zfs/module/icp/include/sys/crypto/impl.h

505 lines
16 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#ifndef _SYS_CRYPTO_IMPL_H
#define _SYS_CRYPTO_IMPL_H
/*
* Kernel Cryptographic Framework private implementation definitions.
*/
#include <sys/zfs_context.h>
#include <sys/crypto/common.h>
#include <sys/crypto/api.h>
#include <sys/crypto/spi.h>
#ifdef __cplusplus
extern "C" {
#endif
#define KCF_MODULE "kcf"
/*
* Prefixes convention: structures internal to the kernel cryptographic
* framework start with 'kcf_'. Exposed structure start with 'crypto_'.
*/
/* Provider stats. Not protected. */
typedef struct kcf_prov_stats {
kstat_named_t ps_ops_total;
kstat_named_t ps_ops_passed;
kstat_named_t ps_ops_failed;
kstat_named_t ps_ops_busy_rval;
} kcf_prov_stats_t;
/*
* Keep all the information needed by the scheduler from
* this provider.
*/
typedef struct kcf_sched_info {
/* The number of operations dispatched. */
uint64_t ks_ndispatches;
/* The number of operations that failed. */
uint64_t ks_nfails;
/* The number of operations that returned CRYPTO_BUSY. */
uint64_t ks_nbusy_rval;
} kcf_sched_info_t;
/*
* pd_irefcnt approximates the number of inflight requests to the
* provider. Though we increment this counter during registration for
* other purposes, that base value is mostly same across all providers.
* So, it is a good measure of the load on a provider when it is not
* in a busy state. Once a provider notifies it is busy, requests
* backup in the taskq. So, we use tq_nalloc in that case which gives
* the number of task entries in the task queue. Note that we do not
* acquire any locks here as it is not critical to get the exact number
* and the lock contention may be too costly for this code path.
*/
#define KCF_PROV_LOAD(pd) ((pd)->pd_irefcnt)
#define KCF_PROV_INCRSTATS(pd, error) { \
(pd)->pd_sched_info.ks_ndispatches++; \
if (error == CRYPTO_BUSY) \
(pd)->pd_sched_info.ks_nbusy_rval++; \
else if (error != CRYPTO_SUCCESS && error != CRYPTO_QUEUED) \
(pd)->pd_sched_info.ks_nfails++; \
}
/*
* The following two macros should be
* #define KCF_OPS_CLASSSIZE (KCF_LAST_OPSCLASS - KCF_FIRST_OPSCLASS + 2)
* #define KCF_MAXMECHTAB KCF_MAXCIPHER
*
* However, doing that would involve reorganizing the header file a bit.
* When impl.h is broken up (bug# 4703218), this will be done. For now,
* we hardcode these values.
*/
#define KCF_OPS_CLASSSIZE 4
#define KCF_MAXMECHTAB 32
/*
* Valid values for the state of a provider. The order of
* the elements is important.
*
* Routines which get a provider or the list of providers
* should pick only those that are in KCF_PROV_READY state.
*/
typedef enum {
KCF_PROV_ALLOCATED = 1,
/*
* state < KCF_PROV_READY means the provider can not
* be used at all.
*/
KCF_PROV_READY,
/*
* state > KCF_PROV_READY means the provider can not
* be used for new requests.
*/
KCF_PROV_FAILED,
/*
* Threads setting the following two states should do so only
* if the current state < KCF_PROV_DISABLED.
*/
KCF_PROV_DISABLED,
KCF_PROV_REMOVED,
KCF_PROV_FREED
} kcf_prov_state_t;
#define KCF_IS_PROV_USABLE(pd) ((pd)->pd_state == KCF_PROV_READY)
#define KCF_IS_PROV_REMOVED(pd) ((pd)->pd_state >= KCF_PROV_REMOVED)
/*
* A provider descriptor structure. There is one such structure per
* provider. It is allocated and initialized at registration time and
* freed when the provider unregisters.
*
* pd_sid: Session ID of the provider used by kernel clients.
* This is valid only for session-oriented providers.
