OpenZFS on Linux and FreeBSD
Go to file
Brian Behlendorf 3018bffa9b Refine slab cache sizing
This change is designed to improve the memory utilization of
slabs by more carefully setting their size.  The way the code
currently works is problematic for slabs which contain large
objects (>1MB).  This is due to slabs being unconditionally
rounded up to a power of two which may result in unused space
at the end of the slab.

The reason the existing code rounds up every slab is because it
assumes it will backed by the buddy allocator.  Since the buddy
allocator can only performs power of two allocations this is
desirable because it avoids wasting any space.  However, this
logic breaks down if slab is backed by vmalloc() which operates
at a page level granularity.  In this case, the optimal thing to
do is calculate the minimum required slab size given certain
constraints (object size, alignment, objects/slab, etc).

Therefore, this patch reworks the spl_slab_size() function so
that it sizes KMC_KMEM slabs differently than KMC_VMEM slabs.
KMC_KMEM slabs are rounded up to the nearest power of two, and
KMC_VMEM slabs are allowed to be the minimum required size.

This change also reduces the default number of objects per slab.
This reduces how much memory a single cache object can pin, which
can result in significant memory saving for highly fragmented
caches.  But depending on the workload it may result in slabs
being allocated and freed more frequently.  In practice, this
has been shown to be a better default for most workloads.

Also the maximum slab size has been reduced to 4MB on 32-bit
systems.  Due to the limited virtual address space it's critical
the we be as frugal as possible.  A limit of 4M still lets us
reasonably comfortably allocate a limited number of 1MB objects.

Finally, the kmem:slab_small and kmem:slab_large SPLAT tests
were extended to provide better test coverage of various object
sizes and alignments.  Caches are created with random parameters
and their basic functionality is verified by allocating several
slabs worth of objects.

Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2015-01-16 13:55:09 -08:00
cmd Retire legacy debugging infrastructure 2014-11-19 10:35:07 -08:00
config Retire legacy debugging infrastructure 2014-11-19 10:35:07 -08:00
include Refine slab cache sizing 2015-01-16 13:55:09 -08:00
lib Remove autotools products 2012-08-27 11:46:23 -07:00
man Refine slab cache sizing 2015-01-16 13:55:09 -08:00
module Refine slab cache sizing 2015-01-16 13:55:09 -08:00
rpm Tag spl-0.6.3 2014-06-12 11:32:38 -07:00
scripts Retire legacy debugging infrastructure 2014-11-19 10:35:07 -08:00
.gitignore Ignore *.{deb,rpm,tar.gz} files in the top directory. 2013-04-24 16:18:14 -07:00
AUTHORS Refresh AUTHORS 2012-12-19 09:40:18 -08:00
COPYING Public Release Prep 2010-05-17 15:18:00 -07:00
DISCLAIMER Public Release Prep 2010-05-17 15:18:00 -07:00
META Make license compatibility checks consistent 2014-10-17 15:07:28 -07:00
Makefile.am Kernel header installation should respect --prefix 2014-10-28 09:31:48 -07:00
README.markdown Document how to run SPLAT 2013-10-09 13:52:59 -07:00
autogen.sh build: do not call boilerplate ourself 2013-04-02 11:08:46 -07:00
configure.ac Document SPL module parameters. 2013-11-21 12:32:41 -08:00
copy-builtin Copy spl.release.in to kernel dir 2013-06-21 15:40:04 -07:00
spl.release.in Move spl.release generation to configure step 2012-07-12 12:13:47 -07:00

README.markdown

The Solaris Porting Layer (SPL) is a Linux kernel module which provides many of the Solaris kernel APIs. This shim layer makes it possible to run Solaris kernel code in the Linux kernel with relatively minimal modification. This can be particularly useful when you want to track upstream Solaris development closely and do not want the overhead of maintaining a large patch which converts Solaris primitives to Linux primitives.

To build packages for your distribution:

$ ./configure
$ make pkg

If you are building directly from the git tree and not an officially released tarball you will need to generate the configure script. This can be done by executing the autogen.sh script after installing the GNU autotools for your distribution.

To copy the kernel code inside your kernel source tree for builtin compilation:

$ ./configure --enable-linux-builtin --with-linux=/usr/src/linux-...
$ ./copy-builtin /usr/src/linux-...

The SPL comes with an automated test suite called SPLAT. The test suite is implemented in two parts. There is a kernel module which contains the tests and a user space utility which controls which tests are run. To run the full test suite:

$ sudo insmod ./module/splat/splat.ko
$ sudo ./cmd/splat --all

Full documentation for building, configuring, testing, and using the SPL can be found at: http://zfsonlinux.org