1411 lines
37 KiB
C
1411 lines
37 KiB
C
/*****************************************************************************\
|
|
* Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC.
|
|
* Copyright (C) 2007 The Regents of the University of California.
|
|
* Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
|
|
* Written by Brian Behlendorf <behlendorf1@llnl.gov>.
|
|
* UCRL-CODE-235197
|
|
*
|
|
* This file is part of the SPL, Solaris Porting Layer.
|
|
* For details, see <http://zfsonlinux.org/>.
|
|
*
|
|
* The SPL is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License as published by the
|
|
* Free Software Foundation; either version 2 of the License, or (at your
|
|
* option) any later version.
|
|
*
|
|
* The SPL is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with the SPL. If not, see <http://www.gnu.org/licenses/>.
|
|
*****************************************************************************
|
|
* Solaris Porting LAyer Tests (SPLAT) Kmem Tests.
|
|
\*****************************************************************************/
|
|
|
|
#include <sys/kmem.h>
|
|
#include <sys/kmem_cache.h>
|
|
#include <sys/vmem.h>
|
|
#include <sys/random.h>
|
|
#include <sys/thread.h>
|
|
#include <sys/vmsystm.h>
|
|
#include "splat-internal.h"
|
|
|
|
#define SPLAT_KMEM_NAME "kmem"
|
|
#define SPLAT_KMEM_DESC "Kernel Malloc/Slab Tests"
|
|
|
|
#define SPLAT_KMEM_TEST1_ID 0x0101
|
|
#define SPLAT_KMEM_TEST1_NAME "kmem_alloc"
|
|
#define SPLAT_KMEM_TEST1_DESC "Memory allocation test (kmem_alloc)"
|
|
|
|
#define SPLAT_KMEM_TEST2_ID 0x0102
|
|
#define SPLAT_KMEM_TEST2_NAME "kmem_zalloc"
|
|
#define SPLAT_KMEM_TEST2_DESC "Memory allocation test (kmem_zalloc)"
|
|
|
|
#define SPLAT_KMEM_TEST3_ID 0x0103
|
|
#define SPLAT_KMEM_TEST3_NAME "vmem_alloc"
|
|
#define SPLAT_KMEM_TEST3_DESC "Memory allocation test (vmem_alloc)"
|
|
|
|
#define SPLAT_KMEM_TEST4_ID 0x0104
|
|
#define SPLAT_KMEM_TEST4_NAME "vmem_zalloc"
|
|
#define SPLAT_KMEM_TEST4_DESC "Memory allocation test (vmem_zalloc)"
|
|
|
|
#define SPLAT_KMEM_TEST5_ID 0x0105
|
|
#define SPLAT_KMEM_TEST5_NAME "slab_small"
|
|
#define SPLAT_KMEM_TEST5_DESC "Slab ctor/dtor test (small)"
|
|
|
|
#define SPLAT_KMEM_TEST6_ID 0x0106
|
|
#define SPLAT_KMEM_TEST6_NAME "slab_large"
|
|
#define SPLAT_KMEM_TEST6_DESC "Slab ctor/dtor test (large)"
|
|
|
|
#define SPLAT_KMEM_TEST7_ID 0x0107
|
|
#define SPLAT_KMEM_TEST7_NAME "slab_align"
|
|
#define SPLAT_KMEM_TEST7_DESC "Slab alignment test"
|
|
|
|
#define SPLAT_KMEM_TEST8_ID 0x0108
|
|
#define SPLAT_KMEM_TEST8_NAME "slab_reap"
|
|
#define SPLAT_KMEM_TEST8_DESC "Slab reaping test"
|
|
|
|
#define SPLAT_KMEM_TEST9_ID 0x0109
|
|
#define SPLAT_KMEM_TEST9_NAME "slab_age"
|
|
#define SPLAT_KMEM_TEST9_DESC "Slab aging test"
|
|
|
|
#define SPLAT_KMEM_TEST10_ID 0x010a
|
|
#define SPLAT_KMEM_TEST10_NAME "slab_lock"
|
|
#define SPLAT_KMEM_TEST10_DESC "Slab locking test"
|
|
|
|
#if 0
|
|
#define SPLAT_KMEM_TEST11_ID 0x010b
|
|
#define SPLAT_KMEM_TEST11_NAME "slab_overcommit"
|
|
#define SPLAT_KMEM_TEST11_DESC "Slab memory overcommit test"
|
|
#endif
|
|
|
|
#define SPLAT_KMEM_TEST13_ID 0x010d
|
|
#define SPLAT_KMEM_TEST13_NAME "slab_reclaim"
|
|
#define SPLAT_KMEM_TEST13_DESC "Slab direct memory reclaim test"
|
|
|
|
#define SPLAT_KMEM_ALLOC_COUNT 10
|
|
#define SPLAT_VMEM_ALLOC_COUNT 10
|
|
|
|
|
|
static int
|
|
splat_kmem_test1(struct file *file, void *arg)
|
|
{
|
|
void *ptr[SPLAT_KMEM_ALLOC_COUNT];
|
|
int size = PAGE_SIZE;
|
|
int i, count, rc = 0;
|
|
|
|
while ((!rc) && (size <= spl_kmem_alloc_warn)) {
|
|
count = 0;
|
|
|
|
for (i = 0; i < SPLAT_KMEM_ALLOC_COUNT; i++) {
|
|
ptr[i] = kmem_alloc(size, KM_SLEEP);
|
|
if (ptr[i])
|
|
count++;
|
|
}
|
|
|
|
for (i = 0; i < SPLAT_KMEM_ALLOC_COUNT; i++)
|
|
if (ptr[i])
|
|
kmem_free(ptr[i], size);
|
|
|
|
splat_vprint(file, SPLAT_KMEM_TEST1_NAME,
|
|
"%d byte allocations, %d/%d successful\n",
|
|
size, count, SPLAT_KMEM_ALLOC_COUNT);
|
|
if (count != SPLAT_KMEM_ALLOC_COUNT)
|
|
rc = -ENOMEM;
|
|
|
|
size *= 2;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int
|
|
splat_kmem_test2(struct file *file, void *arg)
|
|
{
|
|
void *ptr[SPLAT_KMEM_ALLOC_COUNT];
|
|
int size = PAGE_SIZE;
|
|
int i, j, count, rc = 0;
|
|
|
|
while ((!rc) && (size <= spl_kmem_alloc_warn)) {
|
|
count = 0;
|
|
|
|
for (i = 0; i < SPLAT_KMEM_ALLOC_COUNT; i++) {
|
|
ptr[i] = kmem_zalloc(size, KM_SLEEP);
|
|
if (ptr[i])
|
|
count++;
|
|
}
|
|
|
|
/* Ensure buffer has been zero filled */
|
|
for (i = 0; i < SPLAT_KMEM_ALLOC_COUNT; i++) {
|
|
for (j = 0; j < size; j++) {
|
|
if (((char *)ptr[i])[j] != '\0') {
|
|
splat_vprint(file,SPLAT_KMEM_TEST2_NAME,
|
|
"%d-byte allocation was "
|
|
"not zeroed\n", size);
|
|
rc = -EFAULT;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < SPLAT_KMEM_ALLOC_COUNT; i++)
|
|
if (ptr[i])
|
|
kmem_free(ptr[i], size);
|
|
|
|
splat_vprint(file, SPLAT_KMEM_TEST2_NAME,
|
|
"%d byte allocations, %d/%d successful\n",
|
|
size, count, SPLAT_KMEM_ALLOC_COUNT);
|
|
if (count != SPLAT_KMEM_ALLOC_COUNT)
|
|
rc = -ENOMEM;
|
|
|
|
size *= 2;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int
|
|
splat_kmem_test3(struct file *file, void *arg)
|
|
{
|
|
void *ptr[SPLAT_VMEM_ALLOC_COUNT];
|
|
int size = PAGE_SIZE;
|
|
int i, count, rc = 0;
|
|
|
|
/*
|
|
* Test up to 4x the maximum kmem_alloc() size to ensure both
|
|
* the kmem_alloc() and vmem_alloc() call paths are used.
