zfs/module/zfs/vdev_mirror.c

972 lines
27 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2010 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/*
* Copyright (c) 2012, 2015 by Delphix. All rights reserved.
*/
#include <sys/zfs_context.h>
#include <sys/spa.h>
#include <sys/spa_impl.h>
#include <sys/dsl_pool.h>
#include <sys/dsl_scan.h>
#include <sys/vdev_impl.h>
#include <sys/vdev_draid.h>
#include <sys/zio.h>
#include <sys/abd.h>
#include <sys/fs/zfs.h>
/*
* Vdev mirror kstats
*/
static kstat_t *mirror_ksp = NULL;
typedef struct mirror_stats {
kstat_named_t vdev_mirror_stat_rotating_linear;
kstat_named_t vdev_mirror_stat_rotating_offset;
kstat_named_t vdev_mirror_stat_rotating_seek;
kstat_named_t vdev_mirror_stat_non_rotating_linear;
kstat_named_t vdev_mirror_stat_non_rotating_seek;
kstat_named_t vdev_mirror_stat_preferred_found;
kstat_named_t vdev_mirror_stat_preferred_not_found;
} mirror_stats_t;
static mirror_stats_t mirror_stats = {
/* New I/O follows directly the last I/O */
{ "rotating_linear", KSTAT_DATA_UINT64 },
/* New I/O is within zfs_vdev_mirror_rotating_seek_offset of the last */
{ "rotating_offset", KSTAT_DATA_UINT64 },
/* New I/O requires random seek */
{ "rotating_seek", KSTAT_DATA_UINT64 },
/* New I/O follows directly the last I/O (nonrot) */
{ "non_rotating_linear", KSTAT_DATA_UINT64 },
/* New I/O requires random seek (nonrot) */
{ "non_rotating_seek", KSTAT_DATA_UINT64 },
/* Preferred child vdev found */
{ "preferred_found", KSTAT_DATA_UINT64 },
/* Preferred child vdev not found or equal load */
{ "preferred_not_found", KSTAT_DATA_UINT64 },
};
#define MIRROR_STAT(stat) (mirror_stats.stat.value.ui64)
#define MIRROR_INCR(stat, val) atomic_add_64(&MIRROR_STAT(stat), val)
#define MIRROR_BUMP(stat) MIRROR_INCR(stat, 1)
void
vdev_mirror_stat_init(void)
{
mirror_ksp = kstat_create("zfs", 0, "vdev_mirror_stats",
"misc", KSTAT_TYPE_NAMED,
sizeof (mirror_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
if (mirror_ksp != NULL) {
mirror_ksp->ks_data = &mirror_stats;
kstat_install(mirror_ksp);
}
}
void
vdev_mirror_stat_fini(void)
{
if (mirror_ksp != NULL) {
kstat_delete(mirror_ksp);
mirror_ksp = NULL;
}
}
/*
* Virtual device vector for mirroring.
*/
typedef struct mirror_child {
vdev_t *mc_vd;
uint64_t mc_offset;
int mc_error;
int mc_load;
uint8_t mc_tried;
uint8_t mc_skipped;
uint8_t mc_speculative;
uint8_t mc_rebuilding;
} mirror_child_t;
typedef struct mirror_map {
int *mm_preferred;
int mm_preferred_cnt;
int mm_children;
boolean_t mm_resilvering;
boolean_t mm_rebuilding;
boolean_t mm_root;
mirror_child_t mm_child[];
} mirror_map_t;
static int vdev_mirror_shift = 21;
/*
* The load configuration settings below are tuned by default for
* the case where all devices are of the same rotational type.
*
* If there is a mixture of rotating and non-rotating media, setting
* zfs_vdev_mirror_non_rotating_seek_inc to 0 may well provide better results
* as it will direct more reads to the non-rotating vdevs which are more likely
* to have a higher performance.
