1309 lines
30 KiB
C
1309 lines
30 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC.
|
|
* Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
|
|
* Rewritten for Linux by Brian Behlendorf <behlendorf1@llnl.gov>.
|
|
* LLNL-CODE-403049.
|
|
*
|
|
* ZFS volume emulation driver.
|
|
*
|
|
* Makes a DMU object look like a volume of arbitrary size, up to 2^64 bytes.
|
|
* Volumes are accessed through the symbolic links named:
|
|
*
|
|
* /dev/<pool_name>/<dataset_name>
|
|
*
|
|
* Volumes are persistent through reboot and module load. No user command
|
|
* needs to be run before opening and using a device.
|
|
*/
|
|
|
|
#include <sys/dmu_traverse.h>
|
|
#include <sys/dsl_dataset.h>
|
|
#include <sys/dsl_prop.h>
|
|
#include <sys/zap.h>
|
|
#include <sys/zil_impl.h>
|
|
#include <sys/zio.h>
|
|
#include <sys/zfs_rlock.h>
|
|
#include <sys/zfs_znode.h>
|
|
#include <sys/zvol.h>
|
|
|
|
unsigned int zvol_major = ZVOL_MAJOR;
|
|
unsigned int zvol_threads = 0;
|
|
|
|
static taskq_t *zvol_taskq;
|
|
static kmutex_t zvol_state_lock;
|
|
static list_t zvol_state_list;
|
|
static char *zvol_tag = "zvol_tag";
|
|
|
|
/*
|
|
* The in-core state of each volume.
|
|
*/
|
|
typedef struct zvol_state {
|
|
char zv_name[DISK_NAME_LEN]; /* name */
|
|
uint64_t zv_volsize; /* advertised space */
|
|
uint64_t zv_volblocksize;/* volume block size */
|
|
objset_t *zv_objset; /* objset handle */
|
|
uint32_t zv_flags; /* ZVOL_* flags */
|
|
uint32_t zv_open_count; /* open counts */
|
|
uint32_t zv_changed; /* disk changed */
|
|
zilog_t *zv_zilog; /* ZIL handle */
|
|
znode_t zv_znode; /* for range locking */
|
|
dmu_buf_t *zv_dbuf; /* bonus handle */
|
|
dev_t zv_dev; /* device id */
|
|
struct gendisk *zv_disk; /* generic disk */
|
|
struct request_queue *zv_queue; /* request queue */
|
|
spinlock_t zv_lock; /* request queue lock */
|
|
list_node_t zv_next; /* next zvol_state_t linkage */
|
|
} zvol_state_t;
|
|
|
|
#define ZVOL_RDONLY 0x1
|
|
|
|
/*
|
|
* Find the next available range of ZVOL_MINORS minor numbers. The
|
|
* zvol_state_list is kept in ascending minor order so we simply need
|
|
* to scan the list for the first gap in the sequence. This allows us
|
|
* to recycle minor number as devices are created and removed.
|
|
*/
|
|
static int
|
|
zvol_find_minor(unsigned *minor)
|
|
{
|
|
zvol_state_t *zv;
|
|
|
|
*minor = 0;
|
|
ASSERT(MUTEX_HELD(&zvol_state_lock));
|
|
for (zv = list_head(&zvol_state_list); zv != NULL;
|
|
zv = list_next(&zvol_state_list, zv), *minor += ZVOL_MINORS) {
|
|
if (MINOR(zv->zv_dev) != MINOR(*minor))
|
|
break;
|
|
}
|
|
|
|
/* All minors are in use */
|
|
if (*minor >= (1 << MINORBITS))
|
|
return ENXIO;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Find a zvol_state_t given the full major+minor dev_t.
|
|
*/
|
|
static zvol_state_t *
|
|
zvol_find_by_dev(dev_t dev)
|
|
{
|
|
zvol_state_t *zv;
|
|
|
|
ASSERT(MUTEX_HELD(&zvol_state_lock));
|
|
for (zv = list_head(&zvol_state_list); zv != NULL;
|
|
zv = list_next(&zvol_state_list, zv)) {
|
|
if (zv->zv_dev == dev)
|
|
return zv;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Find a zvol_state_t given the name provided at zvol_alloc() time.
|
|
*/
|
|
static zvol_state_t *
|
|
zvol_find_by_name(const char *name)
|
|
{
|
|
zvol_state_t *zv;
|
|
|
|
ASSERT(MUTEX_HELD(&zvol_state_lock));
|
|
for (zv = list_head(&zvol_state_list); zv != NULL;
|
|
zv = list_next(&zvol_state_list, zv)) {
|
|
if (!strncmp(zv->zv_name, name, DISK_NAME_LEN))
|
|
return zv;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* ZFS_IOC_CREATE callback handles dmu zvol and zap object creation.
|
|
*/
|
|
void
|
|
zvol_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
|
|
{
|
|
zfs_creat_t *zct = arg;
|
|
nvlist_t *nvprops = zct->zct_props;
|
|
int error;
|
|
uint64_t volblocksize, volsize;
|
|
|
|
VERIFY(nvlist_lookup_uint64(nvprops,
|
|
zfs_prop_to_name(ZFS_PROP_VOLSIZE), &volsize) == 0);
|
|
if (nvlist_lookup_uint64(nvprops,
|
|
zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &volblocksize) != 0)
|
|
volblocksize = zfs_prop_default_numeric(ZFS_PROP_VOLBLOCKSIZE);
|
|
|
|
/*
|
|
* These properties must be removed from the list so the generic
|
|
* property setting step won't apply to them.
|
|
*/
|
|
VERIFY(nvlist_remove_all(nvprops,
|
|
zfs_prop_to_name(ZFS_PROP_VOLSIZE)) == 0);
|
|
(void) nvlist_remove_all(nvprops,
|
|
zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE));
|
|
|
|
error = dmu_object_claim(os, ZVOL_OBJ, DMU_OT_ZVOL, volblocksize,
|
|
DMU_OT_NONE, 0, tx);
|
|
ASSERT(error == 0);
|
|
|
|
error = zap_create_claim(os, ZVOL_ZAP_OBJ, DMU_OT_ZVOL_PROP,
|
|
DMU_OT_NONE, 0, tx);
|
|
ASSERT(error == 0);
|
|
|
|
error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize, tx);
|
|
ASSERT(error == 0);
|
|
}
|
|
|
|
/*
|
|
* ZFS_IOC_OBJSET_STATS entry point.