|
|
*/
|
|
while ((!rc) && (size <= (4 * spl_kmem_alloc_max))) {
|
|
count = 0;
|
|
|
|
for (i = 0; i < SPLAT_VMEM_ALLOC_COUNT; i++) {
|
|
ptr[i] = vmem_alloc(size, KM_SLEEP);
|
|
if (ptr[i])
|
|
count++;
|
|
}
|
|
|
|
for (i = 0; i < SPLAT_VMEM_ALLOC_COUNT; i++)
|
|
if (ptr[i])
|
|
vmem_free(ptr[i], size);
|
|
|
|
splat_vprint(file, SPLAT_KMEM_TEST3_NAME,
|
|
"%d byte allocations, %d/%d successful\n",
|
|
size, count, SPLAT_VMEM_ALLOC_COUNT);
|
|
if (count != SPLAT_VMEM_ALLOC_COUNT)
|
|
rc = -ENOMEM;
|
|
|
|
size *= 2;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int
|
|
splat_kmem_test4(struct file *file, void *arg)
|
|
{
|
|
void *ptr[SPLAT_VMEM_ALLOC_COUNT];
|
|
int size = PAGE_SIZE;
|
|
int i, j, count, rc = 0;
|
|
|
|
/*
|
|
* Test up to 4x the maximum kmem_zalloc() size to ensure both
|
|
* the kmem_zalloc() and vmem_zalloc() call paths are used.
|
|
*/
|
|
while ((!rc) && (size <= (4 * spl_kmem_alloc_max))) {
|
|
count = 0;
|
|
|
|
for (i = 0; i < SPLAT_VMEM_ALLOC_COUNT; i++) {
|
|
ptr[i] = vmem_zalloc(size, KM_SLEEP);
|
|
if (ptr[i])
|
|
count++;
|
|
}
|
|
|
|
/* Ensure buffer has been zero filled */
|
|
for (i = 0; i < SPLAT_VMEM_ALLOC_COUNT; i++) {
|
|
for (j = 0; j < size; j++) {
|
|
if (((char *)ptr[i])[j] != '\0') {
|
|
splat_vprint(file, SPLAT_KMEM_TEST4_NAME,
|
|
"%d-byte allocation was "
|
|
"not zeroed\n", size);
|
|
rc = -EFAULT;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < SPLAT_VMEM_ALLOC_COUNT; i++)
|
|
if (ptr[i])
|
|
vmem_free(ptr[i], size);
|
|
|
|
splat_vprint(file, SPLAT_KMEM_TEST4_NAME,
|
|
"%d byte allocations, %d/%d successful\n",
|
|
size, count, SPLAT_VMEM_ALLOC_COUNT);
|
|
if (count != SPLAT_VMEM_ALLOC_COUNT)
|
|
rc = -ENOMEM;
|
|
|
|
size *= 2;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
#define SPLAT_KMEM_TEST_MAGIC 0x004488CCUL
|
|
#define SPLAT_KMEM_CACHE_NAME "kmem_test"
|
|
#define SPLAT_KMEM_OBJ_COUNT 1024
|
|
#define SPLAT_KMEM_OBJ_RECLAIM 32 /* objects */
|
|
#define SPLAT_KMEM_THREADS 32
|
|
|
|
#define KCP_FLAG_READY 0x01
|
|
|
|
typedef struct kmem_cache_data {
|
|
unsigned long kcd_magic;
|
|
struct list_head kcd_node;
|
|
int kcd_flag;
|
|
char kcd_buf[0];
|
|
} kmem_cache_data_t;
|
|
|
|
typedef struct kmem_cache_thread {
|
|
spinlock_t kct_lock;
|
|
int kct_id;
|
|
struct list_head kct_list;
|
|
} kmem_cache_thread_t;
|
|
|
|
typedef struct kmem_cache_priv {
|
|
unsigned long kcp_magic;
|
|
struct file *kcp_file;
|
|
kmem_cache_t *kcp_cache;
|
|
spinlock_t kcp_lock;
|
|
wait_queue_head_t kcp_ctl_waitq;
|
|
wait_queue_head_t kcp_thr_waitq;
|
|
int kcp_flags;
|
|
int kcp_kct_count;
|
|
kmem_cache_thread_t *kcp_kct[SPLAT_KMEM_THREADS];
|
|
int kcp_size;
|
|
int kcp_align;
|
|
int kcp_count;
|
|
int kcp_alloc;
|
|
int kcp_rc;
|
|
} kmem_cache_priv_t;
|
|
|
|
static kmem_cache_priv_t *
|
|
splat_kmem_cache_test_kcp_alloc(struct file *file, char *name,
|
|
int size, int align, int alloc)
|
|
{
|
|
kmem_cache_priv_t *kcp;
|
|
|
|
kcp = kmem_zalloc(sizeof(kmem_cache_priv_t), KM_SLEEP);
|
|
if (!kcp)
|
|
return NULL;
|
|
|
|
kcp->kcp_magic = SPLAT_KMEM_TEST_MAGIC;
|
|
kcp->kcp_file = file;
|
|
kcp->kcp_cache = NULL;
|
|
spin_lock_init(&kcp->kcp_lock);
|
|
init_waitqueue_head(&kcp->kcp_ctl_waitq);
|
|
init_waitqueue_head(&kcp->kcp_thr_waitq);
|
|
kcp->kcp_flags = 0;
|
|
kcp->kcp_kct_count = -1;
|
|
kcp->kcp_size = size;
|
|
kcp->kcp_align = align;
|
|
kcp->kcp_count = 0;
|
|
kcp->kcp_alloc = alloc;
|
|
kcp->kcp_rc = 0;
|
|
|
|
return kcp;
|
|
}
|
|
|
|
static void
|
|
splat_kmem_cache_test_kcp_free(kmem_cache_priv_t *kcp)
|
|
{
|
|
kmem_free(kcp, sizeof(kmem_cache_priv_t));
|
|
}
|
|
|
|
static kmem_cache_thread_t *
|
|
splat_kmem_cache_test_kct_alloc(kmem_cache_priv_t *kcp, int id)
|
|
{
|
|
kmem_cache_thread_t *kct;
|
|
|
|
ASSERT3S(id, <, SPLAT_KMEM_THREADS);
|
|
ASSERT(kcp->kcp_kct[id] == NULL);
|
|
|
|
kct = kmem_zalloc(sizeof(kmem_cache_thread_t), KM_SLEEP);
|
|
if (!kct)
|
|
return NULL;
|
|
|
|
spin_lock_init(&kct->kct_lock);
|
|
kct->kct_id = id;
|
|
INIT_LIST_HEAD(&kct->kct_list);
|
|
|
|
spin_lock(&kcp->kcp_lock);
|
|
kcp->kcp_kct[id] = kct;
|
|
spin_unlock(&kcp->kcp_lock);
|
|
|
|
return kct;
|
|
}
|
|
|
|
static void
|
|
splat_kmem_cache_test_kct_free(kmem_cache_priv_t *kcp,
|
|
kmem_cache_thread_t *kct)
|
|
{
|
|
spin_lock(&kcp->kcp_lock);
|
|
kcp->kcp_kct[kct->kct_id] = NULL;
|
|
spin_unlock(&kcp->kcp_lock);
|
|
|
|
kmem_free(kct, sizeof(kmem_cache_thread_t));
|
|
}
|
|
|
|
static void
|
|
splat_kmem_cache_test_kcd_free(kmem_cache_priv_t *kcp,
|
|
kmem_cache_thread_t *kct)
|
|
{
|
|
kmem_cache_data_t *kcd;
|
|
|
|
spin_lock(&kct->kct_lock);
|
|
while (!list_empty(&kct->kct_list)) {
|
|
kcd = list_entry(kct->kct_list.next,
|
|
kmem_cache_data_t, kcd_node);
|
|
list_del(&kcd->kcd_node);
|
|
spin_unlock(&kct->kct_lock);
|
|
|
|
kmem_cache_free(kcp->kcp_cache, kcd);
|
|
|
|
spin_lock(&kct->kct_lock);
|
|
}
|
|
spin_unlock(&kct->kct_lock);
|
|
}
|
|
|
|
static int
|
|
splat_kmem_cache_test_kcd_alloc(kmem_cache_priv_t *kcp,
|
|
kmem_cache_thread_t *kct, int count)
|
|
{
|
|
kmem_cache_data_t *kcd;
|
|
int i;
|
|
|
|