*/
/* Rotating media load calculation configuration. */
static int zfs_vdev_mirror_rotating_inc = 0;
static int zfs_vdev_mirror_rotating_seek_inc = 5;
static int zfs_vdev_mirror_rotating_seek_offset = 1 * 1024 * 1024;
/* Non-rotating media load calculation configuration. */
static int zfs_vdev_mirror_non_rotating_inc = 0;
static int zfs_vdev_mirror_non_rotating_seek_inc = 1;
static inline size_t
vdev_mirror_map_size(int children)
{
return (offsetof(mirror_map_t, mm_child[children]) +
sizeof (int) * children);
}
static inline mirror_map_t *
vdev_mirror_map_alloc(int children, boolean_t resilvering, boolean_t root)
{
mirror_map_t *mm;
mm = kmem_zalloc(vdev_mirror_map_size(children), KM_SLEEP);
mm->mm_children = children;
mm->mm_resilvering = resilvering;
mm->mm_root = root;
mm->mm_preferred = (int *)((uintptr_t)mm +
offsetof(mirror_map_t, mm_child[children]));
return (mm);
}
static void
vdev_mirror_map_free(zio_t *zio)
{
mirror_map_t *mm = zio->io_vsd;
kmem_free(mm, vdev_mirror_map_size(mm->mm_children));
}
static const zio_vsd_ops_t vdev_mirror_vsd_ops = {
.vsd_free = vdev_mirror_map_free,
};
static int
vdev_mirror_load(mirror_map_t *mm, vdev_t *vd, uint64_t zio_offset)
{
uint64_t last_offset;
int64_t offset_diff;
int load;
/* All DVAs have equal weight at the root. */
if (mm->mm_root)
return (INT_MAX);
/*
* We don't return INT_MAX if the device is resilvering i.e.
* vdev_resilver_txg != 0 as when tested performance was slightly
* worse overall when resilvering with compared to without.
*/
/* Fix zio_offset for leaf vdevs */
if (vd->vdev_ops->vdev_op_leaf)
zio_offset += VDEV_LABEL_START_SIZE;
/* Standard load based on pending queue length. */
load = vdev_queue_length(vd);
last_offset = vdev_queue_last_offset(vd);
if (vd->vdev_nonrot) {
/* Non-rotating media. */
if (last_offset == zio_offset) {
MIRROR_BUMP(vdev_mirror_stat_non_rotating_linear);
return (load + zfs_vdev_mirror_non_rotating_inc);
}
/*
* Apply a seek penalty even for non-rotating devices as
* sequential I/O's can be aggregated into fewer operations on
* the device, thus avoiding unnecessary per-command overhead
* and boosting performance.
*/
MIRROR_BUMP(vdev_mirror_stat_non_rotating_seek);
return (load + zfs_vdev_mirror_non_rotating_seek_inc);
}
/* Rotating media I/O's which directly follow the last I/O. */
if (last_offset == zio_offset) {
MIRROR_BUMP(vdev_mirror_stat_rotating_linear);
return (load + zfs_vdev_mirror_rotating_inc);
}
/*
* Apply half the seek increment to I/O's within seek offset
* of the last I/O issued to this vdev as they should incur less
* of a seek increment.
*/
offset_diff = (int64_t)(last_offset - zio_offset);
if (ABS(offset_diff) < zfs_vdev_mirror_rotating_seek_offset) {
MIRROR_BUMP(vdev_mirror_stat_rotating_offset);
return (load + (zfs_vdev_mirror_rotating_seek_inc / 2));
}
/* Apply the full seek increment to all other I/O's. */
MIRROR_BUMP(vdev_mirror_stat_rotating_seek);
return (load + zfs_vdev_mirror_rotating_seek_inc);
}
static boolean_t
vdev_mirror_rebuilding(vdev_t *vd)
{
if (vd->vdev_ops->vdev_op_leaf && vd->vdev_rebuild_txg)
return (B_TRUE);
for (int i = 0; i < vd->vdev_children; i++) {
if (vdev_mirror_rebuilding(vd->vdev_child[i])) {
return (B_TRUE);
}
}
return (B_FALSE);
}
/*
* Avoid inlining the function to keep vdev_mirror_io_start(), which
* is this functions only caller, as small as possible on the stack.
