797 lines
23 KiB
C
797 lines
23 KiB
C
/*
|
|
* This file is part of the SPL: Solaris Porting Layer.
|
|
*
|
|
* Copyright (c) 2008 Lawrence Livermore National Security, LLC.
|
|
* Produced at Lawrence Livermore National Laboratory
|
|
* Written by:
|
|
* Brian Behlendorf <behlendorf1@llnl.gov>,
|
|
* Herb Wartens <wartens2@llnl.gov>,
|
|
* Jim Garlick <garlick@llnl.gov>
|
|
* UCRL-CODE-235197
|
|
*
|
|
* This is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program; if not, write to the Free Software Foundation, Inc.,
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*/
|
|
|
|
#include <sys/kmem.h>
|
|
|
|
#ifdef DEBUG_SUBSYSTEM
|
|
#undef DEBUG_SUBSYSTEM
|
|
#endif
|
|
|
|
#define DEBUG_SUBSYSTEM S_KMEM
|
|
|
|
/*
|
|
* Memory allocation interfaces and debugging for basic kmem_*
|
|
* and vmem_* style memory allocation. When DEBUG_KMEM is enable
|
|
* all allocations will be tracked when they are allocated and
|
|
* freed. When the SPL module is unload a list of all leaked
|
|
* addresses and where they were allocated will be dumped to the
|
|
* console. Enabling this feature has a significant impant on
|
|
* performance but it makes finding memory leaks staight forward.
|
|
*/
|
|
#ifdef DEBUG_KMEM
|
|
/* Shim layer memory accounting */
|
|
atomic64_t kmem_alloc_used;
|
|
unsigned long kmem_alloc_max = 0;
|
|
atomic64_t vmem_alloc_used;
|
|
unsigned long vmem_alloc_max = 0;
|
|
int kmem_warning_flag = 1;
|
|
atomic64_t kmem_cache_alloc_failed;
|
|
|
|
spinlock_t kmem_lock;
|
|
struct hlist_head kmem_table[KMEM_TABLE_SIZE];
|
|
struct list_head kmem_list;
|
|
|
|
spinlock_t vmem_lock;
|
|
struct hlist_head vmem_table[VMEM_TABLE_SIZE];
|
|
struct list_head vmem_list;
|
|
|
|
EXPORT_SYMBOL(kmem_alloc_used);
|
|
EXPORT_SYMBOL(kmem_alloc_max);
|
|
EXPORT_SYMBOL(vmem_alloc_used);
|
|
EXPORT_SYMBOL(vmem_alloc_max);
|
|
EXPORT_SYMBOL(kmem_warning_flag);
|
|
|
|
EXPORT_SYMBOL(kmem_lock);
|
|
EXPORT_SYMBOL(kmem_table);
|
|
EXPORT_SYMBOL(kmem_list);
|
|
|
|
EXPORT_SYMBOL(vmem_lock);
|
|
EXPORT_SYMBOL(vmem_table);
|
|
EXPORT_SYMBOL(vmem_list);
|
|
|
|
int kmem_set_warning(int flag) { return (kmem_warning_flag = !!flag); }
|
|
#else
|
|
int kmem_set_warning(int flag) { return 0; }
|
|
#endif
|
|
EXPORT_SYMBOL(kmem_set_warning);
|
|
|
|
/*
|
|
* Slab allocation interfaces
|
|
*
|
|
* While the Linux slab implementation was inspired by the Solaris
|
|
* implemenation I cannot use it to emulate the Solaris APIs. I
|
|
* require two features which are not provided by the Linux slab.
|
|
*
|
|
* 1) Constructors AND destructors. Recent versions of the Linux
|
|
* kernel have removed support for destructors. This is a deal
|
|
* breaker for the SPL which contains particularly expensive
|
|
* initializers for mutex's, condition variables, etc. We also
|
|
* require a minimal level of cleaner for these data types unlike
|
|
* may Linux data type which do need to be explicitly destroyed.
|
|
*
|
|
* 2) Virtual address backed slab. Callers of the Solaris slab
|
|
* expect it to work well for both small are very large allocations.
|
|
* Because of memory fragmentation the Linux slab which is backed
|
|
* by kmalloc'ed memory performs very badly when confronted with
|
|
* large numbers of large allocations. Basing the slab on the
|
|
* virtual address space removes the need for contigeous pages
|
|
* and greatly improve performance for large allocations.
