackTop Systems.
*/
/*
* Pool import support functions.
*
* To import a pool, we rely on reading the configuration information from the
* ZFS label of each device. If we successfully read the label, then we
* organize the configuration information in the following hierarchy:
*
* pool guid -> toplevel vdev guid -> label txg
*
* Duplicate entries matching this same tuple will be discarded. Once we have
* examined every device, we pick the best label txg config for each toplevel
* vdev. We then arrange these toplevel vdevs into a complete pool config, and
* update any paths that have changed. Finally, we attempt to import the pool
* using our derived config, and record the results.
*/
#include <ctype.h>
#include <devid.h>
#include <dirent.h>
#include <errno.h>
#include <libintl.h>
#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include <sys/stat.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/vtoc.h>
#include <sys/dktp/fdisk.h>
#include <sys/efi_partition.h>
#include <sys/vdev_impl.h>
#include <blkid/blkid.h>
#include "libzfs.h"
#include "libzfs_impl.h"
/*
* Intermediate structures used to gather configuration information.
*/
typedef struct config_entry {
uint64_t ce_txg;
nvlist_t *ce_config;
struct config_entry *ce_next;
} config_entry_t;
typedef struct vdev_entry {
uint64_t ve_guid;
config_entry_t *ve_configs;
struct vdev_entry *ve_next;
} vdev_entry_t;
typedef struct pool_entry {
uint64_t pe_guid;
vdev_entry_t *pe_vdevs;
struct pool_entry *pe_next;
} pool_entry_t;
typedef struct name_entry {
char *ne_name;
uint64_t ne_guid;
uint64_t ne_order;
uint64_t ne_num_labels;
struct name_entry *ne_next;
} name_entry_t;
typedef struct pool_list {
pool_entry_t *pools;
name_entry_t *names;
} pool_list_t;
static char *
get_devid(const char *path)
{
int fd;
ddi_devid_t devid;
char *minor, *ret;
if ((fd = open(path, O_RDONLY)) < 0)
return (NULL);
minor = NULL;
ret = NULL;
if (devid_get(fd, &devid) == 0) {
if (devid_get_minor_name(fd, &minor) == 0)
ret = devid_str_encode(devid, minor);
if (minor != NULL)
devid_str_free(minor);
devid_free(devid);
}
(void) close(fd);
return (ret);
}
/*
* Go through and fix up any path and/or devid information for the given vdev
* configuration.
*/
static int
fix_paths(nvlist_t *nv, name_entry_t *names)
{
nvlist_t **child;
uint_t c, children;
uint64_t guid;
name_entry_t *ne, *best;
char *path, *devid;
if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
&child, &children) == 0) {
for (c = 0; c < children; c++)
if (fix_paths(child[c], names) != 0)
return (-1);
return (0);
}
/*
* This is a leaf (file or disk) vdev. In either case, go through
* the name list and see if we find a matching guid. If so, replace
* the path and see if we can calculate a new devid.
*
* There may be multiple names associated with a particular guid, in
* which case we have overlapping partitions or multiple paths to the
* same disk. In this case we prefer to use the path name which
* matches the ZPOOL_CONFIG_PATH. If no matching entry is found we
* use the lowest order device which corresponds to the first match
* while traversing the ZPOOL_IMPORT_PATH search path.
*/
verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) == 0);
if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) != 0)
path = NULL;
best = NULL;
for (ne = names; ne != NULL; ne = ne->ne_next) {
if (ne->ne_guid == guid) {
if (path == NULL) {
best = ne;
break;
}
if ((strlen(path) == strlen(ne->ne_name)) &&
strncmp(path, ne->ne_name, strlen(path)) == 0) {
best = ne;
break;
}
if (best == NULL) {
best = ne;
continue;
}
/* Prefer paths with move vdev labels. */
if (ne->ne_num_labels > best->ne_num_labels) {
best = ne;
continue;
}
/* Prefer paths earlier in the search order. */
if (best->ne_num_labels == best->ne_num_labels &&
ne->ne_order < best->ne_order) {
best = ne;
continue;
}
}
}
if (best == NULL)
return (0);
if (nvlist_add_string(nv, ZPOOL_CONFIG_PATH, best->ne_name) != 0)
return (-1);
if ((devid = get_devid(best->ne_name)) == NULL) {
(void) nvlist_remove_all(nv, ZPOOL_CONFIG_DEVID);
} else {
if (nvlist_add_string(nv, ZPOOL_CONFIG_DEVID, devid) != 0) {
devid_str_free(devid);
return (-1);
}
devid_str_free(devid);
}
return (0);
}
/*
* Add the given configuration to the list of known devices.
*/
static int
add_config(libzfs_handle_t *hdl, pool_list_t *pl, const char *path,
int order, int num_labels, nvlist_t *config)
{
uint64_t pool_guid, vdev_guid, top_guid, txg, state;
pool_entry_t *pe;
vdev_entry_t *ve;
config_entry_t *ce;
name_entry_t *ne;
/*
* If this is a hot spare not currently in use or level 2 cache
* device, add it to the list of names to translate, but don't do
* anything else.
*/
if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE,
&state) == 0 &&
(state == POOL_STATE_SPARE || state == POOL_STATE_L2CACHE) &&
nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, &vdev_guid) == 0) {
if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL)
return (-1);
if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) {
free(ne);
return (-1);
}
ne->ne_guid = vdev_guid;
ne->ne_order = order;
ne->ne_num_labels = num_labels;
ne->ne_next = pl->names;
pl->names = ne;
return (0);
}
/*
* If we have a valid config but cannot read any of these fields, then
* it means we have a half-initialized label. In vdev_label_init()
* we write a label with txg == 0 so that we can identify the device
* in case the user refers to the same disk later on. If we fail to
* create the pool, we'll be left with a label in this state
* which should not be considered part of a valid pool.
*/
if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
&pool_guid) != 0 ||
nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID,
&vdev_guid) != 0 ||
nvlist_lookup_uint64(config, ZPOOL_CONFIG_TOP_GUID,
&top_guid) != 0 ||
nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
&txg) != 0 || txg == 0) {
nvlist_free(config);
return (0);
}
/*
* First, see if we know about this pool. If not, then add it to the
* list of known pools.