*/
noinline static mirror_map_t *
vdev_mirror_map_init(zio_t *zio)
{
mirror_map_t *mm = NULL;
mirror_child_t *mc;
vdev_t *vd = zio->io_vd;
int c;
if (vd == NULL) {
dva_t *dva = zio->io_bp->blk_dva;
spa_t *spa = zio->io_spa;
dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
dva_t dva_copy[SPA_DVAS_PER_BP];
/*
* The sequential scrub code sorts and issues all DVAs
* of a bp separately. Each of these IOs includes all
* original DVA copies so that repairs can be performed
* in the event of an error, but we only actually want
* to check the first DVA since the others will be
* checked by their respective sorted IOs. Only if we
* hit an error will we try all DVAs upon retrying.
*
* Note: This check is safe even if the user switches
* from a legacy scrub to a sequential one in the middle
* of processing, since scn_is_sorted isn't updated until
* all outstanding IOs from the previous scrub pass
* complete.
*/
if ((zio->io_flags & ZIO_FLAG_SCRUB) &&
!(zio->io_flags & ZIO_FLAG_IO_RETRY) &&
dsl_scan_scrubbing(spa->spa_dsl_pool) &&
scn->scn_is_sorted) {
c = 1;
} else {
c = BP_GET_NDVAS(zio->io_bp);
}
/*
* If the pool cannot be written to, then infer that some
* DVAs might be invalid or point to vdevs that do not exist.
* We skip them.
*/
if (!spa_writeable(spa)) {
ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
int j = 0;
for (int i = 0; i < c; i++) {
if (zfs_dva_valid(spa, &dva[i], zio->io_bp))
dva_copy[j++] = dva[i];
}
if (j == 0) {
zio->io_vsd = NULL;
zio->io_error = ENXIO;
return (NULL);
}
if (j < c) {
dva = dva_copy;
c = j;
}
}
mm = vdev_mirror_map_alloc(c, B_FALSE, B_TRUE);
for (c = 0; c < mm->mm_children; c++) {
mc = &mm->mm_child[c];
mc->mc_vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[c]));
mc->mc_offset = DVA_GET_OFFSET(&dva[c]);
if (mc->mc_vd == NULL) {
kmem_free(mm, vdev_mirror_map_size(
mm->mm_children));
zio->io_vsd = NULL;
zio->io_error = ENXIO;
return (NULL);
}
}
} else {
/*
* If we are resilvering, then we should handle scrub reads
* differently; we shouldn't issue them to the resilvering
* device because it might not have those blocks.
*
* We are resilvering iff:
* 1) We are a replacing vdev (ie our name is "replacing-1" or
* "spare-1" or something like that), and
* 2) The pool is currently being resilvered.
*
* We cannot simply check vd->vdev_resilver_txg, because it's
* not set in this path.
*
* Nor can we just check our vdev_ops; there are cases (such as
* when a user types "zpool replace pool odev spare_dev" and
* spare_dev is in the spare list, or when a spare device is
* automatically used to replace a DEGRADED device) when
* resilvering is complete but both the original vdev and the
* spare vdev remain in the pool. That behavior is intentional.
* It helps implement the policy that a spare should be
* automatically removed from the pool after the user replaces
* the device that originally failed.
*
* If a spa load is in progress, then spa_dsl_pool may be
* uninitialized. But we shouldn't be resilvering during a spa
* load anyway.