for (i = 0; i < count; i++) {
|
|
kcd = kmem_cache_alloc(kcp->kcp_cache, KM_SLEEP);
|
|
if (kcd == NULL) {
|
|
splat_kmem_cache_test_kcd_free(kcp, kct);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
spin_lock(&kct->kct_lock);
|
|
list_add_tail(&kcd->kcd_node, &kct->kct_list);
|
|
spin_unlock(&kct->kct_lock);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
splat_kmem_cache_test_debug(struct file *file, char *name,
|
|
kmem_cache_priv_t *kcp)
|
|
{
|
|
int j;
|
|
|
|
splat_vprint(file, name, "%s cache objects %d",
|
|
kcp->kcp_cache->skc_name, kcp->kcp_count);
|
|
|
|
if (kcp->kcp_cache->skc_flags & (KMC_KMEM | KMC_VMEM)) {
|
|
splat_vprint(file, name, ", slabs %u/%u objs %u/%u",
|
|
(unsigned)kcp->kcp_cache->skc_slab_alloc,
|
|
(unsigned)kcp->kcp_cache->skc_slab_total,
|
|
(unsigned)kcp->kcp_cache->skc_obj_alloc,
|
|
(unsigned)kcp->kcp_cache->skc_obj_total);
|
|
|
|
if (!(kcp->kcp_cache->skc_flags & KMC_NOMAGAZINE)) {
|
|
splat_vprint(file, name, "%s", "mags");
|
|
|
|
for_each_online_cpu(j)
|
|
splat_print(file, "%u/%u ",
|
|
kcp->kcp_cache->skc_mag[j]->skm_avail,
|
|
kcp->kcp_cache->skc_mag[j]->skm_size);
|
|
}
|
|
}
|
|
|
|
splat_print(file, "%s\n", "");
|
|
}
|
|
|
|
static int
|
|
splat_kmem_cache_test_constructor(void *ptr, void *priv, int flags)
|
|
{
|
|
kmem_cache_priv_t *kcp = (kmem_cache_priv_t *)priv;
|
|
kmem_cache_data_t *kcd = (kmem_cache_data_t *)ptr;
|
|
|
|
if (kcd && kcp) {
|
|
kcd->kcd_magic = kcp->kcp_magic;
|
|
INIT_LIST_HEAD(&kcd->kcd_node);
|
|
kcd->kcd_flag = 1;
|
|
memset(kcd->kcd_buf, 0xaa, kcp->kcp_size - (sizeof *kcd));
|
|
kcp->kcp_count++;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
splat_kmem_cache_test_destructor(void *ptr, void *priv)
|
|
{
|
|
kmem_cache_priv_t *kcp = (kmem_cache_priv_t *)priv;
|
|
kmem_cache_data_t *kcd = (kmem_cache_data_t *)ptr;
|
|
|
|
if (kcd && kcp) {
|
|
kcd->kcd_magic = 0;
|
|
kcd->kcd_flag = 0;
|
|
memset(kcd->kcd_buf, 0xbb, kcp->kcp_size - (sizeof *kcd));
|
|
kcp->kcp_count--;
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Generic reclaim function which assumes that all objects may
|
|
* be reclaimed at any time. We free a small percentage of the
|
|
* objects linked off the kcp or kct[] every time we are called.
|
|
*/
|
|
static void
|
|
splat_kmem_cache_test_reclaim(void *priv)
|
|
{
|
|
kmem_cache_priv_t *kcp = (kmem_cache_priv_t *)priv;
|
|
kmem_cache_thread_t *kct;
|
|
kmem_cache_data_t *kcd;
|
|
LIST_HEAD(reclaim);
|
|
int i, count;
|
|
|
|
ASSERT(kcp->kcp_magic == SPLAT_KMEM_TEST_MAGIC);
|
|
|
|
/* For each kct thread reclaim some objects */
|
|
spin_lock(&kcp->kcp_lock);
|
|
for (i = 0; i < SPLAT_KMEM_THREADS; i++) {
|
|
kct = kcp->kcp_kct[i];
|
|
if (!kct)
|
|
continue;
|
|
|
|
spin_unlock(&kcp->kcp_lock);
|
|
spin_lock(&kct->kct_lock);
|
|
|
|
count = SPLAT_KMEM_OBJ_RECLAIM;
|
|
while (count > 0 && !list_empty(&kct->kct_list)) {
|
|
kcd = list_entry(kct->kct_list.next,
|
|
kmem_cache_data_t, kcd_node);
|
|
list_del(&kcd->kcd_node);
|
|
list_add(&kcd->kcd_node, &reclaim);
|
|
count--;
|
|
}
|
|
|
|
spin_unlock(&kct->kct_lock);
|
|
spin_lock(&kcp->kcp_lock);
|
|
}
|
|
spin_unlock(&kcp->kcp_lock);
|
|
|
|
/* Freed outside the spin lock */
|
|
while (!list_empty(&reclaim)) {
|
|
kcd = list_entry(reclaim.next, kmem_cache_data_t, kcd_node);
|
|
list_del(&kcd->kcd_node);
|
|
kmem_cache_free(kcp->kcp_cache, kcd);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
static int
|
|
splat_kmem_cache_test_threads(kmem_cache_priv_t *kcp, int threads)
|
|
{
|
|
int rc;
|
|
|
|
spin_lock(&kcp->kcp_lock);
|
|
rc = (kcp->kcp_kct_count == threads);
|
|
spin_unlock(&kcp->kcp_lock);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int
|
|
splat_kmem_cache_test_flags(kmem_cache_priv_t *kcp, int flags)
|
|
{
|
|
int rc;
|
|
|
|
spin_lock(&kcp->kcp_lock);
|
|
rc = (kcp->kcp_flags & flags);
|
|
spin_unlock(&kcp->kcp_lock);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static void
|
|
splat_kmem_cache_test_thread(void *arg)
|
|
{
|
|
kmem_cache_priv_t *kcp = (kmem_cache_priv_t *)arg;
|
|
kmem_cache_thread_t *kct;
|
|
int rc = 0, id;
|
|
|
|
ASSERT(kcp->kcp_magic == SPLAT_KMEM_TEST_MAGIC);
|
|
|
|
/* Assign thread ids */
|
|
spin_lock(&kcp->kcp_lock);
|
|
if (kcp->kcp_kct_count == -1)
|
|
kcp->kcp_kct_count = 0;
|
|
|
|
id = kcp->kcp_kct_count;
|
|
kcp->kcp_kct_count++;
|
|
spin_unlock(&kcp->kcp_lock);
|
|
|
|
kct = splat_kmem_cache_test_kct_alloc(kcp, id);
|
|
if (!kct) {
|
|
rc = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
/* Wait for all threads to have started and report they are ready */
|
|
if (kcp->kcp_kct_count == SPLAT_KMEM_THREADS)
|
|
wake_up(&kcp->kcp_ctl_waitq);
|
|
|
|
wait_event(kcp->kcp_thr_waitq,
|
|
splat_kmem_cache_test_flags(kcp, KCP_FLAG_READY));
|
|
|
|
/* Create and destroy objects */
|
|
rc = splat_kmem_cache_test_kcd_alloc(kcp, kct, kcp->kcp_alloc);
|
|
splat_kmem_cache_test_kcd_free(kcp, kct);
|
|
out:
|
|
if (kct)
|
|
splat_kmem_cache_test_kct_free(kcp, kct);
|
|
|
|
spin_lock(&kcp->kcp_lock);
|
|
if (!kcp->kcp_rc)
|
|
kcp->kcp_rc = rc;
|
|
|
|
if ((--kcp->kcp_kct_count) == 0)
|
|
