zfs/include/sys/kmem.h

461 lines
22 KiB
C

/*
* This file is part of the SPL: Solaris Porting Layer.
*
* Copyright (c) 2008 Lawrence Livermore National Security, LLC.
* Produced at Lawrence Livermore National Laboratory
* Written by:
* Brian Behlendorf <behlendorf1@llnl.gov>,
* Herb Wartens <wartens2@llnl.gov>,
* Jim Garlick <garlick@llnl.gov>
* UCRL-CODE-235197
*
* This is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#ifndef _SPL_KMEM_H
#define _SPL_KMEM_H
#ifdef __cplusplus
extern "C" {
#endif
#undef DEBUG_KMEM_UNIMPLEMENTED
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/mm.h>
#include <linux/spinlock.h>
#include <linux/rwsem.h>
#include <linux/hash.h>
#include <linux/ctype.h>
#include <sys/types.h>
#include <sys/debug.h>
/*
* Memory allocation interfaces
*/
#define KM_SLEEP GFP_KERNEL
#define KM_NOSLEEP GFP_ATOMIC
#undef KM_PANIC /* No linux analog */
#define KM_PUSHPAGE (GFP_KERNEL | __GFP_HIGH)
#define KM_VMFLAGS GFP_LEVEL_MASK
#define KM_FLAGS __GFP_BITS_MASK
#ifdef DEBUG_KMEM
extern atomic64_t kmem_alloc_used;
extern unsigned long kmem_alloc_max;
extern atomic64_t vmem_alloc_used;
extern unsigned long vmem_alloc_max;
extern int kmem_warning_flag;
extern atomic64_t kmem_cache_alloc_failed;
/* XXX - Not to surprisingly with debugging enabled the xmem_locks are very
* highly contended particularly on xfree(). If we want to run with this
* detailed debugging enabled for anything other than debugging we need to
* minimize the contention by moving to a lock per xmem_table entry model.
*/
#define KMEM_HASH_BITS 10
#define KMEM_TABLE_SIZE (1 << KMEM_HASH_BITS)
extern struct hlist_head kmem_table[KMEM_TABLE_SIZE];
extern struct list_head kmem_list;
extern spinlock_t kmem_lock;
#define VMEM_HASH_BITS 10
#define VMEM_TABLE_SIZE (1 << VMEM_HASH_BITS)
extern struct hlist_head vmem_table[VMEM_TABLE_SIZE];
extern struct list_head vmem_list;
extern spinlock_t vmem_lock;
typedef struct kmem_debug {
struct hlist_node kd_hlist; /* Hash node linkage */
struct list_head kd_list; /* List of all allocations */
void *kd_addr; /* Allocation pointer */
size_t kd_size; /* Allocation size */
const char *kd_func; /* Allocation function */
int kd_line; /* Allocation line */
} kmem_debug_t;
static __inline__ kmem_debug_t *
__kmem_del_init(spinlock_t *lock,struct hlist_head *table,int bits,void *addr)
{
struct hlist_head *head;
struct hlist_node *node;
struct kmem_debug *p;
unsigned long flags;
spin_lock_irqsave(lock, flags);
head = &table[hash_ptr(addr, bits)];
hlist_for_each_entry_rcu(p, node, head, kd_hlist) {
if (p->kd_addr == addr) {
hlist_del_init(&p->kd_hlist);
list_del_init(&p->kd_list);
spin_unlock_irqrestore(lock, flags);
return p;
}
}
spin_unlock_irqrestore(lock, flags);
