zfs/module/splat/splat-taskq.c

1549 lines
43 KiB
C

/*****************************************************************************\
* Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC.
* Copyright (C) 2007 The Regents of the University of California.
* Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
* Written by Brian Behlendorf <behlendorf1@llnl.gov>.
* UCRL-CODE-235197
*
* This file is part of the SPL, Solaris Porting Layer.
* For details, see <http://zfsonlinux.org/>.
*
* The SPL is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* The SPL is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with the SPL. If not, see <http://www.gnu.org/licenses/>.
*****************************************************************************
* Solaris Porting LAyer Tests (SPLAT) Task Queue Tests.
\*****************************************************************************/
#include <sys/kmem.h>
#include <sys/vmem.h>
#include <sys/random.h>
#include <sys/taskq.h>
#include <sys/time.h>
#include <sys/timer.h>
#include <linux/delay.h>
#include "splat-internal.h"
#define SPLAT_TASKQ_NAME "taskq"
#define SPLAT_TASKQ_DESC "Kernel Task Queue Tests"
#define SPLAT_TASKQ_TEST1_ID 0x0201
#define SPLAT_TASKQ_TEST1_NAME "single"
#define SPLAT_TASKQ_TEST1_DESC "Single task queue, single task"
#define SPLAT_TASKQ_TEST2_ID 0x0202
#define SPLAT_TASKQ_TEST2_NAME "multiple"
#define SPLAT_TASKQ_TEST2_DESC "Multiple task queues, multiple tasks"
#define SPLAT_TASKQ_TEST3_ID 0x0203
#define SPLAT_TASKQ_TEST3_NAME "system"
#define SPLAT_TASKQ_TEST3_DESC "System task queue, multiple tasks"
#define SPLAT_TASKQ_TEST4_ID 0x0204
#define SPLAT_TASKQ_TEST4_NAME "wait"
#define SPLAT_TASKQ_TEST4_DESC "Multiple task waiting"
#define SPLAT_TASKQ_TEST5_ID 0x0205
#define SPLAT_TASKQ_TEST5_NAME "order"
#define SPLAT_TASKQ_TEST5_DESC "Correct task ordering"
#define SPLAT_TASKQ_TEST6_ID 0x0206
#define SPLAT_TASKQ_TEST6_NAME "front"
#define SPLAT_TASKQ_TEST6_DESC "Correct ordering with TQ_FRONT flag"
#define SPLAT_TASKQ_TEST7_ID 0x0207
#define SPLAT_TASKQ_TEST7_NAME "recurse"
#define SPLAT_TASKQ_TEST7_DESC "Single task queue, recursive dispatch"
#define SPLAT_TASKQ_TEST8_ID 0x0208
#define SPLAT_TASKQ_TEST8_NAME "contention"
#define SPLAT_TASKQ_TEST8_DESC "1 queue, 100 threads, 131072 tasks"
#define SPLAT_TASKQ_TEST9_ID 0x0209
#define SPLAT_TASKQ_TEST9_NAME "delay"
#define SPLAT_TASKQ_TEST9_DESC "Delayed task execution"
#define SPLAT_TASKQ_TEST10_ID 0x020a
#define SPLAT_TASKQ_TEST10_NAME "cancel"
#define SPLAT_TASKQ_TEST10_DESC "Cancel task execution"
#define SPLAT_TASKQ_TEST11_ID 0x020b
#define SPLAT_TASKQ_TEST11_NAME "dynamic"
#define SPLAT_TASKQ_TEST11_DESC "Dynamic task queue thread creation"
#define SPLAT_TASKQ_ORDER_MAX 8
#define SPLAT_TASKQ_DEPTH_MAX 16
typedef struct splat_taskq_arg {
int flag;
int id;
atomic_t *count;
int order[SPLAT_TASKQ_ORDER_MAX];
unsigned int depth;
clock_t expire;
taskq_t *tq;
taskq_ent_t *tqe;
spinlock_t lock;
struct file *file;
const char *name;
} splat_taskq_arg_t;
typedef struct splat_taskq_id {
int id;
splat_taskq_arg_t *arg;
} splat_taskq_id_t;
/*
* Create a taskq, queue a task, wait until task completes, ensure
* task ran properly, cleanup taskq.
*/
static void
splat_taskq_test13_func(void *arg)
{
splat_taskq_arg_t *tq_arg = (splat_taskq_arg_t *)arg;
ASSERT(tq_arg);
splat_vprint(tq_arg->file, SPLAT_TASKQ_TEST1_NAME,
"Taskq '%s' function '%s' setting flag\n",
tq_arg->name, sym2str(splat_taskq_test13_func));
tq_arg->flag = 1;
}
static int
splat_taskq_test1_impl(struct file *file, void *arg, boolean_t prealloc)
{
taskq_t *tq;
taskqid_t id;
splat_taskq_arg_t tq_arg;
taskq_ent_t *tqe;
tqe = kmem_alloc(sizeof (taskq_ent_t), KM_SLEEP);
taskq_init_ent(tqe);
splat_vprint(file, SPLAT_TASKQ_TEST1_NAME,
"Taskq '%s' creating (%s dispatch)\n",
SPLAT_TASKQ_TEST1_NAME,
prealloc ? "prealloc" : "dynamic");
if ((tq = taskq_create(SPLAT_TASKQ_TEST1_NAME, 1, defclsyspri,
50, INT_MAX, TASKQ_PREPOPULATE)) == NULL) {
splat_vprint(file, SPLAT_TASKQ_TEST1_NAME,
"Taskq '%s' create failed\n",
SPLAT_TASKQ_TEST1_NAME);
kmem_free(tqe, sizeof (taskq_ent_t));
return -EINVAL;
}
tq_arg.flag = 0;
tq_arg.id = 0;
tq_arg.file = file;
tq_arg.name = SPLAT_TASKQ_TEST1_NAME;
splat_vprint(file, SPLAT_TASKQ_TEST1_NAME,
"Taskq '%s' function '%s' dispatching\n",
tq_arg.name, sym2str(splat_taskq_test13_func));
if (prealloc) {
taskq_dispatch_ent(tq, splat_taskq_test13_func,
&tq_arg, TQ_SLEEP, tqe);
id = tqe->tqent_id;
} else {
id = taskq_dispatch(tq, splat_taskq_test13_func,
&tq_arg, TQ_SLEEP);
}
if (id == 0) {
splat_vprint(file, SPLAT_TASKQ_TEST1_NAME,
"Taskq '%s' function '%s' dispatch failed\n",
tq_arg.name, sym2str(splat_taskq_test13_func));
kmem_free(tqe, sizeof (taskq_ent_t));
taskq_destroy(tq);
return -EINVAL;
}
splat_vprint(file, SPLAT_TASKQ_TEST1_NAME, "Taskq '%s' waiting\n",
tq_arg.name);
taskq_wait(tq);
splat_vprint(file, SPLAT_TASKQ_TEST1_NAME, "Taskq '%s' destroying\n",
tq_arg.name);
kmem_free(tqe, sizeof (taskq_ent_t));
taskq_destroy(tq);
return (tq_arg.flag) ? 0 : -EINVAL;
}
static int
splat_taskq_test1(struct file *file, void *arg)
{
int rc;
rc = splat_taskq_test1_impl(file, arg, B_FALSE);
if (rc)
return rc;
rc = splat_taskq_test1_impl(file, arg, B_TRUE);
return rc;
}
/*
* Create multiple taskq's, each with multiple tasks, wait until
* all tasks complete, ensure all tasks ran properly and in the
* correct order. Run order must be the same as the order submitted
* because we only have 1 thread per taskq. Finally cleanup the taskq.