* pd_refcnt: Reference counter to this provider descriptor
* pd_irefcnt: References held by the framework internal structs
* pd_lock: lock protects pd_state
* pd_state: State value of the provider
* pd_prov_handle: Provider handle specified by provider
* pd_ops_vector: The ops vector specified by Provider
* pd_mech_indx: Lookup table which maps a core framework mechanism
* number to an index in pd_mechanisms array
* pd_mechanisms: Array of mechanisms supported by the provider, specified
* by the provider during registration
* pd_sched_info: Scheduling information associated with the provider
* pd_mech_list_count: The number of entries in pi_mechanisms, specified
* by the provider during registration
* pd_remove_cv: cv to wait on while the provider queue drains
* pd_description: Provider description string
* pd_hash_limit Maximum data size that hash mechanisms of this provider
* can support.
* pd_kcf_prov_handle: KCF-private handle assigned by KCF
* pd_prov_id: Identification # assigned by KCF to provider
* pd_kstat: kstat associated with the provider
* pd_ks_data: kstat data
*/
typedef struct kcf_provider_desc {
crypto_session_id_t pd_sid;
uint_t pd_refcnt;
uint_t pd_irefcnt;
kmutex_t pd_lock;
kcf_prov_state_t pd_state;
kcondvar_t pd_resume_cv;
crypto_provider_handle_t pd_prov_handle;
const crypto_ops_t *pd_ops_vector;
ushort_t pd_mech_indx[KCF_OPS_CLASSSIZE]\
[KCF_MAXMECHTAB];
const crypto_mech_info_t *pd_mechanisms;
kcf_sched_info_t pd_sched_info;
uint_t pd_mech_list_count;
kcondvar_t pd_remove_cv;
const char *pd_description;
uint_t pd_hash_limit;
crypto_kcf_provider_handle_t pd_kcf_prov_handle;
crypto_provider_id_t pd_prov_id;
kstat_t *pd_kstat;
kcf_prov_stats_t pd_ks_data;
} kcf_provider_desc_t;
/* atomic operations in linux implicitly form a memory barrier */
#define membar_exit()
/*
* If a component has a reference to a kcf_provider_desc_t,
* it REFHOLD()s. A new provider descriptor which is referenced only
* by the providers table has a reference counter of one.
*/
#define KCF_PROV_REFHOLD(desc) { \
atomic_add_32(&(desc)->pd_refcnt, 1); \
ASSERT((desc)->pd_refcnt != 0); \
}
#define KCF_PROV_IREFHOLD(desc) { \
atomic_add_32(&(desc)->pd_irefcnt, 1); \
ASSERT((desc)->pd_irefcnt != 0); \
}
#define KCF_PROV_IREFRELE(desc) { \
ASSERT((desc)->pd_irefcnt != 0); \
membar_exit(); \
if (atomic_add_32_nv(&(desc)->pd_irefcnt, -1) == 0) { \
cv_broadcast(&(desc)->pd_remove_cv); \
} \
}
#define KCF_PROV_REFHELD(desc) ((desc)->pd_refcnt >= 1)
#define KCF_PROV_REFRELE(desc) { \
ASSERT((desc)->pd_refcnt != 0); \
membar_exit(); \
if (atomic_add_32_nv(&(desc)->pd_refcnt, -1) == 0) { \
kcf_provider_zero_refcnt((desc)); \
} \
}
/*
* An element in a mechanism provider descriptors chain.
* The kcf_prov_mech_desc_t is duplicated in every chain the provider belongs
* to. This is a small tradeoff memory vs mutex spinning time to access the
* common provider field.
*/
typedef struct kcf_prov_mech_desc {
struct kcf_mech_entry *pm_me; /* Back to the head */
struct kcf_prov_mech_desc *pm_next; /* Next in the chain */
crypto_mech_info_t pm_mech_info; /* Provider mech info */
kcf_provider_desc_t *pm_prov_desc; /* Common desc. */
} kcf_prov_mech_desc_t;
/*
* A mechanism entry in an xxx_mech_tab[]. me_pad was deemed
* to be unnecessary and removed.
*/
typedef struct kcf_mech_entry {
crypto_mech_name_t me_name; /* mechanism name */
crypto_mech_type_t me_mechid; /* Internal id for mechanism */
kcf_prov_mech_desc_t *me_sw_prov; /* provider */
} kcf_mech_entry_t;
/*
* If a component has a reference to a kcf_policy_desc_t,
* it REFHOLD()s. A new policy descriptor which is referenced only
* by the policy table has a reference count of one.