|
|
*/
|
|
int
|
|
zvol_get_stats(objset_t *os, nvlist_t *nv)
|
|
{
|
|
int error;
|
|
dmu_object_info_t *doi;
|
|
uint64_t val;
|
|
|
|
error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &val);
|
|
if (error)
|
|
return (error);
|
|
|
|
dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLSIZE, val);
|
|
doi = kmem_alloc(sizeof(dmu_object_info_t), KM_SLEEP);
|
|
error = dmu_object_info(os, ZVOL_OBJ, doi);
|
|
|
|
if (error == 0) {
|
|
dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLBLOCKSIZE,
|
|
doi->doi_data_block_size);
|
|
}
|
|
|
|
kmem_free(doi, sizeof(dmu_object_info_t));
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Sanity check volume size.
|
|
*/
|
|
int
|
|
zvol_check_volsize(uint64_t volsize, uint64_t blocksize)
|
|
{
|
|
if (volsize == 0)
|
|
return (EINVAL);
|
|
|
|
if (volsize % blocksize != 0)
|
|
return (EINVAL);
|
|
|
|
#ifdef _ILP32
|
|
if (volsize - 1 > MAXOFFSET_T)
|
|
return (EOVERFLOW);
|
|
#endif
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Ensure the zap is flushed then inform the VFS of the capacity change.
|
|
*/
|
|
static int
|
|
zvol_update_volsize(zvol_state_t *zv, uint64_t volsize)
|
|
{
|
|
struct block_device *bdev;
|
|
dmu_tx_t *tx;
|
|
int error;
|
|
|
|
ASSERT(MUTEX_HELD(&zvol_state_lock));
|
|
|
|
tx = dmu_tx_create(zv->zv_objset);
|
|
dmu_tx_hold_zap(tx, ZVOL_ZAP_OBJ, TRUE, NULL);
|
|
error = dmu_tx_assign(tx, TXG_WAIT);
|
|
if (error) {
|
|
dmu_tx_abort(tx);
|
|
return (error);
|
|
}
|
|
|
|
error = zap_update(zv->zv_objset, ZVOL_ZAP_OBJ, "size", 8, 1,
|
|
&volsize, tx);
|
|
dmu_tx_commit(tx);
|
|
|
|
if (error)
|
|
return (error);
|
|
|
|
error = dmu_free_long_range(zv->zv_objset,
|
|
ZVOL_OBJ, volsize, DMU_OBJECT_END);
|
|
if (error)
|
|
return (error);
|
|
|
|
zv->zv_volsize = volsize;
|
|
zv->zv_changed = 1;
|
|
|
|
bdev = bdget_disk(zv->zv_disk, 0);
|
|
if (!bdev)
|
|
return EIO;
|
|
|
|
error = check_disk_change(bdev);
|
|
ASSERT3U(error, !=, 0);
|
|
bdput(bdev);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Set ZFS_PROP_VOLSIZE set entry point.
|
|
*/
|
|
int
|
|
zvol_set_volsize(const char *name, uint64_t volsize)
|
|
{
|
|
zvol_state_t *zv;
|
|
dmu_object_info_t *doi;
|
|
objset_t *os = NULL;
|
|
uint64_t readonly;
|
|
int error;
|
|
|
|
mutex_enter(&zvol_state_lock);
|
|
|
|
zv = zvol_find_by_name(name);
|
|
if (zv == NULL) {
|
|
error = ENXIO;
|
|
goto out;
|
|
}
|
|
|
|
doi = kmem_alloc(sizeof(dmu_object_info_t), KM_SLEEP);
|
|
|
|
error = dmu_objset_hold(name, FTAG, &os);
|
|
if (error)
|
|
goto out_doi;
|
|
|
|
if ((error = dmu_object_info(os, ZVOL_OBJ, doi)) != 0 ||
|
|
(error = zvol_check_volsize(volsize,doi->doi_data_block_size)) != 0)
|
|
goto out_doi;
|
|
|
|
VERIFY(dsl_prop_get_integer(name, "readonly", &readonly, NULL) == 0);
|
|
if (readonly) {
|
|
error = EROFS;
|
|
goto out_doi;
|
|
}
|
|
|
|
if (get_disk_ro(zv->zv_disk) || (zv->zv_flags & ZVOL_RDONLY)) {
|
|
error = EROFS;
|
|
goto out_doi;
|
|
}
|
|
|
|
error = zvol_update_volsize(zv, volsize);
|
|
out_doi:
|
|
kmem_free(doi, sizeof(dmu_object_info_t));
|
|
out:
|
|
if (os)
|
|
dmu_objset_rele(os, FTAG);
|
|
|
|
mutex_exit(&zvol_state_lock);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Sanity check volume block size.
|
|
*/
|
|
int
|
|
zvol_check_volblocksize(uint64_t volblocksize)
|
|
{
|
|
if (volblocksize < SPA_MINBLOCKSIZE ||
|
|
volblocksize > SPA_MAXBLOCKSIZE ||
|
|
!ISP2(volblocksize))
|
|
return (EDOM);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Set ZFS_PROP_VOLBLOCKSIZE set entry point.