|
|
*
|
|
* For these reasons, the SPL has its own slab implementation with
|
|
* the needed features. It is not as highly optimized as either the
|
|
* Solaris or Linux slabs, but it should get me most of what is
|
|
* needed until it can be optimized or obsoleted by another approach.
|
|
*
|
|
* One serious concern I do have about this method is the relatively
|
|
* small virtual address space on 32bit arches. This will seriously
|
|
* constrain the size of the slab caches and their performance.
|
|
*
|
|
* XXX: Refactor the below code in to smaller functions. This works
|
|
* for a first pass but each function is doing to much.
|
|
*
|
|
* XXX: Implement SPL proc interface to export full per cache stats.
|
|
*
|
|
* XXX: Implement work requests to keep an eye on each cache and
|
|
* shrink them via slab_reclaim() when they are wasting lots
|
|
* of space. Currently this process is driven by the reapers.
|
|
*
|
|
* XXX: Implement proper small cache object support by embedding
|
|
* the spl_kmem_slab_t, spl_kmem_obj_t's, and objects in the
|
|
* allocated for a particular slab.
|
|
*
|
|
* XXX: Implement a resizable used object hash. Currently the hash
|
|
* is statically sized for thousands of objects but it should
|
|
* grow based on observed worst case slab depth.
|
|
*
|
|
* XXX: Improve the partial slab list by carefully maintaining a
|
|
* strict ordering of fullest to emptiest slabs based on
|
|
* the slab reference count. This gaurentees the when freeing
|
|
* slabs back to the system we need only linearly traverse the
|
|
* last N slabs in the list to discover all the freeable slabs.
|
|
*
|
|
* XXX: NUMA awareness for optionally allocating memory close to a
|
|
* particular core. This can be adventageous if you know the slab
|
|
* object will be short lived and primarily accessed from one core.
|
|
*
|
|
* XXX: Slab coloring may also yield performance improvements and would
|
|
* be desirable to implement.
|
|
*/
|
|
|
|
/* Ensure the __kmem_cache_create/__kmem_cache_destroy macros are
|
|
* removed here to prevent a recursive substitution, we want to call
|
|
* the native linux version.
|
|
*/
|
|
#undef kmem_cache_t
|
|
#undef kmem_cache_create
|
|
#undef kmem_cache_destroy
|
|
#undef kmem_cache_alloc
|
|
#undef kmem_cache_free
|
|
|
|
static struct list_head spl_kmem_cache_list; /* List of caches */
|
|
static struct rw_semaphore spl_kmem_cache_sem; /* Cache list lock */
|
|
static kmem_cache_t *spl_slab_cache; /* Cache for slab structs */
|
|
static kmem_cache_t *spl_obj_cache; /* Cache for obj structs */
|
|
|
|
#ifdef HAVE_SET_SHRINKER
|
|
static struct shrinker *spl_kmem_cache_shrinker;
|
|
#else
|
|
static int kmem_cache_generic_shrinker(int nr_to_scan, unsigned int gfp_mask);
|
|
static struct shrinker spl_kmem_cache_shrinker = {
|
|
.shrink = kmem_cache_generic_shrinker,
|
|
.seeks = KMC_DEFAULT_SEEKS,
|
|
};
|
|
#endif
|
|
|
|
static spl_kmem_slab_t *
|
|
slab_alloc(spl_kmem_cache_t *skc, int flags) {
|
|
spl_kmem_slab_t *sks;
|
|
spl_kmem_obj_t *sko, *n;
|
|
int i;
|
|
ENTRY;
|
|
|
|
sks = kmem_cache_alloc(spl_slab_cache, flags);
|
|
if (sks == NULL)
|
|
RETURN(sks);
|
|
|
|
sks->sks_magic = SKS_MAGIC;
|
|
sks->sks_objs = SPL_KMEM_CACHE_OBJ_PER_SLAB;
|
|
sks->sks_age = jiffies;
|
|
sks->sks_cache = skc;
|
|
INIT_LIST_HEAD(&sks->sks_list);
|
|
INIT_LIST_HEAD(&sks->sks_free_list);
|
|
atomic_set(&sks->sks_ref, 0);
|
|
|
|
for (i = 0; i < sks->sks_objs; i++) {
|
|
sko = kmem_cache_alloc(spl_obj_cache, flags);
|
|
if (sko == NULL) {
|
|
out_alloc:
|
|
/* Unable to fully construct slab, objects,
|
|
* and object data buffers unwind everything.