*/
#define KCF_POLICY_REFHOLD(desc) { \
atomic_add_32(&(desc)->pd_refcnt, 1); \
ASSERT((desc)->pd_refcnt != 0); \
}
/*
* Releases a reference to a policy descriptor. When the last
* reference is released, the descriptor is freed.
*/
#define KCF_POLICY_REFRELE(desc) { \
ASSERT((desc)->pd_refcnt != 0); \
membar_exit(); \
if (atomic_add_32_nv(&(desc)->pd_refcnt, -1) == 0) \
kcf_policy_free_desc(desc); \
}
/*
* Global tables. The sizes are from the predefined PKCS#11 v2.20 mechanisms,
* with a margin of few extra empty entry points
*/
#define KCF_MAXDIGEST 16 /* Digests */
#define KCF_MAXCIPHER 64 /* Ciphers */
#define KCF_MAXMAC 40 /* Message authentication codes */
typedef enum {
KCF_DIGEST_CLASS = 1,
KCF_CIPHER_CLASS,
KCF_MAC_CLASS,
} kcf_ops_class_t;
#define KCF_FIRST_OPSCLASS KCF_DIGEST_CLASS
#define KCF_LAST_OPSCLASS KCF_MAC_CLASS
/* The table of all the kcf_xxx_mech_tab[]s, indexed by kcf_ops_class */
typedef struct kcf_mech_entry_tab {
int met_size; /* Size of the met_tab[] */
kcf_mech_entry_t *met_tab; /* the table */
} kcf_mech_entry_tab_t;
extern const kcf_mech_entry_tab_t kcf_mech_tabs_tab[];
#define KCF_MECHID(class, index) \
(((crypto_mech_type_t)(class) << 32) | (crypto_mech_type_t)(index))
#define KCF_MECH2CLASS(mech_type) ((kcf_ops_class_t)((mech_type) >> 32))
#define KCF_MECH2INDEX(mech_type) ((int)(mech_type))
#define KCF_TO_PROV_MECH_INDX(pd, mech_type) \
((pd)->pd_mech_indx[KCF_MECH2CLASS(mech_type)] \
[KCF_MECH2INDEX(mech_type)])
#define KCF_TO_PROV_MECHINFO(pd, mech_type) \
((pd)->pd_mechanisms[KCF_TO_PROV_MECH_INDX(pd, mech_type)])
#define KCF_TO_PROV_MECHNUM(pd, mech_type) \
(KCF_TO_PROV_MECHINFO(pd, mech_type).cm_mech_number)
#define KCF_CAN_SHARE_OPSTATE(pd, mech_type) \
((KCF_TO_PROV_MECHINFO(pd, mech_type).cm_mech_flags) & \
CRYPTO_CAN_SHARE_OPSTATE)
/* ps_refcnt is protected by cm_lock in the crypto_minor structure */
typedef struct crypto_provider_session {
struct crypto_provider_session *ps_next;
crypto_session_id_t ps_session;
kcf_provider_desc_t *ps_provider;
kcf_provider_desc_t *ps_real_provider;
uint_t ps_refcnt;
} crypto_provider_session_t;
typedef struct crypto_session_data {
kmutex_t sd_lock;
kcondvar_t sd_cv;
uint32_t sd_flags;
int sd_pre_approved_amount;
crypto_ctx_t *sd_digest_ctx;
crypto_ctx_t *sd_encr_ctx;
crypto_ctx_t *sd_decr_ctx;
crypto_ctx_t *sd_sign_ctx;
crypto_ctx_t *sd_verify_ctx;
crypto_ctx_t *sd_sign_recover_ctx;
crypto_ctx_t *sd_verify_recover_ctx;
kcf_provider_desc_t *sd_provider;
void *sd_find_init_cookie;
crypto_provider_session_t *sd_provider_session;
} crypto_session_data_t;
#define CRYPTO_SESSION_IN_USE 0x00000001
#define CRYPTO_SESSION_IS_BUSY 0x00000002
#define CRYPTO_SESSION_IS_CLOSED 0x00000004
#define KCF_MAX_PIN_LEN 1024
/*
* Per-minor info.