return NULL;
}
#define __kmem_alloc(size, flags, allocator) \
({ void *_ptr_ = NULL; \
kmem_debug_t *_dptr_; \
unsigned long _flags_; \
\
_dptr_ = (kmem_debug_t *)kmalloc(sizeof(kmem_debug_t), (flags)); \
if (_dptr_ == NULL) { \
__CDEBUG_LIMIT(S_KMEM, D_WARNING, "Warning " \
"kmem_alloc(%d, 0x%x) debug failed\n", \
sizeof(kmem_debug_t), (int)(flags)); \
} else { \
/* Marked unlikely because we should never be doing this, */ \
/* we tolerate to up 2 pages but a single page is best. */ \
if (unlikely((size) > (PAGE_SIZE * 2)) && kmem_warning_flag) \
__CDEBUG_LIMIT(S_KMEM, D_WARNING, "Warning large " \
"kmem_alloc(%d, 0x%x) (%ld/%ld)\n", \
(int)(size), (int)(flags), \
atomic64_read(&kmem_alloc_used), \
kmem_alloc_max); \
\
_ptr_ = (void *)allocator((size), (flags)); \
if (_ptr_ == NULL) { \
kfree(_dptr_); \
__CDEBUG_LIMIT(S_KMEM, D_WARNING, "Warning " \
"kmem_alloc(%d, 0x%x) failed (%ld/" \
"%ld)\n", (int)(size), (int)(flags), \
atomic64_read(&kmem_alloc_used), \
kmem_alloc_max); \
} else { \
atomic64_add((size), &kmem_alloc_used); \
if (unlikely(atomic64_read(&kmem_alloc_used) > \
kmem_alloc_max)) \
kmem_alloc_max = \
atomic64_read(&kmem_alloc_used); \
\
INIT_HLIST_NODE(&_dptr_->kd_hlist); \
INIT_LIST_HEAD(&_dptr_->kd_list); \
_dptr_->kd_addr = _ptr_; \
_dptr_->kd_size = (size); \
_dptr_->kd_func = __FUNCTION__; \
_dptr_->kd_line = __LINE__; \
spin_lock_irqsave(&kmem_lock, _flags_); \
hlist_add_head_rcu(&_dptr_->kd_hlist, \
&kmem_table[hash_ptr(_ptr_, KMEM_HASH_BITS)]);\
list_add_tail(&_dptr_->kd_list, &kmem_list); \
spin_unlock_irqrestore(&kmem_lock, _flags_); \
\
__CDEBUG_LIMIT(S_KMEM, D_INFO, "kmem_alloc(" \
"%d, 0x%x) = %p (%ld/%ld)\n", \
(int)(size), (int)(flags), _ptr_, \
atomic64_read(&kmem_alloc_used), \
kmem_alloc_max); \
} \
} \
\
_ptr_; \
})
#define kmem_alloc(size, flags) __kmem_alloc((size), (flags), kmalloc)
#define kmem_zalloc(size, flags) __kmem_alloc((size), (flags), kzalloc)
#define kmem_free(ptr, size) \
({ \
kmem_debug_t *_dptr_; \
ASSERT((ptr) || (size > 0)); \
\
_dptr_ = __kmem_del_init(&kmem_lock, kmem_table, KMEM_HASH_BITS, ptr);\
ASSERT(_dptr_); /* Must exist in hash due to kmem_alloc() */ \
ASSERTF(_dptr_->kd_size == (size), "kd_size (%d) != size (%d), " \
"kd_func = %s, kd_line = %d\n", _dptr_->kd_size, (size), \
_dptr_->kd_func, _dptr_->kd_line); /* Size must match */ \
atomic64_sub((size), &kmem_alloc_used); \
__CDEBUG_LIMIT(S_KMEM, D_INFO, "kmem_free(%p, %d) (%ld/%ld)\n", \
(ptr), (int)(size), atomic64_read(&kmem_alloc_used), \
kmem_alloc_max); \
\
memset(_dptr_, 0x5a, sizeof(kmem_debug_t)); \
kfree(_dptr_); \
\
memset(ptr, 0x5a, (size)); \
kfree(ptr); \
})
#define __vmem_alloc(size, flags) \
({ void *_ptr_ = NULL; \
kmem_debug_t *_dptr_; \