|
|
*/
|
|
list_for_each_entry_safe(sko, n, &sks->sks_free_list,
|
|
sko_list) {
|
|
ASSERT(sko->sko_magic == SKO_MAGIC);
|
|
vmem_free(sko->sko_addr, skc->skc_obj_size);
|
|
list_del(&sko->sko_list);
|
|
kmem_cache_free(spl_obj_cache, sko);
|
|
}
|
|
|
|
kmem_cache_free(spl_slab_cache, sks);
|
|
GOTO(out, sks = NULL);
|
|
}
|
|
|
|
sko->sko_addr = vmem_alloc(skc->skc_obj_size, flags);
|
|
if (sko->sko_addr == NULL) {
|
|
kmem_cache_free(spl_obj_cache, sko);
|
|
GOTO(out_alloc, sks = NULL);
|
|
}
|
|
|
|
sko->sko_magic = SKO_MAGIC;
|
|
sko->sko_flags = 0;
|
|
sko->sko_slab = sks;
|
|
INIT_LIST_HEAD(&sko->sko_list);
|
|
INIT_HLIST_NODE(&sko->sko_hlist);
|
|
list_add(&sko->sko_list, &sks->sks_free_list);
|
|
}
|
|
out:
|
|
RETURN(sks);
|
|
}
|
|
|
|
/* Removes slab from complete or partial list, so it must
|
|
* be called with the 'skc->skc_sem' semaphore held.
|
|
* */
|
|
static void
|
|
slab_free(spl_kmem_slab_t *sks) {
|
|
spl_kmem_cache_t *skc;
|
|
spl_kmem_obj_t *sko, *n;
|
|
int i = 0;
|
|
ENTRY;
|
|
|
|
ASSERT(sks->sks_magic == SKS_MAGIC);
|
|
ASSERT(atomic_read(&sks->sks_ref) == 0);
|
|
skc = sks->sks_cache;
|
|
skc->skc_obj_total -= sks->sks_objs;
|
|
skc->skc_slab_total--;
|
|
|
|
#ifdef CONFIG_RWSEM_GENERIC_SPINLOCK
|
|
ASSERT(rwsem_is_locked(&skc->skc_sem));
|
|
#endif
|
|
|
|
list_for_each_entry_safe(sko, n, &sks->sks_free_list, sko_list) {
|
|
ASSERT(sko->sko_magic == SKO_MAGIC);
|
|
|
|
/* Run destructors for being freed */
|
|
if (skc->skc_dtor)
|
|
skc->skc_dtor(sko->sko_addr, skc->skc_private);
|
|
|
|
vmem_free(sko->sko_addr, skc->skc_obj_size);
|
|
list_del(&sko->sko_list);
|
|
kmem_cache_free(spl_obj_cache, sko);
|
|
i++;
|
|
}
|
|
|
|
ASSERT(sks->sks_objs == i);
|
|
list_del(&sks->sks_list);
|
|
kmem_cache_free(spl_slab_cache, sks);
|
|
|
|
EXIT;
|
|
}
|
|
|
|
static int
|
|
__slab_reclaim(spl_kmem_cache_t *skc)
|
|
{
|
|
spl_kmem_slab_t *sks, *m;
|
|
int rc = 0;
|
|
ENTRY;
|
|
|
|
#ifdef CONFIG_RWSEM_GENERIC_SPINLOCK
|
|
ASSERT(rwsem_is_locked(&skc->skc_sem));
|
|
#endif
|
|
/*
|
|
* Free empty slabs which have not been touched in skc_delay
|
|
* seconds. This delay time is important to avoid thrashing.
|
|
* Empty slabs will be at the end of the skc_partial_list.
|
|
*/
|
|
list_for_each_entry_safe_reverse(sks, m, &skc->skc_partial_list,
|
|
sks_list) {
|
|
if (atomic_read(&sks->sks_ref) > 0)
|
|
break;
|
|
|
|
if (time_after(jiffies, sks->sks_age + skc->skc_delay * HZ)) {
|
|
slab_free(sks);
|
|
rc++;
|
|
}
|
|
}
|
|
|
|
/* Returns number of slabs reclaimed */
|
|
RETURN(rc);
|
|
}
|
|
|
|
static int
|
|
slab_reclaim(spl_kmem_cache_t *skc)
|
|
{
|
|
int rc;
|
|
ENTRY;
|
|
|
|
down_write(&skc->skc_sem);
|
|
rc = __slab_reclaim(skc);
|
|
up_write(&skc->skc_sem);
|
|
|
|
RETURN(rc);
|
|
}
|
|
|
|
spl_kmem_cache_t *
|
|
spl_kmem_cache_create(char *name, size_t size, size_t align,
|
|
spl_kmem_ctor_t ctor,
|
|
spl_kmem_dtor_t dtor,
|
|
spl_kmem_reclaim_t reclaim,
|
|
void *priv, void *vmp, int flags)
|
|
{
|
|
spl_kmem_cache_t *skc;
|
|
int i, kmem_flags = KM_SLEEP;
|
|
ENTRY;
|
|
|
|
/* We may be called when there is a non-zero preempt_count or
|
|
* interrupts are disabled is which case we must not sleep.