wake_up(&kcp->kcp_ctl_waitq);
|
|
|
|
spin_unlock(&kcp->kcp_lock);
|
|
|
|
thread_exit();
|
|
}
|
|
|
|
static int
|
|
splat_kmem_cache_test(struct file *file, void *arg, char *name,
|
|
int size, int align, int flags)
|
|
{
|
|
kmem_cache_priv_t *kcp = NULL;
|
|
kmem_cache_data_t **kcd = NULL;
|
|
int i, rc = 0, objs = 0;
|
|
|
|
/* Limit size for low memory machines (1/128 of memory) */
|
|
size = MIN(size, (physmem * PAGE_SIZE) >> 7);
|
|
|
|
splat_vprint(file, name,
|
|
"Testing size=%d, align=%d, flags=0x%04x\n",
|
|
size, align, flags);
|
|
|
|
kcp = splat_kmem_cache_test_kcp_alloc(file, name, size, align, 0);
|
|
if (!kcp) {
|
|
splat_vprint(file, name, "Unable to create '%s'\n", "kcp");
|
|
return (-ENOMEM);
|
|
}
|
|
|
|
kcp->kcp_cache = kmem_cache_create(SPLAT_KMEM_CACHE_NAME,
|
|
kcp->kcp_size, kcp->kcp_align,
|
|
splat_kmem_cache_test_constructor,
|
|
splat_kmem_cache_test_destructor,
|
|
NULL, kcp, NULL, flags);
|
|
if (kcp->kcp_cache == NULL) {
|
|
splat_vprint(file, name, "Unable to create "
|
|
"name='%s', size=%d, align=%d, flags=0x%x\n",
|
|
SPLAT_KMEM_CACHE_NAME, size, align, flags);
|
|
rc = -ENOMEM;
|
|
goto out_free;
|
|
}
|
|
|
|
/*
|
|
* Allocate several slabs worth of objects to verify functionality.
|
|
* However, on 32-bit systems with limited address space constrain
|
|
* it to a single slab for the purposes of this test.
|
|
*/
|
|
#ifdef _LP64
|
|
objs = kcp->kcp_cache->skc_slab_objs * 4;
|
|
#else
|
|
objs = 1;
|
|
#endif
|
|
kcd = kmem_zalloc(sizeof (kmem_cache_data_t *) * objs, KM_SLEEP);
|
|
if (kcd == NULL) {
|
|
splat_vprint(file, name, "Unable to allocate pointers "
|
|
"for %d objects\n", objs);
|
|
rc = -ENOMEM;
|
|
goto out_free;
|
|
}
|
|
|
|
for (i = 0; i < objs; i++) {
|
|
kcd[i] = kmem_cache_alloc(kcp->kcp_cache, KM_SLEEP);
|
|
if (kcd[i] == NULL) {
|
|
splat_vprint(file, name, "Unable to allocate "
|
|
"from '%s'\n", SPLAT_KMEM_CACHE_NAME);
|
|
rc = -EINVAL;
|
|
goto out_free;
|
|
}
|
|
|
|
if (!kcd[i]->kcd_flag) {
|
|
splat_vprint(file, name, "Failed to run constructor "
|
|
"for '%s'\n", SPLAT_KMEM_CACHE_NAME);
|
|
rc = -EINVAL;
|
|
goto out_free;
|
|
}
|
|
|
|
if (kcd[i]->kcd_magic != kcp->kcp_magic) {
|
|
splat_vprint(file, name,
|
|
"Failed to pass private data to constructor "
|
|
"for '%s'\n", SPLAT_KMEM_CACHE_NAME);
|
|
rc = -EINVAL;
|
|
goto out_free;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < objs; i++) {
|
|
kmem_cache_free(kcp->kcp_cache, kcd[i]);
|
|
|
|
/* Destructors are run for every kmem_cache_free() */
|
|
if (kcd[i]->kcd_flag) {
|
|
splat_vprint(file, name,
|
|
"Failed to run destructor for '%s'\n",
|
|
SPLAT_KMEM_CACHE_NAME);
|
|
rc = -EINVAL;
|
|
goto out_free;
|
|
}
|
|
}
|
|
|
|
if (kcp->kcp_count) {
|
|
splat_vprint(file, name,
|
|
"Failed to run destructor on all slab objects for '%s'\n",
|
|
SPLAT_KMEM_CACHE_NAME);
|
|
rc = -EINVAL;
|
|
}
|
|
|
|
kmem_free(kcd, sizeof (kmem_cache_data_t *) * objs);
|
|
kmem_cache_destroy(kcp->kcp_cache);
|
|
|
|
splat_kmem_cache_test_kcp_free(kcp);
|
|
splat_vprint(file, name,
|
|
"Success ran alloc'd/free'd %d objects of size %d\n",
|
|
objs, size);
|
|
|
|
return (rc);
|
|
|
|
out_free:
|
|
if (kcd) {
|
|
for (i = 0; i < objs; i++) {
|
|
if (kcd[i] != NULL)
|
|
kmem_cache_free(kcp->kcp_cache, kcd[i]);
|
|
}
|
|
|
|
kmem_free(kcd, sizeof (kmem_cache_data_t *) * objs);
|
|
}
|
|
|
|
if (kcp->kcp_cache)
|
|
kmem_cache_destroy(kcp->kcp_cache);
|
|
|
|
splat_kmem_cache_test_kcp_free(kcp);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
static int
|
|
splat_kmem_cache_thread_test(struct file *file, void *arg, char *name,
|
|
int size, int alloc, int max_time)
|
|
{
|
|
kmem_cache_priv_t *kcp;
|
|
kthread_t *thr;
|
|
struct timespec start, stop, delta;
|
|
char cache_name[32];
|
|
int i, rc = 0;
|
|
|
|
kcp = splat_kmem_cache_test_kcp_alloc(file, name, size, 0, alloc);
|
|
if (!kcp) {
|
|
splat_vprint(file, name, "Unable to create '%s'\n", "kcp");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
(void)snprintf(cache_name, 32, "%s-%d-%d",
|
|
SPLAT_KMEM_CACHE_NAME, size, alloc);
|
|
kcp->kcp_cache =
|
|
kmem_cache_create(cache_name, kcp->kcp_size, 0,
|
|
splat_kmem_cache_test_constructor,
|
|
splat_kmem_cache_test_destructor,
|
|
splat_kmem_cache_test_reclaim,
|
|
kcp, NULL, 0);
|
|
if (!kcp->kcp_cache) {
|
|
splat_vprint(file, name, "Unable to create '%s'\n", cache_name);
|
|
rc = -ENOMEM;
|
|
goto out_kcp;
|
|
}
|
|
|
|
getnstimeofday(&start);
|
|
|
|
for (i = 0; i < SPLAT_KMEM_THREADS; i++) {
|
|
thr = thread_create(NULL, 0,
|
|
splat_kmem_cache_test_thread,
|
|
kcp, 0, &p0, TS_RUN, defclsyspri);
|
|
if (thr == NULL) {
|
|
rc = -ESRCH;
|
|
goto out_cache;
|
|
}
|
|
}
|
|
|
|
/* Sleep until all threads have started, then set the ready
|
|
* flag and wake them all up for maximum concurrency. */
|
|
wait_event(kcp->kcp_ctl_waitq,
|
|
splat_kmem_cache_test_threads(kcp, SPLAT_KMEM_THREADS));
|
|
|
|
spin_lock(&kcp->kcp_lock);
|
|
kcp->kcp_flags |= KCP_FLAG_READY;
|
|
spin_unlock(&kcp->kcp_lock);
|
|
wake_up_all(&kcp->kcp_thr_waitq);
|
|
|
|
/* Sleep until all thread have finished */
