zfs/lib/libzutil/os/linux/zutil_import_os.c

893 lines
23 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2015 Nexenta Systems, Inc. All rights reserved.
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2012, 2018 by Delphix. All rights reserved.
* Copyright 2015 RackTop Systems.
* Copyright (c) 2016, Intel Corporation.
*/
/*
* Pool import support functions.
*
* Used by zpool, ztest, zdb, and zhack to locate importable configs. Since
* these commands are expected to run in the global zone, we can assume
* that the devices are all readable when called.
*
* To import a pool, we rely on reading the configuration information from the
* ZFS label of each device. If we successfully read the label, then we
* organize the configuration information in the following hierarchy:
*
* pool guid -> toplevel vdev guid -> label txg
*
* Duplicate entries matching this same tuple will be discarded. Once we have
* examined every device, we pick the best label txg config for each toplevel
* vdev. We then arrange these toplevel vdevs into a complete pool config, and
* update any paths that have changed. Finally, we attempt to import the pool
* using our derived config, and record the results.
*/
#include <ctype.h>
#include <dirent.h>
#include <errno.h>
#include <libintl.h>
#include <libgen.h>
#include <stddef.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <sys/stat.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/dktp/fdisk.h>
#include <sys/vdev_impl.h>
#include <sys/fs/zfs.h>
#include <thread_pool.h>
#include <libzutil.h>
#include <libnvpair.h>
#include <libzfs.h>
#include "zutil_import.h"
#ifdef HAVE_LIBUDEV
#include <libudev.h>
#include <sched.h>
#endif
#include <blkid/blkid.h>
#define DEV_BYID_PATH "/dev/disk/by-id/"
/*
* Skip devices with well known prefixes:
* there can be side effects when opening devices which need to be avoided.
*
* hpet - High Precision Event Timer
* watchdog[N] - Watchdog must be closed in a special way.
*/
static boolean_t
should_skip_dev(const char *dev)
{
return ((strcmp(dev, "watchdog") == 0) ||
(strncmp(dev, "watchdog", 8) == 0 && isdigit(dev[8])) ||
(strcmp(dev, "hpet") == 0));
}
int
zfs_dev_flush(int fd)
{
return (ioctl(fd, BLKFLSBUF));
}
void
zpool_open_func(void *arg)
{
rdsk_node_t *rn = arg;
libpc_handle_t *hdl = rn->rn_hdl;
struct stat64 statbuf;
nvlist_t *config;
uint64_t vdev_guid = 0;
int error;
int num_labels = 0;
int fd;
if (should_skip_dev(zfs_basename(rn->rn_name)))
return;
/*
* Ignore failed stats. We only want regular files and block devices.
* Ignore files that are too small to hold a zpool.
*/
if (stat64(rn->rn_name, &statbuf) != 0 ||
(!S_ISREG(statbuf.st_mode) && !S_ISBLK(statbuf.st_mode)) ||
(S_ISREG(statbuf.st_mode) && statbuf.st_size < SPA_MINDEVSIZE))
return;
/*
* Preferentially open using O_DIRECT to bypass the block device
* cache which may be stale for multipath devices. An EINVAL errno
* indicates O_DIRECT is unsupported so fallback to just O_RDONLY.
*/
fd = open(rn->rn_name, O_RDONLY | O_DIRECT | O_CLOEXEC);
if ((fd < 0) && (errno == EINVAL))
fd = open(rn->rn_name, O_RDONLY | O_CLOEXEC);
if ((fd < 0) && (errno == EACCES))
hdl->lpc_open_access_error = B_TRUE;
if (fd < 0)
return;
error = zpool_read_label(fd, &config, &num_labels);
if (error != 0) {
(void) close(fd);
return;
}
if (num_labels == 0) {
(void) close(fd);
nvlist_free(config);
return;
}
/*
* Check that the vdev is for the expected guid. Additional entries
* are speculatively added based on the paths stored in the labels.
* Entries with valid paths but incorrect guids must be removed.
*/
error = nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, &vdev_guid);
if (error || (rn->rn_vdev_guid && rn->rn_vdev_guid != vdev_guid)) {
(void) close(fd);
nvlist_free(config);
return;
}
(void) close(fd);
rn->rn_config = config;
rn->rn_num_labels = num_labels;
/*
* Add additional entries for paths described by this label.
*/
if (rn->rn_labelpaths) {
char *path = NULL;
char *devid = NULL;
char *env = NULL;
rdsk_node_t *slice;
avl_index_t where;
int timeout;
int error;
if (label_paths(rn->rn_hdl, rn->rn_config, &path, &devid))
return;
env = getenv("ZPOOL_IMPORT_UDEV_TIMEOUT_MS");
if ((env == NULL) || sscanf(env, "%d", &timeout) != 1 ||
timeout < 0) {
timeout = DISK_LABEL_WAIT;
}
/*
* Allow devlinks to stabilize so all paths are available.