|
|
*/
|
|
if (current_thread_info()->preempt_count || irqs_disabled())
|
|
kmem_flags = KM_NOSLEEP;
|
|
|
|
/* Allocate new cache memory and initialize. */
|
|
skc = (spl_kmem_cache_t *)kmem_alloc(sizeof(*skc), kmem_flags);
|
|
if (skc == NULL)
|
|
RETURN(NULL);
|
|
|
|
skc->skc_magic = SKC_MAGIC;
|
|
|
|
skc->skc_name_size = strlen(name) + 1;
|
|
skc->skc_name = (char *)kmem_alloc(skc->skc_name_size, kmem_flags);
|
|
if (skc->skc_name == NULL) {
|
|
kmem_free(skc, sizeof(*skc));
|
|
RETURN(NULL);
|
|
}
|
|
strncpy(skc->skc_name, name, skc->skc_name_size);
|
|
|
|
skc->skc_ctor = ctor;
|
|
skc->skc_dtor = dtor;
|
|
skc->skc_reclaim = reclaim;
|
|
skc->skc_private = priv;
|
|
skc->skc_vmp = vmp;
|
|
skc->skc_flags = flags;
|
|
skc->skc_obj_size = size;
|
|
skc->skc_chunk_size = 0; /* XXX: Needed only when implementing */
|
|
skc->skc_slab_size = 0; /* small slab object optimizations */
|
|
skc->skc_max_chunks = 0; /* which are yet supported. */
|
|
skc->skc_delay = SPL_KMEM_CACHE_DELAY;
|
|
|
|
skc->skc_hash_bits = SPL_KMEM_CACHE_HASH_BITS;
|
|
skc->skc_hash_size = SPL_KMEM_CACHE_HASH_SIZE;
|
|
skc->skc_hash_elts = SPL_KMEM_CACHE_HASH_ELTS;
|
|
skc->skc_hash = (struct hlist_head *)
|
|
kmem_alloc(skc->skc_hash_size, kmem_flags);
|
|
if (skc->skc_hash == NULL) {
|
|
kmem_free(skc->skc_name, skc->skc_name_size);
|
|
kmem_free(skc, sizeof(*skc));
|
|
}
|
|
|
|
for (i = 0; i < skc->skc_hash_elts; i++)
|
|
INIT_HLIST_HEAD(&skc->skc_hash[i]);
|
|
|
|
INIT_LIST_HEAD(&skc->skc_list);
|
|
INIT_LIST_HEAD(&skc->skc_complete_list);
|
|
INIT_LIST_HEAD(&skc->skc_partial_list);
|
|
init_rwsem(&skc->skc_sem);
|
|
skc->skc_slab_fail = 0;
|
|
skc->skc_slab_create = 0;
|
|
skc->skc_slab_destroy = 0;
|
|
skc->skc_slab_total = 0;
|
|
skc->skc_slab_alloc = 0;
|
|
skc->skc_slab_max = 0;
|
|
skc->skc_obj_total = 0;
|
|
skc->skc_obj_alloc = 0;
|
|
skc->skc_obj_max = 0;
|
|
skc->skc_hash_depth = 0;
|
|
skc->skc_hash_max = 0;
|
|
|
|
down_write(&spl_kmem_cache_sem);
|
|
list_add_tail(&skc->skc_list, &spl_kmem_cache_list);
|
|
up_write(&spl_kmem_cache_sem);
|
|
|
|
RETURN(skc);
|
|
}
|
|
EXPORT_SYMBOL(spl_kmem_cache_create);
|
|
|
|
/* The caller must ensure there are no racing calls to
|
|
* spl_kmem_cache_alloc() for this spl_kmem_cache_t when
|
|
* it is being destroyed.