*/
for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
if (pe->pe_guid == pool_guid)
break;
}
if (pe == NULL) {
if ((pe = zfs_alloc(hdl, sizeof (pool_entry_t))) == NULL) {
nvlist_free(config);
return (-1);
}
pe->pe_guid = pool_guid;
pe->pe_next = pl->pools;
pl->pools = pe;
}
/*
* Second, see if we know about this toplevel vdev. Add it if its
* missing.
*/
for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
if (ve->ve_guid == top_guid)
break;
}
if (ve == NULL) {
if ((ve = zfs_alloc(hdl, sizeof (vdev_entry_t))) == NULL) {
nvlist_free(config);
return (-1);
}
ve->ve_guid = top_guid;
ve->ve_next = pe->pe_vdevs;
pe->pe_vdevs = ve;
}
/*
* Third, see if we have a config with a matching transaction group. If
* so, then we do nothing. Otherwise, add it to the list of known
* configs.
*/
for (ce = ve->ve_configs; ce != NULL; ce = ce->ce_next) {
if (ce->ce_txg == txg)
break;
}
if (ce == NULL) {
if ((ce = zfs_alloc(hdl, sizeof (config_entry_t))) == NULL) {
nvlist_free(config);
return (-1);
}
ce->ce_txg = txg;
ce->ce_config = config;
ce->ce_next = ve->ve_configs;
ve->ve_configs = ce;
} else {
nvlist_free(config);
}
/*
* At this point we've successfully added our config to the list of
* known configs. The last thing to do is add the vdev guid -> path
* mappings so that we can fix up the configuration as necessary before
* doing the import.
*/
if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL)
return (-1);
if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) {
free(ne);
return (-1);
}
ne->ne_guid = vdev_guid;
ne->ne_order = order;
ne->ne_num_labels = num_labels;
ne->ne_next = pl->names;
pl->names = ne;
return (0);
}
/*
* Returns true if the named pool matches the given GUID.
*/
static int
pool_active(libzfs_handle_t *hdl, const char *name, uint64_t guid,
boolean_t *isactive)
{
zpool_handle_t *zhp;
uint64_t theguid;
if (zpool_open_silent(hdl, name, &zhp) != 0)
return (-1);
if (zhp == NULL) {
*isactive = B_FALSE;
return (0);
}
verify(nvlist_lookup_uint64(zhp->zpool_config, ZPOOL_CONFIG_POOL_GUID,
&theguid) == 0);
zpool_close(zhp);
*isactive = (theguid == guid);
return (0);
}
static nvlist_t *
refresh_config(libzfs_handle_t *hdl, nvlist_t *config)
{
nvlist_t *nvl;
zfs_cmd_t zc = {"\0"};
int err;
if (zcmd_write_conf_nvlist(hdl, &zc, config) != 0)
return (NULL);
if (zcmd_alloc_dst_nvlist(hdl, &zc,
zc.zc_nvlist_conf_size * 2) != 0) {
zcmd_free_nvlists(&zc);
return (NULL);
}
while ((err = ioctl(hdl->libzfs_fd, ZFS_IOC_POOL_TRYIMPORT,
&zc)) != 0 && errno == ENOMEM) {
if (zcmd_expand_dst_nvlist(hdl, &zc) != 0) {
zcmd_free_nvlists(&zc);
return (NULL);
}
}
if (err) {
zcmd_free_nvlists(&zc);
return (NULL);
}
if (zcmd_read_dst_nvlist(hdl, &zc, &nvl) != 0) {
zcmd_free_nvlists(&zc);
return (NULL);
}
zcmd_free_nvlists(&zc);
return (nvl);
}
/*
* Determine if the vdev id is a hole in the namespace.
*/
boolean_t
vdev_is_hole(uint64_t *hole_array, uint_t holes, uint_t id)
{
int c;
for (c = 0; c < holes; c++) {
/* Top-level is a hole */
if (hole_array[c] == id)
return (B_TRUE);
}
return (B_FALSE);
}
/*
* Convert our list of pools into the definitive set of configurations. We
* start by picking the best config for each toplevel vdev. Once that's done,
* we assemble the toplevel vdevs into a full config for the pool. We make a
* pass to fix up any incorrect paths, and then add it to the main list to
* return to the user.
*/
static nvlist_t *
get_configs(libzfs_handle_t *hdl, pool_list_t *pl, boolean_t active_ok)
{
pool_entry_t *pe;
vdev_entry_t *ve;
config_entry_t *ce;
nvlist_t *ret = NULL, *config = NULL, *tmp = NULL, *nvtop, *nvroot;
nvlist_t **spares, **l2cache;
uint_t i, nspares, nl2cache;
boolean_t config_seen;
uint64_t best_txg;
char *name, *hostname = NULL;
uint64_t guid;
uint_t children = 0;
nvlist_t **child = NULL;
uint_t holes;
uint64_t *hole_array, max_id;
uint_t c;
boolean_t isactive;
uint64_t hostid;
nvlist_t *nvl;
boolean_t valid_top_config = B_FALSE;
if (nvlist_alloc(&ret, 0, 0) != 0)
goto nomem;
for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
uint64_t id, max_txg = 0;
if (nvlist_alloc(&config, NV_UNIQUE_NAME, 0) != 0)
goto nomem;
config_seen = B_FALSE;
/*
* Iterate over all toplevel vdevs. Grab the pool configuration
* from the first one we find, and then go through the rest and
* add them as necessary to the 'vdevs' member of the config.
*/
for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
/*
* Determine the best configuration for this vdev by
* selecting the config with the latest transaction
* group.
*/
best_txg = 0;
for (ce = ve->ve_configs; ce != NULL;
ce = ce->ce_next) {
if (ce->ce_txg > best_txg) {
tmp = ce->ce_config;
best_txg = ce->ce_txg;
}
}
/*
* We rely on the fact that the max txg for the
* pool will contain the most up-to-date information
* about the valid top-levels in the vdev namespace.