*/
static void
splat_taskq_test2_func1(void *arg)
{
splat_taskq_arg_t *tq_arg = (splat_taskq_arg_t *)arg;
ASSERT(tq_arg);
splat_vprint(tq_arg->file, SPLAT_TASKQ_TEST2_NAME,
"Taskq '%s/%d' function '%s' flag = %d = %d * 2\n",
tq_arg->name, tq_arg->id,
sym2str(splat_taskq_test2_func1),
tq_arg->flag * 2, tq_arg->flag);
tq_arg->flag *= 2;
}
static void
splat_taskq_test2_func2(void *arg)
{
splat_taskq_arg_t *tq_arg = (splat_taskq_arg_t *)arg;
ASSERT(tq_arg);
splat_vprint(tq_arg->file, SPLAT_TASKQ_TEST2_NAME,
"Taskq '%s/%d' function '%s' flag = %d = %d + 1\n",
tq_arg->name, tq_arg->id,
sym2str(splat_taskq_test2_func2),
tq_arg->flag + 1, tq_arg->flag);
tq_arg->flag += 1;
}
#define TEST2_TASKQS 8
#define TEST2_THREADS_PER_TASKQ 1
static int
splat_taskq_test2_impl(struct file *file, void *arg, boolean_t prealloc) {
taskq_t *tq[TEST2_TASKQS] = { NULL };
taskqid_t id;
splat_taskq_arg_t *tq_args[TEST2_TASKQS] = { NULL };
taskq_ent_t *func1_tqes = NULL;
taskq_ent_t *func2_tqes = NULL;
int i, rc = 0;
func1_tqes = kmalloc(sizeof(*func1_tqes) * TEST2_TASKQS, GFP_KERNEL);
if (func1_tqes == NULL) {
rc = -ENOMEM;
goto out;
}
func2_tqes = kmalloc(sizeof(*func2_tqes) * TEST2_TASKQS, GFP_KERNEL);
if (func2_tqes == NULL) {
rc = -ENOMEM;
goto out;
}
for (i = 0; i < TEST2_TASKQS; i++) {
taskq_init_ent(&func1_tqes[i]);
taskq_init_ent(&func2_tqes[i]);
tq_args[i] = kmalloc(sizeof (splat_taskq_arg_t), GFP_KERNEL);
if (tq_args[i] == NULL) {
rc = -ENOMEM;
break;
}
splat_vprint(file, SPLAT_TASKQ_TEST2_NAME,
"Taskq '%s/%d' creating (%s dispatch)\n",
SPLAT_TASKQ_TEST2_NAME, i,
prealloc ? "prealloc" : "dynamic");
if ((tq[i] = taskq_create(SPLAT_TASKQ_TEST2_NAME,
TEST2_THREADS_PER_TASKQ,
defclsyspri, 50, INT_MAX,
TASKQ_PREPOPULATE)) == NULL) {
splat_vprint(file, SPLAT_TASKQ_TEST2_NAME,
"Taskq '%s/%d' create failed\n",
SPLAT_TASKQ_TEST2_NAME, i);
rc = -EINVAL;
break;
}
tq_args[i]->flag = i;
tq_args[i]->id = i;
tq_args[i]->file = file;
tq_args[i]->name = SPLAT_TASKQ_TEST2_NAME;
splat_vprint(file, SPLAT_TASKQ_TEST2_NAME,
"Taskq '%s/%d' function '%s' dispatching\n",
tq_args[i]->name, tq_args[i]->id,
sym2str(splat_taskq_test2_func1));
if (prealloc) {
taskq_dispatch_ent(tq[i], splat_taskq_test2_func1,
tq_args[i], TQ_SLEEP, &func1_tqes[i]);
id = func1_tqes[i].tqent_id;
} else {
id = taskq_dispatch(tq[i], splat_taskq_test2_func1,
tq_args[i], TQ_SLEEP);
}
if (id == 0) {
splat_vprint(file, SPLAT_TASKQ_TEST2_NAME,
"Taskq '%s/%d' function '%s' dispatch "
"failed\n", tq_args[i]->name, tq_args[i]->id,
sym2str(splat_taskq_test2_func1));
rc = -EINVAL;
break;
}
splat_vprint(file, SPLAT_TASKQ_TEST2_NAME,
"Taskq '%s/%d' function '%s' dispatching\n",
tq_args[i]->name, tq_args[i]->id,
sym2str(splat_taskq_test2_func2));
if (prealloc) {
taskq_dispatch_ent(tq[i], splat_taskq_test2_func2,
tq_args[i], TQ_SLEEP, &func2_tqes[i]);
id = func2_tqes[i].tqent_id;
} else {
id = taskq_dispatch(tq[i], splat_taskq_test2_func2,
tq_args[i], TQ_SLEEP);
}
if (id == 0) {
splat_vprint(file, SPLAT_TASKQ_TEST2_NAME, "Taskq "
"'%s/%d' function '%s' dispatch failed\n",
tq_args[i]->name, tq_args[i]->id,
sym2str(splat_taskq_test2_func2));
rc = -EINVAL;
break;
}
}
/* When rc is set we're effectively just doing cleanup here, so
* ignore new errors in that case. They just cause noise. */
for (i = 0; i < TEST2_TASKQS; i++) {
if (tq_args[i] == NULL)
continue;
if (tq[i] != NULL) {
splat_vprint(file, SPLAT_TASKQ_TEST2_NAME,
"Taskq '%s/%d' waiting\n",
tq_args[i]->name, tq_args[i]->id);
taskq_wait(tq[i]);
splat_vprint(file, SPLAT_TASKQ_TEST2_NAME,
"Taskq '%s/%d; destroying\n",
tq_args[i]->name, tq_args[i]->id);
taskq_destroy(tq[i]);
if (!rc && tq_args[i]->flag != ((i * 2) + 1)) {
splat_vprint(file, SPLAT_TASKQ_TEST2_NAME,
"Taskq '%s/%d' processed tasks "
"out of order; %d != %d\n",
tq_args[i]->name, tq_args[i]->id,
tq_args[i]->flag, i * 2 + 1);
rc = -EINVAL;
} else {
splat_vprint(file, SPLAT_TASKQ_TEST2_NAME,
"Taskq '%s/%d' processed tasks "
"in the correct order; %d == %d\n",
tq_args[i]->name, tq_args[i]->id,
tq_args[i]->flag, i * 2 + 1);
}
kfree(tq_args[i]);
}
}
out:
if (func1_tqes)
kfree(func1_tqes);
if (func2_tqes)
kfree(func2_tqes);
return rc;
}
static int
splat_taskq_test2(struct file *file, void *arg) {
int rc;
rc = splat_taskq_test2_impl(file, arg, B_FALSE);
if (rc)
return rc;
rc = splat_taskq_test2_impl(file, arg, B_TRUE);
return rc;
}
/*
* Use the global system task queue with a single task, wait until task
* completes, ensure task ran properly.