|
|
*/
|
|
int
|
|
zvol_set_volblocksize(const char *name, uint64_t volblocksize)
|
|
{
|
|
zvol_state_t *zv;
|
|
dmu_tx_t *tx;
|
|
int error;
|
|
|
|
mutex_enter(&zvol_state_lock);
|
|
|
|
zv = zvol_find_by_name(name);
|
|
if (zv == NULL) {
|
|
error = ENXIO;
|
|
goto out;
|
|
}
|
|
|
|
if (get_disk_ro(zv->zv_disk) || (zv->zv_flags & ZVOL_RDONLY)) {
|
|
error = EROFS;
|
|
goto out;
|
|
}
|
|
|
|
tx = dmu_tx_create(zv->zv_objset);
|
|
dmu_tx_hold_bonus(tx, ZVOL_OBJ);
|
|
error = dmu_tx_assign(tx, TXG_WAIT);
|
|
if (error) {
|
|
dmu_tx_abort(tx);
|
|
} else {
|
|
error = dmu_object_set_blocksize(zv->zv_objset, ZVOL_OBJ,
|
|
volblocksize, 0, tx);
|
|
if (error == ENOTSUP)
|
|
error = EBUSY;
|
|
dmu_tx_commit(tx);
|
|
if (error == 0)
|
|
zv->zv_volblocksize = volblocksize;
|
|
}
|
|
out:
|
|
mutex_exit(&zvol_state_lock);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Replay a TX_WRITE ZIL transaction that didn't get committed
|
|
* after a system failure
|
|
*/
|
|
static int
|
|
zvol_replay_write(zvol_state_t *zv, lr_write_t *lr, boolean_t byteswap)
|
|
{
|
|
objset_t *os = zv->zv_objset;
|
|
char *data = (char *)(lr + 1); /* data follows lr_write_t */
|
|
uint64_t off = lr->lr_offset;
|
|
uint64_t len = lr->lr_length;
|
|
dmu_tx_t *tx;
|
|
int error;
|
|
|
|
if (byteswap)
|
|
byteswap_uint64_array(lr, sizeof (*lr));
|
|
|
|
tx = dmu_tx_create(os);
|
|
dmu_tx_hold_write(tx, ZVOL_OBJ, off, len);
|
|
error = dmu_tx_assign(tx, TXG_WAIT);
|
|
if (error) {
|
|
dmu_tx_abort(tx);
|
|
} else {
|
|
dmu_write(os, ZVOL_OBJ, off, len, data, tx);
|
|
dmu_tx_commit(tx);
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
zvol_replay_err(zvol_state_t *zv, lr_t *lr, boolean_t byteswap)
|
|
{
|
|
return (ENOTSUP);
|
|
}
|
|
|
|
/*
|
|
* Callback vectors for replaying records.
|
|
* Only TX_WRITE is needed for zvol.
|
|
*/
|
|
zil_replay_func_t *zvol_replay_vector[TX_MAX_TYPE] = {
|
|
(zil_replay_func_t *)zvol_replay_err, /* no such transaction type */
|
|
(zil_replay_func_t *)zvol_replay_err, /* TX_CREATE */
|
|
(zil_replay_func_t *)zvol_replay_err, /* TX_MKDIR */
|
|
(zil_replay_func_t *)zvol_replay_err, /* TX_MKXATTR */
|
|
(zil_replay_func_t *)zvol_replay_err, /* TX_SYMLINK */
|
|
(zil_replay_func_t *)zvol_replay_err, /* TX_REMOVE */
|
|
(zil_replay_func_t *)zvol_replay_err, /* TX_RMDIR */
|
|
(zil_replay_func_t *)zvol_replay_err, /* TX_LINK */
|
|
(zil_replay_func_t *)zvol_replay_err, /* TX_RENAME */
|
|
(zil_replay_func_t *)zvol_replay_write, /* TX_WRITE */
|
|
(zil_replay_func_t *)zvol_replay_err, /* TX_TRUNCATE */
|
|
(zil_replay_func_t *)zvol_replay_err, /* TX_SETATTR */
|
|
(zil_replay_func_t *)zvol_replay_err, /* TX_ACL */
|
|
};
|
|
|
|
/*
|
|
* zvol_log_write() handles synchronous writes using TX_WRITE ZIL transactions.
|
|
*
|
|
* We store data in the log buffers if it's small enough.
|
|
* Otherwise we will later flush the data out via dmu_sync().
|
|
*/
|
|
ssize_t zvol_immediate_write_sz = 32768;
|
|
|
|
static void
|
|
zvol_log_write(zvol_state_t *zv, dmu_tx_t *tx,
|
|
uint64_t offset, uint64_t size, int sync)
|
|
{
|
|
uint32_t blocksize = zv->zv_volblocksize;
|
|
zilog_t *zilog = zv->zv_zilog;
|
|
boolean_t slogging;
|
|
|
|
if (zil_replaying(zilog, tx))
|
|
return;
|
|
|
|
slogging = spa_has_slogs(zilog->zl_spa);
|
|
|
|
while (size) {
|
|
itx_t *itx;
|
|
lr_write_t *lr;
|
|
ssize_t len;
|
|
itx_wr_state_t write_state;
|
|
|
|
/*
|
|
* Unlike zfs_log_write() we can be called with
|
|
* up to DMU_MAX_ACCESS/2 (5MB) writes.
|
|
*/
|
|
if (blocksize > zvol_immediate_write_sz && !slogging &&
|
|
size >= blocksize && offset % blocksize == 0) {
|
|
write_state = WR_INDIRECT; /* uses dmu_sync */
|
|
len = blocksize;
|
|
} else if (sync) {
|
|
write_state = WR_COPIED;
|
|
len = MIN(ZIL_MAX_LOG_DATA, size);
|
|
} else {
|
|
write_state = WR_NEED_COPY;
|
|
len = MIN(ZIL_MAX_LOG_DATA, size);
|
|
}
|
|
|
|
itx = zil_itx_create(TX_WRITE, sizeof (*lr) +
|
|
(write_state == WR_COPIED ? len : 0));
|
|
lr = (lr_write_t *)&itx->itx_lr;
|
|
if (write_state == WR_COPIED && dmu_read(zv->zv_objset,
|
|
ZVOL_OBJ, offset, len, lr+1, DMU_READ_NO_PREFETCH) != 0) {
|
|
zil_itx_destroy(itx);
|
|
itx = zil_itx_create(TX_WRITE, sizeof (*lr));
|
|
lr = (lr_write_t *)&itx->itx_lr;
|
|
write_state = WR_NEED_COPY;
|
|
}
|
|
|
|
itx->itx_wr_state = write_state;
|
|
if (write_state == WR_NEED_COPY)
|
|
itx->itx_sod += len;
|
|
lr->lr_foid = ZVOL_OBJ;
|
|
lr->lr_offset = offset;
|
|
lr->lr_length = len;
|
|
lr->lr_blkoff = 0;
|
|
BP_ZERO(&lr->lr_blkptr);
|
|
|
|
itx->itx_private = zv;
|
|
itx->itx_sync = sync;
|
|
|
|
(void) zil_itx_assign(zilog, itx, tx);
|
|
|
|
offset += len;
|
|
size -= len;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Common write path running under the zvol taskq context. This function
|
|
* is responsible for copying the request structure data in to the DMU and
|
|
* signaling the request queue with the result of the copy.