|
|
wait_event(kcp->kcp_ctl_waitq, splat_kmem_cache_test_threads(kcp, 0));
|
|
|
|
getnstimeofday(&stop);
|
|
delta = timespec_sub(stop, start);
|
|
|
|
splat_vprint(file, name,
|
|
"%-22s %2ld.%09ld\t"
|
|
"%lu/%lu/%lu\t%lu/%lu/%lu\n",
|
|
kcp->kcp_cache->skc_name,
|
|
delta.tv_sec, delta.tv_nsec,
|
|
(unsigned long)kcp->kcp_cache->skc_slab_total,
|
|
(unsigned long)kcp->kcp_cache->skc_slab_max,
|
|
(unsigned long)(kcp->kcp_alloc *
|
|
SPLAT_KMEM_THREADS /
|
|
SPL_KMEM_CACHE_OBJ_PER_SLAB),
|
|
(unsigned long)kcp->kcp_cache->skc_obj_total,
|
|
(unsigned long)kcp->kcp_cache->skc_obj_max,
|
|
(unsigned long)(kcp->kcp_alloc *
|
|
SPLAT_KMEM_THREADS));
|
|
|
|
if (delta.tv_sec >= max_time)
|
|
rc = -ETIME;
|
|
|
|
if (!rc && kcp->kcp_rc)
|
|
rc = kcp->kcp_rc;
|
|
|
|
out_cache:
|
|
kmem_cache_destroy(kcp->kcp_cache);
|
|
out_kcp:
|
|
splat_kmem_cache_test_kcp_free(kcp);
|
|
return rc;
|
|
}
|
|
|
|
/* Validate small object cache behavior for dynamic/kmem/vmem caches */
|
|
static int
|
|
splat_kmem_test5(struct file *file, void *arg)
|
|
{
|
|
char *name = SPLAT_KMEM_TEST5_NAME;
|
|
int i, rc = 0;
|
|
|
|
/* Randomly pick small object sizes and alignments. */
|
|
for (i = 0; i < 100; i++) {
|
|
int size, align, flags = 0;
|
|
uint32_t rnd;
|
|
|
|
/* Evenly distribute tests over all value cache types */
|
|
get_random_bytes((void *)&rnd, sizeof (uint32_t));
|
|
switch (rnd & 0x03) {
|
|
default:
|
|
case 0x00:
|
|
flags = 0;
|
|
break;
|
|
case 0x01:
|
|
flags = KMC_KMEM;
|
|
break;
|
|
case 0x02:
|
|
flags = KMC_VMEM;
|
|
break;
|
|
case 0x03:
|
|
flags = KMC_SLAB;
|
|
break;
|
|
}
|
|
|
|
/* The following flags are set with a 1/10 chance */
|
|
flags |= ((((rnd >> 8) % 10) == 0) ? KMC_OFFSLAB : 0);
|
|
flags |= ((((rnd >> 16) % 10) == 0) ? KMC_NOEMERGENCY : 0);
|
|
|
|
/* 32b - PAGE_SIZE */
|
|
get_random_bytes((void *)&rnd, sizeof (uint32_t));
|
|
size = MAX(rnd % (PAGE_SIZE + 1), 32);
|
|
|
|
/* 2^N where (3 <= N <= PAGE_SHIFT) */
|
|
get_random_bytes((void *)&rnd, sizeof (uint32_t));
|
|
align = (1 << MAX(3, rnd % (PAGE_SHIFT + 1)));
|
|
|
|
rc = splat_kmem_cache_test(file, arg, name, size, align, flags);
|
|
if (rc)
|
|
return (rc);
|
|
}
|
|
|
|
return (rc);
|
|
}
|
|
|
|
/*
|
|
* Validate large object cache behavior for dynamic/kmem/vmem caches
|
|
*/
|
|
static int
|
|
splat_kmem_test6(struct file *file, void *arg)
|
|
{
|
|
char *name = SPLAT_KMEM_TEST6_NAME;
|
|
int i, max_size, rc = 0;
|
|
|
|
/* Randomly pick large object sizes and alignments. */
|
|
for (i = 0; i < 100; i++) {
|
|
int size, align, flags = 0;
|
|
uint32_t rnd;
|
|
|
|
/* Evenly distribute tests over all value cache types */
|
|
get_random_bytes((void *)&rnd, sizeof (uint32_t));
|
|
switch (rnd & 0x03) {
|
|
default:
|
|
case 0x00:
|
|
flags = 0;
|
|
max_size = (SPL_KMEM_CACHE_MAX_SIZE * 1024 * 1024) / 2;
|
|
break;
|
|
case 0x01:
|
|
flags = KMC_KMEM;
|
|
max_size = (SPL_MAX_ORDER_NR_PAGES - 2) * PAGE_SIZE;
|
|
break;
|
|
case 0x02:
|
|
flags = KMC_VMEM;
|
|
max_size = (SPL_KMEM_CACHE_MAX_SIZE * 1024 * 1024) / 2;
|
|
break;
|
|
case 0x03:
|
|
flags = KMC_SLAB;
|
|
max_size = SPL_MAX_KMEM_ORDER_NR_PAGES * PAGE_SIZE;
|
|
break;
|
|
}
|
|
|
|
/* The following flags are set with a 1/10 chance */
|
|
flags |= ((((rnd >> 8) % 10) == 0) ? KMC_OFFSLAB : 0);
|
|
flags |= ((((rnd >> 16) % 10) == 0) ? KMC_NOEMERGENCY : 0);
|
|
|
|
/* PAGE_SIZE - max_size */
|
|
get_random_bytes((void *)&rnd, sizeof (uint32_t));
|
|
size = MAX(rnd % (max_size + 1), PAGE_SIZE),
|
|
|
|
/* 2^N where (3 <= N <= PAGE_SHIFT) */
|
|
get_random_bytes((void *)&rnd, sizeof (uint32_t));
|
|
align = (1 << MAX(3, rnd % (PAGE_SHIFT + 1)));
|
|
|
|
rc = splat_kmem_cache_test(file, arg, name, size, align, flags);
|
|
if (rc)
|
|
return (rc);
|
|
}
|
|
|
|
return (rc);
|
|
}
|
|
|
|
/*
|
|
* Validate object alignment cache behavior for caches
|
|
*/
|
|
static int
|
|
splat_kmem_test7(struct file *file, void *arg)
|
|
{
|
|
char *name = SPLAT_KMEM_TEST7_NAME;
|
|
int max_size = (SPL_KMEM_CACHE_MAX_SIZE * 1024 * 1024) / 2;
|
|
int i, rc;
|
|
|
|
for (i = SPL_KMEM_CACHE_ALIGN; i <= PAGE_SIZE; i *= 2) {
|
|
uint32_t size;
|
|
|
|
get_random_bytes((void *)&size, sizeof (uint32_t));
|
|
size = MAX(size % (max_size + 1), 32);
|
|
|
|
rc = splat_kmem_cache_test(file, arg, name, size, i, 0);
|
|
if (rc)
|
|
return rc;
|
|
|
|
rc = splat_kmem_cache_test(file, arg, name, size, i,
|
|
KMC_OFFSLAB);
|
|
if (rc)
|
|
return rc;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* Validate kmem_cache_reap() by requesting the slab cache free any objects
|
|
* it can. For a few reasons this may not immediately result in more free
|
|
* memory even if objects are freed. First off, due to fragmentation we
|
|
* may not be able to reclaim any slabs. Secondly, even if we do we fully
|
|
* clear some slabs we will not want to immediately reclaim all of them
|
|
* because we may contend with cache allocations and thrash. What we want
|
|
* to see is the slab size decrease more gradually as it becomes clear they
|
|
* will not be needed. This should be achievable in less than a minute.