*/
boolean_t replacing = (vd->vdev_ops == &vdev_replacing_ops ||
vd->vdev_ops == &vdev_spare_ops) &&
spa_load_state(vd->vdev_spa) == SPA_LOAD_NONE &&
dsl_scan_resilvering(vd->vdev_spa->spa_dsl_pool);
mm = vdev_mirror_map_alloc(vd->vdev_children, replacing,
B_FALSE);
for (c = 0; c < mm->mm_children; c++) {
mc = &mm->mm_child[c];
mc->mc_vd = vd->vdev_child[c];
mc->mc_offset = zio->io_offset;
if (vdev_mirror_rebuilding(mc->mc_vd))
mm->mm_rebuilding = mc->mc_rebuilding = B_TRUE;
}
}
return (mm);
}
static int
vdev_mirror_open(vdev_t *vd, uint64_t *asize, uint64_t *max_asize,
uint64_t *logical_ashift, uint64_t *physical_ashift)
{
int numerrors = 0;
int lasterror = 0;
if (vd->vdev_children == 0) {
vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
return (SET_ERROR(EINVAL));
}
vdev_open_children(vd);
for (int c = 0; c < vd->vdev_children; c++) {
vdev_t *cvd = vd->vdev_child[c];
if (cvd->vdev_open_error) {
lasterror = cvd->vdev_open_error;
numerrors++;
continue;
}
*asize = MIN(*asize - 1, cvd->vdev_asize - 1) + 1;
*max_asize = MIN(*max_asize - 1, cvd->vdev_max_asize - 1) + 1;
*logical_ashift = MAX(*logical_ashift, cvd->vdev_ashift);
*physical_ashift = MAX(*physical_ashift,
cvd->vdev_physical_ashift);
}
if (numerrors == vd->vdev_children) {
if (vdev_children_are_offline(vd))
vd->vdev_stat.vs_aux = VDEV_AUX_CHILDREN_OFFLINE;
else
vd->vdev_stat.vs_aux = VDEV_AUX_NO_REPLICAS;
return (lasterror);
}
return (0);
}
static void
vdev_mirror_close(vdev_t *vd)
{
for (int c = 0; c < vd->vdev_children; c++)
vdev_close(vd->vdev_child[c]);
}
static void
vdev_mirror_child_done(zio_t *zio)
{
mirror_child_t *mc = zio->io_private;
mc->mc_error = zio->io_error;
mc->mc_tried = 1;
mc->mc_skipped = 0;
}
static void
vdev_mirror_scrub_done(zio_t *zio)
{
mirror_child_t *mc = zio->io_private;
if (zio->io_error == 0) {
zio_t *pio;
zio_link_t *zl = NULL;
mutex_enter(&zio->io_lock);
while ((pio = zio_walk_parents(zio, &zl)) != NULL) {
mutex_enter(&pio->io_lock);
ASSERT3U(zio->io_size, >=, pio->io_size);
abd_copy(pio->io_abd, zio->io_abd, pio->io_size);
mutex_exit(&pio->io_lock);
}
mutex_exit(&zio->io_lock);
}
abd_free(zio->io_abd);
mc->mc_error = zio->io_error;
mc->mc_tried = 1;
mc->mc_skipped = 0;
}
/*
* Check the other, lower-index DVAs to see if they're on the same
* vdev as the child we picked. If they are, use them since they
* are likely to have been allocated from the primary metaslab in
* use at the time, and hence are more likely to have locality with
* single-copy data.
*/
static int
vdev_mirror_dva_select(zio_t *zio, int p)
{
dva_t *dva = zio->io_bp->blk_dva;
mirror_map_t *mm = zio->io_vsd;
int preferred;
int c;
preferred = mm->mm_preferred[p];
for (p--; p >= 0; p--) {
c = mm->mm_preferred[p];
if (DVA_GET_VDEV(&dva[c]) == DVA_GET_VDEV(&dva[preferred]))
preferred = c;
}
return (preferred);
}
static int
vdev_mirror_preferred_child_randomize(zio_t *zio)
{
mirror_map_t *mm = zio->io_vsd;
int p;
if (mm->mm_root) {
p = spa_get_random(mm->mm_preferred_cnt);
return (vdev_mirror_dva_select(zio, p));
}
/*
* To ensure we don't always favour the first matching vdev,
* which could lead to wear leveling issues on SSD's, we
* use the I/O offset as a pseudo random seed into the vdevs
* which have the lowest load.