|
|
*/
|
|
static void
|
|
zvol_write(void *arg)
|
|
{
|
|
struct request *req = (struct request *)arg;
|
|
struct request_queue *q = req->q;
|
|
zvol_state_t *zv = q->queuedata;
|
|
uint64_t offset = blk_rq_pos(req) << 9;
|
|
uint64_t size = blk_rq_bytes(req);
|
|
int error = 0;
|
|
dmu_tx_t *tx;
|
|
rl_t *rl;
|
|
|
|
rl = zfs_range_lock(&zv->zv_znode, offset, size, RL_WRITER);
|
|
|
|
tx = dmu_tx_create(zv->zv_objset);
|
|
dmu_tx_hold_write(tx, ZVOL_OBJ, offset, size);
|
|
|
|
/* This will only fail for ENOSPC */
|
|
error = dmu_tx_assign(tx, TXG_WAIT);
|
|
if (error) {
|
|
dmu_tx_abort(tx);
|
|
zfs_range_unlock(rl);
|
|
blk_end_request(req, -error, size);
|
|
return;
|
|
}
|
|
|
|
error = dmu_write_req(zv->zv_objset, ZVOL_OBJ, req, tx);
|
|
if (error == 0)
|
|
zvol_log_write(zv, tx, offset, size, rq_is_sync(req));
|
|
|
|
dmu_tx_commit(tx);
|
|
zfs_range_unlock(rl);
|
|
|
|
if (rq_is_sync(req))
|
|
zil_commit(zv->zv_zilog, UINT64_MAX, ZVOL_OBJ);
|
|
|
|
blk_end_request(req, -error, size);
|
|
}
|
|
|
|
/*
|
|
* Common read path running under the zvol taskq context. This function
|
|
* is responsible for copying the requested data out of the DMU and in to
|
|
* a linux request structure. It then must signal the request queue with
|
|
* an error code describing the result of the copy.
|
|
*/
|
|
static void
|
|
zvol_read(void *arg)
|
|
{
|
|
struct request *req = (struct request *)arg;
|
|
struct request_queue *q = req->q;
|
|
zvol_state_t *zv = q->queuedata;
|
|
uint64_t offset = blk_rq_pos(req) << 9;
|
|
uint64_t size = blk_rq_bytes(req);
|
|
int error;
|
|
rl_t *rl;
|
|
|
|
rl = zfs_range_lock(&zv->zv_znode, offset, size, RL_READER);
|
|
|
|
error = dmu_read_req(zv->zv_objset, ZVOL_OBJ, req);
|
|
|
|
zfs_range_unlock(rl);
|
|
|
|
/* convert checksum errors into IO errors */
|
|
if (error == ECKSUM)
|
|
error = EIO;
|
|
|
|
blk_end_request(req, -error, size);
|
|
}
|
|
|
|
/*
|
|
* Request will be added back to the request queue and retried if
|
|
* it cannot be immediately dispatched to the taskq for handling
|
|
*/
|
|
static inline void
|
|
zvol_dispatch(task_func_t func, struct request *req)
|
|
{
|
|
if (!taskq_dispatch(zvol_taskq, func, (void *)req, TQ_NOSLEEP))
|
|
blk_requeue_request(req->q, req);
|
|
}
|
|
|
|
/*
|
|
* Common request path. Rather than registering a custom make_request()
|
|
* function we use the generic Linux version. This is done because it allows
|
|
* us to easily merge read requests which would otherwise we performed
|
|
* synchronously by the DMU. This is less critical in write case where the
|
|
* DMU will perform the correct merging within a transaction group. Using
|
|
* the generic make_request() also let's use leverage the fact that the
|
|
* elevator with ensure correct ordering in regards to barrior IOs. On
|
|
* the downside it means that in the write case we end up doing request
|
|
* merging twice once in the elevator and once in the DMU.
|
|
*
|
|
* The request handler is called under a spin lock so all the real work
|
|
* is handed off to be done in the context of the zvol taskq. This function
|
|
* simply performs basic request sanity checking and hands off the request.