*/
static int
splat_taskq_test3_impl(struct file *file, void *arg, boolean_t prealloc)
{
taskqid_t id;
splat_taskq_arg_t *tq_arg;
taskq_ent_t *tqe;
int error;
tq_arg = kmem_alloc(sizeof (splat_taskq_arg_t), KM_SLEEP);
tqe = kmem_alloc(sizeof (taskq_ent_t), KM_SLEEP);
taskq_init_ent(tqe);
tq_arg->flag = 0;
tq_arg->id = 0;
tq_arg->file = file;
tq_arg->name = SPLAT_TASKQ_TEST3_NAME;
splat_vprint(file, SPLAT_TASKQ_TEST3_NAME,
"Taskq '%s' function '%s' %s dispatch\n",
tq_arg->name, sym2str(splat_taskq_test13_func),
prealloc ? "prealloc" : "dynamic");
if (prealloc) {
taskq_dispatch_ent(system_taskq, splat_taskq_test13_func,
tq_arg, TQ_SLEEP, tqe);
id = tqe->tqent_id;
} else {
id = taskq_dispatch(system_taskq, splat_taskq_test13_func,
tq_arg, TQ_SLEEP);
}
if (id == 0) {
splat_vprint(file, SPLAT_TASKQ_TEST3_NAME,
"Taskq '%s' function '%s' dispatch failed\n",
tq_arg->name, sym2str(splat_taskq_test13_func));
kmem_free(tqe, sizeof (taskq_ent_t));
kmem_free(tq_arg, sizeof (splat_taskq_arg_t));
return -EINVAL;
}
splat_vprint(file, SPLAT_TASKQ_TEST3_NAME, "Taskq '%s' waiting\n",
tq_arg->name);
taskq_wait(system_taskq);
error = (tq_arg->flag) ? 0 : -EINVAL;
kmem_free(tqe, sizeof (taskq_ent_t));
kmem_free(tq_arg, sizeof (splat_taskq_arg_t));
return (error);
}
static int
splat_taskq_test3(struct file *file, void *arg)
{
int rc;
rc = splat_taskq_test3_impl(file, arg, B_FALSE);
if (rc)
return rc;
rc = splat_taskq_test3_impl(file, arg, B_TRUE);
return rc;
}
/*
* Create a taskq and dispatch a large number of tasks to the queue.
* Then use taskq_wait() to block until all the tasks complete, then
* cross check that all the tasks ran by checking the shared atomic
* counter which is incremented in the task function.
*
* First we try with a large 'maxalloc' value, then we try with a small one.
* We should not drop tasks when TQ_SLEEP is used in taskq_dispatch(), even
* if the number of pending tasks is above maxalloc.
*/
static void
splat_taskq_test4_func(void *arg)
{
splat_taskq_arg_t *tq_arg = (splat_taskq_arg_t *)arg;
ASSERT(tq_arg);
atomic_inc(tq_arg->count);
}
static int
splat_taskq_test4_common(struct file *file, void *arg, int minalloc,
int maxalloc, int nr_tasks, boolean_t prealloc)
{
taskq_t *tq;
taskqid_t id;
splat_taskq_arg_t tq_arg;
taskq_ent_t *tqes;
atomic_t count;
int i, j, rc = 0;
tqes = kmalloc(sizeof(*tqes) * nr_tasks, GFP_KERNEL);
if (tqes == NULL)
return -ENOMEM;
splat_vprint(file, SPLAT_TASKQ_TEST4_NAME,
"Taskq '%s' creating (%s dispatch) (%d/%d/%d)\n",
SPLAT_TASKQ_TEST4_NAME,
prealloc ? "prealloc" : "dynamic",
minalloc, maxalloc, nr_tasks);
if ((tq = taskq_create(SPLAT_TASKQ_TEST4_NAME, 1, defclsyspri,
minalloc, maxalloc, TASKQ_PREPOPULATE)) == NULL) {
splat_vprint(file, SPLAT_TASKQ_TEST4_NAME,
"Taskq '%s' create failed\n",
SPLAT_TASKQ_TEST4_NAME);
rc = -EINVAL;
goto out_free;
}
tq_arg.file = file;
tq_arg.name = SPLAT_TASKQ_TEST4_NAME;
tq_arg.count = &count;
for (i = 1; i <= nr_tasks; i *= 2) {
atomic_set(tq_arg.count, 0);
splat_vprint(file, SPLAT_TASKQ_TEST4_NAME,
"Taskq '%s' function '%s' dispatched %d times\n",
tq_arg.name, sym2str(splat_taskq_test4_func), i);
for (j = 0; j < i; j++) {
taskq_init_ent(&tqes[j]);
if (prealloc) {
taskq_dispatch_ent(tq, splat_taskq_test4_func,
&tq_arg, TQ_SLEEP, &tqes[j]);
id = tqes[j].tqent_id;
} else {
id = taskq_dispatch(tq, splat_taskq_test4_func,
&tq_arg, TQ_SLEEP);
}
if (id == 0) {
splat_vprint(file, SPLAT_TASKQ_TEST4_NAME,
"Taskq '%s' function '%s' dispatch "
"%d failed\n", tq_arg.name,
sym2str(splat_taskq_test4_func), j);
rc = -EINVAL;
goto out;
}
}
splat_vprint(file, SPLAT_TASKQ_TEST4_NAME, "Taskq '%s' "
"waiting for %d dispatches\n", tq_arg.name, i);
taskq_wait(tq);
splat_vprint(file, SPLAT_TASKQ_TEST4_NAME, "Taskq '%s' "
"%d/%d dispatches finished\n", tq_arg.name,
atomic_read(&count), i);
if (atomic_read(&count) != i) {
rc = -ERANGE;
goto out;
}
}
out:
splat_vprint(file, SPLAT_TASKQ_TEST4_NAME, "Taskq '%s' destroying\n",
tq_arg.name);
taskq_destroy(tq);
out_free:
kfree(tqes);
return rc;
}
static int
splat_taskq_test4_impl(struct file *file, void *arg, boolean_t prealloc)
{
int rc;
rc = splat_taskq_test4_common(file, arg, 50, INT_MAX, 1024, prealloc);
if (rc)
return rc;
rc = splat_taskq_test4_common(file, arg, 1, 1, 32, prealloc);
return rc;
}
static int
splat_taskq_test4(struct file *file, void *arg)
{
int rc;
rc = splat_taskq_test4_impl(file, arg, B_FALSE);
if (rc)
return rc;
rc = splat_taskq_test4_impl(file, arg, B_TRUE);
return rc;
}
/*
* Create a taskq and dispatch a specific sequence of tasks carefully
* crafted to validate the order in which tasks are processed. When
* there are multiple worker threads each thread will process the
* next pending task as soon as it completes its current task. This
* means that tasks do not strictly complete in order in which they
* were dispatched (increasing task id). This is fine but we need to
* verify taskq_wait_outstanding() blocks until the passed task id and
* all lower task ids complete. We do this by dispatching the following
* specific sequence of tasks each of which block for N time units.
* We then use taskq_wait_outstanding() to unblock at specific task id and
* verify the only the expected task ids have completed and in the
* correct order. The two cases of interest are:
*
* 1) Task ids larger than the waited for task id can run and
* complete as long as there is an available worker thread.