*/
if (best_txg > max_txg) {
(void) nvlist_remove(config,
ZPOOL_CONFIG_VDEV_CHILDREN,
DATA_TYPE_UINT64);
(void) nvlist_remove(config,
ZPOOL_CONFIG_HOLE_ARRAY,
DATA_TYPE_UINT64_ARRAY);
max_txg = best_txg;
hole_array = NULL;
holes = 0;
max_id = 0;
valid_top_config = B_FALSE;
if (nvlist_lookup_uint64(tmp,
ZPOOL_CONFIG_VDEV_CHILDREN, &max_id) == 0) {
verify(nvlist_add_uint64(config,
ZPOOL_CONFIG_VDEV_CHILDREN,
max_id) == 0);
valid_top_config = B_TRUE;
}
if (nvlist_lookup_uint64_array(tmp,
ZPOOL_CONFIG_HOLE_ARRAY, &hole_array,
&holes) == 0) {
verify(nvlist_add_uint64_array(config,
ZPOOL_CONFIG_HOLE_ARRAY,
hole_array, holes) == 0);
}
}
if (!config_seen) {
/*
* Copy the relevant pieces of data to the pool
* configuration:
*
* version
* pool guid
* name
* comment (if available)
* pool state
* hostid (if available)
* hostname (if available)
*/
uint64_t state, version;
char *comment = NULL;
version = fnvlist_lookup_uint64(tmp,
ZPOOL_CONFIG_VERSION);
fnvlist_add_uint64(config,
ZPOOL_CONFIG_VERSION, version);
guid = fnvlist_lookup_uint64(tmp,
ZPOOL_CONFIG_POOL_GUID);
fnvlist_add_uint64(config,
ZPOOL_CONFIG_POOL_GUID, guid);
name = fnvlist_lookup_string(tmp,
ZPOOL_CONFIG_POOL_NAME);
fnvlist_add_string(config,
ZPOOL_CONFIG_POOL_NAME, name);
if (nvlist_lookup_string(tmp,
ZPOOL_CONFIG_COMMENT, &comment) == 0)
fnvlist_add_string(config,
ZPOOL_CONFIG_COMMENT, comment);
state = fnvlist_lookup_uint64(tmp,
ZPOOL_CONFIG_POOL_STATE);
fnvlist_add_uint64(config,
ZPOOL_CONFIG_POOL_STATE, state);
hostid = 0;
if (nvlist_lookup_uint64(tmp,
ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
fnvlist_add_uint64(config,
ZPOOL_CONFIG_HOSTID, hostid);
hostname = fnvlist_lookup_string(tmp,
ZPOOL_CONFIG_HOSTNAME);
fnvlist_add_string(config,
ZPOOL_CONFIG_HOSTNAME, hostname);
}
config_seen = B_TRUE;
}
/*
* Add this top-level vdev to the child array.
*/
verify(nvlist_lookup_nvlist(tmp,
ZPOOL_CONFIG_VDEV_TREE, &nvtop) == 0);
verify(nvlist_lookup_uint64(nvtop, ZPOOL_CONFIG_ID,
&id) == 0);
if (id >= children) {
nvlist_t **newchild;
newchild = zfs_alloc(hdl, (id + 1) *
sizeof (nvlist_t *));
if (newchild == NULL)
goto nomem;
for (c = 0; c < children; c++)
newchild[c] = child[c];
free(child);
child = newchild;
children = id + 1;
}
if (nvlist_dup(nvtop, &child[id], 0) != 0)
goto nomem;
}
/*
* If we have information about all the top-levels then
* clean up the nvlist which we've constructed. This
* means removing any extraneous devices that are
* beyond the valid range or adding devices to the end
* of our array which appear to be missing.
*/
if (valid_top_config) {
if (max_id < children) {
for (c = max_id; c < children; c++)
nvlist_free(child[c]);
children = max_id;
} else if (max_id > children) {
nvlist_t **newchild;
newchild = zfs_alloc(hdl, (max_id) *
sizeof (nvlist_t *));
if (newchild == NULL)
goto nomem;
for (c = 0; c < children; c++)
newchild[c] = child[c];
free(child);
child = newchild;
children = max_id;
}
}
verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
&guid) == 0);
/*
* The vdev namespace may contain holes as a result of
* device removal. We must add them back into the vdev
* tree before we process any missing devices.
*/
if (holes > 0) {
ASSERT(valid_top_config);
for (c = 0; c < children; c++) {
nvlist_t *holey;
if (child[c] != NULL ||
!vdev_is_hole(hole_array, holes, c))
continue;
if (nvlist_alloc(&holey, NV_UNIQUE_NAME,
0) != 0)
goto nomem;
/*
* Holes in the namespace are treated as
* "hole" top-level vdevs and have a
* special flag set on them.
*/
if (nvlist_add_string(holey,
ZPOOL_CONFIG_TYPE,
VDEV_TYPE_HOLE) != 0 ||
nvlist_add_uint64(holey,
ZPOOL_CONFIG_ID, c) != 0 ||
nvlist_add_uint64(holey,
ZPOOL_CONFIG_GUID, 0ULL) != 0) {
nvlist_free(holey);
goto nomem;
}
child[c] = holey;
}
}
/*
* Look for any missing top-level vdevs. If this is the case,
* create a faked up 'missing' vdev as a placeholder. We cannot
* simply compress the child array, because the kernel performs
* certain checks to make sure the vdev IDs match their location
* in the configuration.
*/
for (c = 0; c < children; c++) {
if (child[c] == NULL) {
nvlist_t *missing;
if (nvlist_alloc(&missing, NV_UNIQUE_NAME,
0) != 0)
goto nomem;
if (nvlist_add_string(missing,
ZPOOL_CONFIG_TYPE,
VDEV_TYPE_MISSING) != 0 ||
nvlist_add_uint64(missing,
ZPOOL_CONFIG_ID, c) != 0 ||
nvlist_add_uint64(missing,
ZPOOL_CONFIG_GUID, 0ULL) != 0) {
nvlist_free(missing);
goto nomem;
}
child[c] = missing;
}
}
/*
* Put all of this pool's top-level vdevs into a root vdev.
*/
if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0)
goto nomem;
if (nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
VDEV_TYPE_ROOT) != 0 ||
nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) != 0 ||
nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, guid) != 0 ||
nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
child, children) != 0) {
nvlist_free(nvroot);
goto nomem;
}
for (c = 0; c < children; c++)
nvlist_free(child[c]);
free(child);
children = 0;
child = NULL;
/*
* Go through and fix up any paths and/or devids based on our
* known list of vdev GUID -> path mappings.
*/
if (fix_paths(nvroot, pl->names) != 0) {
nvlist_free(nvroot);
goto nomem;
}
/*
* Add the root vdev to this pool's configuration.
*/
if (nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
nvroot) != 0) {
nvlist_free(nvroot);
goto nomem;
}
nvlist_free(nvroot);
/*
* zdb uses this path to report on active pools that were
* imported or created using -R.
