zfs/tests
Matthew Ahrens c618f87cd2
Add `zstream redup` command to convert deduplicated send streams
Deduplicated send and receive is deprecated.  To ease migration to the
new dedup-send-less world, the commit adds a `zstream redup` utility to
convert deduplicated send streams to normal streams, so that they can
continue to be received indefinitely.

The new `zstream` command also replaces the functionality of
`zstreamdump`, by way of the `zstream dump` subcommand.  The
`zstreamdump` command is replaced by a shell script which invokes
`zstream dump`.

The way that `zstream redup` works under the hood is that as we read the
send stream, we build up a hash table which maps from `<GUID, object,
offset> -> <file_offset>`.

Whenever we see a WRITE record, we add a new entry to the hash table,
which indicates where in the stream file to find the WRITE record for
this block. (The key is `drr_toguid, drr_object, drr_offset`.)

For entries other than WRITE_BYREF, we pass them through unchanged
(except for the running checksum, which is recalculated).

For WRITE_BYREF records, we change them to WRITE records.  We find the
referenced WRITE record by looking in the hash table (for the record
with key `drr_refguid, drr_refobject, drr_refoffset`), and then reading
the record header and payload from the specified offset in the stream
file.  This is why the stream can not be a pipe.  The found WRITE record
replaces the WRITE_BYREF record, with its `drr_toguid`, `drr_object`,
and `drr_offset` fields changed to be the same as the WRITE_BYREF's
(i.e. we are writing the same logical block, but with the data supplied
by the previous WRITE record).

This algorithm requires memory proportional to the number of WRITE
records (same as `zfs send -D`), but the size per WRITE record is
relatively low (40 bytes, vs. 72 for `zfs send -D`).  A 1TB send stream
with 8KB blocks (`recordsize=8k`) would use around 5GB of RAM to
"redup".

Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes #10124 
Closes #10156
2020-04-10 10:39:55 -07:00
..
runfiles Persistent L2ARC 2020-04-10 10:33:35 -07:00
test-runner Exit status 256+signum is actually baked in to ksh 2020-03-17 09:49:58 -07:00
zfs-tests Add `zstream redup` command to convert deduplicated send streams 2020-04-10 10:39:55 -07:00
Makefile.am Add the ZFS Test Suite 2016-03-16 13:46:16 -07:00
README.md Fix a typo/whitespace in tests README 2020-02-13 12:04:47 -08:00

README.md

ZFS Test Suite README

  1. Building and installing the ZFS Test Suite

The ZFS Test Suite runs under the test-runner framework. This framework is built along side the standard ZFS utilities and is included as part of zfs-test package. The zfs-test package can be built from source as follows:

$ ./configure
$ make pkg-utils

The resulting packages can be installed using the rpm or dpkg command as appropriate for your distributions. Alternately, if you have installed ZFS from a distributions repository (not from source) the zfs-test package may be provided for your distribution.

- Installed from source
$ rpm -ivh ./zfs-test*.rpm, or
$ dpkg -i ./zfs-test*.deb,

- Installed from package repository
$ yum install zfs-test
$ apt-get install zfs-test
  1. Running the ZFS Test Suite

The pre-requisites for running the ZFS Test Suite are:

  • Three scratch disks
    • Specify the disks you wish to use in the $DISKS variable, as a space delimited list like this: DISKS='vdb vdc vdd'. By default the zfs-tests.sh script will construct three loopback devices to be used for testing: DISKS='loop0 loop1 loop2'.
  • A non-root user with a full set of basic privileges and the ability to sudo(8) to root without a password to run the test.
  • Specify any pools you wish to preserve as a space delimited list in the $KEEP variable. All pools detected at the start of testing are added automatically.
  • The ZFS Test Suite will add users and groups to test machine to verify functionality. Therefore it is strongly advised that a dedicated test machine, which can be a VM, be used for testing.