|
|
*/
|
|
static void
|
|
zvol_request(struct request_queue *q)
|
|
{
|
|
zvol_state_t *zv = q->queuedata;
|
|
struct request *req;
|
|
unsigned int size;
|
|
|
|
while ((req = blk_fetch_request(q)) != NULL) {
|
|
size = blk_rq_bytes(req);
|
|
|
|
if (blk_rq_pos(req) + blk_rq_sectors(req) >
|
|
get_capacity(zv->zv_disk)) {
|
|
printk(KERN_INFO
|
|
"%s: bad access: block=%llu, count=%lu\n",
|
|
req->rq_disk->disk_name,
|
|
(long long unsigned)blk_rq_pos(req),
|
|
(long unsigned)blk_rq_sectors(req));
|
|
__blk_end_request(req, -EIO, size);
|
|
continue;
|
|
}
|
|
|
|
if (!blk_fs_request(req)) {
|
|
printk(KERN_INFO "%s: non-fs cmd\n",
|
|
req->rq_disk->disk_name);
|
|
__blk_end_request(req, -EIO, size);
|
|
continue;
|
|
}
|
|
|
|
switch (rq_data_dir(req)) {
|
|
case READ:
|
|
zvol_dispatch(zvol_read, req);
|
|
break;
|
|
case WRITE:
|
|
if (unlikely(get_disk_ro(zv->zv_disk)) ||
|
|
unlikely(zv->zv_flags & ZVOL_RDONLY)) {
|
|
__blk_end_request(req, -EROFS, size);
|
|
break;
|
|
}
|
|
|
|
zvol_dispatch(zvol_write, req);
|
|
break;
|
|
default:
|
|
printk(KERN_INFO "%s: unknown cmd: %d\n",
|
|
req->rq_disk->disk_name, (int)rq_data_dir(req));
|
|
__blk_end_request(req, -EIO, size);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
zvol_get_done(zgd_t *zgd, int error)
|
|
{
|
|
if (zgd->zgd_db)
|
|
dmu_buf_rele(zgd->zgd_db, zgd);
|
|
|
|
zfs_range_unlock(zgd->zgd_rl);
|
|
|
|
if (error == 0 && zgd->zgd_bp)
|
|
zil_add_block(zgd->zgd_zilog, zgd->zgd_bp);
|
|
|
|
kmem_free(zgd, sizeof (zgd_t));
|
|
}
|
|
|
|
/*
|
|
* Get data to generate a TX_WRITE intent log record.
|
|
*/
|
|
static int
|
|
zvol_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio)
|
|
{
|
|
zvol_state_t *zv = arg;
|
|
objset_t *os = zv->zv_objset;
|
|
uint64_t offset = lr->lr_offset;
|
|
uint64_t size = lr->lr_length;
|
|
dmu_buf_t *db;
|
|
zgd_t *zgd;
|
|
int error;
|
|
|
|
ASSERT(zio != NULL);
|
|
ASSERT(size != 0);
|
|
|
|
zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
|
|
zgd->zgd_zilog = zv->zv_zilog;
|
|
zgd->zgd_rl = zfs_range_lock(&zv->zv_znode, offset, size, RL_READER);
|
|
|
|
/*
|
|
* Write records come in two flavors: immediate and indirect.
|
|
* For small writes it's cheaper to store the data with the
|
|
* log record (immediate); for large writes it's cheaper to
|
|
* sync the data and get a pointer to it (indirect) so that
|
|
* we don't have to write the data twice.
|
|
*/
|
|
if (buf != NULL) { /* immediate write */
|
|
error = dmu_read(os, ZVOL_OBJ, offset, size, buf,
|
|
DMU_READ_NO_PREFETCH);
|
|
} else {
|
|
size = zv->zv_volblocksize;
|
|
offset = P2ALIGN_TYPED(offset, size, uint64_t);
|
|
error = dmu_buf_hold(os, ZVOL_OBJ, offset, zgd, &db,
|
|
DMU_READ_NO_PREFETCH);
|
|
if (error == 0) {
|
|
zgd->zgd_db = db;
|
|
zgd->zgd_bp = &lr->lr_blkptr;
|
|
|
|
ASSERT(db != NULL);
|
|
ASSERT(db->db_offset == offset);
|
|
ASSERT(db->db_size == size);
|
|
|
|
error = dmu_sync(zio, lr->lr_common.lrc_txg,
|
|
zvol_get_done, zgd);
|
|
|
|
if (error == 0)
|
|
return (0);
|
|
}
|
|
}
|
|
|
|
zvol_get_done(zgd, error);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* The zvol_state_t's are inserted in increasing MINOR(dev_t) order.
|
|
*/
|
|
static void
|
|
zvol_insert(zvol_state_t *zv_insert)
|
|
{
|
|
zvol_state_t *zv = NULL;
|
|
|
|
ASSERT(MUTEX_HELD(&zvol_state_lock));
|
|
ASSERT3U(MINOR(zv_insert->zv_dev) & ZVOL_MINOR_MASK, ==, 0);
|
|
for (zv = list_head(&zvol_state_list); zv != NULL;
|
|
zv = list_next(&zvol_state_list, zv)) {
|
|
if (MINOR(zv->zv_dev) > MINOR(zv_insert->zv_dev))
|
|
break;
|
|
}
|
|
|
|
list_insert_before(&zvol_state_list, zv, zv_insert);
|
|
}
|
|
|
|
/*
|
|
* Simply remove the zvol from to list of zvols.
