zfs/module/zfs/zfs_ioctl.c

3176 lines
70 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2008 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#include <sys/types.h>
#include <sys/param.h>
#include <sys/errno.h>
#include <sys/uio.h>
#include <sys/buf.h>
#include <sys/modctl.h>
#include <sys/open.h>
#include <sys/file.h>
#include <sys/kmem.h>
#include <sys/conf.h>
#include <sys/cmn_err.h>
#include <sys/stat.h>
#include <sys/zfs_ioctl.h>
#include <sys/zfs_znode.h>
#include <sys/zap.h>
#include <sys/spa.h>
#include <sys/spa_impl.h>
#include <sys/vdev.h>
#include <sys/vdev_impl.h>
#include <sys/dmu.h>
#include <sys/dsl_dir.h>
#include <sys/dsl_dataset.h>
#include <sys/dsl_prop.h>
#include <sys/dsl_deleg.h>
#include <sys/dmu_objset.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>
#include <sys/sunldi.h>
#include <sys/policy.h>
#include <sys/zone.h>
#include <sys/nvpair.h>
#include <sys/pathname.h>
#include <sys/mount.h>
#include <sys/sdt.h>
#include <sys/fs/zfs.h>
#include <sys/zfs_ctldir.h>
#include <sys/zfs_dir.h>
#include <sys/zvol.h>
#include <sharefs/share.h>
#include <sys/dmu_objset.h>
#include "zfs_namecheck.h"
#include "zfs_prop.h"
#include "zfs_deleg.h"
extern struct modlfs zfs_modlfs;
extern void zfs_init(void);
extern void zfs_fini(void);
ldi_ident_t zfs_li = NULL;
dev_info_t *zfs_dip;
typedef int zfs_ioc_func_t(zfs_cmd_t *);
typedef int zfs_secpolicy_func_t(zfs_cmd_t *, cred_t *);
typedef struct zfs_ioc_vec {
zfs_ioc_func_t *zvec_func;
zfs_secpolicy_func_t *zvec_secpolicy;
enum {
NO_NAME,
POOL_NAME,
DATASET_NAME
} zvec_namecheck;
boolean_t zvec_his_log;
} zfs_ioc_vec_t;
static void clear_props(char *dataset, nvlist_t *props);
static int zfs_fill_zplprops_root(uint64_t, nvlist_t *, nvlist_t *,
boolean_t *);
int zfs_set_prop_nvlist(const char *, nvlist_t *);
/* _NOTE(PRINTFLIKE(4)) - this is printf-like, but lint is too whiney */
void
__dprintf(const char *file, const char *func, int line, const char *fmt, ...)
{
const char *newfile;
char buf[256];
va_list adx;
/*
* Get rid of annoying "../common/" prefix to filename.
*/
newfile = strrchr(file, '/');
if (newfile != NULL) {
newfile = newfile + 1; /* Get rid of leading / */
} else {
newfile = file;
}
va_start(adx, fmt);
(void) vsnprintf(buf, sizeof (buf), fmt, adx);
va_end(adx);
/*
* To get this data, use the zfs-dprintf probe as so:
* dtrace -q -n 'zfs-dprintf \
* /stringof(arg0) == "dbuf.c"/ \
* {printf("%s: %s", stringof(arg1), stringof(arg3))}'
* arg0 = file name
* arg1 = function name
* arg2 = line number
* arg3 = message
*/
DTRACE_PROBE4(zfs__dprintf,
char *, newfile, char *, func, int, line, char *, buf);
}
static void
history_str_free(char *buf)
{
kmem_free(buf, HIS_MAX_RECORD_LEN);
}
static char *
history_str_get(zfs_cmd_t *zc)
{
char *buf;
if (zc->zc_history == 0)
return (NULL);
buf = kmem_alloc(HIS_MAX_RECORD_LEN, KM_SLEEP);
if (copyinstr((void *)(uintptr_t)zc->zc_history,
buf, HIS_MAX_RECORD_LEN, NULL) != 0) {
history_str_free(buf);
return (NULL);
}
buf[HIS_MAX_RECORD_LEN -1] = '\0';
return (buf);
}
/*
* Check to see if the named dataset is currently defined as bootable
*/
static boolean_t
zfs_is_bootfs(const char *name)
{
spa_t *spa;
boolean_t ret = B_FALSE;
if (spa_open(name, &spa, FTAG) == 0) {
if (spa->spa_bootfs) {
objset_t *os;
if (dmu_objset_open(name, DMU_OST_ZFS,
DS_MODE_USER | DS_MODE_READONLY, &os) == 0) {
ret = (dmu_objset_id(os) == spa->spa_bootfs);
dmu_objset_close(os);
}
}
spa_close(spa, FTAG);
}
return (ret);
}
/*
* zfs_earlier_version
*
* Return non-zero if the spa version is less than requested version.
*/
static int
zfs_earlier_version(const char *name, int version)
{
spa_t *spa;
if (spa_open(name, &spa, FTAG) == 0) {
if (spa_version(spa) < version) {
spa_close(spa, FTAG);
return (1);
}
spa_close(spa, FTAG);
}
return (0);
}
/*
* zpl_earlier_version
*
* Return TRUE if the ZPL version is less than requested version.
*/
static boolean_t
zpl_earlier_version(const char *name, int version)
{
objset_t *os;
boolean_t rc = B_TRUE;
if (dmu_objset_open(name, DMU_OST_ANY,
DS_MODE_USER | DS_MODE_READONLY, &os) == 0) {
uint64_t zplversion;
if (zfs_get_zplprop(os, ZFS_PROP_VERSION, &zplversion) == 0)
rc = zplversion < version;
dmu_objset_close(os);
}
return (rc);
}
static void
zfs_log_history(zfs_cmd_t *zc)
{
spa_t *spa;
char *buf;
if ((buf = history_str_get(zc)) == NULL)
return;
if (spa_open(zc->zc_name, &spa, FTAG) == 0) {
if (spa_version(spa) >= SPA_VERSION_ZPOOL_HISTORY)
(void) spa_history_log(spa, buf, LOG_CMD_NORMAL);
spa_close(spa, FTAG);
}
history_str_free(buf);
}
/*
* Policy for top-level read operations (list pools). Requires no privileges,
* and can be used in the local zone, as there is no associated dataset.
*/
/* ARGSUSED */
static int
zfs_secpolicy_none(zfs_cmd_t *zc, cred_t *cr)
{
return (0);
}
/*
* Policy for dataset read operations (list children, get statistics). Requires
* no privileges, but must be visible in the local zone.
*/
/* ARGSUSED */
static int
zfs_secpolicy_read(zfs_cmd_t *zc, cred_t *cr)
{
if (INGLOBALZONE(curproc) ||
zone_dataset_visible(zc->zc_name, NULL))
return (0);
return (ENOENT);
}
static int
zfs_dozonecheck(const char *dataset, cred_t *cr)
{
uint64_t zoned;
int writable = 1;
/*
* The dataset must be visible by this zone -- check this first
* so they don't see EPERM on something they shouldn't know about.
*/
if (!INGLOBALZONE(curproc) &&
!zone_dataset_visible(dataset, &writable))
return (ENOENT);
if (dsl_prop_get_integer(dataset, "zoned", &zoned, NULL))
return (ENOENT);
if (INGLOBALZONE(curproc)) {
/*
* If the fs is zoned, only root can access it from the
* global zone.
*/
if (secpolicy_zfs(cr) && zoned)
return (EPERM);
} else {
/*
* If we are in a local zone, the 'zoned' property must be set.
*/
if (!zoned)
return (EPERM);
/* must be writable by this zone */
if (!writable)
return (EPERM);
}
return (0);
}
int
zfs_secpolicy_write_perms(const char *name, const char *perm, cred_t *cr)
{
int error;
error = zfs_dozonecheck(name, cr);
if (error == 0) {
error = secpolicy_zfs(cr);
if (error)
error = dsl_deleg_access(name, perm, cr);
}
return (error);
}
static int
zfs_secpolicy_setprop(const char *name, zfs_prop_t prop, cred_t *cr)
{
/*
* Check permissions for special properties.
*/
switch (prop) {
case ZFS_PROP_ZONED:
/*
* Disallow setting of 'zoned' from within a local zone.
*/
if (!INGLOBALZONE(curproc))
return (EPERM);
break;
case ZFS_PROP_QUOTA:
if (!INGLOBALZONE(curproc)) {
uint64_t zoned;
char setpoint[MAXNAMELEN];
/*
* Unprivileged users are allowed to modify the
* quota on things *under* (ie. contained by)
* the thing they own.
*/
if (dsl_prop_get_integer(name, "zoned", &zoned,
setpoint))
return (EPERM);
if (!zoned || strlen(name) <= strlen(setpoint))
return (EPERM);
}
break;
}
return (zfs_secpolicy_write_perms(name, zfs_prop_to_name(prop), cr));
}
int
zfs_secpolicy_fsacl(zfs_cmd_t *zc, cred_t *cr)
{
int error;
error = zfs_dozonecheck(zc->zc_name, cr);
if (error)
return (error);
/*
* permission to set permissions will be evaluated later in
* dsl_deleg_can_allow()
*/
return (0);
}
int
zfs_secpolicy_rollback(zfs_cmd_t *zc, cred_t *cr)
{
int error;
error = zfs_secpolicy_write_perms(zc->zc_name,
ZFS_DELEG_PERM_ROLLBACK, cr);
if (error == 0)
error = zfs_secpolicy_write_perms(zc->zc_name,
ZFS_DELEG_PERM_MOUNT, cr);
return (error);
}
int
zfs_secpolicy_send(zfs_cmd_t *zc, cred_t *cr)
{
return (zfs_secpolicy_write_perms(zc->zc_name,
ZFS_DELEG_PERM_SEND, cr));
}
int
zfs_secpolicy_share(zfs_cmd_t *zc, cred_t *cr)
{
if (!INGLOBALZONE(curproc))
return (EPERM);
if (secpolicy_nfs(cr) == 0) {
return (0);
} else {
vnode_t *vp;
int error;
if ((error = lookupname(zc->zc_value, UIO_SYSSPACE,
NO_FOLLOW, NULL, &vp)) != 0)
return (error);
/* Now make sure mntpnt and dataset are ZFS */
if (vp->v_vfsp->vfs_fstype != zfsfstype ||
(strcmp((char *)refstr_value(vp->v_vfsp->vfs_resource),
zc->zc_name) != 0)) {
VN_RELE(vp);
return (EPERM);
}
VN_RELE(vp);
return (dsl_deleg_access(zc->zc_name,
ZFS_DELEG_PERM_SHARE, cr));
}
}
static int
zfs_get_parent(const char *datasetname, char *parent, int parentsize)
{
char *cp;
/*
* Remove the @bla or /bla from the end of the name to get the parent.