unsigned long _flags_; \
\
ASSERT((flags) & KM_SLEEP); \
\
_dptr_ = (kmem_debug_t *)kmalloc(sizeof(kmem_debug_t), (flags)); \
if (_dptr_ == NULL) { \
__CDEBUG_LIMIT(S_KMEM, D_WARNING, "Warning " \
"vmem_alloc(%d, 0x%x) debug failed\n", \
sizeof(kmem_debug_t), (int)(flags)); \
} else { \
_ptr_ = (void *)__vmalloc((size), (((flags) | \
__GFP_HIGHMEM) & ~__GFP_ZERO), \
PAGE_KERNEL); \
if (_ptr_ == NULL) { \
kfree(_dptr_); \
__CDEBUG_LIMIT(S_KMEM, D_WARNING, "Warning " \
"vmem_alloc(%d, 0x%x) failed (%ld/" \
"%ld)\n", (int)(size), (int)(flags), \
atomic64_read(&vmem_alloc_used), \
vmem_alloc_max); \
} else { \
if (flags & __GFP_ZERO) \
memset(_ptr_, 0, (size)); \
\
atomic64_add((size), &vmem_alloc_used); \
if (unlikely(atomic64_read(&vmem_alloc_used) > \
vmem_alloc_max)) \
vmem_alloc_max = \
atomic64_read(&vmem_alloc_used); \
\
INIT_HLIST_NODE(&_dptr_->kd_hlist); \
INIT_LIST_HEAD(&_dptr_->kd_list); \
_dptr_->kd_addr = _ptr_; \
_dptr_->kd_size = (size); \
_dptr_->kd_func = __FUNCTION__; \
_dptr_->kd_line = __LINE__; \
spin_lock_irqsave(&vmem_lock, _flags_); \
hlist_add_head_rcu(&_dptr_->kd_hlist, \
&vmem_table[hash_ptr(_ptr_, VMEM_HASH_BITS)]);\
list_add_tail(&_dptr_->kd_list, &vmem_list); \
spin_unlock_irqrestore(&vmem_lock, _flags_); \
\
__CDEBUG_LIMIT(S_KMEM, D_INFO, "vmem_alloc(" \
"%d, 0x%x) = %p (%ld/%ld)\n", \
(int)(size), (int)(flags), _ptr_, \
atomic64_read(&vmem_alloc_used), \
vmem_alloc_max); \
} \
} \
\
_ptr_; \
})
#define vmem_alloc(size, flags) __vmem_alloc((size), (flags))
#define vmem_zalloc(size, flags) __vmem_alloc((size), ((flags) | \
__GFP_ZERO))
#define vmem_free(ptr, size) \
({ \
kmem_debug_t *_dptr_; \
ASSERT((ptr) || (size > 0)); \
\
_dptr_ = __kmem_del_init(&vmem_lock, vmem_table, VMEM_HASH_BITS, ptr);\
ASSERT(_dptr_); /* Must exist in hash due to vmem_alloc() */ \
ASSERTF(_dptr_->kd_size == (size), "kd_size (%d) != size (%d), " \
"kd_func = %s, kd_line = %d\n", _dptr_->kd_size, (size), \
_dptr_->kd_func, _dptr_->kd_line); /* Size must match */ \
atomic64_sub((size), &vmem_alloc_used); \
__CDEBUG_LIMIT(S_KMEM, D_INFO, "vmem_free(%p, %d) (%ld/%ld)\n", \
(ptr), (int)(size), atomic64_read(&vmem_alloc_used), \
vmem_alloc_max); \
\
memset(_dptr_, 0x5a, sizeof(kmem_debug_t)); \
kfree(_dptr_); \
\
memset(ptr, 0x5a, (size)); \
vfree(ptr); \
})
#else /* DEBUG_KMEM */
#define kmem_alloc(size, flags) kmalloc((size), (flags))
#define kmem_zalloc(size, flags) kzalloc((size), (flags))
#define kmem_free(ptr, size) kfree(ptr)
#define vmem_alloc(size, flags) __vmalloc((size), ((flags) | \
__GFP_HIGHMEM), PAGE_KERNEL)
#define vmem_zalloc(size, flags) \
({ \
void *_ptr_ = __vmalloc((size),((flags)|__GFP_HIGHMEM),PAGE_KERNEL); \
if (_ptr_) \