|
|
*/
|
|
static void
|
|
zvol_remove(zvol_state_t *zv_remove)
|
|
{
|
|
ASSERT(MUTEX_HELD(&zvol_state_lock));
|
|
list_remove(&zvol_state_list, zv_remove);
|
|
}
|
|
|
|
static int
|
|
zvol_first_open(zvol_state_t *zv)
|
|
{
|
|
objset_t *os;
|
|
uint64_t volsize;
|
|
int error;
|
|
uint64_t ro;
|
|
|
|
/* lie and say we're read-only */
|
|
error = dmu_objset_own(zv->zv_name, DMU_OST_ZVOL, 1, zvol_tag, &os);
|
|
if (error)
|
|
return (-error);
|
|
|
|
error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize);
|
|
if (error) {
|
|
dmu_objset_disown(os, zvol_tag);
|
|
return (-error);
|
|
}
|
|
|
|
zv->zv_objset = os;
|
|
error = dmu_bonus_hold(os, ZVOL_OBJ, zvol_tag, &zv->zv_dbuf);
|
|
if (error) {
|
|
dmu_objset_disown(os, zvol_tag);
|
|
return (-error);
|
|
}
|
|
|
|
set_capacity(zv->zv_disk, volsize >> 9);
|
|
zv->zv_volsize = volsize;
|
|
zv->zv_zilog = zil_open(os, zvol_get_data);
|
|
|
|
VERIFY(dsl_prop_get_integer(zv->zv_name, "readonly", &ro, NULL) == 0);
|
|
if (ro || dmu_objset_is_snapshot(os)) {
|
|
set_disk_ro(zv->zv_disk, 1);
|
|
zv->zv_flags |= ZVOL_RDONLY;
|
|
} else {
|
|
set_disk_ro(zv->zv_disk, 0);
|
|
zv->zv_flags &= ~ZVOL_RDONLY;
|
|
}
|
|
|
|
return (-error);
|
|
}
|
|
|
|
static void
|
|
zvol_last_close(zvol_state_t *zv)
|
|
{
|
|
zil_close(zv->zv_zilog);
|
|
zv->zv_zilog = NULL;
|
|
dmu_buf_rele(zv->zv_dbuf, zvol_tag);
|
|
zv->zv_dbuf = NULL;
|
|
dmu_objset_disown(zv->zv_objset, zvol_tag);
|
|
zv->zv_objset = NULL;
|
|
}
|
|
|
|
static int
|
|
zvol_open(struct block_device *bdev, fmode_t flag)
|
|
{
|
|
zvol_state_t *zv = bdev->bd_disk->private_data;
|
|
int error = 0;
|
|
|
|
mutex_enter(&zvol_state_lock);
|
|
ASSERT3P(zv, !=, NULL);
|
|
|
|
if (zv->zv_open_count == 0) {
|
|
error = zvol_first_open(zv);
|
|
if (error)
|
|
goto out_mutex;
|
|
}
|
|
|
|
if ((flag & FMODE_WRITE) &&
|
|
(get_disk_ro(zv->zv_disk) || (zv->zv_flags & ZVOL_RDONLY))) {
|
|
error = -EROFS;
|
|
goto out_open_count;
|
|
}
|
|
|
|
zv->zv_open_count++;
|
|
|
|
out_open_count:
|
|
if (zv->zv_open_count == 0)
|
|
zvol_last_close(zv);
|
|
|
|
out_mutex:
|
|
mutex_exit(&zvol_state_lock);
|
|
|
|
check_disk_change(bdev);
|
|
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
zvol_release(struct gendisk *disk, fmode_t mode)
|
|
{
|
|
zvol_state_t *zv = disk->private_data;
|
|
|
|
mutex_enter(&zvol_state_lock);
|
|
ASSERT3P(zv, !=, NULL);
|
|
ASSERT3U(zv->zv_open_count, >, 0);
|
|
zv->zv_open_count--;
|
|
if (zv->zv_open_count == 0)
|
|
zvol_last_close(zv);
|
|
|
|
mutex_exit(&zvol_state_lock);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
zvol_ioctl(struct block_device *bdev, fmode_t mode,
|
|
unsigned int cmd, unsigned long arg)
|
|
{
|
|
zvol_state_t *zv = bdev->bd_disk->private_data;
|
|
int error = 0;
|
|
|
|
if (zv == NULL)
|
|
return (-ENXIO);
|
|
|
|
switch (cmd) {
|
|
case BLKFLSBUF:
|
|
zil_commit(zv->zv_zilog, UINT64_MAX, ZVOL_OBJ);
|
|
break;
|
|
|
|
default:
|
|
error = -ENOTTY;
|
|
break;
|
|
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
static int
|
|
zvol_compat_ioctl(struct block_device *bdev, fmode_t mode,
|
|
unsigned cmd, unsigned long arg)
|
|
{
|
|
return zvol_ioctl(bdev, mode, cmd, arg);
|
|
}
|
|
#else
|
|
#define zvol_compat_ioctl NULL
|
|
#endif
|
|
|
|
static int zvol_media_changed(struct gendisk *disk)
|
|
{
|
|
zvol_state_t *zv = disk->private_data;
|
|
|
|
return zv->zv_changed;
|
|
}
|
|
|
|
static int zvol_revalidate_disk(struct gendisk *disk)
|
|
{
|
|
zvol_state_t *zv = disk->private_data;
|
|
|
|
zv->zv_changed = 0;
|
|
set_capacity(zv->zv_disk, zv->zv_volsize >> 9);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Provide a simple virtual geometry for legacy compatibility. For devices
|
|
* smaller than 1 MiB a small head and sector count is used to allow very
|
|
* tiny devices. For devices over 1 Mib a standard head and sector count
|
|
* is used to keep the cylinders count reasonable.
|
|
*/
|
|
static int
|
|
zvol_getgeo(struct block_device *bdev, struct hd_geometry *geo)
|
|
{
|
|
zvol_state_t *zv = bdev->bd_disk->private_data;
|
|
sector_t sectors = get_capacity(zv->zv_disk);
|
|
|
|
if (sectors > 2048) {
|
|
geo->heads = 16;
|
|
geo->sectors = 63;
|
|
} else {
|
|
geo->heads = 2;
|
|
geo->sectors = 4;
|
|
}
|
|
|
|
geo->start = 0;
|
|
geo->cylinders = sectors / (geo->heads * geo->sectors);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct kobject *
|
|
zvol_probe(dev_t dev, int *part, void *arg)
|
|
{
|
|
zvol_state_t *zv;
|
|
struct kobject *kobj;
|
|
|
|
mutex_enter(&zvol_state_lock);
|
|
zv = zvol_find_by_dev(dev);
|
|
kobj = zv ? get_disk(zv->zv_disk) : ERR_PTR(-ENOENT);
|
|
mutex_exit(&zvol_state_lock);
|
|
|
|
return kobj;
|
|
}
|
|
|
|
#ifdef HAVE_BDEV_BLOCK_DEVICE_OPERATIONS
|
|
static struct block_device_operations zvol_ops = {
|
|
.open = zvol_open,