*/
if (active_ok)
goto add_pool;
/*
* Determine if this pool is currently active, in which case we
* can't actually import it.
*/
verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
&name) == 0);
verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
&guid) == 0);
if (pool_active(hdl, name, guid, &isactive) != 0)
goto error;
if (isactive) {
nvlist_free(config);
config = NULL;
continue;
}
if ((nvl = refresh_config(hdl, config)) == NULL) {
nvlist_free(config);
config = NULL;
continue;
}
nvlist_free(config);
config = nvl;
/*
* Go through and update the paths for spares, now that we have
* them.
*/
verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
&nvroot) == 0);
if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
&spares, &nspares) == 0) {
for (i = 0; i < nspares; i++) {
if (fix_paths(spares[i], pl->names) != 0)
goto nomem;
}
}
/*
* Update the paths for l2cache devices.
*/
if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
&l2cache, &nl2cache) == 0) {
for (i = 0; i < nl2cache; i++) {
if (fix_paths(l2cache[i], pl->names) != 0)
goto nomem;
}
}
/*
* Restore the original information read from the actual label.
*/
(void) nvlist_remove(config, ZPOOL_CONFIG_HOSTID,
DATA_TYPE_UINT64);
(void) nvlist_remove(config, ZPOOL_CONFIG_HOSTNAME,
DATA_TYPE_STRING);
if (hostid != 0) {
verify(nvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID,
hostid) == 0);
verify(nvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME,
hostname) == 0);
}
add_pool:
/*
* Add this pool to the list of configs.
*/
verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
&name) == 0);
if (nvlist_add_nvlist(ret, name, config) != 0)
goto nomem;
nvlist_free(config);
config = NULL;
}
return (ret);
nomem:
(void) no_memory(hdl);
error:
nvlist_free(config);
nvlist_free(ret);
for (c = 0; c < children; c++)
nvlist_free(child[c]);
free(child);
return (NULL);
}
/*
* Return the offset of the given label.
*/
static uint64_t
label_offset(uint64_t size, int l)
{
ASSERT(P2PHASE_TYPED(size, sizeof (vdev_label_t), uint64_t) == 0);
return (l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
0 : size - VDEV_LABELS * sizeof (vdev_label_t)));
}
/*
* Given a file descriptor, read the label information and return an nvlist
* describing the configuration, if there is one. The number of valid
* labels found will be returned in num_labels when non-NULL.
*/
int
zpool_read_label(int fd, nvlist_t **config, int *num_labels)
{
struct stat64 statbuf;
int l, count = 0;
vdev_label_t *label;
nvlist_t *expected_config = NULL;
uint64_t expected_guid = 0, size;
*config = NULL;
if (fstat64_blk(fd, &statbuf) == -1)
return (0);
size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t);
if ((label = malloc(sizeof (vdev_label_t))) == NULL)
return (-1);
for (l = 0; l < VDEV_LABELS; l++) {
uint64_t state, guid, txg;
if (pread64(fd, label, sizeof (vdev_label_t),
label_offset(size, l)) != sizeof (vdev_label_t))
continue;
if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist,
sizeof (label->vl_vdev_phys.vp_nvlist), config, 0) != 0)
continue;
if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_GUID,
&guid) != 0 || guid == 0) {
nvlist_free(*config);
continue;
}
if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE,
&state) != 0 || state > POOL_STATE_L2CACHE) {
nvlist_free(*config);
continue;
}
if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
(nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG,
&txg) != 0 || txg == 0)) {
nvlist_free(*config);
continue;
}
if (expected_guid) {
if (expected_guid == guid)
count++;
nvlist_free(*config);
} else {
expected_config = *config;
expected_guid = guid;
count++;
}
}
if (num_labels != NULL)
*num_labels = count;
free(label);
*config = expected_config;
return (0);
}
typedef struct rdsk_node {
char *rn_name;
int rn_num_labels;
int rn_dfd;
libzfs_handle_t *rn_hdl;
nvlist_t *rn_config;
avl_tree_t *rn_avl;
avl_node_t rn_node;
boolean_t rn_nozpool;
} rdsk_node_t;
static int
slice_cache_compare(const void *arg1, const void *arg2)
{
const char *nm1 = ((rdsk_node_t *)arg1)->rn_name;
const char *nm2 = ((rdsk_node_t *)arg2)->rn_name;
char *nm1slice, *nm2slice;
int rv;
/*
* partitions one and three (slices zero and two) are the most
* likely to provide results, so put those first
*/
nm1slice = strstr(nm1, "part1");
nm2slice = strstr(nm2, "part1");
if (nm1slice && !nm2slice) {
return (-1);
}
if (!nm1slice && nm2slice) {
return (1);
}
nm1slice = strstr(nm1, "part3");
nm2slice = strstr(nm2, "part3");
if (nm1slice && !nm2slice) {
return (-1);
}
if (!nm1slice && nm2slice) {
return (1);
}
rv = strcmp(nm1, nm2);
if (rv == 0)
return (0);
return (rv > 0 ? 1 : -1);
}
#ifndef __linux__
static void
check_one_slice(avl_tree_t *r, char *diskname, uint_t partno,
diskaddr_t size, uint_t blksz)
{
rdsk_node_t tmpnode;
rdsk_node_t *node;
char sname[MAXNAMELEN];
tmpnode.rn_name = &sname[0];
(void) snprintf(tmpnode.rn_name, MAXNAMELEN, "%s%u",
diskname, partno);
/* too small to contain a zpool? */
if ((size < (SPA_MINDEVSIZE / blksz)) &&
(node = avl_find(r, &tmpnode, NULL)))
node->rn_nozpool = B_TRUE;
}
#endif
static void
nozpool_all_slices(avl_tree_t *r, const char *sname)
{
#ifndef __linux__
char diskname[MAXNAMELEN];
char *ptr;
int i;
(void) strncpy(diskname, sname, MAXNAMELEN);
if (((ptr = strrchr(diskname, 's')) == NULL) &&
((ptr = strrchr(diskname, 'p')) == NULL))
return;
ptr[0] = 's';
ptr[1] = '\0';
for (i = 0; i < NDKMAP; i++)
check_one_slice(r, diskname, i, 0, 1);
ptr[0] = 'p';
for (i = 0; i <= FD_NUMPART; i++)
check_one_slice(r, diskname, i, 0, 1);
#endif
}
static void
check_slices(avl_tree_t *r, int fd, const char *sname)
{
#ifndef __linux__
struct extvtoc vtoc;
struct dk_gpt *gpt;
char diskname[MAXNAMELEN];
char *ptr;
int i;
(void) strncpy(diskname, sname, MAXNAMELEN);
if ((ptr = strrchr(diskname, 's')) == NULL || !isdigit(ptr[1]))
return;
ptr[1] = '\0';
if (read_extvtoc(fd, &vtoc) >= 0) {
for (i = 0; i < NDKMAP; i++)
check_one_slice(r, diskname, i,
vtoc.v_part[i].p_size, vtoc.v_sectorsz);
} else if (efi_alloc_and_read(fd, &gpt) >= 0) {
/*
* on x86 we'll still have leftover links that point
* to slices s[9-15], so use NDKMAP instead
*/
for (i = 0; i < NDKMAP; i++)
check_one_slice(r, diskname, i,
gpt->efi_parts[i].p_size, gpt->efi_lbasize);
/* nodes p[1-4] are never used with EFI labels */
ptr[0] = 'p';
for (i = 1; i <= FD_NUMPART; i++)
check_one_slice(r, diskname, i, 0, 1);
efi_free(gpt);
}
#endif
}
static void
zpool_open_func(void *arg)
{
rdsk_node_t *rn = arg;
struct stat64 statbuf;
nvlist_t *config;
int num_labels;
int fd;
if (rn->rn_nozpool)
return;
#ifdef __linux__
/*
* Skip devices with well known prefixes there can be side effects
* when opening devices which need to be avoided.