|
|
*/
|
|
void
|
|
spl_kmem_cache_destroy(spl_kmem_cache_t *skc)
|
|
{
|
|
spl_kmem_slab_t *sks, *m;
|
|
ENTRY;
|
|
|
|
down_write(&spl_kmem_cache_sem);
|
|
list_del_init(&skc->skc_list);
|
|
up_write(&spl_kmem_cache_sem);
|
|
|
|
down_write(&skc->skc_sem);
|
|
|
|
/* Validate there are no objects in use and free all the
|
|
* spl_kmem_slab_t, spl_kmem_obj_t, and object buffers.
|
|
*/
|
|
ASSERT(list_empty(&skc->skc_complete_list));
|
|
|
|
list_for_each_entry_safe(sks, m, &skc->skc_partial_list, sks_list)
|
|
slab_free(sks);
|
|
|
|
kmem_free(skc->skc_hash, skc->skc_hash_size);
|
|
kmem_free(skc->skc_name, skc->skc_name_size);
|
|
kmem_free(skc, sizeof(*skc));
|
|
up_write(&skc->skc_sem);
|
|
|
|
EXIT;
|
|
}
|
|
EXPORT_SYMBOL(spl_kmem_cache_destroy);
|
|
|
|
/* The kernel provided hash_ptr() function behaves exceptionally badly
|
|
* when all the addresses are page aligned which is likely the case
|
|
* here. To avoid this issue shift off the low order non-random bits.
|
|
*/
|
|
static unsigned long
|
|
spl_hash_ptr(void *ptr, unsigned int bits)
|
|
{
|
|
return hash_long((unsigned long)ptr >> PAGE_SHIFT, bits);
|
|
}
|
|
|
|
void *
|
|
spl_kmem_cache_alloc(spl_kmem_cache_t *skc, int flags)
|
|
{
|
|
spl_kmem_slab_t *sks;
|
|
spl_kmem_obj_t *sko;
|
|
void *obj;
|
|
unsigned long key;
|
|
ENTRY;
|
|
|
|
down_write(&skc->skc_sem);
|
|
restart:
|
|
/* Check for available objects from the partial slabs */
|
|
if (!list_empty(&skc->skc_partial_list)) {
|
|
sks = list_first_entry(&skc->skc_partial_list,
|
|
spl_kmem_slab_t, sks_list);
|
|
ASSERT(sks->sks_magic == SKS_MAGIC);
|
|
ASSERT(atomic_read(&sks->sks_ref) < sks->sks_objs);
|
|
ASSERT(!list_empty(&sks->sks_free_list));
|
|
|
|
sko = list_first_entry(&sks->sks_free_list,
|
|
spl_kmem_obj_t, sko_list);
|
|
ASSERT(sko->sko_magic == SKO_MAGIC);
|
|
ASSERT(sko->sko_addr != NULL);
|
|
|
|
/* Remove from sks_free_list, add to used hash */
|
|
list_del_init(&sko->sko_list);
|
|
key = spl_hash_ptr(sko->sko_addr, skc->skc_hash_bits);
|
|
hlist_add_head_rcu(&sko->sko_hlist, &skc->skc_hash[key]);
|
|
|
|
sks->sks_age = jiffies;
|
|
atomic_inc(&sks->sks_ref);
|
|
skc->skc_obj_alloc++;
|
|
|
|
if (skc->skc_obj_alloc > skc->skc_obj_max)
|
|
skc->skc_obj_max = skc->skc_obj_alloc;
|
|
|
|
if (atomic_read(&sks->sks_ref) == 1) {
|
|
skc->skc_slab_alloc++;
|
|
|
|
if (skc->skc_slab_alloc > skc->skc_slab_max)
|
|
skc->skc_slab_max = skc->skc_slab_alloc;
|
|
}
|
|
|
|
/* Move slab to skc_complete_list when full */
|
|
if (atomic_read(&sks->sks_ref) == sks->sks_objs) {
|
|
list_del(&sks->sks_list);
|
|
list_add(&sks->sks_list, &skc->skc_complete_list);
|
|
}
|
|
|
|
GOTO(out_lock, obj = sko->sko_addr);
|
|
}
|
|
|
|
up_write(&skc->skc_sem);
|
|
|
|
/* No available objects create a new slab. Since this is an
|
|
* expensive operation we do it without holding the semaphore
|
|
* and only briefly aquire it when we link in the fully
|
|
* allocated and constructed slab.