*/
p = (zio->io_offset >> vdev_mirror_shift) % mm->mm_preferred_cnt;
return (mm->mm_preferred[p]);
}
static boolean_t
vdev_mirror_child_readable(mirror_child_t *mc)
{
vdev_t *vd = mc->mc_vd;
if (vd->vdev_top != NULL && vd->vdev_top->vdev_ops == &vdev_draid_ops)
return (vdev_draid_readable(vd, mc->mc_offset));
else
return (vdev_readable(vd));
}
static boolean_t
vdev_mirror_child_missing(mirror_child_t *mc, uint64_t txg, uint64_t size)
{
vdev_t *vd = mc->mc_vd;
if (vd->vdev_top != NULL && vd->vdev_top->vdev_ops == &vdev_draid_ops)
return (vdev_draid_missing(vd, mc->mc_offset, txg, size));
else
return (vdev_dtl_contains(vd, DTL_MISSING, txg, size));
}
/*
* Try to find a vdev whose DTL doesn't contain the block we want to read
* preferring vdevs based on determined load. If we can't, try the read on
* any vdev we haven't already tried.
*
* Distributed spares are an exception to the above load rule. They are
* always preferred in order to detect gaps in the distributed spare which
* are created when another disk in the dRAID fails. In order to restore
* redundancy those gaps must be read to trigger the required repair IO.
*/
static int
vdev_mirror_child_select(zio_t *zio)
{
mirror_map_t *mm = zio->io_vsd;
uint64_t txg = zio->io_txg;
int c, lowest_load;
ASSERT(zio->io_bp == NULL || BP_PHYSICAL_BIRTH(zio->io_bp) == txg);
lowest_load = INT_MAX;
mm->mm_preferred_cnt = 0;
for (c = 0; c < mm->mm_children; c++) {
mirror_child_t *mc;
mc = &mm->mm_child[c];
if (mc->mc_tried || mc->mc_skipped)
continue;
if (mc->mc_vd == NULL ||
!vdev_mirror_child_readable(mc)) {
mc->mc_error = SET_ERROR(ENXIO);
mc->mc_tried = 1; /* don't even try */
mc->mc_skipped = 1;
continue;
}
if (vdev_mirror_child_missing(mc, txg, 1)) {
mc->mc_error = SET_ERROR(ESTALE);
mc->mc_skipped = 1;
mc->mc_speculative = 1;
continue;
}
if (mc->mc_vd->vdev_ops == &vdev_draid_spare_ops) {
mm->mm_preferred[0] = c;
mm->mm_preferred_cnt = 1;
break;
}
mc->mc_load = vdev_mirror_load(mm, mc->mc_vd, mc->mc_offset);
if (mc->mc_load > lowest_load)
continue;
if (mc->mc_load < lowest_load) {
lowest_load = mc->mc_load;
mm->mm_preferred_cnt = 0;
}
mm->mm_preferred[mm->mm_preferred_cnt] = c;
mm->mm_preferred_cnt++;
}
if (mm->mm_preferred_cnt == 1) {
MIRROR_BUMP(vdev_mirror_stat_preferred_found);
return (mm->mm_preferred[0]);
}
if (mm->mm_preferred_cnt > 1) {
MIRROR_BUMP(vdev_mirror_stat_preferred_not_found);
return (vdev_mirror_preferred_child_randomize(zio));
}
/*
* Every device is either missing or has this txg in its DTL.
* Look for any child we haven't already tried before giving up.
*/
for (c = 0; c < mm->mm_children; c++) {
if (!mm->mm_child[c].mc_tried)
return (c);
}
/*
* Every child failed. There's no place left to look.
*/
return (-1);
}
static void
vdev_mirror_io_start(zio_t *zio)
{
mirror_map_t *mm;
mirror_child_t *mc;
int c, children;
mm = vdev_mirror_map_init(zio);
zio->io_vsd = mm;
zio->io_vsd_ops = &vdev_mirror_vsd_ops;
if (mm == NULL) {
ASSERT(!spa_trust_config(zio->io_spa));
ASSERT(zio->io_type == ZIO_TYPE_READ);
zio_execute(zio);
return;
}
if (zio->io_type == ZIO_TYPE_READ) {
if (zio->io_bp != NULL &&
(zio->io_flags & ZIO_FLAG_SCRUB) && !mm->mm_resilvering) {
/*
* For scrubbing reads (if we can verify the
* checksum here, as indicated by io_bp being
* non-NULL) we need to allocate a read buffer for
* each child and issue reads to all children. If
* any child succeeds, it will copy its data into
* zio->io_data in vdev_mirror_scrub_done.