|
|
.release = zvol_release,
|
|
.ioctl = zvol_ioctl,
|
|
.compat_ioctl = zvol_compat_ioctl,
|
|
.media_changed = zvol_media_changed,
|
|
.revalidate_disk = zvol_revalidate_disk,
|
|
.getgeo = zvol_getgeo,
|
|
.owner = THIS_MODULE,
|
|
};
|
|
|
|
#else /* HAVE_BDEV_BLOCK_DEVICE_OPERATIONS */
|
|
|
|
static int
|
|
zvol_open_by_inode(struct inode *inode, struct file *file)
|
|
{
|
|
return zvol_open(inode->i_bdev, file->f_mode);
|
|
}
|
|
|
|
static int
|
|
zvol_release_by_inode(struct inode *inode, struct file *file)
|
|
{
|
|
return zvol_release(inode->i_bdev->bd_disk, file->f_mode);
|
|
}
|
|
|
|
static int
|
|
zvol_ioctl_by_inode(struct inode *inode, struct file *file,
|
|
unsigned int cmd, unsigned long arg)
|
|
{
|
|
return zvol_ioctl(inode->i_bdev, file->f_mode, cmd, arg);
|
|
}
|
|
|
|
# ifdef CONFIG_COMPAT
|
|
static long
|
|
zvol_compat_ioctl_by_inode(struct file *file,
|
|
unsigned int cmd, unsigned long arg)
|
|
{
|
|
return zvol_compat_ioctl(file->f_dentry->d_inode->i_bdev,
|
|
file->f_mode, cmd, arg);
|
|
}
|
|
# else
|
|
# define zvol_compat_ioctl_by_inode NULL
|
|
# endif
|
|
|
|
static struct block_device_operations zvol_ops = {
|
|
.open = zvol_open_by_inode,
|
|
.release = zvol_release_by_inode,
|
|
.ioctl = zvol_ioctl_by_inode,
|
|
.compat_ioctl = zvol_compat_ioctl_by_inode,
|
|
.media_changed = zvol_media_changed,
|
|
.revalidate_disk = zvol_revalidate_disk,
|
|
.getgeo = zvol_getgeo,
|
|
.owner = THIS_MODULE,
|
|
};
|
|
#endif /* HAVE_BDEV_BLOCK_DEVICE_OPERATIONS */
|
|
|
|
/*
|
|
* Allocate memory for a new zvol_state_t and setup the required
|
|
* request queue and generic disk structures for the block device.
|
|
*/
|
|
static zvol_state_t *
|
|
zvol_alloc(dev_t dev, const char *name)
|
|
{
|
|
zvol_state_t *zv;
|
|
|
|
zv = kmem_zalloc(sizeof (zvol_state_t), KM_SLEEP);
|
|
if (zv == NULL)
|
|
goto out;
|
|
|
|
zv->zv_queue = blk_init_queue(zvol_request, &zv->zv_lock);
|
|
if (zv->zv_queue == NULL)
|
|
goto out_kmem;
|
|
|
|
zv->zv_disk = alloc_disk(ZVOL_MINORS);
|
|
if (zv->zv_disk == NULL)
|
|
goto out_queue;
|
|
|
|
zv->zv_queue->queuedata = zv;
|
|
zv->zv_dev = dev;
|
|
zv->zv_open_count = 0;
|
|
strlcpy(zv->zv_name, name, DISK_NAME_LEN);
|
|
|
|
mutex_init(&zv->zv_znode.z_range_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
avl_create(&zv->zv_znode.z_range_avl, zfs_range_compare,
|
|
sizeof (rl_t), offsetof(rl_t, r_node));
|
|
spin_lock_init(&zv->zv_lock);
|
|
list_link_init(&zv->zv_next);
|
|
|
|
zv->zv_disk->major = zvol_major;
|
|
zv->zv_disk->first_minor = (dev & MINORMASK);
|
|
zv->zv_disk->fops = &zvol_ops;
|
|
zv->zv_disk->private_data = zv;
|
|
zv->zv_disk->queue = zv->zv_queue;
|
|
snprintf(zv->zv_disk->disk_name, DISK_NAME_LEN, "zvol/%s", name);
|
|
|
|
return zv;
|
|
|
|
out_queue:
|
|
blk_cleanup_queue(zv->zv_queue);
|
|
out_kmem:
|
|
kmem_free(zv, sizeof (zvol_state_t));
|
|
out:
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Cleanup then free a zvol_state_t which was created by zvol_alloc().
|
|
*/
|
|
static void
|
|
zvol_free(zvol_state_t *zv)
|
|
{
|
|
avl_destroy(&zv->zv_znode.z_range_avl);
|
|
mutex_destroy(&zv->zv_znode.z_range_lock);
|
|
|
|
del_gendisk(zv->zv_disk);
|
|
blk_cleanup_queue(zv->zv_queue);
|
|
put_disk(zv->zv_disk);
|
|
|
|
kmem_free(zv, sizeof (zvol_state_t));
|
|
}
|
|
|
|
static int
|
|
__zvol_create_minor(const char *name)
|
|
{
|
|
zvol_state_t *zv;
|
|
objset_t *os;
|
|
dmu_object_info_t *doi;
|
|
unsigned minor = 0;
|
|
int error = 0;
|
|
|
|
ASSERT(MUTEX_HELD(&zvol_state_lock));
|
|
|
|
zv = zvol_find_by_name(name);
|
|
if (zv) {
|
|
error = EEXIST;
|
|
goto out;
|
|
}
|
|
|
|
doi = kmem_alloc(sizeof(dmu_object_info_t), KM_SLEEP);
|
|
|
|
error = dmu_objset_own(name, DMU_OST_ZVOL, B_TRUE, zvol_tag, &os);
|
|
if (error)
|
|
goto out_doi;
|
|
|
|
error = dmu_object_info(os, ZVOL_OBJ, doi);
|
|
if (error)
|
|
goto out_dmu_objset_disown;
|
|
|
|
error = zvol_find_minor(&minor);
|
|
if (error)
|
|
goto out_dmu_objset_disown;
|
|
|
|
zv = zvol_alloc(MKDEV(zvol_major, minor), name);
|
|
if (zv == NULL) {
|
|
error = EAGAIN;
|
|
goto out_dmu_objset_disown;
|
|
}
|
|
|
|
if (dmu_objset_is_snapshot(os))
|
|
zv->zv_flags |= ZVOL_RDONLY;
|
|
|
|
zv->zv_volblocksize = doi->doi_data_block_size;
|
|
|
|
if (zil_replay_disable)
|
|
zil_destroy(dmu_objset_zil(os), B_FALSE);
|
|
else
|
|
zil_replay(os, zv, zvol_replay_vector);
|
|
|
|
zvol_insert(zv);
|
|
add_disk(zv->zv_disk);
|
|
error = 0;
|
|
|
|
out_dmu_objset_disown:
|
|
dmu_objset_disown(os, zvol_tag);
|
|
out_doi:
|
|
kmem_free(doi, sizeof(dmu_object_info_t));
|
|
out:
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Create a block device minor node and setup the linkage between it
|
|
* and the specified volume. Once this function returns the block
|
|
* device is live and ready for use.