|
|
*/
|
|
|
|
/* Under Solaris if the KM_SLEEP flag is passed we may never
|
|
* fail, so sleep as long as needed. Additionally, since we are
|
|
* using vmem_alloc() KM_NOSLEEP is not an option and we must
|
|
* fail. Shifting to allocating our own pages and mapping the
|
|
* virtual address space may allow us to bypass this issue.
|
|
*/
|
|
if (!flags)
|
|
flags |= KM_SLEEP;
|
|
|
|
if (flags & KM_SLEEP)
|
|
flags |= __GFP_NOFAIL;
|
|
else
|
|
GOTO(out, obj = NULL);
|
|
|
|
sks = slab_alloc(skc, flags);
|
|
if (sks == NULL)
|
|
GOTO(out, obj = NULL);
|
|
|
|
/* Run all the constructors now that the slab is fully allocated */
|
|
list_for_each_entry(sko, &sks->sks_free_list, sko_list) {
|
|
ASSERT(sko->sko_magic == SKO_MAGIC);
|
|
|
|
if (skc->skc_ctor)
|
|
skc->skc_ctor(sko->sko_addr, skc->skc_private, flags);
|
|
}
|
|
|
|
/* Link the newly created slab in to the skc_partial_list,
|
|
* and retry the allocation which will now succeed.
|
|
*/
|
|
down_write(&skc->skc_sem);
|
|
skc->skc_slab_total++;
|
|
skc->skc_obj_total += sks->sks_objs;
|
|
list_add_tail(&sks->sks_list, &skc->skc_partial_list);
|
|
GOTO(restart, obj = NULL);
|
|
|
|
out_lock:
|
|
up_write(&skc->skc_sem);
|
|
out:
|
|
RETURN(obj);
|
|
}
|
|
EXPORT_SYMBOL(spl_kmem_cache_alloc);
|
|
|
|
void
|
|
spl_kmem_cache_free(spl_kmem_cache_t *skc, void *obj)
|
|
{
|
|
struct hlist_head *head;
|
|
struct hlist_node *node;
|
|
spl_kmem_slab_t *sks = NULL;
|
|
spl_kmem_obj_t *sko = NULL;
|
|
ENTRY;
|
|
|
|
down_write(&skc->skc_sem);
|
|
|
|
head = &skc->skc_hash[spl_hash_ptr(obj, skc->skc_hash_bits)];
|
|
hlist_for_each_entry_rcu(sko, node, head, sko_hlist) {
|
|
if (sko->sko_addr == obj) {
|
|
ASSERT(sko->sko_magic == SKO_MAGIC);
|
|
sks = sko->sko_slab;
|
|
break;
|
|
}
|
|
}
|
|
|
|
ASSERT(sko != NULL); /* Obj must be in hash */
|
|
ASSERT(sks != NULL); /* Obj must reference slab */
|
|
ASSERT(sks->sks_cache == skc);
|
|
hlist_del_init(&sko->sko_hlist);
|
|
list_add(&sko->sko_list, &sks->sks_free_list);
|
|
|
|
sks->sks_age = jiffies;
|
|
atomic_dec(&sks->sks_ref);
|
|
skc->skc_obj_alloc--;
|
|
|
|
/* Move slab to skc_partial_list when no longer full. Slabs
|
|
* are added to the kead to keep the partial list is quasi
|
|
* full sorted order. Fuller at the head, emptier at the tail.
|
|
*/
|
|
if (atomic_read(&sks->sks_ref) == (sks->sks_objs - 1)) {
|
|
list_del(&sks->sks_list);
|
|
list_add(&sks->sks_list, &skc->skc_partial_list);
|
|
}
|
|
|
|
/* Move emply slabs to the end of the partial list so
|
|
* they can be easily found and freed during reclamation.
|
|
*/
|
|
if (atomic_read(&sks->sks_ref) == 0) {
|
|
list_del(&sks->sks_list);
|
|
list_add_tail(&sks->sks_list, &skc->skc_partial_list);
|
|
skc->skc_slab_alloc--;
|
|
}
|
|
|
|
__slab_reclaim(skc);
|
|
up_write(&skc->skc_sem);
|
|
}
|
|
EXPORT_SYMBOL(spl_kmem_cache_free);
|
|
|
|
static int
|
|
kmem_cache_generic_shrinker(int nr_to_scan, unsigned int gfp_mask)
|
|
{
|
|
spl_kmem_cache_t *skc;
|
|
|
|
/* Under linux a shrinker is not tightly coupled with a slab
|
|
* cache. In fact linux always systematically trys calling all
|
|
* registered shrinker callbacks until its target reclamation level
|
|
* is reached. Because of this we only register one shrinker
|
|
* function in the shim layer for all slab caches. And we always
|
|
* attempt to shrink all caches when this generic shrinker is called.