*/
(void) strncpy(parent, datasetname, parentsize);
cp = strrchr(parent, '@');
if (cp != NULL) {
cp[0] = '\0';
} else {
cp = strrchr(parent, '/');
if (cp == NULL)
return (ENOENT);
cp[0] = '\0';
}
return (0);
}
int
zfs_secpolicy_destroy_perms(const char *name, cred_t *cr)
{
int error;
if ((error = zfs_secpolicy_write_perms(name,
ZFS_DELEG_PERM_MOUNT, cr)) != 0)
return (error);
return (zfs_secpolicy_write_perms(name, ZFS_DELEG_PERM_DESTROY, cr));
}
static int
zfs_secpolicy_destroy(zfs_cmd_t *zc, cred_t *cr)
{
return (zfs_secpolicy_destroy_perms(zc->zc_name, cr));
}
/*
* Must have sys_config privilege to check the iscsi permission
*/
/* ARGSUSED */
static int
zfs_secpolicy_iscsi(zfs_cmd_t *zc, cred_t *cr)
{
return (secpolicy_zfs(cr));
}
int
zfs_secpolicy_rename_perms(const char *from, const char *to, cred_t *cr)
{
char parentname[MAXNAMELEN];
int error;
if ((error = zfs_secpolicy_write_perms(from,
ZFS_DELEG_PERM_RENAME, cr)) != 0)
return (error);
if ((error = zfs_secpolicy_write_perms(from,
ZFS_DELEG_PERM_MOUNT, cr)) != 0)
return (error);
if ((error = zfs_get_parent(to, parentname,
sizeof (parentname))) != 0)
return (error);
if ((error = zfs_secpolicy_write_perms(parentname,
ZFS_DELEG_PERM_CREATE, cr)) != 0)
return (error);
if ((error = zfs_secpolicy_write_perms(parentname,
ZFS_DELEG_PERM_MOUNT, cr)) != 0)
return (error);
return (error);
}
static int
zfs_secpolicy_rename(zfs_cmd_t *zc, cred_t *cr)
{
return (zfs_secpolicy_rename_perms(zc->zc_name, zc->zc_value, cr));
}
static int
zfs_secpolicy_promote(zfs_cmd_t *zc, cred_t *cr)
{
char parentname[MAXNAMELEN];
objset_t *clone;
int error;
error = zfs_secpolicy_write_perms(zc->zc_name,
ZFS_DELEG_PERM_PROMOTE, cr);
if (error)
return (error);
error = dmu_objset_open(zc->zc_name, DMU_OST_ANY,
DS_MODE_USER | DS_MODE_READONLY, &clone);
if (error == 0) {
dsl_dataset_t *pclone = NULL;
dsl_dir_t *dd;
dd = clone->os->os_dsl_dataset->ds_dir;
rw_enter(&dd->dd_pool->dp_config_rwlock, RW_READER);
error = dsl_dataset_hold_obj(dd->dd_pool,
dd->dd_phys->dd_origin_obj, FTAG, &pclone);
rw_exit(&dd->dd_pool->dp_config_rwlock);
if (error) {
dmu_objset_close(clone);
return (error);
}
error = zfs_secpolicy_write_perms(zc->zc_name,
ZFS_DELEG_PERM_MOUNT, cr);
dsl_dataset_name(pclone, parentname);
dmu_objset_close(clone);
dsl_dataset_rele(pclone, FTAG);
if (error == 0)
error = zfs_secpolicy_write_perms(parentname,
ZFS_DELEG_PERM_PROMOTE, cr);
}
return (error);
}
static int
zfs_secpolicy_receive(zfs_cmd_t *zc, cred_t *cr)
{
int error;
if ((error = zfs_secpolicy_write_perms(zc->zc_name,
ZFS_DELEG_PERM_RECEIVE, cr)) != 0)
return (error);
if ((error = zfs_secpolicy_write_perms(zc->zc_name,
ZFS_DELEG_PERM_MOUNT, cr)) != 0)
return (error);
return (zfs_secpolicy_write_perms(zc->zc_name,
ZFS_DELEG_PERM_CREATE, cr));
}
int
zfs_secpolicy_snapshot_perms(const char *name, cred_t *cr)
{
int error;
if ((error = zfs_secpolicy_write_perms(name,
ZFS_DELEG_PERM_SNAPSHOT, cr)) != 0)
return (error);
error = zfs_secpolicy_write_perms(name,
ZFS_DELEG_PERM_MOUNT, cr);
return (error);
}
static int
zfs_secpolicy_snapshot(zfs_cmd_t *zc, cred_t *cr)
{
return (zfs_secpolicy_snapshot_perms(zc->zc_name, cr));
}
static int
zfs_secpolicy_create(zfs_cmd_t *zc, cred_t *cr)
{
char parentname[MAXNAMELEN];
int error;
if ((error = zfs_get_parent(zc->zc_name, parentname,
sizeof (parentname))) != 0)
return (error);
if (zc->zc_value[0] != '\0') {
if ((error = zfs_secpolicy_write_perms(zc->zc_value,
ZFS_DELEG_PERM_CLONE, cr)) != 0)
return (error);
}
if ((error = zfs_secpolicy_write_perms(parentname,
ZFS_DELEG_PERM_CREATE, cr)) != 0)
return (error);
error = zfs_secpolicy_write_perms(parentname,
ZFS_DELEG_PERM_MOUNT, cr);
return (error);
}
static int
zfs_secpolicy_umount(zfs_cmd_t *zc, cred_t *cr)
{
int error;
error = secpolicy_fs_unmount(cr, NULL);
if (error) {
error = dsl_deleg_access(zc->zc_name, ZFS_DELEG_PERM_MOUNT, cr);
}
return (error);
}
/*
* Policy for pool operations - create/destroy pools, add vdevs, etc. Requires
* SYS_CONFIG privilege, which is not available in a local zone.
*/
/* ARGSUSED */
static int
zfs_secpolicy_config(zfs_cmd_t *zc, cred_t *cr)
{
if (secpolicy_sys_config(cr, B_FALSE) != 0)
return (EPERM);
return (0);
}
/*
* Just like zfs_secpolicy_config, except that we will check for
* mount permission on the dataset for permission to create/remove
* the minor nodes.
*/
static int
zfs_secpolicy_minor(zfs_cmd_t *zc, cred_t *cr)
{
if (secpolicy_sys_config(cr, B_FALSE) != 0) {
return (dsl_deleg_access(zc->zc_name,
ZFS_DELEG_PERM_MOUNT, cr));
}
return (0);
}
/*
* Policy for fault injection. Requires all privileges.
*/
/* ARGSUSED */
static int
zfs_secpolicy_inject(zfs_cmd_t *zc, cred_t *cr)
{
return (secpolicy_zinject(cr));
}
static int
zfs_secpolicy_inherit(zfs_cmd_t *zc, cred_t *cr)
{
zfs_prop_t prop = zfs_name_to_prop(zc->zc_value);
if (prop == ZPROP_INVAL) {
if (!zfs_prop_user(zc->zc_value))
return (EINVAL);
return (zfs_secpolicy_write_perms(zc->zc_name,
ZFS_DELEG_PERM_USERPROP, cr));
} else {
if (!zfs_prop_inheritable(prop))
return (EINVAL);
return (zfs_secpolicy_setprop(zc->zc_name, prop, cr));
}
}
/*
* Returns the nvlist as specified by the user in the zfs_cmd_t.
*/
static int
get_nvlist(uint64_t nvl, uint64_t size, nvlist_t **nvp)
{
char *packed;
int error;
nvlist_t *list = NULL;
/*
* Read in and unpack the user-supplied nvlist.
*/
if (size == 0)
return (EINVAL);
packed = kmem_alloc(size, KM_SLEEP);
if ((error = xcopyin((void *)(uintptr_t)nvl, packed, size)) != 0) {
kmem_free(packed, size);
return (error);
}
if ((error = nvlist_unpack(packed, size, &list, 0)) != 0) {
kmem_free(packed, size);
return (error);
}
kmem_free(packed, size);
*nvp = list;
return (0);
}
static int
put_nvlist(zfs_cmd_t *zc, nvlist_t *nvl)
{
char *packed = NULL;
size_t size;
int error;
VERIFY(nvlist_size(nvl, &size, NV_ENCODE_NATIVE) == 0);
if (size > zc->zc_nvlist_dst_size) {
error = ENOMEM;
} else {
packed = kmem_alloc(size, KM_SLEEP);
VERIFY(nvlist_pack(nvl, &packed, &size, NV_ENCODE_NATIVE,
KM_SLEEP) == 0);
error = xcopyout(packed, (void *)(uintptr_t)zc->zc_nvlist_dst,
size);
kmem_free(packed, size);
}
zc->zc_nvlist_dst_size = size;
return (error);
}
static int
zfs_ioc_pool_create(zfs_cmd_t *zc)
{
int error;
nvlist_t *config, *props = NULL;
nvlist_t *rootprops = NULL;
nvlist_t *zplprops = NULL;
char *buf;
if (error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size,
&config))
return (error);
if (zc->zc_nvlist_src_size != 0 && (error =
get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, &props))) {
nvlist_free(config);
return (error);
}
if (props) {
nvlist_t *nvl = NULL;
uint64_t version = SPA_VERSION;
(void) nvlist_lookup_uint64(props,
zpool_prop_to_name(ZPOOL_PROP_VERSION), &version);
if (version < SPA_VERSION_INITIAL || version > SPA_VERSION) {
error = EINVAL;
goto pool_props_bad;
}
(void) nvlist_lookup_nvlist(props, ZPOOL_ROOTFS_PROPS, &nvl);
if (nvl) {
error = nvlist_dup(nvl, &rootprops, KM_SLEEP);
if (error != 0) {
nvlist_free(config);
nvlist_free(props);
return (error);
}
(void) nvlist_remove_all(props, ZPOOL_ROOTFS_PROPS);
}
VERIFY(nvlist_alloc(&zplprops, NV_UNIQUE_NAME, KM_SLEEP) == 0);
error = zfs_fill_zplprops_root(version, rootprops,
zplprops, NULL);
if (error)
goto pool_props_bad;
}
buf = history_str_get(zc);
error = spa_create(zc->zc_name, config, props, buf, zplprops);
/*
* Set the remaining root properties
*/
if (!error &&
(error = zfs_set_prop_nvlist(zc->zc_name, rootprops)) != 0)
(void) spa_destroy(zc->zc_name);
if (buf != NULL)
history_str_free(buf);
pool_props_bad:
nvlist_free(rootprops);
nvlist_free(zplprops);
nvlist_free(config);
nvlist_free(props);
return (error);
}
static int
zfs_ioc_pool_destroy(zfs_cmd_t *zc)
{
int error;
zfs_log_history(zc);
error = spa_destroy(zc->zc_name);
return (error);
}
static int
zfs_ioc_pool_import(zfs_cmd_t *zc)
{
int error;
nvlist_t *config, *props = NULL;
uint64_t guid;
if ((error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size,
&config)) != 0)
return (error);
if (zc->zc_nvlist_src_size != 0 && (error =
get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, &props))) {
nvlist_free(config);
return (error);
}
if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
guid != zc->zc_guid)
error = EINVAL;
else if (zc->zc_cookie)
error = spa_import_faulted(zc->zc_name, config,
props);
else
error = spa_import(zc->zc_name, config, props);
nvlist_free(config);
if (props)
nvlist_free(props);
return (error);
}
static int
zfs_ioc_pool_export(zfs_cmd_t *zc)
{
int error;
boolean_t force = (boolean_t)zc->zc_cookie;
zfs_log_history(zc);
error = spa_export(zc->zc_name, NULL, force);
return (error);
}
static int
zfs_ioc_pool_configs(zfs_cmd_t *zc)
{
nvlist_t *configs;
int error;
if ((configs = spa_all_configs(&zc->zc_cookie)) == NULL)
return (EEXIST);
error = put_nvlist(zc, configs);
nvlist_free(configs);
return (error);
}
static int
zfs_ioc_pool_stats(zfs_cmd_t *zc)
{
nvlist_t *config;
int error;
int ret = 0;
error = spa_get_stats(zc->zc_name, &config, zc->zc_value,
sizeof (zc->zc_value));
if (config != NULL) {
ret = put_nvlist(zc, config);
nvlist_free(config);
/*
* The config may be present even if 'error' is non-zero.