*
* cm_lock protects everything in this structure except for cm_refcnt.
*/
typedef struct crypto_minor {
uint_t cm_refcnt;
kmutex_t cm_lock;
kcondvar_t cm_cv;
crypto_session_data_t **cm_session_table;
uint_t cm_session_table_count;
kcf_provider_desc_t **cm_provider_array;
uint_t cm_provider_count;
crypto_provider_session_t *cm_provider_session;
} crypto_minor_t;
/*
* Return codes for internal functions
*/
#define KCF_SUCCESS 0x0 /* Successful call */
#define KCF_INVALID_MECH_NUMBER 0x1 /* invalid mechanism number */
#define KCF_INVALID_MECH_NAME 0x2 /* invalid mechanism name */
#define KCF_INVALID_MECH_CLASS 0x3 /* invalid mechanism class */
#define KCF_MECH_TAB_FULL 0x4 /* Need more room in the mech tabs. */
#define KCF_INVALID_INDX ((ushort_t)-1)
/*
* Wrappers for ops vectors. In the wrapper definitions below, the pd
* argument always corresponds to a pointer to a provider descriptor
* of type kcf_prov_desc_t.
*/
#define KCF_PROV_DIGEST_OPS(pd) ((pd)->pd_ops_vector->co_digest_ops)
#define KCF_PROV_CIPHER_OPS(pd) ((pd)->pd_ops_vector->co_cipher_ops)
#define KCF_PROV_MAC_OPS(pd) ((pd)->pd_ops_vector->co_mac_ops)
#define KCF_PROV_CTX_OPS(pd) ((pd)->pd_ops_vector->co_ctx_ops)
/*
* Wrappers for crypto_digest_ops(9S) entry points.
*/
#define KCF_PROV_DIGEST_INIT(pd, ctx, mech, req) ( \
(KCF_PROV_DIGEST_OPS(pd) && KCF_PROV_DIGEST_OPS(pd)->digest_init) ? \
KCF_PROV_DIGEST_OPS(pd)->digest_init(ctx, mech, req) : \
CRYPTO_NOT_SUPPORTED)
/*
* Wrappers for crypto_cipher_ops(9S) entry points.
*/
#define KCF_PROV_ENCRYPT_INIT(pd, ctx, mech, key, template, req) ( \
(KCF_PROV_CIPHER_OPS(pd) && KCF_PROV_CIPHER_OPS(pd)->encrypt_init) ? \
KCF_PROV_CIPHER_OPS(pd)->encrypt_init(ctx, mech, key, template, \
req) : \
CRYPTO_NOT_SUPPORTED)
#define KCF_PROV_ENCRYPT_ATOMIC(pd, session, mech, key, plaintext, ciphertext, \
template, req) ( \
(KCF_PROV_CIPHER_OPS(pd) && KCF_PROV_CIPHER_OPS(pd)->encrypt_atomic) ? \
KCF_PROV_CIPHER_OPS(pd)->encrypt_atomic( \
(pd)->pd_prov_handle, session, mech, key, plaintext, ciphertext, \
template, req) : \
CRYPTO_NOT_SUPPORTED)
#define KCF_PROV_DECRYPT_ATOMIC(pd, session, mech, key, ciphertext, plaintext, \
template, req) ( \
(KCF_PROV_CIPHER_OPS(pd) && KCF_PROV_CIPHER_OPS(pd)->decrypt_atomic) ? \
KCF_PROV_CIPHER_OPS(pd)->decrypt_atomic( \
(pd)->pd_prov_handle, session, mech, key, ciphertext, plaintext, \
template, req) : \
CRYPTO_NOT_SUPPORTED)
/*
* Wrappers for crypto_mac_ops(9S) entry points.
*/
#define KCF_PROV_MAC_INIT(pd, ctx, mech, key, template, req) ( \
(KCF_PROV_MAC_OPS(pd) && KCF_PROV_MAC_OPS(pd)->mac_init) ? \
KCF_PROV_MAC_OPS(pd)->mac_init(ctx, mech, key, template, req) \
: CRYPTO_NOT_SUPPORTED)
/*
* The _ (underscore) in _mac is needed to avoid replacing the
* function mac().