|
|
*/
|
|
down_read(&spl_kmem_cache_sem);
|
|
|
|
list_for_each_entry(skc, &spl_kmem_cache_list, skc_list)
|
|
spl_kmem_cache_reap_now(skc);
|
|
|
|
up_read(&spl_kmem_cache_sem);
|
|
|
|
/* XXX: Under linux we should return the remaining number of
|
|
* entries in the cache. We should do this as well.
|
|
*/
|
|
return 1;
|
|
}
|
|
|
|
void
|
|
spl_kmem_cache_reap_now(spl_kmem_cache_t *skc)
|
|
{
|
|
ENTRY;
|
|
ASSERT(skc && skc->skc_magic == SKC_MAGIC);
|
|
|
|
if (skc->skc_reclaim)
|
|
skc->skc_reclaim(skc->skc_private);
|
|
|
|
slab_reclaim(skc);
|
|
EXIT;
|
|
}
|
|
EXPORT_SYMBOL(spl_kmem_cache_reap_now);
|
|
|
|
void
|
|
spl_kmem_reap(void)
|
|
{
|
|
kmem_cache_generic_shrinker(KMC_REAP_CHUNK, GFP_KERNEL);
|
|
}
|
|
EXPORT_SYMBOL(spl_kmem_reap);
|
|
|
|
int
|
|
spl_kmem_init(void)
|
|
{
|
|
int rc = 0;
|
|
ENTRY;
|
|
|
|
init_rwsem(&spl_kmem_cache_sem);
|
|
INIT_LIST_HEAD(&spl_kmem_cache_list);
|
|
|
|
spl_slab_cache = NULL;
|
|
spl_obj_cache = NULL;
|
|
|
|
spl_slab_cache = kmem_cache_create("spl_slab_cache",
|
|
sizeof(spl_kmem_slab_t),
|
|
0, 0, NULL);
|
|
if (spl_slab_cache == NULL)
|
|
GOTO(out_cache, rc = -ENOMEM);
|
|
|
|
spl_obj_cache = kmem_cache_create("spl_obj_cache",
|
|
sizeof(spl_kmem_obj_t),
|
|
0, 0, NULL);
|
|
if (spl_obj_cache == NULL)
|
|
GOTO(out_cache, rc = -ENOMEM);
|
|
|
|
#ifdef HAVE_SET_SHRINKER
|
|
spl_kmem_cache_shrinker = set_shrinker(KMC_DEFAULT_SEEKS, shrinker);
|
|
if (spl_kmem_cache_shrinker == NULL)
|
|
GOTO(out_cache, rc = -ENOMEM);
|
|
#else
|
|
register_shrinker(&spl_kmem_cache_shrinker);
|
|
#endif
|
|
|
|
#ifdef DEBUG_KMEM
|
|
{ int i;
|
|
atomic64_set(&kmem_alloc_used, 0);
|
|
atomic64_set(&vmem_alloc_used, 0);
|
|
atomic64_set(&kmem_cache_alloc_failed, 0);
|
|
|
|
spin_lock_init(&kmem_lock);
|
|
INIT_LIST_HEAD(&kmem_list);
|
|
|
|
for (i = 0; i < KMEM_TABLE_SIZE; i++)
|
|
INIT_HLIST_HEAD(&kmem_table[i]);
|
|
|
|
spin_lock_init(&vmem_lock);
|
|
INIT_LIST_HEAD(&vmem_list);
|
|
|
|
for (i = 0; i < VMEM_TABLE_SIZE; i++)
|
|
INIT_HLIST_HEAD(&vmem_table[i]);
|
|
}
|
|
#endif
|
|
RETURN(rc);
|
|
|
|
out_cache:
|
|
if (spl_obj_cache)
|
|
(void)kmem_cache_destroy(spl_obj_cache);
|
|
|
|
if (spl_slab_cache)
|
|
(void)kmem_cache_destroy(spl_slab_cache);
|
|
|
|
RETURN(rc);
|
|
}
|
|
|
|
#ifdef DEBUG_KMEM
|
|
static char *
|
|
sprintf_addr(kmem_debug_t *kd, char *str, int len, int min)
|
|
{
|
|
int size = ((len - 1) < kd->kd_size) ? (len - 1) : kd->kd_size;
|
|
int i, flag = 1;
|
|
|
|
ASSERT(str != NULL && len >= 17);
|
|
memset(str, 0, len);
|
|
|
|
/* Check for a fully printable string, and while we are at