* In this case we return success, and preserve the real errno
* in 'zc_cookie'.
*/
zc->zc_cookie = error;
} else {
ret = error;
}
return (ret);
}
/*
* Try to import the given pool, returning pool stats as appropriate so that
* user land knows which devices are available and overall pool health.
*/
static int
zfs_ioc_pool_tryimport(zfs_cmd_t *zc)
{
nvlist_t *tryconfig, *config;
int error;
if ((error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size,
&tryconfig)) != 0)
return (error);
config = spa_tryimport(tryconfig);
nvlist_free(tryconfig);
if (config == NULL)
return (EINVAL);
error = put_nvlist(zc, config);
nvlist_free(config);
return (error);
}
static int
zfs_ioc_pool_scrub(zfs_cmd_t *zc)
{
spa_t *spa;
int error;
if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0)
return (error);
error = spa_scrub(spa, zc->zc_cookie);
spa_close(spa, FTAG);
return (error);
}
static int
zfs_ioc_pool_freeze(zfs_cmd_t *zc)
{
spa_t *spa;
int error;
error = spa_open(zc->zc_name, &spa, FTAG);
if (error == 0) {
spa_freeze(spa);
spa_close(spa, FTAG);
}
return (error);
}
static int
zfs_ioc_pool_upgrade(zfs_cmd_t *zc)
{
spa_t *spa;
int error;
if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0)
return (error);
if (zc->zc_cookie < spa_version(spa) || zc->zc_cookie > SPA_VERSION) {
spa_close(spa, FTAG);
return (EINVAL);
}
spa_upgrade(spa, zc->zc_cookie);
spa_close(spa, FTAG);
return (error);
}
static int
zfs_ioc_pool_get_history(zfs_cmd_t *zc)
{
spa_t *spa;
char *hist_buf;
uint64_t size;
int error;
if ((size = zc->zc_history_len) == 0)
return (EINVAL);
if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0)
return (error);
if (spa_version(spa) < SPA_VERSION_ZPOOL_HISTORY) {
spa_close(spa, FTAG);
return (ENOTSUP);
}
hist_buf = kmem_alloc(size, KM_SLEEP);
if ((error = spa_history_get(spa, &zc->zc_history_offset,
&zc->zc_history_len, hist_buf)) == 0) {
error = xcopyout(hist_buf,
(char *)(uintptr_t)zc->zc_history,
zc->zc_history_len);
}
spa_close(spa, FTAG);
kmem_free(hist_buf, size);
return (error);
}
static int
zfs_ioc_dsobj_to_dsname(zfs_cmd_t *zc)
{
int error;
if (error = dsl_dsobj_to_dsname(zc->zc_name, zc->zc_obj, zc->zc_value))
return (error);
return (0);
}
static int
zfs_ioc_obj_to_path(zfs_cmd_t *zc)
{
objset_t *osp;
int error;
if ((error = dmu_objset_open(zc->zc_name, DMU_OST_ZFS,
DS_MODE_USER | DS_MODE_READONLY, &osp)) != 0)
return (error);
error = zfs_obj_to_path(osp, zc->zc_obj, zc->zc_value,
sizeof (zc->zc_value));
dmu_objset_close(osp);
return (error);
}
static int
zfs_ioc_vdev_add(zfs_cmd_t *zc)
{
spa_t *spa;
int error;
nvlist_t *config, **l2cache, **spares;
uint_t nl2cache = 0, nspares = 0;
error = spa_open(zc->zc_name, &spa, FTAG);
if (error != 0)
return (error);
error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size,
&config);
(void) nvlist_lookup_nvlist_array(config, ZPOOL_CONFIG_L2CACHE,
&l2cache, &nl2cache);
(void) nvlist_lookup_nvlist_array(config, ZPOOL_CONFIG_SPARES,
&spares, &nspares);
/*
* A root pool with concatenated devices is not supported.
* Thus, can not add a device to a root pool.
*
* Intent log device can not be added to a rootpool because
* during mountroot, zil is replayed, a seperated log device
* can not be accessed during the mountroot time.
*
* l2cache and spare devices are ok to be added to a rootpool.
*/
if (spa->spa_bootfs != 0 && nl2cache == 0 && nspares == 0) {
spa_close(spa, FTAG);
return (EDOM);
}
if (error == 0) {
error = spa_vdev_add(spa, config);
nvlist_free(config);
}
spa_close(spa, FTAG);
return (error);
}
static int
zfs_ioc_vdev_remove(zfs_cmd_t *zc)
{
spa_t *spa;
int error;
error = spa_open(zc->zc_name, &spa, FTAG);
if (error != 0)
return (error);
error = spa_vdev_remove(spa, zc->zc_guid, B_FALSE);
spa_close(spa, FTAG);
return (error);
}
static int
zfs_ioc_vdev_set_state(zfs_cmd_t *zc)
{
spa_t *spa;
int error;
vdev_state_t newstate = VDEV_STATE_UNKNOWN;
if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0)
return (error);
switch (zc->zc_cookie) {
case VDEV_STATE_ONLINE:
error = vdev_online(spa, zc->zc_guid, zc->zc_obj, &newstate);
break;
case VDEV_STATE_OFFLINE:
error = vdev_offline(spa, zc->zc_guid, zc->zc_obj);
break;
case VDEV_STATE_FAULTED:
error = vdev_fault(spa, zc->zc_guid);
break;
case VDEV_STATE_DEGRADED:
error = vdev_degrade(spa, zc->zc_guid);
break;
default:
error = EINVAL;
}
zc->zc_cookie = newstate;
spa_close(spa, FTAG);
return (error);
}
static int
zfs_ioc_vdev_attach(zfs_cmd_t *zc)
{
spa_t *spa;
int replacing = zc->zc_cookie;
nvlist_t *config;
int error;
if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0)
return (error);
if ((error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size,
&config)) == 0) {
error = spa_vdev_attach(spa, zc->zc_guid, config, replacing);
nvlist_free(config);
}
spa_close(spa, FTAG);
return (error);
}
static int
zfs_ioc_vdev_detach(zfs_cmd_t *zc)
{
spa_t *spa;
int error;
if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0)
return (error);
error = spa_vdev_detach(spa, zc->zc_guid, B_FALSE);
spa_close(spa, FTAG);
return (error);
}
static int
zfs_ioc_vdev_setpath(zfs_cmd_t *zc)
{
spa_t *spa;
char *path = zc->zc_value;
uint64_t guid = zc->zc_guid;
int error;
error = spa_open(zc->zc_name, &spa, FTAG);
if (error != 0)
return (error);
error = spa_vdev_setpath(spa, guid, path);
spa_close(spa, FTAG);
return (error);
}
/*
* inputs:
* zc_name name of filesystem
* zc_nvlist_dst_size size of buffer for property nvlist
*
* outputs:
* zc_objset_stats stats
* zc_nvlist_dst property nvlist
* zc_nvlist_dst_size size of property nvlist
*/
static int
zfs_ioc_objset_stats(zfs_cmd_t *zc)
{
objset_t *os = NULL;
int error;
nvlist_t *nv;
if (error = dmu_objset_open(zc->zc_name,
DMU_OST_ANY, DS_MODE_USER | DS_MODE_READONLY, &os))
return (error);
dmu_objset_fast_stat(os, &zc->zc_objset_stats);
if (zc->zc_nvlist_dst != 0 &&
(error = dsl_prop_get_all(os, &nv, FALSE)) == 0) {
dmu_objset_stats(os, nv);
/*
* NB: zvol_get_stats() will read the objset contents,
* which we aren't supposed to do with a
* DS_MODE_USER hold, because it could be
* inconsistent. So this is a bit of a workaround...
*/
if (!zc->zc_objset_stats.dds_inconsistent) {
if (dmu_objset_type(os) == DMU_OST_ZVOL)
VERIFY(zvol_get_stats(os, nv) == 0);
}
error = put_nvlist(zc, nv);
nvlist_free(nv);
}
dmu_objset_close(os);
return (error);
}
static int
nvl_add_zplprop(objset_t *os, nvlist_t *props, zfs_prop_t prop)
{
uint64_t value;
int error;
/*
* zfs_get_zplprop() will either find a value or give us
* the default value (if there is one).
*/
if ((error = zfs_get_zplprop(os, prop, &value)) != 0)
return (error);
VERIFY(nvlist_add_uint64(props, zfs_prop_to_name(prop), value) == 0);
return (0);
}
/*
* inputs:
* zc_name name of filesystem
* zc_nvlist_dst_size size of buffer for zpl property nvlist
*
* outputs:
* zc_nvlist_dst zpl property nvlist
* zc_nvlist_dst_size size of zpl property nvlist
*/
static int
zfs_ioc_objset_zplprops(zfs_cmd_t *zc)
{
objset_t *os;
int err;
if (err = dmu_objset_open(zc->zc_name,
DMU_OST_ANY, DS_MODE_USER | DS_MODE_READONLY, &os))
return (err);
dmu_objset_fast_stat(os, &zc->zc_objset_stats);
/*
* NB: nvl_add_zplprop() will read the objset contents,
* which we aren't supposed to do with a DS_MODE_USER
* hold, because it could be inconsistent.
*/
if (zc->zc_nvlist_dst != 0 &&
!zc->zc_objset_stats.dds_inconsistent &&
dmu_objset_type(os) == DMU_OST_ZFS) {
nvlist_t *nv;
VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
if ((err = nvl_add_zplprop(os, nv, ZFS_PROP_VERSION)) == 0 &&
(err = nvl_add_zplprop(os, nv, ZFS_PROP_NORMALIZE)) == 0 &&
(err = nvl_add_zplprop(os, nv, ZFS_PROP_UTF8ONLY)) == 0 &&
(err = nvl_add_zplprop(os, nv, ZFS_PROP_CASE)) == 0)
err = put_nvlist(zc, nv);
nvlist_free(nv);
} else {
err = ENOENT;
}
dmu_objset_close(os);
return (err);
}
/*
* inputs:
* zc_name name of filesystem
* zc_cookie zap cursor
* zc_nvlist_dst_size size of buffer for property nvlist
*
* outputs:
* zc_name name of next filesystem
* zc_objset_stats stats
* zc_nvlist_dst property nvlist
* zc_nvlist_dst_size size of property nvlist
*/
static int
zfs_ioc_dataset_list_next(zfs_cmd_t *zc)
{
objset_t *os;
int error;
char *p;
if (error = dmu_objset_open(zc->zc_name,
DMU_OST_ANY, DS_MODE_USER | DS_MODE_READONLY, &os)) {
if (error == ENOENT)
error = ESRCH;
return (error);
}
p = strrchr(zc->zc_name, '/');
if (p == NULL || p[1] != '\0')
(void) strlcat(zc->zc_name, "/", sizeof (zc->zc_name));
p = zc->zc_name + strlen(zc->zc_name);
do {
error = dmu_dir_list_next(os,
sizeof (zc->zc_name) - (p - zc->zc_name), p,
NULL, &zc->zc_cookie);
if (error == ENOENT)
error = ESRCH;
} while (error == 0 && !INGLOBALZONE(curproc) &&
!zone_dataset_visible(zc->zc_name, NULL));
dmu_objset_close(os);
/*
* If it's a hidden dataset (ie. with a '$' in its name), don't
* try to get stats for it. Userland will skip over it.