memset(_ptr_, 0, (size)); \
_ptr_; \
})
#define vmem_free(ptr, size) vfree(ptr)
#endif /* DEBUG_KMEM */
#ifdef DEBUG_KMEM_UNIMPLEMENTED
static __inline__ void *
kmem_alloc_tryhard(size_t size, size_t *alloc_size, int kmflags)
{
#error "kmem_alloc_tryhard() not implemented"
}
#endif /* DEBUG_KMEM_UNIMPLEMENTED */
/*
* Slab allocation interfaces
*/
#undef KMC_NOTOUCH /* XXX: Unsupported */
#define KMC_NODEBUG 0x00000000 /* Default behavior */
#define KMC_NOMAGAZINE /* XXX: Unsupported */
#define KMC_NOHASH /* XXX: Unsupported */
#define KMC_QCACHE /* XXX: Unsupported */
#define KMC_REAP_CHUNK 256
#define KMC_DEFAULT_SEEKS DEFAULT_SEEKS
#ifdef DEBUG_KMEM_UNIMPLEMENTED
static __inline__ void kmem_init(void) {
#error "kmem_init() not implemented"
}
static __inline__ void kmem_thread_init(void) {
#error "kmem_thread_init() not implemented"
}
static __inline__ void kmem_mp_init(void) {
#error "kmem_mp_init() not implemented"
}
static __inline__ void kmem_reap_idspace(void) {
#error "kmem_reap_idspace() not implemented"
}
static __inline__ size_t kmem_avail(void) {
#error "kmem_avail() not implemented"
}
static __inline__ size_t kmem_maxavail(void) {
#error "kmem_maxavail() not implemented"
}
static __inline__ uint64_t kmem_cache_stat(spl_kmem_cache_t *cache) {
#error "kmem_cache_stat() not implemented"
}
#endif /* DEBUG_KMEM_UNIMPLEMENTED */
/* XXX - Used by arc.c to adjust its memory footprint. We may want
* to use this hook in the future to adjust behavior based on
* debug levels. For now it's safe to always return 0.
*/
static __inline__ int
kmem_debugging(void)
{
return 0;
}
extern int kmem_set_warning(int flag);
#define SKO_MAGIC 0x20202020
#define SKS_MAGIC 0x22222222
#define SKC_MAGIC 0x2c2c2c2c
#define SPL_KMEM_CACHE_HASH_BITS 12 /* 4k, sized for 1000's of objs */
#define SPL_KMEM_CACHE_HASH_ELTS (1 << SPL_KMEM_CACHE_HASH_BITS)
#define SPL_KMEM_CACHE_HASH_SIZE (sizeof(struct hlist_head) * \
SPL_KMEM_CACHE_HASH_ELTS)
#define SPL_KMEM_CACHE_DELAY 5
#define SPL_KMEM_CACHE_OBJ_PER_SLAB 32
typedef int (*spl_kmem_ctor_t)(void *, void *, int);
typedef void (*spl_kmem_dtor_t)(void *, void *);
typedef void (*spl_kmem_reclaim_t)(void *);
typedef struct spl_kmem_obj {
uint32_t sko_magic; /* Sanity magic */
uint32_t sko_flags; /* Per object flags */
void *sko_addr; /* Buffer address */
struct spl_kmem_slab *sko_slab; /* Owned by slab */
struct list_head sko_list; /* Free object list linkage */
struct hlist_node sko_hlist; /* Used object hash linkage */
} spl_kmem_obj_t;
typedef struct spl_kmem_slab {
uint32_t sks_magic; /* Sanity magic */
uint32_t sks_objs; /* Objects per slab */
struct spl_kmem_cache *sks_cache; /* Owned by cache */
struct list_head sks_list; /* Slab list linkage */