|
|
* it place the printable characters in the passed buffer. */
|
|
for (i = 0; i < size; i++) {
|
|
str[i] = ((char *)(kd->kd_addr))[i];
|
|
if (isprint(str[i])) {
|
|
continue;
|
|
} else {
|
|
/* Minimum number of printable characters found
|
|
* to make it worthwhile to print this as ascii. */
|
|
if (i > min)
|
|
break;
|
|
|
|
flag = 0;
|
|
break;
|
|
}
|
|
|
|
}
|
|
|
|
if (!flag) {
|
|
sprintf(str, "%02x%02x%02x%02x%02x%02x%02x%02x",
|
|
*((uint8_t *)kd->kd_addr),
|
|
*((uint8_t *)kd->kd_addr + 2),
|
|
*((uint8_t *)kd->kd_addr + 4),
|
|
*((uint8_t *)kd->kd_addr + 6),
|
|
*((uint8_t *)kd->kd_addr + 8),
|
|
*((uint8_t *)kd->kd_addr + 10),
|
|
*((uint8_t *)kd->kd_addr + 12),
|
|
*((uint8_t *)kd->kd_addr + 14));
|
|
}
|
|
|
|
return str;
|
|
}
|
|
#endif /* DEBUG_KMEM */
|
|
|
|
void
|
|
spl_kmem_fini(void)
|
|
{
|
|
#ifdef DEBUG_KMEM
|
|
unsigned long flags;
|
|
kmem_debug_t *kd;
|
|
char str[17];
|
|
|
|
/* Display all unreclaimed memory addresses, including the
|
|
* allocation size and the first few bytes of what's located
|
|
* at that address to aid in debugging. Performance is not
|
|
* a serious concern here since it is module unload time. */
|
|
if (atomic64_read(&kmem_alloc_used) != 0)
|
|
CWARN("kmem leaked %ld/%ld bytes\n",
|
|
atomic_read(&kmem_alloc_used), kmem_alloc_max);
|
|
|
|
spin_lock_irqsave(&kmem_lock, flags);
|
|
if (!list_empty(&kmem_list))
|
|
CDEBUG(D_WARNING, "%-16s %-5s %-16s %s:%s\n",
|
|
"address", "size", "data", "func", "line");
|
|
|
|
list_for_each_entry(kd, &kmem_list, kd_list)
|
|
CDEBUG(D_WARNING, "%p %-5d %-16s %s:%d\n",
|
|
kd->kd_addr, kd->kd_size,
|
|
sprintf_addr(kd, str, 17, 8),
|
|
kd->kd_func, kd->kd_line);
|
|
|
|
spin_unlock_irqrestore(&kmem_lock, flags);
|
|
|
|
if (atomic64_read(&vmem_alloc_used) != 0)
|
|
CWARN("vmem leaked %ld/%ld bytes\n",
|
|
atomic_read(&vmem_alloc_used), vmem_alloc_max);
|
|
|
|
spin_lock_irqsave(&vmem_lock, flags);
|
|
if (!list_empty(&vmem_list))
|
|
CDEBUG(D_WARNING, "%-16s %-5s %-16s %s:%s\n",
|
|
"address", "size", "data", "func", "line");
|
|
|
|
list_for_each_entry(kd, &vmem_list, kd_list)
|
|
CDEBUG(D_WARNING, "%p %-5d %-16s %s:%d\n",
|
|
kd->kd_addr, kd->kd_size,
|
|
sprintf_addr(kd, str, 17, 8),
|
|
kd->kd_func, kd->kd_line);
|
|
|
|
spin_unlock_irqrestore(&vmem_lock, flags);
|
|
#endif
|
|
ENTRY;
|
|
|
|
#ifdef HAVE_SET_SHRINKER
|
|
remove_shrinker(spl_kmem_cache_shrinker);
|
|
#else
|
|
unregister_shrinker(&spl_kmem_cache_shrinker);
|
|
#endif
|
|
|
|
(void)kmem_cache_destroy(spl_obj_cache);
|
|
(void)kmem_cache_destroy(spl_slab_cache);
|
|
|
|
EXIT;
|
|
}
|