*/
if (error == 0 && strchr(zc->zc_name, '$') == NULL)
error = zfs_ioc_objset_stats(zc); /* fill in the stats */
return (error);
}
/*
* inputs:
* zc_name name of filesystem
* zc_cookie zap cursor
* zc_nvlist_dst_size size of buffer for property nvlist
*
* outputs:
* zc_name name of next snapshot
* zc_objset_stats stats
* zc_nvlist_dst property nvlist
* zc_nvlist_dst_size size of property nvlist
*/
static int
zfs_ioc_snapshot_list_next(zfs_cmd_t *zc)
{
objset_t *os;
int error;
error = dmu_objset_open(zc->zc_name,
DMU_OST_ANY, DS_MODE_USER | DS_MODE_READONLY, &os);
if (error)
return (error == ENOENT ? ESRCH : error);
/*
* A dataset name of maximum length cannot have any snapshots,
* so exit immediately.
*/
if (strlcat(zc->zc_name, "@", sizeof (zc->zc_name)) >= MAXNAMELEN) {
dmu_objset_close(os);
return (ESRCH);
}
error = dmu_snapshot_list_next(os,
sizeof (zc->zc_name) - strlen(zc->zc_name),
zc->zc_name + strlen(zc->zc_name), NULL, &zc->zc_cookie, NULL);
dmu_objset_close(os);
if (error == 0)
error = zfs_ioc_objset_stats(zc); /* fill in the stats */
else if (error == ENOENT)
error = ESRCH;
/* if we failed, undo the @ that we tacked on to zc_name */
if (error)
*strchr(zc->zc_name, '@') = '\0';
return (error);
}
int
zfs_set_prop_nvlist(const char *name, nvlist_t *nvl)
{
nvpair_t *elem;
int error;
uint64_t intval;
char *strval;
/*
* First validate permission to set all of the properties
*/
elem = NULL;
while ((elem = nvlist_next_nvpair(nvl, elem)) != NULL) {
const char *propname = nvpair_name(elem);
zfs_prop_t prop = zfs_name_to_prop(propname);
if (prop == ZPROP_INVAL) {
/*
* If this is a user-defined property, it must be a
* string, and there is no further validation to do.
*/
if (!zfs_prop_user(propname) ||
nvpair_type(elem) != DATA_TYPE_STRING)
return (EINVAL);
if (error = zfs_secpolicy_write_perms(name,
ZFS_DELEG_PERM_USERPROP, CRED()))
return (error);
continue;
}
if ((error = zfs_secpolicy_setprop(name, prop, CRED())) != 0)
return (error);
/*
* Check that this value is valid for this pool version
*/
switch (prop) {
case ZFS_PROP_COMPRESSION:
/*
* If the user specified gzip compression, make sure
* the SPA supports it. We ignore any errors here since
* we'll catch them later.
*/
if (nvpair_type(elem) == DATA_TYPE_UINT64 &&
nvpair_value_uint64(elem, &intval) == 0) {
if (intval >= ZIO_COMPRESS_GZIP_1 &&
intval <= ZIO_COMPRESS_GZIP_9 &&
zfs_earlier_version(name,
SPA_VERSION_GZIP_COMPRESSION))
return (ENOTSUP);
/*
* If this is a bootable dataset then
* verify that the compression algorithm
* is supported for booting. We must return
* something other than ENOTSUP since it
* implies a downrev pool version.
*/
if (zfs_is_bootfs(name) &&
!BOOTFS_COMPRESS_VALID(intval))
return (ERANGE);
}
break;
case ZFS_PROP_COPIES:
if (zfs_earlier_version(name,
SPA_VERSION_DITTO_BLOCKS))
return (ENOTSUP);
break;
case ZFS_PROP_SHARESMB:
if (zpl_earlier_version(name, ZPL_VERSION_FUID))
return (ENOTSUP);
break;
case ZFS_PROP_ACLINHERIT:
if (nvpair_type(elem) == DATA_TYPE_UINT64 &&
nvpair_value_uint64(elem, &intval) == 0)
if (intval == ZFS_ACL_PASSTHROUGH_X &&
zfs_earlier_version(name,
SPA_VERSION_PASSTHROUGH_X))
return (ENOTSUP);
}
}
elem = NULL;
while ((elem = nvlist_next_nvpair(nvl, elem)) != NULL) {
const char *propname = nvpair_name(elem);
zfs_prop_t prop = zfs_name_to_prop(propname);
if (prop == ZPROP_INVAL) {
VERIFY(nvpair_value_string(elem, &strval) == 0);
error = dsl_prop_set(name, propname, 1,
strlen(strval) + 1, strval);
if (error == 0)
continue;
else
return (error);
}
switch (prop) {
case ZFS_PROP_QUOTA:
if ((error = nvpair_value_uint64(elem, &intval)) != 0 ||
(error = dsl_dir_set_quota(name, intval)) != 0)
return (error);
break;
case ZFS_PROP_REFQUOTA:
if ((error = nvpair_value_uint64(elem, &intval)) != 0 ||
(error = dsl_dataset_set_quota(name, intval)) != 0)
return (error);
break;
case ZFS_PROP_RESERVATION:
if ((error = nvpair_value_uint64(elem, &intval)) != 0 ||
(error = dsl_dir_set_reservation(name,
intval)) != 0)
return (error);
break;
case ZFS_PROP_REFRESERVATION:
if ((error = nvpair_value_uint64(elem, &intval)) != 0 ||
(error = dsl_dataset_set_reservation(name,
intval)) != 0)
return (error);
break;
case ZFS_PROP_VOLSIZE:
if ((error = nvpair_value_uint64(elem, &intval)) != 0 ||
(error = zvol_set_volsize(name,
ddi_driver_major(zfs_dip), intval)) != 0)
return (error);
break;
case ZFS_PROP_VOLBLOCKSIZE:
if ((error = nvpair_value_uint64(elem, &intval)) != 0 ||
(error = zvol_set_volblocksize(name, intval)) != 0)
return (error);
break;
case ZFS_PROP_VERSION:
if ((error = nvpair_value_uint64(elem, &intval)) != 0 ||
(error = zfs_set_version(name, intval)) != 0)
return (error);
break;
default:
if (nvpair_type(elem) == DATA_TYPE_STRING) {
if (zfs_prop_get_type(prop) !=
PROP_TYPE_STRING)
return (EINVAL);
VERIFY(nvpair_value_string(elem, &strval) == 0);
if ((error = dsl_prop_set(name,
nvpair_name(elem), 1, strlen(strval) + 1,
strval)) != 0)
return (error);
} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
const char *unused;
VERIFY(nvpair_value_uint64(elem, &intval) == 0);
switch (zfs_prop_get_type(prop)) {
case PROP_TYPE_NUMBER:
break;
case PROP_TYPE_STRING:
return (EINVAL);
case PROP_TYPE_INDEX:
if (zfs_prop_index_to_string(prop,
intval, &unused) != 0)
return (EINVAL);
break;
default:
cmn_err(CE_PANIC,
"unknown property type");
break;
}
if ((error = dsl_prop_set(name, propname,
8, 1, &intval)) != 0)
return (error);
} else {
return (EINVAL);
}
break;
}
}
return (0);
}
/*
* inputs:
* zc_name name of filesystem
* zc_value name of property to inherit
* zc_nvlist_src{_size} nvlist of properties to apply
* zc_cookie clear existing local props?
*
* outputs: none
*/
static int
zfs_ioc_set_prop(zfs_cmd_t *zc)
{
nvlist_t *nvl;
int error;
if ((error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size,
&nvl)) != 0)
return (error);
if (zc->zc_cookie) {
nvlist_t *origprops;
objset_t *os;
if (dmu_objset_open(zc->zc_name, DMU_OST_ANY,
DS_MODE_USER | DS_MODE_READONLY, &os) == 0) {
if (dsl_prop_get_all(os, &origprops, TRUE) == 0) {
clear_props(zc->zc_name, origprops);
nvlist_free(origprops);
}
dmu_objset_close(os);
}
}
error = zfs_set_prop_nvlist(zc->zc_name, nvl);
nvlist_free(nvl);
return (error);
}
/*
* inputs:
* zc_name name of filesystem
* zc_value name of property to inherit
*
* outputs: none
*/
static int
zfs_ioc_inherit_prop(zfs_cmd_t *zc)
{
/* the property name has been validated by zfs_secpolicy_inherit() */
return (dsl_prop_set(zc->zc_name, zc->zc_value, 0, 0, NULL));
}
static int
zfs_ioc_pool_set_props(zfs_cmd_t *zc)
{
nvlist_t *props;
spa_t *spa;
int error;
if ((error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size,
&props)))
return (error);
if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) {
nvlist_free(props);
return (error);
}
error = spa_prop_set(spa, props);
nvlist_free(props);
spa_close(spa, FTAG);
return (error);
}
static int
zfs_ioc_pool_get_props(zfs_cmd_t *zc)
{
spa_t *spa;
int error;
nvlist_t *nvp = NULL;
if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0)
return (error);
error = spa_prop_get(spa, &nvp);
if (error == 0 && zc->zc_nvlist_dst != 0)
error = put_nvlist(zc, nvp);
else
error = EFAULT;
spa_close(spa, FTAG);
if (nvp)
nvlist_free(nvp);
return (error);
}
static int
zfs_ioc_iscsi_perm_check(zfs_cmd_t *zc)
{
nvlist_t *nvp;
int error;
uint32_t uid;
uint32_t gid;
uint32_t *groups;
uint_t group_cnt;
cred_t *usercred;
if ((error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size,
&nvp)) != 0) {
return (error);
}
if ((error = nvlist_lookup_uint32(nvp,
ZFS_DELEG_PERM_UID, &uid)) != 0) {
nvlist_free(nvp);
return (EPERM);
}
if ((error = nvlist_lookup_uint32(nvp,
ZFS_DELEG_PERM_GID, &gid)) != 0) {
nvlist_free(nvp);
return (EPERM);
}
if ((error = nvlist_lookup_uint32_array(nvp, ZFS_DELEG_PERM_GROUPS,
&groups, &group_cnt)) != 0) {
nvlist_free(nvp);
return (EPERM);
}
usercred = cralloc();
if ((crsetugid(usercred, uid, gid) != 0) ||
(crsetgroups(usercred, group_cnt, (gid_t *)groups) != 0)) {
nvlist_free(nvp);
crfree(usercred);
return (EPERM);
}
nvlist_free(nvp);
error = dsl_deleg_access(zc->zc_name,
zfs_prop_to_name(ZFS_PROP_SHAREISCSI), usercred);
crfree(usercred);
return (error);
}
/*
* inputs:
* zc_name name of filesystem
* zc_nvlist_src{_size} nvlist of delegated permissions
* zc_perm_action allow/unallow flag
*
* outputs: none
*/
static int
zfs_ioc_set_fsacl(zfs_cmd_t *zc)
{
int error;
nvlist_t *fsaclnv = NULL;
if ((error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size,
&fsaclnv)) != 0)
return (error);
/*
* Verify nvlist is constructed correctly
*/
if ((error = zfs_deleg_verify_nvlist(fsaclnv)) != 0) {
nvlist_free(fsaclnv);
return (EINVAL);
}
/*
* If we don't have PRIV_SYS_MOUNT, then validate
* that user is allowed to hand out each permission in
* the nvlist(s)
*/
error = secpolicy_zfs(CRED());
if (error) {
if (zc->zc_perm_action == B_FALSE) {
error = dsl_deleg_can_allow(zc->zc_name,
fsaclnv, CRED());
} else {
error = dsl_deleg_can_unallow(zc->zc_name,
fsaclnv, CRED());
}
}
if (error == 0)
error = dsl_deleg_set(zc->zc_name, fsaclnv, zc->zc_perm_action);
nvlist_free(fsaclnv);
return (error);
}
/*
* inputs:
* zc_name name of filesystem
*
* outputs:
* zc_nvlist_src{_size} nvlist of delegated permissions
*/
static int
zfs_ioc_get_fsacl(zfs_cmd_t *zc)
{
nvlist_t *nvp;
int error;
if ((error = dsl_deleg_get(zc->zc_name, &nvp)) == 0) {
error = put_nvlist(zc, nvp);
nvlist_free(nvp);
}
return (error);
}
/*
* inputs:
* zc_name name of volume
*
* outputs: none
*/
static int
zfs_ioc_create_minor(zfs_cmd_t *zc)
{
return (zvol_create_minor(zc->zc_name, ddi_driver_major(zfs_dip)));
}
/*
* inputs:
* zc_name name of volume
*
* outputs: none
*/
static int
zfs_ioc_remove_minor(zfs_cmd_t *zc)
{
return (zvol_remove_minor(zc->zc_name));
}
/*
* Search the vfs list for a specified resource. Returns a pointer to it
* or NULL if no suitable entry is found. The caller of this routine
* is responsible for releasing the returned vfs pointer.