*
* core - Symlink to /proc/kcore
* fd* - Floppy interface.
* fuse - Fuse control device.
* hpet - High Precision Event Timer
* lp* - Printer interface.
* parport* - Parallel port interface.
* ppp - Generic PPP driver.
* random - Random device
* rtc - Real Time Clock
* tty* - Generic serial interface.
* urandom - Random device.
* usbmon* - USB IO monitor.
* vcs* - Virtual console memory.
* watchdog - Watchdog must be closed in a special way.
*/
if ((strncmp(rn->rn_name, "core", 4) == 0) ||
(strncmp(rn->rn_name, "fd", 2) == 0) ||
(strncmp(rn->rn_name, "fuse", 4) == 0) ||
(strncmp(rn->rn_name, "hpet", 4) == 0) ||
(strncmp(rn->rn_name, "lp", 2) == 0) ||
(strncmp(rn->rn_name, "parport", 7) == 0) ||
(strncmp(rn->rn_name, "ppp", 3) == 0) ||
(strncmp(rn->rn_name, "random", 6) == 0) ||
(strncmp(rn->rn_name, "rtc", 3) == 0) ||
(strncmp(rn->rn_name, "tty", 3) == 0) ||
(strncmp(rn->rn_name, "urandom", 7) == 0) ||
(strncmp(rn->rn_name, "usbmon", 6) == 0) ||
(strncmp(rn->rn_name, "vcs", 3) == 0) ||
(strncmp(rn->rn_name, "watchdog", 8) == 0))
return;
/*
* Ignore failed stats. We only want regular files and block devices.
*/
if (fstatat64(rn->rn_dfd, rn->rn_name, &statbuf, 0) != 0 ||
(!S_ISREG(statbuf.st_mode) && !S_ISBLK(statbuf.st_mode)))
return;
if ((fd = openat64(rn->rn_dfd, rn->rn_name, O_RDONLY)) < 0) {
/* symlink to a device that's no longer there */
if (errno == ENOENT)
nozpool_all_slices(rn->rn_avl, rn->rn_name);
return;
}
#else
if ((fd = openat64(rn->rn_dfd, rn->rn_name, O_RDONLY)) < 0) {
/* symlink to a device that's no longer there */
if (errno == ENOENT)
nozpool_all_slices(rn->rn_avl, rn->rn_name);
return;
}
/*
* Ignore failed stats. We only want regular
* files, character devs and block devs.
*/
if (fstat64(fd, &statbuf) != 0 ||
(!S_ISREG(statbuf.st_mode) &&
!S_ISCHR(statbuf.st_mode) &&
!S_ISBLK(statbuf.st_mode))) {
(void) close(fd);
return;
}
#endif
/* this file is too small to hold a zpool */
if (S_ISREG(statbuf.st_mode) &&
statbuf.st_size < SPA_MINDEVSIZE) {
(void) close(fd);
return;
} else if (!S_ISREG(statbuf.st_mode)) {
/*
* Try to read the disk label first so we don't have to
* open a bunch of minor nodes that can't have a zpool.
*/
check_slices(rn->rn_avl, fd, rn->rn_name);
}
if ((zpool_read_label(fd, &config, &num_labels)) != 0) {
(void) close(fd);
(void) no_memory(rn->rn_hdl);
return;
}
if (num_labels == 0) {
(void) close(fd);
nvlist_free(config);
return;
}
(void) close(fd);
rn->rn_config = config;
rn->rn_num_labels = num_labels;
}
/*
* Given a file descriptor, clear (zero) the label information. This function
* is used in the appliance stack as part of the ZFS sysevent module and
* to implement the "zpool labelclear" command.