* 2) All task ids lower than the waited one must complete before
* unblocking even if the waited task id itself has completed.
*
* The following table shows each task id and how they will be
* scheduled. Each rows represent one time unit and each column
* one of the three worker threads. The places taskq_wait_outstanding()
* must unblock for a specific id are identified as well as the
* task ids which must have completed and their order.
*
* +-----+ <--- taskq_wait_outstanding(tq, 8) unblocks
* | | Required Completion Order: 1,2,4,5,3,8,6,7
* +-----+ |
* | | |
* | | +-----+
* | | | 8 |
* | | +-----+ <--- taskq_wait_outstanding(tq, 3) unblocks
* | | 7 | | Required Completion Order: 1,2,4,5,3
* | +-----+ |
* | 6 | | |
* +-----+ | |
* | | 5 | |
* | +-----+ |
* | 4 | | |
* +-----+ | |
* | 1 | 2 | 3 |
* +-----+-----+-----+
*
*/
static void
splat_taskq_test5_func(void *arg)
{
splat_taskq_id_t *tq_id = (splat_taskq_id_t *)arg;
splat_taskq_arg_t *tq_arg = tq_id->arg;
int factor;
/* Delays determined by above table */
switch (tq_id->id) {
default: factor = 0; break;
case 1: case 8: factor = 1; break;
case 2: case 4: case 5: factor = 2; break;
case 6: case 7: factor = 4; break;
case 3: factor = 5; break;
}
msleep(factor * 100);
splat_vprint(tq_arg->file, tq_arg->name,
"Taskqid %d complete for taskq '%s'\n",
tq_id->id, tq_arg->name);
spin_lock(&tq_arg->lock);
tq_arg->order[tq_arg->flag] = tq_id->id;
tq_arg->flag++;
spin_unlock(&tq_arg->lock);
}
static int
splat_taskq_test_order(splat_taskq_arg_t *tq_arg, int *order)
{
int i, j;
for (i = 0; i < SPLAT_TASKQ_ORDER_MAX; i++) {
if (tq_arg->order[i] != order[i]) {
splat_vprint(tq_arg->file, tq_arg->name,
"Taskq '%s' incorrect completion "
"order\n", tq_arg->name);
splat_vprint(tq_arg->file, tq_arg->name,
"%s", "Expected { ");
for (j = 0; j < SPLAT_TASKQ_ORDER_MAX; j++)
splat_print(tq_arg->file, "%d ", order[j]);
splat_print(tq_arg->file, "%s", "}\n");
splat_vprint(tq_arg->file, tq_arg->name,
"%s", "Got { ");
for (j = 0; j < SPLAT_TASKQ_ORDER_MAX; j++)
splat_print(tq_arg->file, "%d ",
tq_arg->order[j]);
splat_print(tq_arg->file, "%s", "}\n");
return -EILSEQ;
}
}
splat_vprint(tq_arg->file, tq_arg->name,
"Taskq '%s' validated correct completion order\n",
tq_arg->name);
return 0;
}
static int
splat_taskq_test5_impl(struct file *file, void *arg, boolean_t prealloc)
{
taskq_t *tq;
taskqid_t id;
splat_taskq_id_t tq_id[SPLAT_TASKQ_ORDER_MAX];
splat_taskq_arg_t tq_arg;
int order1[SPLAT_TASKQ_ORDER_MAX] = { 1,2,4,5,3,0,0,0 };
int order2[SPLAT_TASKQ_ORDER_MAX] = { 1,2,4,5,3,8,6,7 };
taskq_ent_t *tqes;
int i, rc = 0;
tqes = kmem_alloc(sizeof(*tqes) * SPLAT_TASKQ_ORDER_MAX, KM_SLEEP);
memset(tqes, 0, sizeof(*tqes) * SPLAT_TASKQ_ORDER_MAX);
splat_vprint(file, SPLAT_TASKQ_TEST5_NAME,
"Taskq '%s' creating (%s dispatch)\n",
SPLAT_TASKQ_TEST5_NAME,
prealloc ? "prealloc" : "dynamic");
if ((tq = taskq_create(SPLAT_TASKQ_TEST5_NAME, 3, defclsyspri,
50, INT_MAX, TASKQ_PREPOPULATE)) == NULL) {
splat_vprint(file, SPLAT_TASKQ_TEST5_NAME,
"Taskq '%s' create failed\n",
SPLAT_TASKQ_TEST5_NAME);
return -EINVAL;
}
tq_arg.flag = 0;
memset(&tq_arg.order, 0, sizeof(int) * SPLAT_TASKQ_ORDER_MAX);
spin_lock_init(&tq_arg.lock);
tq_arg.file = file;
tq_arg.name = SPLAT_TASKQ_TEST5_NAME;
for (i = 0; i < SPLAT_TASKQ_ORDER_MAX; i++) {
taskq_init_ent(&tqes[i]);
tq_id[i].id = i + 1;
tq_id[i].arg = &tq_arg;
if (prealloc) {
taskq_dispatch_ent(tq, splat_taskq_test5_func,
&tq_id[i], TQ_SLEEP, &tqes[i]);
id = tqes[i].tqent_id;
} else {
id = taskq_dispatch(tq, splat_taskq_test5_func,
&tq_id[i], TQ_SLEEP);
}
if (id == 0) {
splat_vprint(file, SPLAT_TASKQ_TEST5_NAME,
"Taskq '%s' function '%s' dispatch failed\n",
tq_arg.name, sym2str(splat_taskq_test5_func));
rc = -EINVAL;
goto out;
}
if (tq_id[i].id != id) {
splat_vprint(file, SPLAT_TASKQ_TEST5_NAME,
"Taskq '%s' expected taskqid %d got %d\n",
tq_arg.name, (int)tq_id[i].id, (int)id);
rc = -EINVAL;
goto out;
}
}
splat_vprint(file, SPLAT_TASKQ_TEST5_NAME, "Taskq '%s' "
"waiting for taskqid %d completion\n", tq_arg.name, 3);
taskq_wait_outstanding(tq, 3);
if ((rc = splat_taskq_test_order(&tq_arg, order1)))
goto out;
splat_vprint(file, SPLAT_TASKQ_TEST5_NAME, "Taskq '%s' "
"waiting for taskqid %d completion\n", tq_arg.name, 8);
taskq_wait_outstanding(tq, 8);
rc = splat_taskq_test_order(&tq_arg, order2);
out:
splat_vprint(file, SPLAT_TASKQ_TEST5_NAME,
"Taskq '%s' destroying\n", tq_arg.name);
taskq_destroy(tq);
kmem_free(tqes, sizeof(*tqes) * SPLAT_TASKQ_ORDER_MAX);
return rc;
}
static int
splat_taskq_test5(struct file *file, void *arg)
{
int rc;
rc = splat_taskq_test5_impl(file, arg, B_FALSE);
if (rc)
return rc;
rc = splat_taskq_test5_impl(file, arg, B_TRUE);
return rc;
}
/*
* Create a single task queue with three threads. Dispatch 8 tasks,
* setting TQ_FRONT on only the last three. Sleep after
* dispatching tasks 1-3 to ensure they will run and hold the threads
* busy while we dispatch the remaining tasks. Verify that tasks 6-8
* run before task 4-5.