*/
static vfs_t *
zfs_get_vfs(const char *resource)
{
struct vfs *vfsp;
struct vfs *vfs_found = NULL;
vfs_list_read_lock();
vfsp = rootvfs;
do {
if (strcmp(refstr_value(vfsp->vfs_resource), resource) == 0) {
VFS_HOLD(vfsp);
vfs_found = vfsp;
break;
}
vfsp = vfsp->vfs_next;
} while (vfsp != rootvfs);
vfs_list_unlock();
return (vfs_found);
}
/* ARGSUSED */
static void
zfs_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
{
zfs_creat_t *zct = arg;
zfs_create_fs(os, cr, zct->zct_zplprops, tx);
}
#define ZFS_PROP_UNDEFINED ((uint64_t)-1)
/*
* inputs:
* createprops list of properties requested by creator
* default_zplver zpl version to use if unspecified in createprops
* fuids_ok fuids allowed in this version of the spa?
* os parent objset pointer (NULL if root fs)
*
* outputs:
* zplprops values for the zplprops we attach to the master node object
* is_ci true if requested file system will be purely case-insensitive
*
* Determine the settings for utf8only, normalization and
* casesensitivity. Specific values may have been requested by the
* creator and/or we can inherit values from the parent dataset. If
* the file system is of too early a vintage, a creator can not
* request settings for these properties, even if the requested
* setting is the default value. We don't actually want to create dsl
* properties for these, so remove them from the source nvlist after
* processing.
*/
static int
zfs_fill_zplprops_impl(objset_t *os, uint64_t default_zplver,
boolean_t fuids_ok, nvlist_t *createprops, nvlist_t *zplprops,
boolean_t *is_ci)
{
uint64_t zplver = default_zplver;
uint64_t sense = ZFS_PROP_UNDEFINED;
uint64_t norm = ZFS_PROP_UNDEFINED;
uint64_t u8 = ZFS_PROP_UNDEFINED;
ASSERT(zplprops != NULL);
/*
* Pull out creator prop choices, if any.
*/
if (createprops) {
(void) nvlist_lookup_uint64(createprops,
zfs_prop_to_name(ZFS_PROP_VERSION), &zplver);
(void) nvlist_lookup_uint64(createprops,
zfs_prop_to_name(ZFS_PROP_NORMALIZE), &norm);
(void) nvlist_remove_all(createprops,
zfs_prop_to_name(ZFS_PROP_NORMALIZE));
(void) nvlist_lookup_uint64(createprops,
zfs_prop_to_name(ZFS_PROP_UTF8ONLY), &u8);
(void) nvlist_remove_all(createprops,
zfs_prop_to_name(ZFS_PROP_UTF8ONLY));
(void) nvlist_lookup_uint64(createprops,
zfs_prop_to_name(ZFS_PROP_CASE), &sense);
(void) nvlist_remove_all(createprops,
zfs_prop_to_name(ZFS_PROP_CASE));
}
/*
* If the zpl version requested is whacky or the file system
* or pool is version is too "young" to support normalization
* and the creator tried to set a value for one of the props,
* error out.
*/
if ((zplver < ZPL_VERSION_INITIAL || zplver > ZPL_VERSION) ||
(zplver >= ZPL_VERSION_FUID && !fuids_ok) ||
(zplver < ZPL_VERSION_NORMALIZATION &&
(norm != ZFS_PROP_UNDEFINED || u8 != ZFS_PROP_UNDEFINED ||
sense != ZFS_PROP_UNDEFINED)))
return (ENOTSUP);
/*
* Put the version in the zplprops
*/
VERIFY(nvlist_add_uint64(zplprops,
zfs_prop_to_name(ZFS_PROP_VERSION), zplver) == 0);
if (norm == ZFS_PROP_UNDEFINED)
VERIFY(zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &norm) == 0);
VERIFY(nvlist_add_uint64(zplprops,
zfs_prop_to_name(ZFS_PROP_NORMALIZE), norm) == 0);
/*
* If we're normalizing, names must always be valid UTF-8 strings.
*/
if (norm)
u8 = 1;
if (u8 == ZFS_PROP_UNDEFINED)
VERIFY(zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &u8) == 0);
VERIFY(nvlist_add_uint64(zplprops,
zfs_prop_to_name(ZFS_PROP_UTF8ONLY), u8) == 0);
if (sense == ZFS_PROP_UNDEFINED)
VERIFY(zfs_get_zplprop(os, ZFS_PROP_CASE, &sense) == 0);
VERIFY(nvlist_add_uint64(zplprops,
zfs_prop_to_name(ZFS_PROP_CASE), sense) == 0);
if (is_ci)
*is_ci = (sense == ZFS_CASE_INSENSITIVE);
return (0);
}
static int
zfs_fill_zplprops(const char *dataset, nvlist_t *createprops,
nvlist_t *zplprops, boolean_t *is_ci)
{
boolean_t fuids_ok = B_TRUE;
uint64_t zplver = ZPL_VERSION;
objset_t *os = NULL;
char parentname[MAXNAMELEN];
char *cp;
int error;
(void) strlcpy(parentname, dataset, sizeof (parentname));
cp = strrchr(parentname, '/');
ASSERT(cp != NULL);
cp[0] = '\0';
if (zfs_earlier_version(dataset, SPA_VERSION_FUID)) {
zplver = ZPL_VERSION_FUID - 1;
fuids_ok = B_FALSE;
}
/*
* Open parent object set so we can inherit zplprop values.
*/
if ((error = dmu_objset_open(parentname, DMU_OST_ANY,
DS_MODE_USER | DS_MODE_READONLY, &os)) != 0)
return (error);
error = zfs_fill_zplprops_impl(os, zplver, fuids_ok, createprops,
zplprops, is_ci);
dmu_objset_close(os);
return (error);
}
static int
zfs_fill_zplprops_root(uint64_t spa_vers, nvlist_t *createprops,
nvlist_t *zplprops, boolean_t *is_ci)
{
boolean_t fuids_ok = B_TRUE;
uint64_t zplver = ZPL_VERSION;
int error;
if (spa_vers < SPA_VERSION_FUID) {
zplver = ZPL_VERSION_FUID - 1;
fuids_ok = B_FALSE;
}
error = zfs_fill_zplprops_impl(NULL, zplver, fuids_ok, createprops,
zplprops, is_ci);
return (error);
}
/*
* inputs:
* zc_objset_type type of objset to create (fs vs zvol)
* zc_name name of new objset
* zc_value name of snapshot to clone from (may be empty)
* zc_nvlist_src{_size} nvlist of properties to apply
*
* outputs: none
*/
static int
zfs_ioc_create(zfs_cmd_t *zc)
{
objset_t *clone;
int error = 0;
zfs_creat_t zct;
nvlist_t *nvprops = NULL;
void (*cbfunc)(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx);
dmu_objset_type_t type = zc->zc_objset_type;
switch (type) {
case DMU_OST_ZFS:
cbfunc = zfs_create_cb;
break;
case DMU_OST_ZVOL:
cbfunc = zvol_create_cb;
break;
default:
cbfunc = NULL;
break;
}
if (strchr(zc->zc_name, '@') ||
strchr(zc->zc_name, '%'))
return (EINVAL);
if (zc->zc_nvlist_src != 0 &&
(error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size,
&nvprops)) != 0)
return (error);
zct.zct_zplprops = NULL;
zct.zct_props = nvprops;
if (zc->zc_value[0] != '\0') {
/*
* We're creating a clone of an existing snapshot.
*/
zc->zc_value[sizeof (zc->zc_value) - 1] = '\0';
if (dataset_namecheck(zc->zc_value, NULL, NULL) != 0) {
nvlist_free(nvprops);
return (EINVAL);
}
error = dmu_objset_open(zc->zc_value, type,
DS_MODE_USER | DS_MODE_READONLY, &clone);
if (error) {
nvlist_free(nvprops);
return (error);
}
error = dmu_objset_create(zc->zc_name, type, clone, 0,
NULL, NULL);
if (error) {
dmu_objset_close(clone);
nvlist_free(nvprops);
return (error);
}
dmu_objset_close(clone);
} else {
boolean_t is_insensitive = B_FALSE;
if (cbfunc == NULL) {
nvlist_free(nvprops);
return (EINVAL);
}
if (type == DMU_OST_ZVOL) {
uint64_t volsize, volblocksize;
if (nvprops == NULL ||
nvlist_lookup_uint64(nvprops,
zfs_prop_to_name(ZFS_PROP_VOLSIZE),
&volsize) != 0) {
nvlist_free(nvprops);
return (EINVAL);
}
if ((error = nvlist_lookup_uint64(nvprops,
zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE),
&volblocksize)) != 0 && error != ENOENT) {
nvlist_free(nvprops);
return (EINVAL);
}
if (error != 0)
volblocksize = zfs_prop_default_numeric(
ZFS_PROP_VOLBLOCKSIZE);
if ((error = zvol_check_volblocksize(
volblocksize)) != 0 ||
(error = zvol_check_volsize(volsize,
volblocksize)) != 0) {
nvlist_free(nvprops);
return (error);
}
} else if (type == DMU_OST_ZFS) {
int error;
/*
* We have to have normalization and
* case-folding flags correct when we do the
* file system creation, so go figure them out
* now.