*/
for (c = 0; c < mm->mm_children; c++) {
mc = &mm->mm_child[c];
zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
mc->mc_vd, mc->mc_offset,
abd_alloc_sametype(zio->io_abd,
zio->io_size), zio->io_size,
zio->io_type, zio->io_priority, 0,
vdev_mirror_scrub_done, mc));
}
zio_execute(zio);
return;
}
/*
* For normal reads just pick one child.
*/
c = vdev_mirror_child_select(zio);
children = (c >= 0);
} else {
ASSERT(zio->io_type == ZIO_TYPE_WRITE);
/*
* Writes go to all children.
*/
c = 0;
children = mm->mm_children;
}
while (children--) {
mc = &mm->mm_child[c];
c++;
/*
* When sequentially resilvering only issue write repair
* IOs to the vdev which is being rebuilt since performance
* is limited by the slowest child. This is an issue for
* faster replacement devices such as distributed spares.
*/
if ((zio->io_priority == ZIO_PRIORITY_REBUILD) &&
(zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
!(zio->io_flags & ZIO_FLAG_SCRUB) &&
mm->mm_rebuilding && !mc->mc_rebuilding) {
continue;
}
zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
mc->mc_vd, mc->mc_offset, zio->io_abd, zio->io_size,
zio->io_type, zio->io_priority, 0,
vdev_mirror_child_done, mc));
}
zio_execute(zio);
}
static int
vdev_mirror_worst_error(mirror_map_t *mm)
{
int error[2] = { 0, 0 };
for (int c = 0; c < mm->mm_children; c++) {
mirror_child_t *mc = &mm->mm_child[c];
int s = mc->mc_speculative;
error[s] = zio_worst_error(error[s], mc->mc_error);
}
return (error[0] ? error[0] : error[1]);
}
static void
vdev_mirror_io_done(zio_t *zio)
{
mirror_map_t *mm = zio->io_vsd;
mirror_child_t *mc;
int c;
int good_copies = 0;
int unexpected_errors = 0;
if (mm == NULL)
return;
for (c = 0; c < mm->mm_children; c++) {
mc = &mm->mm_child[c];
if (mc->mc_error) {
if (!mc->mc_skipped)
unexpected_errors++;
} else if (mc->mc_tried) {
good_copies++;
}
}
if (zio->io_type == ZIO_TYPE_WRITE) {
/*
* XXX -- for now, treat partial writes as success.
*
* Now that we support write reallocation, it would be better
* to treat partial failure as real failure unless there are
* no non-degraded top-level vdevs left, and not update DTLs
* if we intend to reallocate.
*/
/* XXPOLICY */
if (good_copies != mm->mm_children) {
/*
* Always require at least one good copy.
*
* For ditto blocks (io_vd == NULL), require
* all copies to be good.
*
* XXX -- for replacing vdevs, there's no great answer.
* If the old device is really dead, we may not even
* be able to access it -- so we only want to
* require good writes to the new device. But if
* the new device turns out to be flaky, we want
* to be able to detach it -- which requires all
* writes to the old device to have succeeded.
*/
if (good_copies == 0 || zio->io_vd == NULL)
zio->io_error = vdev_mirror_worst_error(mm);
}
return;
}
ASSERT(zio->io_type == ZIO_TYPE_READ);
/*
* If we don't have a good copy yet, keep trying other children.