*
* The following table shows each task id and how they will be
* scheduled. Each rows represent one time unit and each column
* one of the three worker threads.
*
* NB: The Horizontal Line is the LAST Time unit consumed by the Task,
* and must be included in the factor calculation.
* T
* 17-> +-----+
* 16 | T6 |
* 15-> +-----+ |
* 14 | T6 | |
* 13-> | | 5 +-----+
* 12 | | | T6 |
* 11-> | +-----| |
* 10 | 4 | T6 | |
* 9-> +-----+ | 8 |
* 8 | T5 | | |
* 7-> | | 7 +-----+
* 6 | | | T7 |
* 5-> | +-----+ |
* 4 | 6 | T5 | |
* 3-> +-----+ | |
* 2 | T3 | | |
* 1 | 1 | 2 | 3 |
* 0 +-----+-----+-----+
*
*/
static void
splat_taskq_test6_func(void *arg)
{
/* Delays determined by above table */
static const int factor[SPLAT_TASKQ_ORDER_MAX+1] = {0,3,5,7,6,6,5,6,6};
splat_taskq_id_t *tq_id = (splat_taskq_id_t *)arg;
splat_taskq_arg_t *tq_arg = tq_id->arg;
splat_vprint(tq_arg->file, tq_arg->name,
"Taskqid %d starting for taskq '%s'\n",
tq_id->id, tq_arg->name);
if (tq_id->id < SPLAT_TASKQ_ORDER_MAX+1) {
msleep(factor[tq_id->id] * 50);
}
spin_lock(&tq_arg->lock);
tq_arg->order[tq_arg->flag] = tq_id->id;
tq_arg->flag++;
spin_unlock(&tq_arg->lock);
splat_vprint(tq_arg->file, tq_arg->name,
"Taskqid %d complete for taskq '%s'\n",
tq_id->id, tq_arg->name);
}
static int
splat_taskq_test6_impl(struct file *file, void *arg, boolean_t prealloc)
{
taskq_t *tq;
taskqid_t id;
splat_taskq_id_t tq_id[SPLAT_TASKQ_ORDER_MAX];
splat_taskq_arg_t tq_arg;
int order[SPLAT_TASKQ_ORDER_MAX] = { 1,2,3,6,7,8,4,5 };
taskq_ent_t *tqes;
int i, rc = 0;
uint_t tflags;
tqes = kmem_alloc(sizeof(*tqes) * SPLAT_TASKQ_ORDER_MAX, KM_SLEEP);
memset(tqes, 0, sizeof(*tqes) * SPLAT_TASKQ_ORDER_MAX);
splat_vprint(file, SPLAT_TASKQ_TEST6_NAME,
"Taskq '%s' creating (%s dispatch)\n",
SPLAT_TASKQ_TEST6_NAME,
prealloc ? "prealloc" : "dynamic");
if ((tq = taskq_create(SPLAT_TASKQ_TEST6_NAME, 3, defclsyspri,
50, INT_MAX, TASKQ_PREPOPULATE)) == NULL) {
splat_vprint(file, SPLAT_TASKQ_TEST6_NAME,
"Taskq '%s' create failed\n",
SPLAT_TASKQ_TEST6_NAME);
return -EINVAL;
}
tq_arg.flag = 0;
memset(&tq_arg.order, 0, sizeof(int) * SPLAT_TASKQ_ORDER_MAX);
spin_lock_init(&tq_arg.lock);
tq_arg.file = file;
tq_arg.name = SPLAT_TASKQ_TEST6_NAME;
for (i = 0; i < SPLAT_TASKQ_ORDER_MAX; i++) {
taskq_init_ent(&tqes[i]);
tq_id[i].id = i + 1;
tq_id[i].arg = &tq_arg;
tflags = TQ_SLEEP;
if (i > 4)
tflags |= TQ_FRONT;
if (prealloc) {
taskq_dispatch_ent(tq, splat_taskq_test6_func,
&tq_id[i], tflags, &tqes[i]);
id = tqes[i].tqent_id;
} else {
id = taskq_dispatch(tq, splat_taskq_test6_func,
&tq_id[i], tflags);
}
if (id == 0) {
splat_vprint(file, SPLAT_TASKQ_TEST6_NAME,
"Taskq '%s' function '%s' dispatch failed\n",
tq_arg.name, sym2str(splat_taskq_test6_func));
rc = -EINVAL;
goto out;
}
if (tq_id[i].id != id) {
splat_vprint(file, SPLAT_TASKQ_TEST6_NAME,
"Taskq '%s' expected taskqid %d got %d\n",
tq_arg.name, (int)tq_id[i].id, (int)id);
rc = -EINVAL;
goto out;
}
/* Sleep to let tasks 1-3 start executing. */
if ( i == 2 )
msleep(100);
}
splat_vprint(file, SPLAT_TASKQ_TEST6_NAME, "Taskq '%s' "
"waiting for taskqid %d completion\n", tq_arg.name,
SPLAT_TASKQ_ORDER_MAX);
taskq_wait_outstanding(tq, SPLAT_TASKQ_ORDER_MAX);
rc = splat_taskq_test_order(&tq_arg, order);
out:
splat_vprint(file, SPLAT_TASKQ_TEST6_NAME,
"Taskq '%s' destroying\n", tq_arg.name);
taskq_destroy(tq);
kmem_free(tqes, sizeof(*tqes) * SPLAT_TASKQ_ORDER_MAX);
return rc;
}
static int
splat_taskq_test6(struct file *file, void *arg)
{
int rc;
rc = splat_taskq_test6_impl(file, arg, B_FALSE);
if (rc)
return rc;
rc = splat_taskq_test6_impl(file, arg, B_TRUE);
return rc;
}
static void
splat_taskq_test7_func(void *arg)
{
splat_taskq_arg_t *tq_arg = (splat_taskq_arg_t *)arg;
taskqid_t id;
ASSERT(tq_arg);
if (tq_arg->depth >= SPLAT_TASKQ_DEPTH_MAX)
return;
tq_arg->depth++;
splat_vprint(tq_arg->file, SPLAT_TASKQ_TEST7_NAME,
"Taskq '%s' function '%s' dispatching (depth = %u)\n",
tq_arg->name, sym2str(splat_taskq_test7_func),
tq_arg->depth);
if (tq_arg->tqe) {
VERIFY(taskq_empty_ent(tq_arg->tqe));
taskq_dispatch_ent(tq_arg->tq, splat_taskq_test7_func,
tq_arg, TQ_SLEEP, tq_arg->tqe);
id = tq_arg->tqe->tqent_id;
} else {
id = taskq_dispatch(tq_arg->tq, splat_taskq_test7_func,
tq_arg, TQ_SLEEP);
}
if (id == 0) {
splat_vprint(tq_arg->file, SPLAT_TASKQ_TEST7_NAME,