*/
VERIFY(nvlist_alloc(&zct.zct_zplprops,
NV_UNIQUE_NAME, KM_SLEEP) == 0);
error = zfs_fill_zplprops(zc->zc_name, nvprops,
zct.zct_zplprops, &is_insensitive);
if (error != 0) {
nvlist_free(nvprops);
nvlist_free(zct.zct_zplprops);
return (error);
}
}
error = dmu_objset_create(zc->zc_name, type, NULL,
is_insensitive ? DS_FLAG_CI_DATASET : 0, cbfunc, &zct);
nvlist_free(zct.zct_zplprops);
}
/*
* It would be nice to do this atomically.
*/
if (error == 0) {
if ((error = zfs_set_prop_nvlist(zc->zc_name, nvprops)) != 0)
(void) dmu_objset_destroy(zc->zc_name);
}
nvlist_free(nvprops);
return (error);
}
struct snap_prop_arg {
nvlist_t *nvprops;
const char *snapname;
};
static int
set_snap_props(char *name, void *arg)
{
struct snap_prop_arg *snpa = arg;
int len = strlen(name) + strlen(snpa->snapname) + 2;
char *buf = kmem_alloc(len, KM_SLEEP);
int err;
(void) snprintf(buf, len, "%s@%s", name, snpa->snapname);
err = zfs_set_prop_nvlist(buf, snpa->nvprops);
if (err)
(void) dmu_objset_destroy(buf);
kmem_free(buf, len);
return (err);
}
/*
* inputs:
* zc_name name of filesystem
* zc_value short name of snapshot
* zc_cookie recursive flag
*
* outputs: none
*/
static int
zfs_ioc_snapshot(zfs_cmd_t *zc)
{
nvlist_t *nvprops = NULL;
int error;
boolean_t recursive = zc->zc_cookie;
if (snapshot_namecheck(zc->zc_value, NULL, NULL) != 0)
return (EINVAL);
if (zc->zc_nvlist_src != 0 &&
(error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size,
&nvprops)) != 0)
return (error);
error = dmu_objset_snapshot(zc->zc_name, zc->zc_value, recursive);
/*
* It would be nice to do this atomically.
*/
if (error == 0) {
struct snap_prop_arg snpa;
snpa.nvprops = nvprops;
snpa.snapname = zc->zc_value;
if (recursive) {
error = dmu_objset_find(zc->zc_name,
set_snap_props, &snpa, DS_FIND_CHILDREN);
if (error) {
(void) dmu_snapshots_destroy(zc->zc_name,
zc->zc_value);
}
} else {
error = set_snap_props(zc->zc_name, &snpa);
}
}
nvlist_free(nvprops);
return (error);
}
int
zfs_unmount_snap(char *name, void *arg)
{
vfs_t *vfsp = NULL;
if (arg) {
char *snapname = arg;
int len = strlen(name) + strlen(snapname) + 2;
char *buf = kmem_alloc(len, KM_SLEEP);
(void) strcpy(buf, name);
(void) strcat(buf, "@");
(void) strcat(buf, snapname);
vfsp = zfs_get_vfs(buf);
kmem_free(buf, len);
} else if (strchr(name, '@')) {
vfsp = zfs_get_vfs(name);
}
if (vfsp) {
/*
* Always force the unmount for snapshots.
*/
int flag = MS_FORCE;
int err;
if ((err = vn_vfswlock(vfsp->vfs_vnodecovered)) != 0) {
VFS_RELE(vfsp);
return (err);
}
VFS_RELE(vfsp);
if ((err = dounmount(vfsp, flag, kcred)) != 0)
return (err);
}
return (0);
}
/*
* inputs:
* zc_name name of filesystem
* zc_value short name of snapshot
*
* outputs: none
*/
static int
zfs_ioc_destroy_snaps(zfs_cmd_t *zc)
{
int err;
if (snapshot_namecheck(zc->zc_value, NULL, NULL) != 0)
return (EINVAL);
err = dmu_objset_find(zc->zc_name,
zfs_unmount_snap, zc->zc_value, DS_FIND_CHILDREN);
if (err)
return (err);
return (dmu_snapshots_destroy(zc->zc_name, zc->zc_value));
}
/*
* inputs:
* zc_name name of dataset to destroy
* zc_objset_type type of objset
*
* outputs: none
*/
static int
zfs_ioc_destroy(zfs_cmd_t *zc)
{
if (strchr(zc->zc_name, '@') && zc->zc_objset_type == DMU_OST_ZFS) {
int err = zfs_unmount_snap(zc->zc_name, NULL);
if (err)
return (err);
}
return (dmu_objset_destroy(zc->zc_name));
}
/*
* inputs:
* zc_name name of dataset to rollback (to most recent snapshot)
*
* outputs: none
*/
static int
zfs_ioc_rollback(zfs_cmd_t *zc)
{
objset_t *os;
int error;
zfsvfs_t *zfsvfs = NULL;
/*
* Get the zfsvfs for the receiving objset. There
* won't be one if we're operating on a zvol, if the
* objset doesn't exist yet, or is not mounted.
*/
error = dmu_objset_open(zc->zc_name, DMU_OST_ANY, DS_MODE_USER, &os);
if (error)
return (error);
if (dmu_objset_type(os) == DMU_OST_ZFS) {
mutex_enter(&os->os->os_user_ptr_lock);
zfsvfs = dmu_objset_get_user(os);
if (zfsvfs != NULL)
VFS_HOLD(zfsvfs->z_vfs);
mutex_exit(&os->os->os_user_ptr_lock);
}
if (zfsvfs != NULL) {
char *osname;
int mode;
osname = kmem_alloc(MAXNAMELEN, KM_SLEEP);
error = zfs_suspend_fs(zfsvfs, osname, &mode);
if (error == 0) {
int resume_err;
ASSERT(strcmp(osname, zc->zc_name) == 0);
error = dmu_objset_rollback(os);
resume_err = zfs_resume_fs(zfsvfs, osname, mode);
error = error ? error : resume_err;
} else {
dmu_objset_close(os);
}
kmem_free(osname, MAXNAMELEN);
VFS_RELE(zfsvfs->z_vfs);
} else {
error = dmu_objset_rollback(os);
}
/* Note, the dmu_objset_rollback() releases the objset for us. */
return (error);
}
/*
* inputs:
* zc_name old name of dataset
* zc_value new name of dataset
* zc_cookie recursive flag (only valid for snapshots)
*
* outputs: none
*/
static int
zfs_ioc_rename(zfs_cmd_t *zc)
{
boolean_t recursive = zc->zc_cookie & 1;
zc->zc_value[sizeof (zc->zc_value) - 1] = '\0';
if (dataset_namecheck(zc->zc_value, NULL, NULL) != 0 ||
strchr(zc->zc_value, '%'))
return (EINVAL);
/*
* Unmount snapshot unless we're doing a recursive rename,
* in which case the dataset code figures out which snapshots
* to unmount.
*/
if (!recursive && strchr(zc->zc_name, '@') != NULL &&
zc->zc_objset_type == DMU_OST_ZFS) {
int err = zfs_unmount_snap(zc->zc_name, NULL);
if (err)
return (err);
}
return (dmu_objset_rename(zc->zc_name, zc->zc_value, recursive));
}
static void
clear_props(char *dataset, nvlist_t *props)
{
zfs_cmd_t *zc;
nvpair_t *prop;
if (props == NULL)
return;
zc = kmem_alloc(sizeof (zfs_cmd_t), KM_SLEEP);
(void) strcpy(zc->zc_name, dataset);
for (prop = nvlist_next_nvpair(props, NULL); prop;
prop = nvlist_next_nvpair(props, prop)) {
(void) strcpy(zc->zc_value, nvpair_name(prop));
if (zfs_secpolicy_inherit(zc, CRED()) == 0)
(void) zfs_ioc_inherit_prop(zc);
}
kmem_free(zc, sizeof (zfs_cmd_t));
}
/*
* inputs:
* zc_name name of containing filesystem
* zc_nvlist_src{_size} nvlist of properties to apply
* zc_value name of snapshot to create
* zc_string name of clone origin (if DRR_FLAG_CLONE)
* zc_cookie file descriptor to recv from
* zc_begin_record the BEGIN record of the stream (not byteswapped)
* zc_guid force flag
*
* outputs:
* zc_cookie number of bytes read
*/
static int
zfs_ioc_recv(zfs_cmd_t *zc)
{
file_t *fp;
objset_t *os;
dmu_recv_cookie_t drc;
zfsvfs_t *zfsvfs = NULL;
boolean_t force = (boolean_t)zc->zc_guid;
int error, fd;
offset_t off;
nvlist_t *props = NULL;
nvlist_t *origprops = NULL;
objset_t *origin = NULL;
char *tosnap;
char tofs[ZFS_MAXNAMELEN];
if (dataset_namecheck(zc->zc_value, NULL, NULL) != 0 ||
strchr(zc->zc_value, '@') == NULL ||
strchr(zc->zc_value, '%'))
return (EINVAL);
(void) strcpy(tofs, zc->zc_value);
tosnap = strchr(tofs, '@');
*tosnap = '\0';
tosnap++;
if (zc->zc_nvlist_src != 0 &&
(error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size,
&props)) != 0)
return (error);
fd = zc->zc_cookie;
fp = getf(fd);
if (fp == NULL) {
nvlist_free(props);
return (EBADF);
}
if (dmu_objset_open(tofs, DMU_OST_ANY,
DS_MODE_USER | DS_MODE_READONLY, &os) == 0) {
/*
* Try to get the zfsvfs for the receiving objset.
* There won't be one if we're operating on a zvol,
* if the objset doesn't exist yet, or is not mounted.
*/
mutex_enter(&os->os->os_user_ptr_lock);
if (zfsvfs = dmu_objset_get_user(os)) {
if (!mutex_tryenter(&zfsvfs->z_online_recv_lock)) {
mutex_exit(&os->os->os_user_ptr_lock);
dmu_objset_close(os);
zfsvfs = NULL;
error = EBUSY;
goto out;
}
VFS_HOLD(zfsvfs->z_vfs);
}
mutex_exit(&os->os->os_user_ptr_lock);
/*
* If new properties are supplied, they are to completely
* replace the existing ones, so stash away the existing ones.
*/
if (props)
(void) dsl_prop_get_all(os, &origprops, TRUE);
dmu_objset_close(os);
}
if (zc->zc_string[0]) {
error = dmu_objset_open(zc->zc_string, DMU_OST_ANY,
DS_MODE_USER | DS_MODE_READONLY, &origin);
if (error)
goto out;
}
error = dmu_recv_begin(tofs, tosnap, &zc->zc_begin_record,
force, origin, zfsvfs != NULL, &drc);
if (origin)
dmu_objset_close(origin);
if (error)
goto out;
/*
* Reset properties. We do this before we receive the stream
* so that the properties are applied to the new data.