*/
int
zpool_clear_label(int fd)
{
struct stat64 statbuf;
int l;
vdev_label_t *label;
uint64_t size;
if (fstat64_blk(fd, &statbuf) == -1)
return (0);
size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t);
if ((label = calloc(sizeof (vdev_label_t), 1)) == NULL)
return (-1);
for (l = 0; l < VDEV_LABELS; l++) {
if (pwrite64(fd, label, sizeof (vdev_label_t),
label_offset(size, l)) != sizeof (vdev_label_t)) {
free(label);
return (-1);
}
}
free(label);
return (0);
}
/*
* Use libblkid to quickly search for zfs devices
*/
static int
zpool_find_import_blkid(libzfs_handle_t *hdl, pool_list_t *pools)
{
blkid_cache cache;
blkid_dev_iterate iter;
blkid_dev dev;
const char *devname;
nvlist_t *config;
int fd, err, num_labels;
err = blkid_get_cache(&cache, NULL);
if (err != 0) {
(void) zfs_error_fmt(hdl, EZFS_BADCACHE,
dgettext(TEXT_DOMAIN, "blkid_get_cache() %d"), err);
goto err_blkid1;
}
err = blkid_probe_all(cache);
if (err != 0) {
(void) zfs_error_fmt(hdl, EZFS_BADCACHE,
dgettext(TEXT_DOMAIN, "blkid_probe_all() %d"), err);
goto err_blkid2;
}
iter = blkid_dev_iterate_begin(cache);
if (iter == NULL) {
(void) zfs_error_fmt(hdl, EZFS_BADCACHE,
dgettext(TEXT_DOMAIN, "blkid_dev_iterate_begin()"));
goto err_blkid2;
}
err = blkid_dev_set_search(iter, "TYPE", "zfs_member");
if (err != 0) {
(void) zfs_error_fmt(hdl, EZFS_BADCACHE,
dgettext(TEXT_DOMAIN, "blkid_dev_set_search() %d"), err);
goto err_blkid3;
}
while (blkid_dev_next(iter, &dev) == 0) {
devname = blkid_dev_devname(dev);
if ((fd = open64(devname, O_RDONLY)) < 0)
continue;
err = zpool_read_label(fd, &config, &num_labels);
(void) close(fd);
if (err != 0) {
(void) no_memory(hdl);
goto err_blkid3;
}
if (config != NULL) {
err = add_config(hdl, pools, devname, 0,
num_labels, config);
if (err != 0)
goto err_blkid3;
}
}
err_blkid3:
blkid_dev_iterate_end(iter);
err_blkid2:
blkid_put_cache(cache);
err_blkid1:
return (err);
}
char *
zpool_default_import_path[DEFAULT_IMPORT_PATH_SIZE] = {
"/dev/disk/by-vdev", /* Custom rules, use first if they exist */
"/dev/mapper", /* Use multipath devices before components */
"/dev/disk/by-partlabel", /* Single unique entry set by user */
"/dev/disk/by-partuuid", /* Generated partition uuid */
"/dev/disk/by-label", /* Custom persistent labels */
"/dev/disk/by-uuid", /* Single unique entry and persistent */
"/dev/disk/by-id", /* May be multiple entries and persistent */
"/dev/disk/by-path", /* Encodes physical location and persistent */
"/dev" /* UNSAFE device names will change */
};
/*
* Given a list of directories to search, find all pools stored on disk. This
* includes partial pools which are not available to import. If no args are
* given (argc is 0), then the default directory (/dev/dsk) is searched.
* poolname or guid (but not both) are provided by the caller when trying
* to import a specific pool.
*/
static nvlist_t *
zpool_find_import_impl(libzfs_handle_t *hdl, importargs_t *iarg)
{
int i, dirs = iarg->paths;
struct dirent64 *dp;
char path[MAXPATHLEN];
char *end, **dir = iarg->path;
size_t pathleft;
nvlist_t *ret = NULL;
pool_list_t pools = { 0 };
pool_entry_t *pe, *penext;
vdev_entry_t *ve, *venext;
config_entry_t *ce, *cenext;
name_entry_t *ne, *nenext;
avl_tree_t slice_cache;
rdsk_node_t *slice;
void *cookie;
verify(iarg->poolname == NULL || iarg->guid == 0);
/*
* Prefer to locate pool member vdevs using libblkid. Only fall
* back to legacy directory scanning when explicitly requested or
* if an error is encountered when consulted the libblkid cache.
*/
if (dirs == 0) {
if (!iarg->scan && (zpool_find_import_blkid(hdl, &pools) == 0))
goto skip_scanning;
dir = zpool_default_import_path;
dirs = DEFAULT_IMPORT_PATH_SIZE;
}
/*
* Go through and read the label configuration information from every
* possible device, organizing the information according to pool GUID
* and toplevel GUID.
*/
for (i = 0; i < dirs; i++) {
taskq_t *t;
char *rdsk;
int dfd;
boolean_t config_failed = B_FALSE;
DIR *dirp;
/* use realpath to normalize the path */
if (realpath(dir[i], path) == 0) {
/* it is safe to skip missing search paths */
if (errno == ENOENT)
continue;
zfs_error_aux(hdl, strerror(errno));
(void) zfs_error_fmt(hdl, EZFS_BADPATH,
dgettext(TEXT_DOMAIN, "cannot open '%s'"), dir[i]);
goto error;
}
end = &path[strlen(path)];
*end++ = '/';
*end = 0;
pathleft = &path[sizeof (path)] - end;
/*
* Using raw devices instead of block devices when we're
* reading the labels skips a bunch of slow operations during
* close(2) processing, so we replace /dev/dsk with /dev/rdsk.
*/
if (strcmp(path, "/dev/dsk/") == 0)
rdsk = "/dev/rdsk/";
else
rdsk = path;
if ((dfd = open64(rdsk, O_RDONLY)) < 0 ||
(dirp = fdopendir(dfd)) == NULL) {
if (dfd >= 0)
(void) close(dfd);
zfs_error_aux(hdl, strerror(errno));
(void) zfs_error_fmt(hdl, EZFS_BADPATH,
dgettext(TEXT_DOMAIN, "cannot open '%s'"),
rdsk);
goto error;
}
avl_create(&slice_cache, slice_cache_compare,
sizeof (rdsk_node_t), offsetof(rdsk_node_t, rn_node));
/*
* This is not MT-safe, but we have no MT consumers of libzfs
*/
while ((dp = readdir64(dirp)) != NULL) {
const char *name = dp->d_name;
if (name[0] == '.' &&
(name[1] == 0 || (name[1] == '.' && name[2] == 0)))
continue;
slice = zfs_alloc(hdl, sizeof (rdsk_node_t));
slice->rn_name = zfs_strdup(hdl, name);
slice->rn_avl = &slice_cache;
slice->rn_dfd = dfd;
slice->rn_hdl = hdl;
slice->rn_nozpool = B_FALSE;
avl_add(&slice_cache, slice);
}
/*
* create a thread pool to do all of this in parallel;
* rn_nozpool is not protected, so this is racy in that
* multiple tasks could decide that the same slice can
* not hold a zpool, which is benign. Also choose
* double the number of processors; we hold a lot of
* locks in the kernel, so going beyond this doesn't
* buy us much.