"Taskq '%s' function '%s' dispatch failed "
"(depth = %u)\n", tq_arg->name,
sym2str(splat_taskq_test7_func), tq_arg->depth);
tq_arg->flag = -EINVAL;
return;
}
}
static int
splat_taskq_test7_impl(struct file *file, void *arg, boolean_t prealloc)
{
taskq_t *tq;
splat_taskq_arg_t *tq_arg;
taskq_ent_t *tqe;
int error;
splat_vprint(file, SPLAT_TASKQ_TEST7_NAME,
"Taskq '%s' creating (%s dispatch)\n",
SPLAT_TASKQ_TEST7_NAME,
prealloc ? "prealloc" : "dynamic");
if ((tq = taskq_create(SPLAT_TASKQ_TEST7_NAME, 1, defclsyspri,
50, INT_MAX, TASKQ_PREPOPULATE)) == NULL) {
splat_vprint(file, SPLAT_TASKQ_TEST7_NAME,
"Taskq '%s' create failed\n",
SPLAT_TASKQ_TEST7_NAME);
return -EINVAL;
}
tq_arg = kmem_alloc(sizeof (splat_taskq_arg_t), KM_SLEEP);
tqe = kmem_alloc(sizeof (taskq_ent_t), KM_SLEEP);
tq_arg->depth = 0;
tq_arg->flag = 0;
tq_arg->id = 0;
tq_arg->file = file;
tq_arg->name = SPLAT_TASKQ_TEST7_NAME;
tq_arg->tq = tq;
if (prealloc) {
taskq_init_ent(tqe);
tq_arg->tqe = tqe;
} else {
tq_arg->tqe = NULL;
}
splat_taskq_test7_func(tq_arg);
if (tq_arg->flag == 0) {
splat_vprint(file, SPLAT_TASKQ_TEST7_NAME,
"Taskq '%s' waiting\n", tq_arg->name);
taskq_wait_outstanding(tq, SPLAT_TASKQ_DEPTH_MAX);
}
error = (tq_arg->depth == SPLAT_TASKQ_DEPTH_MAX ? 0 : -EINVAL);
splat_vprint(file, SPLAT_TASKQ_TEST7_NAME,
"Taskq '%s' destroying\n", tq_arg->name);
kmem_free(tqe, sizeof (taskq_ent_t));
kmem_free(tq_arg, sizeof (splat_taskq_arg_t));
taskq_destroy(tq);
return (error);
}
static int
splat_taskq_test7(struct file *file, void *arg)
{
int rc;
rc = splat_taskq_test7_impl(file, arg, B_FALSE);
if (rc)
return (rc);
rc = splat_taskq_test7_impl(file, arg, B_TRUE);
return (rc);
}
static void
splat_taskq_throughput_func(void *arg)
{
splat_taskq_arg_t *tq_arg = (splat_taskq_arg_t *)arg;
ASSERT(tq_arg);
atomic_inc(tq_arg->count);
}
static int
splat_taskq_throughput(struct file *file, void *arg, const char *name,
int nthreads, int minalloc, int maxalloc, int flags, int tasks,
struct timespec *delta)
{
taskq_t *tq;
taskqid_t id;
splat_taskq_arg_t tq_arg;
taskq_ent_t **tqes;
atomic_t count;
struct timespec start, stop;
int i, j, rc = 0;
tqes = vmalloc(sizeof (*tqes) * tasks);
if (tqes == NULL)
return (-ENOMEM);
memset(tqes, 0, sizeof (*tqes) * tasks);
splat_vprint(file, name, "Taskq '%s' creating (%d/%d/%d/%d)\n",
name, nthreads, minalloc, maxalloc, tasks);
if ((tq = taskq_create(name, nthreads, defclsyspri,
minalloc, maxalloc, flags)) == NULL) {
splat_vprint(file, name, "Taskq '%s' create failed\n", name);
rc = -EINVAL;
goto out_free;
}
tq_arg.file = file;
tq_arg.name = name;
tq_arg.count = &count;
atomic_set(tq_arg.count, 0);
getnstimeofday(&start);
for (i = 0; i < tasks; i++) {
tqes[i] = kmalloc(sizeof (taskq_ent_t), GFP_KERNEL);
if (tqes[i] == NULL) {
rc = -ENOMEM;
goto out;
}
taskq_init_ent(tqes[i]);
taskq_dispatch_ent(tq, splat_taskq_throughput_func,
&tq_arg, TQ_SLEEP, tqes[i]);
id = tqes[i]->tqent_id;
if (id == 0) {
splat_vprint(file, name, "Taskq '%s' function '%s' "
"dispatch %d failed\n", tq_arg.name,
sym2str(splat_taskq_throughput_func), i);
rc = -EINVAL;
goto out;
}
}
splat_vprint(file, name, "Taskq '%s' waiting for %d dispatches\n",
tq_arg.name, tasks);
taskq_wait(tq);
if (delta != NULL) {
getnstimeofday(&stop);
*delta = timespec_sub(stop, start);
}
splat_vprint(file, name, "Taskq '%s' %d/%d dispatches finished\n",
tq_arg.name, atomic_read(tq_arg.count), tasks);
if (atomic_read(tq_arg.count) != tasks)
rc = -ERANGE;
out:
splat_vprint(file, name, "Taskq '%s' destroying\n", tq_arg.name);
taskq_destroy(tq);
out_free:
for (j = 0; j < tasks && tqes[j] != NULL; j++)
kfree(tqes[j]);
vfree(tqes);
return (rc);
}
/*
* Create a taskq with 100 threads and dispatch a huge number of trivial
* tasks to generate contention on tq->tq_lock. This test should always
* pass. The purpose is to provide a benchmark for measuring the
* effectiveness of taskq optimizations.
*/
#define TEST8_NUM_TASKS 0x20000
#define TEST8_THREADS_PER_TASKQ 100
static int
splat_taskq_test8(struct file *file, void *arg)
{
return (splat_taskq_throughput(file, arg,
SPLAT_TASKQ_TEST8_NAME, TEST8_THREADS_PER_TASKQ,
1, INT_MAX, TASKQ_PREPOPULATE, TEST8_NUM_TASKS, NULL));
}
/*
* Create a taskq and dispatch a number of delayed tasks to the queue.
* For each task verify that it was run no early than requested.