*/
/* XXPOLICY */
if (good_copies == 0 && (c = vdev_mirror_child_select(zio)) != -1) {
ASSERT(c >= 0 && c < mm->mm_children);
mc = &mm->mm_child[c];
zio_vdev_io_redone(zio);
zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
mc->mc_vd, mc->mc_offset, zio->io_abd, zio->io_size,
ZIO_TYPE_READ, zio->io_priority, 0,
vdev_mirror_child_done, mc));
return;
}
/* XXPOLICY */
if (good_copies == 0) {
zio->io_error = vdev_mirror_worst_error(mm);
ASSERT(zio->io_error != 0);
}
if (good_copies && spa_writeable(zio->io_spa) &&
(unexpected_errors ||
(zio->io_flags & ZIO_FLAG_RESILVER) ||
((zio->io_flags & ZIO_FLAG_SCRUB) && mm->mm_resilvering))) {
/*
* Use the good data we have in hand to repair damaged children.
*/
for (c = 0; c < mm->mm_children; c++) {
/*
* Don't rewrite known good children.
* Not only is it unnecessary, it could
* actually be harmful: if the system lost
* power while rewriting the only good copy,
* there would be no good copies left!
*/
mc = &mm->mm_child[c];
if (mc->mc_error == 0) {
vdev_ops_t *ops = mc->mc_vd->vdev_ops;
if (mc->mc_tried)
continue;
/*
* We didn't try this child. We need to
* repair it if:
* 1. it's a scrub (in which case we have
* tried everything that was healthy)
* - or -
* 2. it's an indirect or distributed spare
* vdev (in which case it could point to any
* other vdev, which might have a bad DTL)
* - or -
* 3. the DTL indicates that this data is
* missing from this vdev
*/
if (!(zio->io_flags & ZIO_FLAG_SCRUB) &&
ops != &vdev_indirect_ops &&
ops != &vdev_draid_spare_ops &&
!vdev_dtl_contains(mc->mc_vd, DTL_PARTIAL,
zio->io_txg, 1))
continue;
mc->mc_error = SET_ERROR(ESTALE);
}
zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
mc->mc_vd, mc->mc_offset,
zio->io_abd, zio->io_size, ZIO_TYPE_WRITE,
zio->io_priority == ZIO_PRIORITY_REBUILD ?
ZIO_PRIORITY_REBUILD : ZIO_PRIORITY_ASYNC_WRITE,
ZIO_FLAG_IO_REPAIR | (unexpected_errors ?
ZIO_FLAG_SELF_HEAL : 0), NULL, NULL));
}
}
}
static void
vdev_mirror_state_change(vdev_t *vd, int faulted, int degraded)
{
if (faulted == vd->vdev_children) {
if (vdev_children_are_offline(vd)) {
vdev_set_state(vd, B_FALSE, VDEV_STATE_OFFLINE,
VDEV_AUX_CHILDREN_OFFLINE);
} else {
vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
VDEV_AUX_NO_REPLICAS);
}
} else if (degraded + faulted != 0) {
vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, VDEV_AUX_NONE);
} else {
vdev_set_state(vd, B_FALSE, VDEV_STATE_HEALTHY, VDEV_AUX_NONE);
}
}
/*
* Return the maximum asize for a rebuild zio in the provided range.