*/
if (props) {
clear_props(tofs, origprops);
/*
* XXX - Note, this is all-or-nothing; should be best-effort.
*/
(void) zfs_set_prop_nvlist(tofs, props);
}
off = fp->f_offset;
error = dmu_recv_stream(&drc, fp->f_vnode, &off);
if (error == 0 && zfsvfs) {
char *osname;
int mode;
/* online recv */
osname = kmem_alloc(MAXNAMELEN, KM_SLEEP);
error = zfs_suspend_fs(zfsvfs, osname, &mode);
if (error == 0) {
int resume_err;
error = dmu_recv_end(&drc);
resume_err = zfs_resume_fs(zfsvfs, osname, mode);
error = error ? error : resume_err;
} else {
dmu_recv_abort_cleanup(&drc);
}
kmem_free(osname, MAXNAMELEN);
} else if (error == 0) {
error = dmu_recv_end(&drc);
}
zc->zc_cookie = off - fp->f_offset;
if (VOP_SEEK(fp->f_vnode, fp->f_offset, &off, NULL) == 0)
fp->f_offset = off;
/*
* On error, restore the original props.
*/
if (error && props) {
clear_props(tofs, props);
(void) zfs_set_prop_nvlist(tofs, origprops);
}
out:
if (zfsvfs) {
mutex_exit(&zfsvfs->z_online_recv_lock);
VFS_RELE(zfsvfs->z_vfs);
}
nvlist_free(props);
nvlist_free(origprops);
releasef(fd);
return (error);
}
/*
* inputs:
* zc_name name of snapshot to send
* zc_value short name of incremental fromsnap (may be empty)
* zc_cookie file descriptor to send stream to
* zc_obj fromorigin flag (mutually exclusive with zc_value)
*
* outputs: none
*/
static int
zfs_ioc_send(zfs_cmd_t *zc)
{
objset_t *fromsnap = NULL;
objset_t *tosnap;
file_t *fp;
int error;
offset_t off;
error = dmu_objset_open(zc->zc_name, DMU_OST_ANY,
DS_MODE_USER | DS_MODE_READONLY, &tosnap);
if (error)
return (error);
if (zc->zc_value[0] != '\0') {
char *buf;
char *cp;
buf = kmem_alloc(MAXPATHLEN, KM_SLEEP);
(void) strncpy(buf, zc->zc_name, MAXPATHLEN);
cp = strchr(buf, '@');
if (cp)
*(cp+1) = 0;
(void) strncat(buf, zc->zc_value, MAXPATHLEN);
error = dmu_objset_open(buf, DMU_OST_ANY,
DS_MODE_USER | DS_MODE_READONLY, &fromsnap);
kmem_free(buf, MAXPATHLEN);
if (error) {
dmu_objset_close(tosnap);
return (error);
}
}
fp = getf(zc->zc_cookie);
if (fp == NULL) {
dmu_objset_close(tosnap);
if (fromsnap)
dmu_objset_close(fromsnap);
return (EBADF);
}
off = fp->f_offset;
error = dmu_sendbackup(tosnap, fromsnap, zc->zc_obj, fp->f_vnode, &off);
if (VOP_SEEK(fp->f_vnode, fp->f_offset, &off, NULL) == 0)
fp->f_offset = off;
releasef(zc->zc_cookie);
if (fromsnap)
dmu_objset_close(fromsnap);
dmu_objset_close(tosnap);
return (error);
}
static int
zfs_ioc_inject_fault(zfs_cmd_t *zc)
{
int id, error;
error = zio_inject_fault(zc->zc_name, (int)zc->zc_guid, &id,
&zc->zc_inject_record);
if (error == 0)
zc->zc_guid = (uint64_t)id;
return (error);
}
static int
zfs_ioc_clear_fault(zfs_cmd_t *zc)
{
return (zio_clear_fault((int)zc->zc_guid));
}
static int
zfs_ioc_inject_list_next(zfs_cmd_t *zc)
{
int id = (int)zc->zc_guid;
int error;
error = zio_inject_list_next(&id, zc->zc_name, sizeof (zc->zc_name),
&zc->zc_inject_record);
zc->zc_guid = id;
return (error);
}
static int
zfs_ioc_error_log(zfs_cmd_t *zc)
{
spa_t *spa;
int error;
size_t count = (size_t)zc->zc_nvlist_dst_size;
if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0)
return (error);
error = spa_get_errlog(spa, (void *)(uintptr_t)zc->zc_nvlist_dst,
&count);
if (error == 0)
zc->zc_nvlist_dst_size = count;
else
zc->zc_nvlist_dst_size = spa_get_errlog_size(spa);
spa_close(spa, FTAG);
return (error);
}
static int
zfs_ioc_clear(zfs_cmd_t *zc)
{
spa_t *spa;
vdev_t *vd;
int error;
/*
* On zpool clear we also fix up missing slogs
*/
mutex_enter(&spa_namespace_lock);
spa = spa_lookup(zc->zc_name);
if (spa == NULL) {
mutex_exit(&spa_namespace_lock);
return (EIO);
}
if (spa->spa_log_state == SPA_LOG_MISSING) {
/* we need to let spa_open/spa_load clear the chains */
spa->spa_log_state = SPA_LOG_CLEAR;
}
mutex_exit(&spa_namespace_lock);
if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0)
return (error);
spa_vdev_state_enter(spa);
if (zc->zc_guid == 0) {
vd = NULL;
} else {
vd = spa_lookup_by_guid(spa, zc->zc_guid, B_TRUE);
if (vd == NULL) {
(void) spa_vdev_state_exit(spa, NULL, ENODEV);
spa_close(spa, FTAG);
return (ENODEV);
}
}
vdev_clear(spa, vd);
(void) spa_vdev_state_exit(spa, NULL, 0);
/*
* Resume any suspended I/Os.
*/
zio_resume(spa);
spa_close(spa, FTAG);
return (0);
}
/*
* inputs:
* zc_name name of filesystem
* zc_value name of origin snapshot
*
* outputs: none
*/
static int
zfs_ioc_promote(zfs_cmd_t *zc)
{
char *cp;
/*
* We don't need to unmount *all* the origin fs's snapshots, but
* it's easier.
*/
cp = strchr(zc->zc_value, '@');
if (cp)
*cp = '\0';
(void) dmu_objset_find(zc->zc_value,
zfs_unmount_snap, NULL, DS_FIND_SNAPSHOTS);
return (dsl_dataset_promote(zc->zc_name));
}
/*
* We don't want to have a hard dependency
* against some special symbols in sharefs
* nfs, and smbsrv. Determine them if needed when
* the first file system is shared.
* Neither sharefs, nfs or smbsrv are unloadable modules.
*/
int (*znfsexport_fs)(void *arg);
int (*zshare_fs)(enum sharefs_sys_op, share_t *, uint32_t);
int (*zsmbexport_fs)(void *arg, boolean_t add_share);
int zfs_nfsshare_inited;
int zfs_smbshare_inited;
ddi_modhandle_t nfs_mod;
ddi_modhandle_t sharefs_mod;
ddi_modhandle_t smbsrv_mod;
kmutex_t zfs_share_lock;
static int
zfs_init_sharefs()
{
int error;
ASSERT(MUTEX_HELD(&zfs_share_lock));
/* Both NFS and SMB shares also require sharetab support. */
if (sharefs_mod == NULL && ((sharefs_mod =
ddi_modopen("fs/sharefs",
KRTLD_MODE_FIRST, &error)) == NULL)) {
return (ENOSYS);
}
if (zshare_fs == NULL && ((zshare_fs =
(int (*)(enum sharefs_sys_op, share_t *, uint32_t))
ddi_modsym(sharefs_mod, "sharefs_impl", &error)) == NULL)) {
return (ENOSYS);
}
return (0);
}
static int
zfs_ioc_share(zfs_cmd_t *zc)
{
int error;
int opcode;
switch (zc->zc_share.z_sharetype) {
case ZFS_SHARE_NFS:
case ZFS_UNSHARE_NFS:
if (zfs_nfsshare_inited == 0) {
mutex_enter(&zfs_share_lock);
if (nfs_mod == NULL && ((nfs_mod = ddi_modopen("fs/nfs",
KRTLD_MODE_FIRST, &error)) == NULL)) {
mutex_exit(&zfs_share_lock);
return (ENOSYS);
}
if (znfsexport_fs == NULL &&
((znfsexport_fs = (int (*)(void *))
ddi_modsym(nfs_mod,
"nfs_export", &error)) == NULL)) {
mutex_exit(&zfs_share_lock);
return (ENOSYS);
}
error = zfs_init_sharefs();
if (error) {
mutex_exit(&zfs_share_lock);
return (ENOSYS);
}
zfs_nfsshare_inited = 1;
mutex_exit(&zfs_share_lock);
}
break;
case ZFS_SHARE_SMB:
case ZFS_UNSHARE_SMB:
if (zfs_smbshare_inited == 0) {
mutex_enter(&zfs_share_lock);
if (smbsrv_mod == NULL && ((smbsrv_mod =
ddi_modopen("drv/smbsrv",
KRTLD_MODE_FIRST, &error)) == NULL)) {
mutex_exit(&zfs_share_lock);
return (ENOSYS);
}
if (zsmbexport_fs == NULL && ((zsmbexport_fs =
(int (*)(void *, boolean_t))ddi_modsym(smbsrv_mod,
"smb_server_share", &error)) == NULL)) {
mutex_exit(&zfs_share_lock);
return (ENOSYS);
}
error = zfs_init_sharefs();
if (error) {
mutex_exit(&zfs_share_lock);
return (ENOSYS);
}
zfs_smbshare_inited = 1;
mutex_exit(&zfs_share_lock);
}
break;
default:
return (EINVAL);
}
switch (zc->zc_share.z_sharetype) {
case ZFS_SHARE_NFS:
case ZFS_UNSHARE_NFS:
if (error =
znfsexport_fs((void *)
(uintptr_t)zc->zc_share.z_exportdata))
return (error);
break;
case ZFS_SHARE_SMB:
case ZFS_UNSHARE_SMB:
if (error = zsmbexport_fs((void *)
(uintptr_t)zc->zc_share.z_exportdata,
zc->zc_share.z_sharetype == ZFS_SHARE_SMB ?
B_TRUE : B_FALSE)) {
return (error);
}
break;
}
opcode = (zc->zc_share.z_sharetype == ZFS_SHARE_NFS ||
zc->zc_share.z_sharetype == ZFS_SHARE_SMB) ?
SHAREFS_ADD : SHAREFS_REMOVE;
/*
* Add or remove share from sharetab
*/
error = zshare_fs(opcode,
(void *)(uintptr_t)zc->zc_share.z_sharedata,
zc->zc_share.z_sharemax);
return (error);
}
/*
* pool create, destroy, and export don't log the history as part of
* zfsdev_ioctl, but rather zfs_ioc_pool_create, and zfs_ioc_pool_export
* do the logging of those commands.