*/
static void
splat_taskq_test9_func(void *arg)
{
splat_taskq_arg_t *tq_arg = (splat_taskq_arg_t *)arg;
ASSERT(tq_arg);
if (ddi_time_after_eq(ddi_get_lbolt(), tq_arg->expire))
atomic_inc(tq_arg->count);
kmem_free(tq_arg, sizeof(splat_taskq_arg_t));
}
static int
splat_taskq_test9(struct file *file, void *arg)
{
taskq_t *tq;
atomic_t count;
int i, rc = 0;
int minalloc = 1;
int maxalloc = 10;
int nr_tasks = 100;
splat_vprint(file, SPLAT_TASKQ_TEST9_NAME,
"Taskq '%s' creating (%s dispatch) (%d/%d/%d)\n",
SPLAT_TASKQ_TEST9_NAME, "delay", minalloc, maxalloc, nr_tasks);
if ((tq = taskq_create(SPLAT_TASKQ_TEST9_NAME, 3, defclsyspri,
minalloc, maxalloc, TASKQ_PREPOPULATE)) == NULL) {
splat_vprint(file, SPLAT_TASKQ_TEST9_NAME,
"Taskq '%s' create failed\n", SPLAT_TASKQ_TEST9_NAME);
return -EINVAL;
}
atomic_set(&count, 0);
for (i = 1; i <= nr_tasks; i++) {
splat_taskq_arg_t *tq_arg;
taskqid_t id;
uint32_t rnd;
/* A random timeout in jiffies of at most 5 seconds */
get_random_bytes((void *)&rnd, 4);
rnd = rnd % (5 * HZ);
tq_arg = kmem_alloc(sizeof(splat_taskq_arg_t), KM_SLEEP);
tq_arg->file = file;
tq_arg->name = SPLAT_TASKQ_TEST9_NAME;
tq_arg->expire = ddi_get_lbolt() + rnd;
tq_arg->count = &count;
splat_vprint(file, SPLAT_TASKQ_TEST9_NAME,
"Taskq '%s' delay dispatch %u jiffies\n",
SPLAT_TASKQ_TEST9_NAME, rnd);
id = taskq_dispatch_delay(tq, splat_taskq_test9_func,
tq_arg, TQ_SLEEP, ddi_get_lbolt() + rnd);
if (id == 0) {
splat_vprint(file, SPLAT_TASKQ_TEST9_NAME,
"Taskq '%s' delay dispatch failed\n",
SPLAT_TASKQ_TEST9_NAME);
kmem_free(tq_arg, sizeof(splat_taskq_arg_t));
taskq_wait(tq);
rc = -EINVAL;
goto out;
}
}
splat_vprint(file, SPLAT_TASKQ_TEST9_NAME, "Taskq '%s' waiting for "
"%d delay dispatches\n", SPLAT_TASKQ_TEST9_NAME, nr_tasks);
taskq_wait(tq);
if (atomic_read(&count) != nr_tasks)
rc = -ERANGE;
splat_vprint(file, SPLAT_TASKQ_TEST9_NAME, "Taskq '%s' %d/%d delay "
"dispatches finished on time\n", SPLAT_TASKQ_TEST9_NAME,
atomic_read(&count), nr_tasks);
splat_vprint(file, SPLAT_TASKQ_TEST9_NAME, "Taskq '%s' destroying\n",
SPLAT_TASKQ_TEST9_NAME);
out:
taskq_destroy(tq);
return rc;
}
/*
* Create a taskq and dispatch then cancel tasks in the queue.
*/
static void
splat_taskq_test10_func(void *arg)
{
splat_taskq_arg_t *tq_arg = (splat_taskq_arg_t *)arg;
uint8_t rnd;
if (ddi_time_after_eq(ddi_get_lbolt(), tq_arg->expire))
atomic_inc(tq_arg->count);
/* Randomly sleep to further perturb the system */
get_random_bytes((void *)&rnd, 1);
msleep(1 + (rnd % 9));
}
static int
splat_taskq_test10(struct file *file, void *arg)
{
taskq_t *tq;
splat_taskq_arg_t **tqas;
atomic_t count;
int i, j, rc = 0;
int minalloc = 1;
int maxalloc = 10;
int nr_tasks = 100;
int canceled = 0;
int completed = 0;
int blocked = 0;
clock_t start, cancel;
tqas = vmalloc(sizeof(*tqas) * nr_tasks);
if (tqas == NULL)
return -ENOMEM;
memset(tqas, 0, sizeof(*tqas) * nr_tasks);
splat_vprint(file, SPLAT_TASKQ_TEST10_NAME,
"Taskq '%s' creating (%s dispatch) (%d/%d/%d)\n",
SPLAT_TASKQ_TEST10_NAME, "delay", minalloc, maxalloc, nr_tasks);
if ((tq = taskq_create(SPLAT_TASKQ_TEST10_NAME, 3, defclsyspri,
minalloc, maxalloc, TASKQ_PREPOPULATE)) == NULL) {
splat_vprint(file, SPLAT_TASKQ_TEST10_NAME,
"Taskq '%s' create failed\n", SPLAT_TASKQ_TEST10_NAME);
rc = -EINVAL;
goto out_free;
}
atomic_set(&count, 0);
for (i = 0; i < nr_tasks; i++) {
splat_taskq_arg_t *tq_arg;
uint32_t rnd;
/* A random timeout in jiffies of at most 5 seconds */
get_random_bytes((void *)&rnd, 4);
rnd = rnd % (5 * HZ);
tq_arg = kmem_alloc(sizeof(splat_taskq_arg_t), KM_SLEEP);
tq_arg->file = file;
tq_arg->name = SPLAT_TASKQ_TEST10_NAME;
tq_arg->count = &count;
tqas[i] = tq_arg;
/*
* Dispatch every 1/3 one immediately to mix it up, the cancel
* code is inherently racy and we want to try and provoke any
* subtle concurrently issues.
*/
if ((i % 3) == 0) {
tq_arg->expire = ddi_get_lbolt();
tq_arg->id = taskq_dispatch(tq, splat_taskq_test10_func,
tq_arg, TQ_SLEEP);
} else {
tq_arg->expire = ddi_get_lbolt() + rnd;
tq_arg->id = taskq_dispatch_delay(tq,
splat_taskq_test10_func,
tq_arg, TQ_SLEEP, ddi_get_lbolt() + rnd);
}
if (tq_arg->id == 0) {
splat_vprint(file, SPLAT_TASKQ_TEST10_NAME,
"Taskq '%s' dispatch failed\n",
SPLAT_TASKQ_TEST10_NAME);
kmem_free(tq_arg, sizeof(splat_taskq_arg_t));
taskq_wait(tq);
rc = -EINVAL;
goto out;
} else {
splat_vprint(file, SPLAT_TASKQ_TEST10_NAME,
"Taskq '%s' dispatch %lu in %lu jiffies\n",
SPLAT_TASKQ_TEST10_NAME, (unsigned long)tq_arg->id,
!(i % 3) ? 0 : tq_arg->expire - ddi_get_lbolt());
}
}
/*
* Start randomly canceling tasks for the duration of the test. We
* happen to know the valid task id's will be in the range 1..nr_tasks
* because the taskq is private and was just created. However, we
* have no idea of a particular task has already executed or not.
*/
splat_vprint(file, SPLAT_TASKQ_TEST10_NAME, "Taskq '%s' randomly "
"canceling task ids\n", SPLAT_TASKQ_TEST10_NAME);
start = ddi_get_lbolt();
i = 0;
while (ddi_time_before(ddi_get_lbolt(), start + 5 * HZ)) {
taskqid_t id;
uint32_t rnd;
i++;
cancel = ddi_get_lbolt();
get_random_bytes((void *)&rnd, 4);
id = 1 + (rnd % nr_tasks);
rc = taskq_cancel_id(tq, id);
/*
* Keep track of the results of the random cancels.
*/
if (rc == 0) {
canceled++;
} else if (rc == ENOENT) {
completed++;
} else if (rc == EBUSY) {
blocked++;
} else {
rc = -EINVAL;
break;
}
/*
* Verify we never get blocked to long in taskq_cancel_id().
* The worst case is 10ms if we happen to cancel the task
* which is currently executing. We allow a factor of 2x.
*/
if (ddi_get_lbolt() - cancel > HZ / 50) {
splat_vprint(file, SPLAT_TASKQ_TEST10_NAME,
"Taskq '%s' cancel for %lu took %lu\n",
SPLAT_TASKQ_TEST10_NAME, (unsigned long)id,
ddi_get_lbolt() - cancel);
rc = -ETIMEDOUT;
break;
}
get_random_bytes((void *)&rnd, 4);
msleep(1 + (rnd % 100));
rc = 0;
}
taskq_wait(tq);
/*
* Cross check the results of taskq_cancel_id() with the number of
* times the dispatched function actually ran successfully.