*/
static uint64_t
vdev_mirror_rebuild_asize(vdev_t *vd, uint64_t start, uint64_t asize,
uint64_t max_segment)
{
uint64_t psize = MIN(P2ROUNDUP(max_segment, 1 << vd->vdev_ashift),
SPA_MAXBLOCKSIZE);
return (MIN(asize, vdev_psize_to_asize(vd, psize)));
}
vdev_ops_t vdev_mirror_ops = {
.vdev_op_init = NULL,
.vdev_op_fini = NULL,
.vdev_op_open = vdev_mirror_open,
.vdev_op_close = vdev_mirror_close,
.vdev_op_asize = vdev_default_asize,
.vdev_op_min_asize = vdev_default_min_asize,
.vdev_op_min_alloc = NULL,
.vdev_op_io_start = vdev_mirror_io_start,
.vdev_op_io_done = vdev_mirror_io_done,
.vdev_op_state_change = vdev_mirror_state_change,
.vdev_op_need_resilver = vdev_default_need_resilver,
.vdev_op_hold = NULL,
.vdev_op_rele = NULL,
.vdev_op_remap = NULL,
.vdev_op_xlate = vdev_default_xlate,
.vdev_op_rebuild_asize = vdev_mirror_rebuild_asize,
.vdev_op_metaslab_init = NULL,
.vdev_op_config_generate = NULL,
.vdev_op_nparity = NULL,
.vdev_op_ndisks = NULL,
.vdev_op_type = VDEV_TYPE_MIRROR, /* name of this vdev type */
.vdev_op_leaf = B_FALSE /* not a leaf vdev */
};
vdev_ops_t vdev_replacing_ops = {
.vdev_op_init = NULL,
.vdev_op_fini = NULL,
.vdev_op_open = vdev_mirror_open,
.vdev_op_close = vdev_mirror_close,
.vdev_op_asize = vdev_default_asize,
.vdev_op_min_asize = vdev_default_min_asize,
.vdev_op_min_alloc = NULL,
.vdev_op_io_start = vdev_mirror_io_start,
.vdev_op_io_done = vdev_mirror_io_done,
.vdev_op_state_change = vdev_mirror_state_change,
.vdev_op_need_resilver = vdev_default_need_resilver,
.vdev_op_hold = NULL,
.vdev_op_rele = NULL,
.vdev_op_remap = NULL,
.vdev_op_xlate = vdev_default_xlate,
.vdev_op_rebuild_asize = vdev_mirror_rebuild_asize,
.vdev_op_metaslab_init = NULL,
.vdev_op_config_generate = NULL,
.vdev_op_nparity = NULL,
.vdev_op_ndisks = NULL,
.vdev_op_type = VDEV_TYPE_REPLACING, /* name of this vdev type */
.vdev_op_leaf = B_FALSE /* not a leaf vdev */
};
vdev_ops_t vdev_spare_ops = {
.vdev_op_init = NULL,
.vdev_op_fini = NULL,
.vdev_op_open = vdev_mirror_open,
.vdev_op_close = vdev_mirror_close,
.vdev_op_asize = vdev_default_asize,
.vdev_op_min_asize = vdev_default_min_asize,
.vdev_op_min_alloc = NULL,
.vdev_op_io_start = vdev_mirror_io_start,
.vdev_op_io_done = vdev_mirror_io_done,
.vdev_op_state_change = vdev_mirror_state_change,
.vdev_op_need_resilver = vdev_default_need_resilver,
.vdev_op_hold = NULL,
.vdev_op_rele = NULL,
.vdev_op_remap = NULL,
.vdev_op_xlate = vdev_default_xlate,
.vdev_op_rebuild_asize = vdev_mirror_rebuild_asize,
.vdev_op_metaslab_init = NULL,
.vdev_op_config_generate = NULL,
.vdev_op_nparity = NULL,
.vdev_op_ndisks = NULL,
.vdev_op_type = VDEV_TYPE_SPARE, /* name of this vdev type */
.vdev_op_leaf = B_FALSE /* not a leaf vdev */
};
/* BEGIN CSTYLED */
ZFS_MODULE_PARAM(zfs_vdev_mirror, zfs_vdev_mirror_, rotating_inc, INT, ZMOD_RW,
"Rotating media load increment for non-seeking I/O's");
ZFS_MODULE_PARAM(zfs_vdev_mirror, zfs_vdev_mirror_, rotating_seek_inc, INT, ZMOD_RW,
"Rotating media load increment for seeking I/O's");
ZFS_MODULE_PARAM(zfs_vdev_mirror, zfs_vdev_mirror_, rotating_seek_offset, INT, ZMOD_RW,
"Offset in bytes from the last I/O which triggers "
"a reduced rotating media seek increment");
ZFS_MODULE_PARAM(zfs_vdev_mirror, zfs_vdev_mirror_, non_rotating_inc, INT, ZMOD_RW,
"Non-rotating media load increment for non-seeking I/O's");
ZFS_MODULE_PARAM(zfs_vdev_mirror, zfs_vdev_mirror_, non_rotating_seek_inc, INT, ZMOD_RW,
"Non-rotating media load increment for seeking I/O's");
/* END CSTYLED */