|
|
* If it takes longer than this something has gone wrong.
|
|
*/
|
|
static int
|
|
splat_kmem_test8(struct file *file, void *arg)
|
|
{
|
|
kmem_cache_priv_t *kcp;
|
|
kmem_cache_thread_t *kct;
|
|
unsigned int spl_kmem_cache_expire_old;
|
|
int i, rc = 0;
|
|
|
|
/* Enable cache aging just for this test if it is disabled */
|
|
spl_kmem_cache_expire_old = spl_kmem_cache_expire;
|
|
spl_kmem_cache_expire = KMC_EXPIRE_AGE;
|
|
|
|
kcp = splat_kmem_cache_test_kcp_alloc(file, SPLAT_KMEM_TEST8_NAME,
|
|
256, 0, 0);
|
|
if (!kcp) {
|
|
splat_vprint(file, SPLAT_KMEM_TEST8_NAME,
|
|
"Unable to create '%s'\n", "kcp");
|
|
rc = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
kcp->kcp_cache =
|
|
kmem_cache_create(SPLAT_KMEM_CACHE_NAME, kcp->kcp_size, 0,
|
|
splat_kmem_cache_test_constructor,
|
|
splat_kmem_cache_test_destructor,
|
|
splat_kmem_cache_test_reclaim,
|
|
kcp, NULL, 0);
|
|
if (!kcp->kcp_cache) {
|
|
splat_vprint(file, SPLAT_KMEM_TEST8_NAME,
|
|
"Unable to create '%s'\n", SPLAT_KMEM_CACHE_NAME);
|
|
rc = -ENOMEM;
|
|
goto out_kcp;
|
|
}
|
|
|
|
kct = splat_kmem_cache_test_kct_alloc(kcp, 0);
|
|
if (!kct) {
|
|
splat_vprint(file, SPLAT_KMEM_TEST8_NAME,
|
|
"Unable to create '%s'\n", "kct");
|
|
rc = -ENOMEM;
|
|
goto out_cache;
|
|
}
|
|
|
|
rc = splat_kmem_cache_test_kcd_alloc(kcp, kct, SPLAT_KMEM_OBJ_COUNT);
|
|
if (rc) {
|
|
splat_vprint(file, SPLAT_KMEM_TEST8_NAME, "Unable to "
|
|
"allocate from '%s'\n", SPLAT_KMEM_CACHE_NAME);
|
|
goto out_kct;
|
|
}
|
|
|
|
/* Force reclaim every 1/10 a second for 60 seconds. */
|
|
for (i = 0; i < 600; i++) {
|
|
kmem_cache_reap_now(kcp->kcp_cache);
|
|
splat_kmem_cache_test_debug(file, SPLAT_KMEM_TEST8_NAME, kcp);
|
|
|
|
if (kcp->kcp_count == 0)
|
|
break;
|
|
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
schedule_timeout(HZ / 10);
|
|
}
|
|
|
|
if (kcp->kcp_count == 0) {
|
|
splat_vprint(file, SPLAT_KMEM_TEST8_NAME,
|
|
"Successfully created %d objects "
|
|
"in cache %s and reclaimed them\n",
|
|
SPLAT_KMEM_OBJ_COUNT, SPLAT_KMEM_CACHE_NAME);
|
|
} else {
|
|
splat_vprint(file, SPLAT_KMEM_TEST8_NAME,
|
|
"Failed to reclaim %u/%d objects from cache %s\n",
|
|
(unsigned)kcp->kcp_count,
|
|
SPLAT_KMEM_OBJ_COUNT, SPLAT_KMEM_CACHE_NAME);
|
|
rc = -ENOMEM;
|
|
}
|
|
|
|
/* Cleanup our mess (for failure case of time expiring) */
|
|
splat_kmem_cache_test_kcd_free(kcp, kct);
|
|
out_kct:
|
|
splat_kmem_cache_test_kct_free(kcp, kct);
|
|
out_cache:
|
|
kmem_cache_destroy(kcp->kcp_cache);
|
|
out_kcp:
|
|
splat_kmem_cache_test_kcp_free(kcp);
|
|
out:
|
|
spl_kmem_cache_expire = spl_kmem_cache_expire_old;
|
|
|
|
return rc;
|
|
}
|
|
|
|
/* Test cache aging, we have allocated a large number of objects thus
|
|
* creating a large number of slabs and then free'd them all. However,
|
|
* since there should be little memory pressure at the moment those
|
|
* slabs have not been freed. What we want to see is the slab size
|
|
* decrease gradually as it becomes clear they will not be be needed.
|
|
* This should be achievable in less than minute. If it takes longer
|
|
* than this something has gone wrong.