*/
#define KCF_PROV_MAC_UPDATE(pd, ctx, data, req) ( \
(KCF_PROV_MAC_OPS(pd) && KCF_PROV_MAC_OPS(pd)->mac_update) ? \
KCF_PROV_MAC_OPS(pd)->mac_update(ctx, data, req) : \
CRYPTO_NOT_SUPPORTED)
#define KCF_PROV_MAC_FINAL(pd, ctx, mac, req) ( \
(KCF_PROV_MAC_OPS(pd) && KCF_PROV_MAC_OPS(pd)->mac_final) ? \
KCF_PROV_MAC_OPS(pd)->mac_final(ctx, mac, req) : \
CRYPTO_NOT_SUPPORTED)
#define KCF_PROV_MAC_ATOMIC(pd, session, mech, key, data, mac, template, \
req) ( \
(KCF_PROV_MAC_OPS(pd) && KCF_PROV_MAC_OPS(pd)->mac_atomic) ? \
KCF_PROV_MAC_OPS(pd)->mac_atomic( \
(pd)->pd_prov_handle, session, mech, key, data, mac, template, \
req) : \
CRYPTO_NOT_SUPPORTED)
/*
* Wrappers for crypto_ctx_ops(9S) entry points.
*/
#define KCF_PROV_CREATE_CTX_TEMPLATE(pd, mech, key, template, size, req) ( \
(KCF_PROV_CTX_OPS(pd) && KCF_PROV_CTX_OPS(pd)->create_ctx_template) ? \
KCF_PROV_CTX_OPS(pd)->create_ctx_template( \
(pd)->pd_prov_handle, mech, key, template, size, req) : \
CRYPTO_NOT_SUPPORTED)
#define KCF_PROV_FREE_CONTEXT(pd, ctx) ( \
(KCF_PROV_CTX_OPS(pd) && KCF_PROV_CTX_OPS(pd)->free_context) ? \
KCF_PROV_CTX_OPS(pd)->free_context(ctx) : CRYPTO_NOT_SUPPORTED)
/* Miscellaneous */
extern void kcf_destroy_mech_tabs(void);
extern void kcf_init_mech_tabs(void);
extern int kcf_add_mech_provider(short, kcf_provider_desc_t *,
kcf_prov_mech_desc_t **);
extern void kcf_remove_mech_provider(const char *, kcf_provider_desc_t *);
extern int kcf_get_mech_entry(crypto_mech_type_t, kcf_mech_entry_t **);
extern kcf_provider_desc_t *kcf_alloc_provider_desc(void);
extern void kcf_provider_zero_refcnt(kcf_provider_desc_t *);
extern void kcf_free_provider_desc(kcf_provider_desc_t *);
extern void undo_register_provider(kcf_provider_desc_t *, boolean_t);
extern int crypto_uio_data(crypto_data_t *, uchar_t *, int, cmd_type_t,
void *, void (*update)(void));
extern int crypto_put_output_data(uchar_t *, crypto_data_t *, int);
extern int crypto_update_iov(void *, crypto_data_t *, crypto_data_t *,
int (*cipher)(void *, caddr_t, size_t, crypto_data_t *),
void (*copy_block)(uint8_t *, uint64_t *));
extern int crypto_update_uio(void *, crypto_data_t *, crypto_data_t *,
int (*cipher)(void *, caddr_t, size_t, crypto_data_t *),
void (*copy_block)(uint8_t *, uint64_t *));
/* Access to the provider's table */
extern void kcf_prov_tab_destroy(void);
extern void kcf_prov_tab_init(void);
extern int kcf_prov_tab_add_provider(kcf_provider_desc_t *);
extern int kcf_prov_tab_rem_provider(crypto_provider_id_t);
extern kcf_provider_desc_t *kcf_prov_tab_lookup(crypto_provider_id_t);
extern int kcf_get_sw_prov(crypto_mech_type_t, kcf_provider_desc_t **,
kcf_mech_entry_t **, boolean_t);
#ifdef __cplusplus
}
#endif
#endif /* _SYS_CRYPTO_IMPL_H */