|
|
*/
|
|
int
|
|
zvol_create_minor(const char *name)
|
|
{
|
|
int error;
|
|
|
|
mutex_enter(&zvol_state_lock);
|
|
error = __zvol_create_minor(name);
|
|
mutex_exit(&zvol_state_lock);
|
|
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
__zvol_remove_minor(const char *name)
|
|
{
|
|
zvol_state_t *zv;
|
|
|
|
ASSERT(MUTEX_HELD(&zvol_state_lock));
|
|
|
|
zv = zvol_find_by_name(name);
|
|
if (zv == NULL)
|
|
return (ENXIO);
|
|
|
|
if (zv->zv_open_count > 0)
|
|
return (EBUSY);
|
|
|
|
zvol_remove(zv);
|
|
zvol_free(zv);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Remove a block device minor node for the specified volume.
|
|
*/
|
|
int
|
|
zvol_remove_minor(const char *name)
|
|
{
|
|
int error;
|
|
|
|
mutex_enter(&zvol_state_lock);
|
|
error = __zvol_remove_minor(name);
|
|
mutex_exit(&zvol_state_lock);
|
|
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
zvol_create_minors_cb(spa_t *spa, uint64_t dsobj,
|
|
const char *dsname, void *arg)
|
|
{
|
|
if (strchr(dsname, '/') == NULL)
|
|
return 0;
|
|
|
|
return __zvol_create_minor(dsname);
|
|
}
|
|
|
|
/*
|
|
* Create minors for specified pool, if pool is NULL create minors
|
|
* for all available pools.
|
|
*/
|
|
int
|
|
zvol_create_minors(const char *pool)
|
|
{
|
|
spa_t *spa = NULL;
|
|
int error = 0;
|
|
|
|
mutex_enter(&zvol_state_lock);
|
|
if (pool) {
|
|
error = dmu_objset_find_spa(NULL, pool, zvol_create_minors_cb,
|
|
NULL, DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
|
|
} else {
|
|
mutex_enter(&spa_namespace_lock);
|
|
while ((spa = spa_next(spa)) != NULL) {
|
|
error = dmu_objset_find_spa(NULL,
|
|
spa_name(spa), zvol_create_minors_cb, NULL,
|
|
DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
|
|
if (error)
|
|
break;
|
|
}
|
|
mutex_exit(&spa_namespace_lock);
|
|
}
|
|
mutex_exit(&zvol_state_lock);
|
|
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Remove minors for specified pool, if pool is NULL remove all minors.
|
|
*/
|
|
void
|
|
zvol_remove_minors(const char *pool)
|
|
{
|
|
zvol_state_t *zv, *zv_next;
|
|
char *str;
|
|
|
|
str = kmem_zalloc(DISK_NAME_LEN, KM_SLEEP);
|
|
if (pool) {
|
|
(void) strncpy(str, pool, strlen(pool));
|
|
(void) strcat(str, "/");
|
|
}
|
|
|
|
mutex_enter(&zvol_state_lock);
|
|
for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) {
|
|
zv_next = list_next(&zvol_state_list, zv);
|
|
|
|
if (pool == NULL || !strncmp(str, zv->zv_name, strlen(str))) {
|
|
zvol_remove(zv);
|
|
zvol_free(zv);
|
|
}
|
|
}
|
|
mutex_exit(&zvol_state_lock);
|
|
kmem_free(str, DISK_NAME_LEN);
|
|
}
|
|
|
|
int
|
|
zvol_init(void)
|
|
{
|
|
int error;
|
|
|
|
if (!zvol_threads)
|
|
zvol_threads = num_online_cpus();
|
|
|
|
zvol_taskq = taskq_create(ZVOL_DRIVER, zvol_threads, maxclsyspri,
|
|
zvol_threads, INT_MAX, TASKQ_PREPOPULATE);
|
|
if (zvol_taskq == NULL) {
|
|
printk(KERN_INFO "ZFS: taskq_create() failed\n");
|
|
return (-ENOMEM);
|
|
}
|
|
|
|
error = register_blkdev(zvol_major, ZVOL_DRIVER);
|
|
if (error) {
|
|
printk(KERN_INFO "ZFS: register_blkdev() failed %d\n", error);
|
|
taskq_destroy(zvol_taskq);
|
|
return (error);
|
|
}
|
|
|
|
blk_register_region(MKDEV(zvol_major, 0), 1UL << MINORBITS,
|
|
THIS_MODULE, zvol_probe, NULL, NULL);
|
|
|
|
mutex_init(&zvol_state_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
list_create(&zvol_state_list, sizeof (zvol_state_t),
|
|
offsetof(zvol_state_t, zv_next));
|
|
|
|
(void) zvol_create_minors(NULL);
|
|
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
zvol_fini(void)
|
|
{
|
|
zvol_remove_minors(NULL);
|
|
blk_unregister_region(MKDEV(zvol_major, 0), 1UL << MINORBITS);
|
|
unregister_blkdev(zvol_major, ZVOL_DRIVER);
|
|
taskq_destroy(zvol_taskq);
|
|
mutex_destroy(&zvol_state_lock);
|
|
list_destroy(&zvol_state_list);
|
|
}
|
|
|
|
module_param(zvol_major, uint, 0);
|
|
MODULE_PARM_DESC(zvol_major, "Major number for zvol device");
|
|
|
|
module_param(zvol_threads, uint, 0);
|
|
MODULE_PARM_DESC(zvol_threads, "Number of threads for zvol device");
|