Once the pre-requisites are satisfied simply run the zfs-tests.sh script:

$ /usr/share/zfs/zfs-tests.sh

Alternately, the zfs-tests.sh script can be run from the source tree to allow developers to rapidly validate their work. In this mode the ZFS utilities and modules from the source tree will be used (rather than those installed on the system). In order to avoid certain types of failures you will need to ensure the ZFS udev rules are installed. This can be done manually or by ensuring some version of ZFS is installed on the system.

$ ./scripts/zfs-tests.sh

The following zfs-tests.sh options are supported:

-v          Verbose zfs-tests.sh output When specified additional
            information describing the test environment will be logged
            prior to invoking test-runner.  This includes the runfile
            being used, the DISKS targeted, pools to keep, etc.

-q          Quiet test-runner output.  When specified it is passed to
            test-runner(1) which causes output to be written to the
            console only for tests that do not pass and the results
            summary.

-x          Remove all testpools, dm, lo, and files (unsafe).  When
            specified the script will attempt to remove any leftover
            configuration from a previous test run.  This includes
            destroying any pools named testpool, unused DM devices,
            and loopback devices backed by file-vdevs.  This operation
            can be DANGEROUS because it is possible that the script
            will mistakenly remove a resource not related to the testing.

-k          Disable cleanup after test failure.  When specified the
            zfs-tests.sh script will not perform any additional cleanup
            when test-runner exists.  This is useful when the results of
            a specific test need to be preserved for further analysis.

-f          Use sparse files directly instead of loopback devices for
            the testing.  When running in this mode certain tests will
            be skipped which depend on real block devices.

-c          Only create and populate constrained path

-I NUM      Number of iterations

-d DIR      Create sparse files for vdevs in the DIR directory.  By
            default these files are created under /var/tmp/.

-s SIZE     Use vdevs of SIZE (default: 4G)

-r RUNFILES Run tests in RUNFILES (default: common.run,linux.run)

-t PATH     Run single test at PATH relative to test suite

-T TAGS     Comma separated list of tags (default: 'functional')

-u USER     Run single test as USER (default: root)

The ZFS Test Suite allows the user to specify a subset of the tests via a runfile or list of tags.

The format of the runfile is explained in test-runner(1), and the files that zfs-tests.sh uses are available for reference under /usr/share/zfs/runfiles. To specify a custom runfile, use the -r option:

$ /usr/share/zfs/zfs-tests.sh -r my_tests.run

Otherwise user can set needed tags to run only specific tests.

  1. Test results

While the ZFS Test Suite is running, one informational line is printed at the end of each test, and a results summary is printed at the end of the run. The results summary includes the location of the complete logs, which is logged in the form /var/tmp/test_results/[ISO 8601 date]. A normal test run launched with the zfs-tests.sh wrapper script will look something like this:

$ /usr/share/zfs/zfs-tests.sh -v -d /tmp/test

--- Configuration ---
Runfile:         /usr/share/zfs/runfiles/linux.run
STF_TOOLS:       /usr/share/zfs/test-runner
STF_SUITE:       /usr/share/zfs/zfs-tests
STF_PATH:        /var/tmp/constrained_path.G0Sf
FILEDIR:         /tmp/test
FILES:           /tmp/test/file-vdev0 /tmp/test/file-vdev1 /tmp/test/file-vdev2
LOOPBACKS:       /dev/loop0 /dev/loop1 /dev/loop2
DISKS:           loop0 loop1 loop2
NUM_DISKS:       3
FILESIZE:        4G
ITERATIONS:      1
TAGS:            functional
Keep pool(s):    rpool


/usr/share/zfs/test-runner/bin/test-runner.py  -c /usr/share/zfs/runfiles/linux.run \
    -T functional -i /usr/share/zfs/zfs-tests -I 1
Test: /usr/share/zfs/zfs-tests/tests/functional/arc/setup (run as root) [00:00] [PASS]
...more than 1100 additional tests...
Test: /usr/share/zfs/zfs-tests/tests/functional/zvol/zvol_swap/cleanup (run as root) [00:00] [PASS]

Results Summary
SKIP	  52
PASS	 1129

Running Time:	02:35:33
Percent passed:	95.6%
Log directory:	/var/tmp/test_results/20180515T054509