struct list_head sks_free_list; /* Free object list */
unsigned long sks_age; /* Last modify jiffie */
atomic_t sks_ref; /* Ref count used objects */
} spl_kmem_slab_t;
typedef struct spl_kmem_cache {
uint32_t skc_magic; /* Sanity magic */
uint32_t skc_name_size; /* Name length */
char *skc_name; /* Name string */
spl_kmem_ctor_t skc_ctor; /* Constructor */
spl_kmem_dtor_t skc_dtor; /* Destructor */
spl_kmem_reclaim_t skc_reclaim; /* Reclaimator */
void *skc_private; /* Private data */
void *skc_vmp; /* Unused */
uint32_t skc_flags; /* Flags */
uint32_t skc_obj_size; /* Object size */
uint32_t skc_chunk_size; /* sizeof(*obj) + alignment */
uint32_t skc_slab_size; /* slab size */
uint32_t skc_max_chunks; /* max chunks per slab */
uint32_t skc_delay; /* slab reclaim interval */
uint32_t skc_hash_bits; /* Hash table bits */
uint32_t skc_hash_size; /* Hash table size */
uint32_t skc_hash_elts; /* Hash table elements */
struct hlist_head *skc_hash; /* Hash table address */
struct list_head skc_list; /* List of caches linkage */
struct list_head skc_complete_list;/* Completely alloc'ed */
struct list_head skc_partial_list; /* Partially alloc'ed */
struct rw_semaphore skc_sem; /* Cache semaphore */
uint64_t skc_slab_fail; /* Slab alloc failures */
uint64_t skc_slab_create;/* Slab creates */
uint64_t skc_slab_destroy;/* Slab destroys */
uint64_t skc_slab_total; /* Slab total */
uint64_t skc_slab_alloc; /* Slab alloc */
uint64_t skc_slab_max; /* Slab max */
uint64_t skc_obj_total; /* Obj total */
uint64_t skc_obj_alloc; /* Obj alloc */
uint64_t skc_obj_max; /* Obj max */
uint64_t skc_hash_depth; /* Hash depth */
uint64_t skc_hash_max; /* Hash depth max */
} spl_kmem_cache_t;
extern spl_kmem_cache_t *
spl_kmem_cache_create(char *name, size_t size, size_t align,
spl_kmem_ctor_t ctor, spl_kmem_dtor_t dtor, spl_kmem_reclaim_t reclaim,
void *priv, void *vmp, int flags);
extern void spl_kmem_cache_destroy(spl_kmem_cache_t *skc);
extern void *spl_kmem_cache_alloc(spl_kmem_cache_t *skc, int flags);
extern void spl_kmem_cache_free(spl_kmem_cache_t *skc, void *obj);
extern void spl_kmem_cache_reap_now(spl_kmem_cache_t *skc);
extern void spl_kmem_reap(void);
int spl_kmem_init(void);
void spl_kmem_fini(void);
#define kmem_cache_create(name,size,align,ctor,dtor,rclm,priv,vmp,flags) \
spl_kmem_cache_create(name,size,align,ctor,dtor,rclm,priv,vmp,flags)
#define kmem_cache_destroy(skc) spl_kmem_cache_destroy(skc)
#define kmem_cache_alloc(skc, flags) spl_kmem_cache_alloc(skc, flags)
#define kmem_cache_free(skc, obj) spl_kmem_cache_free(skc, obj)
#define kmem_cache_reap_now(skc) spl_kmem_cache_reap_now(skc)
#define kmem_reap() spl_kmem_reap()
#ifdef __cplusplus
}
#endif
#endif /* _SPL_KMEM_H */