*/
t = taskq_create("z_import", 2 * boot_ncpus, defclsyspri,
2 * boot_ncpus, INT_MAX, TASKQ_PREPOPULATE);
for (slice = avl_first(&slice_cache); slice;
(slice = avl_walk(&slice_cache, slice,
AVL_AFTER)))
(void) taskq_dispatch(t, zpool_open_func, slice,
TQ_SLEEP);
taskq_wait(t);
taskq_destroy(t);
cookie = NULL;
while ((slice = avl_destroy_nodes(&slice_cache,
&cookie)) != NULL) {
if (slice->rn_config != NULL && !config_failed) {
nvlist_t *config = slice->rn_config;
boolean_t matched = B_TRUE;
if (iarg->poolname != NULL) {
char *pname;
matched = nvlist_lookup_string(config,
ZPOOL_CONFIG_POOL_NAME,
&pname) == 0 &&
strcmp(iarg->poolname, pname) == 0;
} else if (iarg->guid != 0) {
uint64_t this_guid;
matched = nvlist_lookup_uint64(config,
ZPOOL_CONFIG_POOL_GUID,
&this_guid) == 0 &&
iarg->guid == this_guid;
}
if (!matched) {
nvlist_free(config);
} else {
/*
* use the non-raw path for the config
*/
(void) strlcpy(end, slice->rn_name,
pathleft);
if (add_config(hdl, &pools, path, i+1,
slice->rn_num_labels, config) != 0)
config_failed = B_TRUE;
}
}
free(slice->rn_name);
free(slice);
}
avl_destroy(&slice_cache);
(void) closedir(dirp);
if (config_failed)
goto error;
}
skip_scanning:
ret = get_configs(hdl, &pools, iarg->can_be_active);
error:
for (pe = pools.pools; pe != NULL; pe = penext) {
penext = pe->pe_next;
for (ve = pe->pe_vdevs; ve != NULL; ve = venext) {
venext = ve->ve_next;
for (ce = ve->ve_configs; ce != NULL; ce = cenext) {
cenext = ce->ce_next;
if (ce->ce_config)
nvlist_free(ce->ce_config);
free(ce);
}
free(ve);
}
free(pe);
}
for (ne = pools.names; ne != NULL; ne = nenext) {
nenext = ne->ne_next;
free(ne->ne_name);
free(ne);
}
return (ret);
}
nvlist_t *
zpool_find_import(libzfs_handle_t *hdl, int argc, char **argv)
{
importargs_t iarg = { 0 };
iarg.paths = argc;
iarg.path = argv;
return (zpool_find_import_impl(hdl, &iarg));
}
/*
* Given a cache file, return the contents as a list of importable pools.
* poolname or guid (but not both) are provided by the caller when trying
* to import a specific pool.
*/
nvlist_t *
zpool_find_import_cached(libzfs_handle_t *hdl, const char *cachefile,
char *poolname, uint64_t guid)
{
char *buf;
int fd;
struct stat64 statbuf;
nvlist_t *raw, *src, *dst;
nvlist_t *pools;
nvpair_t *elem;
char *name;
uint64_t this_guid;
boolean_t active;
verify(poolname == NULL || guid == 0);
if ((fd = open(cachefile, O_RDONLY)) < 0) {
zfs_error_aux(hdl, "%s", strerror(errno));
(void) zfs_error(hdl, EZFS_BADCACHE,
dgettext(TEXT_DOMAIN, "failed to open cache file"));
return (NULL);
}
if (fstat64(fd, &statbuf) != 0) {
zfs_error_aux(hdl, "%s", strerror(errno));
(void) close(fd);
(void) zfs_error(hdl, EZFS_BADCACHE,
dgettext(TEXT_DOMAIN, "failed to get size of cache file"));
return (NULL);
}
if ((buf = zfs_alloc(hdl, statbuf.st_size)) == NULL) {
(void) close(fd);
return (NULL);
}
if (read(fd, buf, statbuf.st_size) != statbuf.st_size) {
(void) close(fd);
free(buf);
(void) zfs_error(hdl, EZFS_BADCACHE,
dgettext(TEXT_DOMAIN,
"failed to read cache file contents"));
return (NULL);
}
(void) close(fd);
if (nvlist_unpack(buf, statbuf.st_size, &raw, 0) != 0) {
free(buf);
(void) zfs_error(hdl, EZFS_BADCACHE,
dgettext(TEXT_DOMAIN,
"invalid or corrupt cache file contents"));
return (NULL);
}
free(buf);
/*
* Go through and get the current state of the pools and refresh their
* state.
*/
if (nvlist_alloc(&pools, 0, 0) != 0) {
(void) no_memory(hdl);
nvlist_free(raw);
return (NULL);
}
elem = NULL;
while ((elem = nvlist_next_nvpair(raw, elem)) != NULL) {
src = fnvpair_value_nvlist(elem);
name = fnvlist_lookup_string(src, ZPOOL_CONFIG_POOL_NAME);
if (poolname != NULL && strcmp(poolname, name) != 0)
continue;
this_guid = fnvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID);
if (guid != 0 && guid != this_guid)
continue;
if (pool_active(hdl, name, this_guid, &active) != 0) {
nvlist_free(raw);
nvlist_free(pools);
return (NULL);
}
if (active)
continue;
if ((dst = refresh_config(hdl, src)) == NULL) {
nvlist_free(raw);
nvlist_free(pools);
return (NULL);
}
if (nvlist_add_nvlist(pools, nvpair_name(elem), dst) != 0) {
(void) no_memory(hdl);
nvlist_free(dst);
nvlist_free(raw);
nvlist_free(pools);
return (NULL);
}
nvlist_free(dst);
}
nvlist_free(raw);
return (pools);
}
static int
name_or_guid_exists(zpool_handle_t *zhp, void *data)
{
importargs_t *import = data;
int found = 0;
if (import->poolname != NULL) {
char *pool_name;
verify(nvlist_lookup_string(zhp->zpool_config,
ZPOOL_CONFIG_POOL_NAME, &pool_name) == 0);
if (strcmp(pool_name, import->poolname) == 0)
found = 1;
} else {
uint64_t pool_guid;
verify(nvlist_lookup_uint64(zhp->zpool_config,
ZPOOL_CONFIG_POOL_GUID, &pool_guid) == 0);
if (pool_guid == import->guid)
found = 1;
}
zpool_close(zhp);
return (found);
}
nvlist_t *
zpool_search_import(libzfs_handle_t *hdl, importargs_t *import)
{
verify(import->poolname == NULL || import->guid == 0);
if (import->unique)
import->exists = zpool_iter(hdl, name_or_guid_exists, import);
if (import->cachefile != NULL)
return (zpool_find_import_cached(hdl, import->cachefile,
import->poolname, import->guid));
return (zpool_find_import_impl(hdl, import));
}
boolean_t
find_guid(nvlist_t *nv, uint64_t guid)
{
uint64_t tmp;
nvlist_t **child;
uint_t c, children;
verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &tmp) == 0);
if (tmp == guid)
return (B_TRUE);
if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
&child, &children) == 0) {
for (c = 0; c < children; c++)
if (find_guid(child[c], guid))
return (B_TRUE);
}
return (B_FALSE);
}
typedef struct aux_cbdata {
const char *cb_type;
uint64_t cb_guid;
zpool_handle_t *cb_zhp;
} aux_cbdata_t;
static int
find_aux(zpool_handle_t *zhp, void *data)
{
aux_cbdata_t *cbp = data;
nvlist_t **list;
uint_t i, count;
uint64_t guid;
nvlist_t *nvroot;
verify(nvlist_lookup_nvlist(zhp->zpool_config, ZPOOL_CONFIG_VDEV_TREE,
&nvroot) == 0);
if (nvlist_lookup_nvlist_array(nvroot, cbp->cb_type,
&list, &count) == 0) {
for (i = 0; i < count; i++) {
verify(nvlist_lookup_uint64(list[i],
ZPOOL_CONFIG_GUID, &guid) == 0);
if (guid == cbp->cb_guid) {
cbp->cb_zhp = zhp;
return (1);
}
}
}
zpool_close(zhp);
return (0);
}
/*
* Determines if the pool is in use. If so, it returns true and the state of
* the pool as well as the name of the pool. Both strings are allocated and
* must be freed by the caller.