*/
if ((rc == 0) && (nr_tasks - canceled != atomic_read(&count)))
rc = -EDOM;
splat_vprint(file, SPLAT_TASKQ_TEST10_NAME, "Taskq '%s' %d attempts, "
"%d canceled, %d completed, %d blocked, %d/%d tasks run\n",
SPLAT_TASKQ_TEST10_NAME, i, canceled, completed, blocked,
atomic_read(&count), nr_tasks);
splat_vprint(file, SPLAT_TASKQ_TEST10_NAME, "Taskq '%s' destroying %d\n",
SPLAT_TASKQ_TEST10_NAME, rc);
out:
taskq_destroy(tq);
out_free:
for (j = 0; j < nr_tasks && tqas[j] != NULL; j++)
kmem_free(tqas[j], sizeof(splat_taskq_arg_t));
vfree(tqas);
return rc;
}
/*
* Create a dynamic taskq with 100 threads and dispatch a huge number of
* trivial tasks. This will cause the taskq to grow quickly to its max
* thread count. This test should always pass. The purpose is to provide
* a benchmark for measuring the performance of dynamic taskqs.
*/
#define TEST11_NUM_TASKS 100000
#define TEST11_THREADS_PER_TASKQ 100
static int
splat_taskq_test11(struct file *file, void *arg)
{
struct timespec normal, dynamic;
int error;
error = splat_taskq_throughput(file, arg, SPLAT_TASKQ_TEST11_NAME,
TEST11_THREADS_PER_TASKQ, 1, INT_MAX,
TASKQ_PREPOPULATE, TEST11_NUM_TASKS, &normal);
if (error)
return (error);
error = splat_taskq_throughput(file, arg, SPLAT_TASKQ_TEST11_NAME,
TEST11_THREADS_PER_TASKQ, 1, INT_MAX,
TASKQ_PREPOPULATE | TASKQ_DYNAMIC, TEST11_NUM_TASKS, &dynamic);
if (error)
return (error);
splat_vprint(file, SPLAT_TASKQ_TEST11_NAME,
"Timing taskq_wait(): normal=%ld.%09lds, dynamic=%ld.%09lds\n",
normal.tv_sec, normal.tv_nsec,
dynamic.tv_sec, dynamic.tv_nsec);
/* A 10x increase in runtime is used to indicate a core problem. */
if ((dynamic.tv_sec * NANOSEC + dynamic.tv_nsec) >
((normal.tv_sec * NANOSEC + normal.tv_nsec) * 10))
error = -ETIME;
return (error);
}
splat_subsystem_t *
splat_taskq_init(void)
{
splat_subsystem_t *sub;
sub = kmalloc(sizeof(*sub), GFP_KERNEL);
if (sub == NULL)
return NULL;
memset(sub, 0, sizeof(*sub));
strncpy(sub->desc.name, SPLAT_TASKQ_NAME, SPLAT_NAME_SIZE);
strncpy(sub->desc.desc, SPLAT_TASKQ_DESC, SPLAT_DESC_SIZE);
INIT_LIST_HEAD(&sub->subsystem_list);
INIT_LIST_HEAD(&sub->test_list);
spin_lock_init(&sub->test_lock);
sub->desc.id = SPLAT_SUBSYSTEM_TASKQ;
SPLAT_TEST_INIT(sub, SPLAT_TASKQ_TEST1_NAME, SPLAT_TASKQ_TEST1_DESC,
SPLAT_TASKQ_TEST1_ID, splat_taskq_test1);
SPLAT_TEST_INIT(sub, SPLAT_TASKQ_TEST2_NAME, SPLAT_TASKQ_TEST2_DESC,
SPLAT_TASKQ_TEST2_ID, splat_taskq_test2);
SPLAT_TEST_INIT(sub, SPLAT_TASKQ_TEST3_NAME, SPLAT_TASKQ_TEST3_DESC,
SPLAT_TASKQ_TEST3_ID, splat_taskq_test3);
SPLAT_TEST_INIT(sub, SPLAT_TASKQ_TEST4_NAME, SPLAT_TASKQ_TEST4_DESC,
SPLAT_TASKQ_TEST4_ID, splat_taskq_test4);
SPLAT_TEST_INIT(sub, SPLAT_TASKQ_TEST5_NAME, SPLAT_TASKQ_TEST5_DESC,
SPLAT_TASKQ_TEST5_ID, splat_taskq_test5);
SPLAT_TEST_INIT(sub, SPLAT_TASKQ_TEST6_NAME, SPLAT_TASKQ_TEST6_DESC,
SPLAT_TASKQ_TEST6_ID, splat_taskq_test6);
SPLAT_TEST_INIT(sub, SPLAT_TASKQ_TEST7_NAME, SPLAT_TASKQ_TEST7_DESC,
SPLAT_TASKQ_TEST7_ID, splat_taskq_test7);
SPLAT_TEST_INIT(sub, SPLAT_TASKQ_TEST8_NAME, SPLAT_TASKQ_TEST8_DESC,
SPLAT_TASKQ_TEST8_ID, splat_taskq_test8);
SPLAT_TEST_INIT(sub, SPLAT_TASKQ_TEST9_NAME, SPLAT_TASKQ_TEST9_DESC,
SPLAT_TASKQ_TEST9_ID, splat_taskq_test9);
SPLAT_TEST_INIT(sub, SPLAT_TASKQ_TEST10_NAME, SPLAT_TASKQ_TEST10_DESC,
SPLAT_TASKQ_TEST10_ID, splat_taskq_test10);
SPLAT_TEST_INIT(sub, SPLAT_TASKQ_TEST11_NAME, SPLAT_TASKQ_TEST11_DESC,
SPLAT_TASKQ_TEST11_ID, splat_taskq_test11);
return sub;
}
void
splat_taskq_fini(splat_subsystem_t *sub)
{
ASSERT(sub);
SPLAT_TEST_FINI(sub, SPLAT_TASKQ_TEST11_ID);
SPLAT_TEST_FINI(sub, SPLAT_TASKQ_TEST10_ID);
SPLAT_TEST_FINI(sub, SPLAT_TASKQ_TEST9_ID);
SPLAT_TEST_FINI(sub, SPLAT_TASKQ_TEST8_ID);
SPLAT_TEST_FINI(sub, SPLAT_TASKQ_TEST7_ID);
SPLAT_TEST_FINI(sub, SPLAT_TASKQ_TEST6_ID);
SPLAT_TEST_FINI(sub, SPLAT_TASKQ_TEST5_ID);
SPLAT_TEST_FINI(sub, SPLAT_TASKQ_TEST4_ID);
SPLAT_TEST_FINI(sub, SPLAT_TASKQ_TEST3_ID);
SPLAT_TEST_FINI(sub, SPLAT_TASKQ_TEST2_ID);
SPLAT_TEST_FINI(sub, SPLAT_TASKQ_TEST1_ID);
kfree(sub);
}
int
splat_taskq_id(void) {
return SPLAT_SUBSYSTEM_TASKQ;
}