*/
static zfs_ioc_vec_t zfs_ioc_vec[] = {
{ zfs_ioc_pool_create, zfs_secpolicy_config, POOL_NAME, B_FALSE },
{ zfs_ioc_pool_destroy, zfs_secpolicy_config, POOL_NAME, B_FALSE },
{ zfs_ioc_pool_import, zfs_secpolicy_config, POOL_NAME, B_TRUE },
{ zfs_ioc_pool_export, zfs_secpolicy_config, POOL_NAME, B_FALSE },
{ zfs_ioc_pool_configs, zfs_secpolicy_none, NO_NAME, B_FALSE },
{ zfs_ioc_pool_stats, zfs_secpolicy_read, POOL_NAME, B_FALSE },
{ zfs_ioc_pool_tryimport, zfs_secpolicy_config, NO_NAME, B_FALSE },
{ zfs_ioc_pool_scrub, zfs_secpolicy_config, POOL_NAME, B_TRUE },
{ zfs_ioc_pool_freeze, zfs_secpolicy_config, NO_NAME, B_FALSE },
{ zfs_ioc_pool_upgrade, zfs_secpolicy_config, POOL_NAME, B_TRUE },
{ zfs_ioc_pool_get_history, zfs_secpolicy_config, POOL_NAME, B_FALSE },
{ zfs_ioc_vdev_add, zfs_secpolicy_config, POOL_NAME, B_TRUE },
{ zfs_ioc_vdev_remove, zfs_secpolicy_config, POOL_NAME, B_TRUE },
{ zfs_ioc_vdev_set_state, zfs_secpolicy_config, POOL_NAME, B_TRUE },
{ zfs_ioc_vdev_attach, zfs_secpolicy_config, POOL_NAME, B_TRUE },
{ zfs_ioc_vdev_detach, zfs_secpolicy_config, POOL_NAME, B_TRUE },
{ zfs_ioc_vdev_setpath, zfs_secpolicy_config, POOL_NAME, B_FALSE },
{ zfs_ioc_objset_stats, zfs_secpolicy_read, DATASET_NAME, B_FALSE },
{ zfs_ioc_objset_zplprops, zfs_secpolicy_read, DATASET_NAME, B_FALSE },
{ zfs_ioc_dataset_list_next, zfs_secpolicy_read,
DATASET_NAME, B_FALSE },
{ zfs_ioc_snapshot_list_next, zfs_secpolicy_read,
DATASET_NAME, B_FALSE },
{ zfs_ioc_set_prop, zfs_secpolicy_none, DATASET_NAME, B_TRUE },
{ zfs_ioc_create_minor, zfs_secpolicy_minor, DATASET_NAME, B_FALSE },
{ zfs_ioc_remove_minor, zfs_secpolicy_minor, DATASET_NAME, B_FALSE },
{ zfs_ioc_create, zfs_secpolicy_create, DATASET_NAME, B_TRUE },
{ zfs_ioc_destroy, zfs_secpolicy_destroy, DATASET_NAME, B_TRUE },
{ zfs_ioc_rollback, zfs_secpolicy_rollback, DATASET_NAME, B_TRUE },
{ zfs_ioc_rename, zfs_secpolicy_rename, DATASET_NAME, B_TRUE },
{ zfs_ioc_recv, zfs_secpolicy_receive, DATASET_NAME, B_TRUE },
{ zfs_ioc_send, zfs_secpolicy_send, DATASET_NAME, B_TRUE },
{ zfs_ioc_inject_fault, zfs_secpolicy_inject, NO_NAME, B_FALSE },
{ zfs_ioc_clear_fault, zfs_secpolicy_inject, NO_NAME, B_FALSE },
{ zfs_ioc_inject_list_next, zfs_secpolicy_inject, NO_NAME, B_FALSE },
{ zfs_ioc_error_log, zfs_secpolicy_inject, POOL_NAME, B_FALSE },
{ zfs_ioc_clear, zfs_secpolicy_config, POOL_NAME, B_TRUE },
{ zfs_ioc_promote, zfs_secpolicy_promote, DATASET_NAME, B_TRUE },
{ zfs_ioc_destroy_snaps, zfs_secpolicy_destroy, DATASET_NAME, B_TRUE },
{ zfs_ioc_snapshot, zfs_secpolicy_snapshot, DATASET_NAME, B_TRUE },
{ zfs_ioc_dsobj_to_dsname, zfs_secpolicy_config, POOL_NAME, B_FALSE },
{ zfs_ioc_obj_to_path, zfs_secpolicy_config, NO_NAME, B_FALSE },
{ zfs_ioc_pool_set_props, zfs_secpolicy_config, POOL_NAME, B_TRUE },
{ zfs_ioc_pool_get_props, zfs_secpolicy_read, POOL_NAME, B_FALSE },
{ zfs_ioc_set_fsacl, zfs_secpolicy_fsacl, DATASET_NAME, B_TRUE },
{ zfs_ioc_get_fsacl, zfs_secpolicy_read, DATASET_NAME, B_FALSE },
{ zfs_ioc_iscsi_perm_check, zfs_secpolicy_iscsi,
DATASET_NAME, B_FALSE },
{ zfs_ioc_share, zfs_secpolicy_share, DATASET_NAME, B_FALSE },
{ zfs_ioc_inherit_prop, zfs_secpolicy_inherit, DATASET_NAME, B_TRUE },
};
static int
zfsdev_ioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *cr, int *rvalp)
{
zfs_cmd_t *zc;
uint_t vec;
int error, rc;
if (getminor(dev) != 0)
return (zvol_ioctl(dev, cmd, arg, flag, cr, rvalp));
vec = cmd - ZFS_IOC;
ASSERT3U(getmajor(dev), ==, ddi_driver_major(zfs_dip));
if (vec >= sizeof (zfs_ioc_vec) / sizeof (zfs_ioc_vec[0]))
return (EINVAL);
zc = kmem_zalloc(sizeof (zfs_cmd_t), KM_SLEEP);
error = xcopyin((void *)arg, zc, sizeof (zfs_cmd_t));
if (error == 0)
error = zfs_ioc_vec[vec].zvec_secpolicy(zc, cr);
/*
* Ensure that all pool/dataset names are valid before we pass down to
* the lower layers.
*/
if (error == 0) {
zc->zc_name[sizeof (zc->zc_name) - 1] = '\0';
switch (zfs_ioc_vec[vec].zvec_namecheck) {
case POOL_NAME:
if (pool_namecheck(zc->zc_name, NULL, NULL) != 0)
error = EINVAL;
break;
case DATASET_NAME:
if (dataset_namecheck(zc->zc_name, NULL, NULL) != 0)
error = EINVAL;
break;
case NO_NAME:
break;
}
}
if (error == 0)
error = zfs_ioc_vec[vec].zvec_func(zc);
rc = xcopyout(zc, (void *)arg, sizeof (zfs_cmd_t));
if (error == 0) {
error = rc;
if (zfs_ioc_vec[vec].zvec_his_log == B_TRUE)
zfs_log_history(zc);
}
kmem_free(zc, sizeof (zfs_cmd_t));
return (error);
}
static int
zfs_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
{
if (cmd != DDI_ATTACH)
return (DDI_FAILURE);
if (ddi_create_minor_node(dip, "zfs", S_IFCHR, 0,
DDI_PSEUDO, 0) == DDI_FAILURE)
return (DDI_FAILURE);
zfs_dip = dip;
ddi_report_dev(dip);
return (DDI_SUCCESS);
}
static int
zfs_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
{
if (spa_busy() || zfs_busy() || zvol_busy())
return (DDI_FAILURE);
if (cmd != DDI_DETACH)
return (DDI_FAILURE);
zfs_dip = NULL;
ddi_prop_remove_all(dip);
ddi_remove_minor_node(dip, NULL);
return (DDI_SUCCESS);
}
/*ARGSUSED*/
static int
zfs_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
{
switch (infocmd) {
case DDI_INFO_DEVT2DEVINFO:
*result = zfs_dip;
return (DDI_SUCCESS);
case DDI_INFO_DEVT2INSTANCE:
*result = (void *)0;
return (DDI_SUCCESS);
}
return (DDI_FAILURE);
}
/*
* OK, so this is a little weird.
*
* /dev/zfs is the control node, i.e. minor 0.
* /dev/zvol/[r]dsk/pool/dataset are the zvols, minor > 0.
*
* /dev/zfs has basically nothing to do except serve up ioctls,
* so most of the standard driver entry points are in zvol.c.
*/
static struct cb_ops zfs_cb_ops = {
zvol_open, /* open */
zvol_close, /* close */
zvol_strategy, /* strategy */
nodev, /* print */
zvol_dump, /* dump */
zvol_read, /* read */
zvol_write, /* write */
zfsdev_ioctl, /* ioctl */
nodev, /* devmap */
nodev, /* mmap */
nodev, /* segmap */
nochpoll, /* poll */
ddi_prop_op, /* prop_op */
NULL, /* streamtab */
D_NEW | D_MP | D_64BIT, /* Driver compatibility flag */
CB_REV, /* version */
nodev, /* async read */
nodev, /* async write */
};
static struct dev_ops zfs_dev_ops = {
DEVO_REV, /* version */
0, /* refcnt */
zfs_info, /* info */
nulldev, /* identify */
nulldev, /* probe */
zfs_attach, /* attach */
zfs_detach, /* detach */
nodev, /* reset */
&zfs_cb_ops, /* driver operations */
NULL, /* no bus operations */
NULL, /* power */
ddi_quiesce_not_needed, /* quiesce */
};
static struct modldrv zfs_modldrv = {
&mod_driverops,
"ZFS storage pool",
&zfs_dev_ops
};
static struct modlinkage modlinkage = {
MODREV_1,
(void *)&zfs_modlfs,
(void *)&zfs_modldrv,
NULL
};
uint_t zfs_fsyncer_key;
extern uint_t rrw_tsd_key;
int
_init(void)
{
int error;
spa_init(FREAD | FWRITE);
zfs_init();
zvol_init();
if ((error = mod_install(&modlinkage)) != 0) {
zvol_fini();
zfs_fini();
spa_fini();
return (error);
}
tsd_create(&zfs_fsyncer_key, NULL);
tsd_create(&rrw_tsd_key, NULL);
error = ldi_ident_from_mod(&modlinkage, &zfs_li);
ASSERT(error == 0);
mutex_init(&zfs_share_lock, NULL, MUTEX_DEFAULT, NULL);
return (0);
}
int
_fini(void)
{
int error;
if (spa_busy() || zfs_busy() || zvol_busy() || zio_injection_enabled)
return (EBUSY);
if ((error = mod_remove(&modlinkage)) != 0)
return (error);
zvol_fini();
zfs_fini();
spa_fini();
if (zfs_nfsshare_inited)
(void) ddi_modclose(nfs_mod);
if (zfs_smbshare_inited)
(void) ddi_modclose(smbsrv_mod);
if (zfs_nfsshare_inited || zfs_smbshare_inited)
(void) ddi_modclose(sharefs_mod);
tsd_destroy(&zfs_fsyncer_key);
ldi_ident_release(zfs_li);
zfs_li = NULL;
mutex_destroy(&zfs_share_lock);
return (error);
}
int
_info(struct modinfo *modinfop)
{
return (mod_info(&modlinkage, modinfop));
}