*/
int
zpool_in_use(libzfs_handle_t *hdl, int fd, pool_state_t *state, char **namestr,
boolean_t *inuse)
{
nvlist_t *config;
char *name;
boolean_t ret;
uint64_t guid, vdev_guid;
zpool_handle_t *zhp;
nvlist_t *pool_config;
uint64_t stateval, isspare;
aux_cbdata_t cb = { 0 };
boolean_t isactive;
*inuse = B_FALSE;
if (zpool_read_label(fd, &config, NULL) != 0) {
(void) no_memory(hdl);
return (-1);
}
if (config == NULL)
return (0);
verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE,
&stateval) == 0);
verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID,
&vdev_guid) == 0);
if (stateval != POOL_STATE_SPARE && stateval != POOL_STATE_L2CACHE) {
verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
&name) == 0);
verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
&guid) == 0);
}
switch (stateval) {
case POOL_STATE_EXPORTED:
/*
* A pool with an exported state may in fact be imported
* read-only, so check the in-core state to see if it's
* active and imported read-only. If it is, set
* its state to active.
*/
if (pool_active(hdl, name, guid, &isactive) == 0 && isactive &&
(zhp = zpool_open_canfail(hdl, name)) != NULL) {
if (zpool_get_prop_int(zhp, ZPOOL_PROP_READONLY, NULL))
stateval = POOL_STATE_ACTIVE;
/*
* All we needed the zpool handle for is the
* readonly prop check.
*/
zpool_close(zhp);
}
ret = B_TRUE;
break;
case POOL_STATE_ACTIVE:
/*
* For an active pool, we have to determine if it's really part
* of a currently active pool (in which case the pool will exist
* and the guid will be the same), or whether it's part of an
* active pool that was disconnected without being explicitly
* exported.
*/
if (pool_active(hdl, name, guid, &isactive) != 0) {
nvlist_free(config);
return (-1);
}
if (isactive) {
/*
* Because the device may have been removed while
* offlined, we only report it as active if the vdev is
* still present in the config. Otherwise, pretend like
* it's not in use.
*/
if ((zhp = zpool_open_canfail(hdl, name)) != NULL &&
(pool_config = zpool_get_config(zhp, NULL))
!= NULL) {
nvlist_t *nvroot;
verify(nvlist_lookup_nvlist(pool_config,
ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
ret = find_guid(nvroot, vdev_guid);
} else {
ret = B_FALSE;
}
/*
* If this is an active spare within another pool, we
* treat it like an unused hot spare. This allows the
* user to create a pool with a hot spare that currently
* in use within another pool. Since we return B_TRUE,
* libdiskmgt will continue to prevent generic consumers
* from using the device.
*/
if (ret && nvlist_lookup_uint64(config,
ZPOOL_CONFIG_IS_SPARE, &isspare) == 0 && isspare)
stateval = POOL_STATE_SPARE;
if (zhp != NULL)
zpool_close(zhp);
} else {
stateval = POOL_STATE_POTENTIALLY_ACTIVE;
ret = B_TRUE;
}
break;
case POOL_STATE_SPARE:
/*
* For a hot spare, it can be either definitively in use, or
* potentially active. To determine if it's in use, we iterate
* over all pools in the system and search for one with a spare
* with a matching guid.
*
* Due to the shared nature of spares, we don't actually report
* the potentially active case as in use. This means the user
* can freely create pools on the hot spares of exported pools,
* but to do otherwise makes the resulting code complicated, and
* we end up having to deal with this case anyway.
*/
cb.cb_zhp = NULL;
cb.cb_guid = vdev_guid;
cb.cb_type = ZPOOL_CONFIG_SPARES;
if (zpool_iter(hdl, find_aux, &cb) == 1) {
name = (char *)zpool_get_name(cb.cb_zhp);
ret = B_TRUE;
} else {
ret = B_FALSE;
}
break;
case POOL_STATE_L2CACHE:
/*
* Check if any pool is currently using this l2cache device.
*/
cb.cb_zhp = NULL;
cb.cb_guid = vdev_guid;
cb.cb_type = ZPOOL_CONFIG_L2CACHE;
if (zpool_iter(hdl, find_aux, &cb) == 1) {
name = (char *)zpool_get_name(cb.cb_zhp);
ret = B_TRUE;
} else {
ret = B_FALSE;
}
break;
default:
ret = B_FALSE;
}
if (ret) {
if ((*namestr = zfs_strdup(hdl, name)) == NULL) {
if (cb.cb_zhp)
zpool_close(cb.cb_zhp);
nvlist_free(config);
return (-1);
}
*state = (pool_state_t)stateval;
}
if (cb.cb_zhp)
zpool_close(cb.cb_zhp);
nvlist_free(config);
*inuse = ret;
return (0);
}