|
|
*/
|
|
static int
|
|
splat_kmem_test9(struct file *file, void *arg)
|
|
{
|
|
kmem_cache_priv_t *kcp;
|
|
kmem_cache_thread_t *kct;
|
|
unsigned int spl_kmem_cache_expire_old;
|
|
int i, rc = 0, count = SPLAT_KMEM_OBJ_COUNT * 128;
|
|
|
|
/* Enable cache aging just for this test if it is disabled */
|
|
spl_kmem_cache_expire_old = spl_kmem_cache_expire;
|
|
spl_kmem_cache_expire = KMC_EXPIRE_AGE;
|
|
|
|
kcp = splat_kmem_cache_test_kcp_alloc(file, SPLAT_KMEM_TEST9_NAME,
|
|
256, 0, 0);
|
|
if (!kcp) {
|
|
splat_vprint(file, SPLAT_KMEM_TEST9_NAME,
|
|
"Unable to create '%s'\n", "kcp");
|
|
rc = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
kcp->kcp_cache =
|
|
kmem_cache_create(SPLAT_KMEM_CACHE_NAME, kcp->kcp_size, 0,
|
|
splat_kmem_cache_test_constructor,
|
|
splat_kmem_cache_test_destructor,
|
|
NULL, kcp, NULL, 0);
|
|
if (!kcp->kcp_cache) {
|
|
splat_vprint(file, SPLAT_KMEM_TEST9_NAME,
|
|
"Unable to create '%s'\n", SPLAT_KMEM_CACHE_NAME);
|
|
rc = -ENOMEM;
|
|
goto out_kcp;
|
|
}
|
|
|
|
kct = splat_kmem_cache_test_kct_alloc(kcp, 0);
|
|
if (!kct) {
|
|
splat_vprint(file, SPLAT_KMEM_TEST8_NAME,
|
|
"Unable to create '%s'\n", "kct");
|
|
rc = -ENOMEM;
|
|
goto out_cache;
|
|
}
|
|
|
|
rc = splat_kmem_cache_test_kcd_alloc(kcp, kct, count);
|
|
if (rc) {
|
|
splat_vprint(file, SPLAT_KMEM_TEST9_NAME, "Unable to "
|
|
"allocate from '%s'\n", SPLAT_KMEM_CACHE_NAME);
|
|
goto out_kct;
|
|
}
|
|
|
|
splat_kmem_cache_test_kcd_free(kcp, kct);
|
|
|
|
for (i = 0; i < 60; i++) {
|
|
splat_kmem_cache_test_debug(file, SPLAT_KMEM_TEST9_NAME, kcp);
|
|
|
|
if (kcp->kcp_count == 0)
|
|
break;
|
|
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
schedule_timeout(HZ);
|
|
}
|
|
|
|
if (kcp->kcp_count == 0) {
|
|
splat_vprint(file, SPLAT_KMEM_TEST9_NAME,
|
|
"Successfully created %d objects "
|
|
"in cache %s and reclaimed them\n",
|
|
count, SPLAT_KMEM_CACHE_NAME);
|
|
} else {
|
|
splat_vprint(file, SPLAT_KMEM_TEST9_NAME,
|
|
"Failed to reclaim %u/%d objects from cache %s\n",
|
|
(unsigned)kcp->kcp_count, count,
|
|
SPLAT_KMEM_CACHE_NAME);
|
|
rc = -ENOMEM;
|
|
}
|
|
|
|
out_kct:
|
|
splat_kmem_cache_test_kct_free(kcp, kct);
|
|
out_cache:
|
|
kmem_cache_destroy(kcp->kcp_cache);
|
|
out_kcp:
|
|
splat_kmem_cache_test_kcp_free(kcp);
|
|
out:
|
|
spl_kmem_cache_expire = spl_kmem_cache_expire_old;
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* This test creates N threads with a shared kmem cache. They then all
|
|
* concurrently allocate and free from the cache to stress the locking and
|
|
* concurrent cache performance. If any one test takes longer than 5
|
|
* seconds to complete it is treated as a failure and may indicate a
|
|
* performance regression. On my test system no one test takes more
|
|
* than 1 second to complete so a 5x slowdown likely a problem.
|
|
*/
|
|
static int
|
|
splat_kmem_test10(struct file *file, void *arg)
|
|
{
|
|
uint64_t size, alloc, maxsize, limit, rc = 0;
|
|
|
|
#if defined(CONFIG_64BIT)
|
|
maxsize = (1024 * 1024);
|
|
#else
|
|
maxsize = (128 * 1024);
|
|
#endif
|
|
|
|
for (size = 32; size <= maxsize; size *= 2) {
|
|
|
|
splat_vprint(file, SPLAT_KMEM_TEST10_NAME, "%-22s %s", "name",
|
|
"time (sec)\tslabs \tobjs \thash\n");
|
|
splat_vprint(file, SPLAT_KMEM_TEST10_NAME, "%-22s %s", "",
|
|
" \ttot/max/calc\ttot/max/calc\n");
|
|
|
|
for (alloc = 1; alloc <= 1024; alloc *= 2) {
|
|
|
|
/* Skip tests which exceed 1/2 of memory. */
|
|
limit = MIN(physmem * PAGE_SIZE,
|
|
vmem_size(NULL, VMEM_ALLOC | VMEM_FREE)) / 2;
|
|
if (size * alloc * SPLAT_KMEM_THREADS > limit)
|
|
continue;
|
|
|
|
rc = splat_kmem_cache_thread_test(file, arg,
|
|
SPLAT_KMEM_TEST10_NAME, size, alloc, 5);
|
|
if (rc)
|
|
break;
|
|
}
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
#if 0
|
|
/*
|
|
* This test creates N threads with a shared kmem cache which overcommits
|
|
* memory by 4x. This makes it impossible for the slab to satify the
|
|
* thread requirements without having its reclaim hook run which will
|
|
* free objects back for use. This behavior is triggered by the linum VM
|
|
* detecting a low memory condition on the node and invoking the shrinkers.
|
|
* This should allow all the threads to complete while avoiding deadlock
|
|
* and for the most part out of memory events. This is very tough on the
|
|
* system so it is possible the test app may get oom'ed. This particular
|
|
* test has proven troublesome on 32-bit archs with limited virtual
|
|
* address space so it only run on 64-bit systems.
|
|
*/
|
|
static int
|
|
splat_kmem_test11(struct file *file, void *arg)
|
|
{
|
|
uint64_t size, alloc, rc;
|
|
|
|
size = 8 * 1024;
|
|
alloc = ((4 * physmem * PAGE_SIZE) / size) / SPLAT_KMEM_THREADS;
|
|
|
|
splat_vprint(file, SPLAT_KMEM_TEST11_NAME, "%-22s %s", "name",
|
|
"time (sec)\tslabs \tobjs \thash\n");
|
|
splat_vprint(file, SPLAT_KMEM_TEST11_NAME, "%-22s %s", "",
|
|
" \ttot/max/calc\ttot/max/calc\n");
|
|
|
|
rc = splat_kmem_cache_thread_test(file, arg,
|
|
SPLAT_KMEM_TEST11_NAME, size, alloc, 60);
|
|
|
|
return rc;
|
|
}
|
|
#endif
|
|
|
|
typedef struct dummy_page {
|
|
struct list_head dp_list;
|
|
char dp_pad[PAGE_SIZE - sizeof(struct list_head)];
|
|
} dummy_page_t;
|
|
|
|
/*
|
|
* This test is designed to verify that direct reclaim is functioning as
|
|
* expected. We allocate a large number of objects thus creating a large
|
|
* number of slabs. We then apply memory pressure and expect that the
|
|
* direct reclaim path can easily recover those slabs. The registered
|
|
* reclaim function will free the objects and the slab shrinker will call
|
|
* it repeatedly until at least a single slab can be freed.
|
|
*
|
|
* Note it may not be possible to reclaim every last slab via direct reclaim
|
|
* without a failure because the shrinker_rwsem may be contended. For this
|
|
* reason, quickly reclaiming 3/4 of the slabs is considered a success.
|
|
*
|
|
* This should all be possible within 10 seconds. For reference, on a
|
|
* system with 2G of memory this test takes roughly 0.2 seconds to run.
|
|
* It may take longer on larger memory systems but should still easily
|
|
* complete in the alloted 10 seconds.
|
|
*/
|
|
static int
|
|
splat_kmem_test13(struct file *file, void *arg)
|
|
{
|
|
kmem_cache_priv_t *kcp;
|
|
kmem_cache_thread_t *kct;
|
|
dummy_page_t *dp;
|
|
struct list_head list;
|
|
struct timespec start, stop, delta = { 0, 0 };
|
|
int size, count, slabs, fails = 0;
|
|
int i, rc = 0, max_time = 10;
|
|
|
|
size = 128 * 1024;
|
|
count = MIN(physmem * PAGE_SIZE, vmem_size(NULL,
|
|
VMEM_ALLOC | VMEM_FREE)) / 4 / size;
|
|
|
|
kcp = splat_kmem_cache_test_kcp_alloc(file, SPLAT_KMEM_TEST13_NAME,
|
|
size, 0, 0);
|
|
if (!kcp) {
|
|
splat_vprint(file, SPLAT_KMEM_TEST13_NAME,
|
|
"Unable to create '%s'\n", "kcp");
|
|
rc = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
kcp->kcp_cache =
|
|
kmem_cache_create(SPLAT_KMEM_CACHE_NAME, kcp->kcp_size, 0,
|
|
splat_kmem_cache_test_constructor,
|
|
splat_kmem_cache_test_destructor,
|
|
splat_kmem_cache_test_reclaim,
|
|
kcp, NULL, 0);
|
|
if (!kcp->kcp_cache) {
|
|
splat_vprint(file, SPLAT_KMEM_TEST13_NAME,
|
|
"Unable to create '%s'\n", SPLAT_KMEM_CACHE_NAME);
|
|
rc = -ENOMEM;
|
|
goto out_kcp;
|
|
}
|
|
|
|
kct = splat_kmem_cache_test_kct_alloc(kcp, 0);
|
|
if (!kct) {
|
|
splat_vprint(file, SPLAT_KMEM_TEST13_NAME,
|
|
"Unable to create '%s'\n", "kct");
|
|
rc = -ENOMEM;
|
|
goto out_cache;
|
|
}
|
|
|
|
rc = splat_kmem_cache_test_kcd_alloc(kcp, kct, count);
|
|
if (rc) {
|
|
splat_vprint(file, SPLAT_KMEM_TEST13_NAME, "Unable to "
|
|
"allocate from '%s'\n", SPLAT_KMEM_CACHE_NAME);
|
|
goto out_kct;
|
|
}
|
|
|
|
i = 0;
|
|
slabs = kcp->kcp_cache->skc_slab_total;
|
|
INIT_LIST_HEAD(&list);
|
|
getnstimeofday(&start);
|
|
|
|
/* Apply memory pressure */
|
|
while (kcp->kcp_cache->skc_slab_total > (slabs >> 2)) {
|
|
|
|
if ((i % 10000) == 0)
|
|
splat_kmem_cache_test_debug(
|
|
file, SPLAT_KMEM_TEST13_NAME, kcp);
|
|
|
|
getnstimeofday(&stop);
|
|
delta = timespec_sub(stop, start);
|
|
if (delta.tv_sec >= max_time) {
|
|
splat_vprint(file, SPLAT_KMEM_TEST13_NAME,
|
|
"Failed to reclaim 3/4 of cache in %ds, "
|
|
"%u/%u slabs remain\n", max_time,
|
|
(unsigned)kcp->kcp_cache->skc_slab_total,
|
|
slabs);
|
|
rc = -ETIME;
|
|
break;
|
|
}
|
|
|
|
dp = (dummy_page_t *)__get_free_page(GFP_KERNEL);
|
|
if (!dp) {
|
|
fails++;
|
|
splat_vprint(file, SPLAT_KMEM_TEST13_NAME,
|
|
"Failed (%d) to allocate page with %u "
|
|
"slabs still in the cache\n", fails,
|
|
(unsigned)kcp->kcp_cache->skc_slab_total);
|
|
continue;
|
|
}
|
|
|
|
list_add(&dp->dp_list, &list);
|
|
i++;
|
|
}
|
|
|
|
if (rc == 0)
|
|
splat_vprint(file, SPLAT_KMEM_TEST13_NAME,
|
|
"Successfully created %u slabs and with %d alloc "
|
|
"failures reclaimed 3/4 of them in %d.%03ds\n",
|
|
slabs, fails,
|
|
(int)delta.tv_sec, (int)delta.tv_nsec / 1000000);
|
|
|
|
/* Release memory pressure pages */
|
|
while (!list_empty(&list)) {
|
|
dp = list_entry(list.next, dummy_page_t, dp_list);
|
|
list_del_init(&dp->dp_list);
|
|
free_page((unsigned long)dp);
|
|
}
|
|
|
|
/* Release remaining kmem cache objects */
|
|
splat_kmem_cache_test_kcd_free(kcp, kct);
|
|
out_kct:
|
|
splat_kmem_cache_test_kct_free(kcp, kct);
|
|
out_cache:
|
|
kmem_cache_destroy(kcp->kcp_cache);
|
|
out_kcp:
|
|
splat_kmem_cache_test_kcp_free(kcp);
|
|
out:
|
|
return rc;
|
|
}
|
|
|
|
splat_subsystem_t *
|
|
splat_kmem_init(void)
|
|
{
|
|
splat_subsystem_t *sub;
|
|
|
|
sub = kmalloc(sizeof(*sub), GFP_KERNEL);
|
|
if (sub == NULL)
|
|
return NULL;
|
|
|
|
memset(sub, 0, sizeof(*sub));
|
|
strncpy(sub->desc.name, SPLAT_KMEM_NAME, SPLAT_NAME_SIZE);
|
|
strncpy(sub->desc.desc, SPLAT_KMEM_DESC, SPLAT_DESC_SIZE);
|
|
INIT_LIST_HEAD(&sub->subsystem_list);
|
|
INIT_LIST_HEAD(&sub->test_list);
|
|
spin_lock_init(&sub->test_lock);
|
|
sub->desc.id = SPLAT_SUBSYSTEM_KMEM;
|
|
|
|
SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST1_NAME, SPLAT_KMEM_TEST1_DESC,
|
|
SPLAT_KMEM_TEST1_ID, splat_kmem_test1);
|
|
SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST2_NAME, SPLAT_KMEM_TEST2_DESC,
|
|
SPLAT_KMEM_TEST2_ID, splat_kmem_test2);
|
|
SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST3_NAME, SPLAT_KMEM_TEST3_DESC,
|
|
SPLAT_KMEM_TEST3_ID, splat_kmem_test3);
|
|
SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST4_NAME, SPLAT_KMEM_TEST4_DESC,
|
|
SPLAT_KMEM_TEST4_ID, splat_kmem_test4);
|
|
SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST5_NAME, SPLAT_KMEM_TEST5_DESC,
|
|
SPLAT_KMEM_TEST5_ID, splat_kmem_test5);
|
|
SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST6_NAME, SPLAT_KMEM_TEST6_DESC,
|
|
SPLAT_KMEM_TEST6_ID, splat_kmem_test6);
|
|
SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST7_NAME, SPLAT_KMEM_TEST7_DESC,
|
|
SPLAT_KMEM_TEST7_ID, splat_kmem_test7);
|
|
SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST8_NAME, SPLAT_KMEM_TEST8_DESC,
|
|
SPLAT_KMEM_TEST8_ID, splat_kmem_test8);
|
|
SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST9_NAME, SPLAT_KMEM_TEST9_DESC,
|
|
SPLAT_KMEM_TEST9_ID, splat_kmem_test9);
|
|
SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST10_NAME, SPLAT_KMEM_TEST10_DESC,
|
|
SPLAT_KMEM_TEST10_ID, splat_kmem_test10);
|
|
#if 0
|
|
SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST11_NAME, SPLAT_KMEM_TEST11_DESC,
|
|
SPLAT_KMEM_TEST11_ID, splat_kmem_test11);
|
|
#endif
|
|
SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST13_NAME, SPLAT_KMEM_TEST13_DESC,
|
|
SPLAT_KMEM_TEST13_ID, splat_kmem_test13);
|
|
|
|
return sub;
|
|
}
|
|
|
|
void
|
|
splat_kmem_fini(splat_subsystem_t *sub)
|
|
{
|
|
ASSERT(sub);
|
|
SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST13_ID);
|
|
#if 0
|
|
SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST11_ID);
|
|
#endif
|
|
SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST10_ID);
|
|
SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST9_ID);
|
|
SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST8_ID);
|
|
SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST7_ID);
|
|
SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST6_ID);
|
|
SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST5_ID);
|
|
SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST4_ID);
|
|
SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST3_ID);
|
|
SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST2_ID);
|
|
SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST1_ID);
|
|
|
|
kfree(sub);
|
|
}
|
|
|
|
int
|
|
splat_kmem_id(void) {
|
|
return SPLAT_SUBSYSTEM_KMEM;
|
|
}
|