*/
zpool_label_disk_wait(rn->rn_name, timeout);
if (path != NULL) {
slice = zutil_alloc(hdl, sizeof (rdsk_node_t));
slice->rn_name = zutil_strdup(hdl, path);
slice->rn_vdev_guid = vdev_guid;
slice->rn_avl = rn->rn_avl;
slice->rn_hdl = hdl;
slice->rn_order = IMPORT_ORDER_PREFERRED_1;
slice->rn_labelpaths = B_FALSE;
pthread_mutex_lock(rn->rn_lock);
if (avl_find(rn->rn_avl, slice, &where)) {
pthread_mutex_unlock(rn->rn_lock);
free(slice->rn_name);
free(slice);
} else {
avl_insert(rn->rn_avl, slice, where);
pthread_mutex_unlock(rn->rn_lock);
zpool_open_func(slice);
}
}
if (devid != NULL) {
slice = zutil_alloc(hdl, sizeof (rdsk_node_t));
error = asprintf(&slice->rn_name, "%s%s",
DEV_BYID_PATH, devid);
if (error == -1) {
free(slice);
return;
}
slice->rn_vdev_guid = vdev_guid;
slice->rn_avl = rn->rn_avl;
slice->rn_hdl = hdl;
slice->rn_order = IMPORT_ORDER_PREFERRED_2;
slice->rn_labelpaths = B_FALSE;
pthread_mutex_lock(rn->rn_lock);
if (avl_find(rn->rn_avl, slice, &where)) {
pthread_mutex_unlock(rn->rn_lock);
free(slice->rn_name);
free(slice);
} else {
avl_insert(rn->rn_avl, slice, where);
pthread_mutex_unlock(rn->rn_lock);
zpool_open_func(slice);
}
}
}
}
static const char * const
zpool_default_import_path[] = {
"/dev/disk/by-vdev", /* Custom rules, use first if they exist */
"/dev/mapper", /* Use multipath devices before components */
"/dev/disk/by-partlabel", /* Single unique entry set by user */
"/dev/disk/by-partuuid", /* Generated partition uuid */
"/dev/disk/by-label", /* Custom persistent labels */
"/dev/disk/by-uuid", /* Single unique entry and persistent */
"/dev/disk/by-id", /* May be multiple entries and persistent */
"/dev/disk/by-path", /* Encodes physical location and persistent */
"/dev" /* UNSAFE device names will change */
};
const char * const *
zpool_default_search_paths(size_t *count)
{
*count = ARRAY_SIZE(zpool_default_import_path);
return (zpool_default_import_path);
}
/*
* Given a full path to a device determine if that device appears in the
* import search path. If it does return the first match and store the
* index in the passed 'order' variable, otherwise return an error.
*/
static int
zfs_path_order(char *name, int *order)
{
int i, error = ENOENT;
char *dir, *env, *envdup, *tmp = NULL;
env = getenv("ZPOOL_IMPORT_PATH");
if (env) {
envdup = strdup(env);
for (dir = strtok_r(envdup, ":", &tmp), i = 0;
dir != NULL;
dir = strtok_r(NULL, ":", &tmp), i++) {
if (strncmp(name, dir, strlen(dir)) == 0) {
*order = i;
error = 0;
break;
}
}
free(envdup);
} else {
for (i = 0; i < ARRAY_SIZE(zpool_default_import_path); i++) {
if (strncmp(name, zpool_default_import_path[i],
strlen(zpool_default_import_path[i])) == 0) {
*order = i;
error = 0;
break;
}
}
}
return (error);
}
/*
* Use libblkid to quickly enumerate all known zfs devices.
*/
int
zpool_find_import_blkid(libpc_handle_t *hdl, pthread_mutex_t *lock,
avl_tree_t **slice_cache)
{
rdsk_node_t *slice;
blkid_cache cache;
blkid_dev_iterate iter;
blkid_dev dev;
avl_index_t where;
int error;
*slice_cache = NULL;
error = blkid_get_cache(&cache, NULL);
if (error != 0)
return (error);
error = blkid_probe_all_new(cache);
if (error != 0) {
blkid_put_cache(cache);
return (error);
}
iter = blkid_dev_iterate_begin(cache);
if (iter == NULL) {
blkid_put_cache(cache);
return (EINVAL);
}
error = blkid_dev_set_search(iter, "TYPE", "zfs_member");
if (error != 0) {
blkid_dev_iterate_end(iter);
blkid_put_cache(cache);
return (error);
}
*slice_cache = zutil_alloc(hdl, sizeof (avl_tree_t));
avl_create(*slice_cache, slice_cache_compare, sizeof (rdsk_node_t),
offsetof(rdsk_node_t, rn_node));
while (blkid_dev_next(iter, &dev) == 0) {
slice = zutil_alloc(hdl, sizeof (rdsk_node_t));
slice->rn_name = zutil_strdup(hdl, blkid_dev_devname(dev));
slice->rn_vdev_guid = 0;
slice->rn_lock = lock;
slice->rn_avl = *slice_cache;
slice->rn_hdl = hdl;
slice->rn_labelpaths = B_TRUE;
error = zfs_path_order(slice->rn_name, &slice->rn_order);
if (error == 0)
slice->rn_order += IMPORT_ORDER_SCAN_OFFSET;
else
slice->rn_order = IMPORT_ORDER_DEFAULT;
pthread_mutex_lock(lock);
if (avl_find(*slice_cache, slice, &where)) {
free(slice->rn_name);
free(slice);
} else {
avl_insert(*slice_cache, slice, where);
}
pthread_mutex_unlock(lock);
}
blkid_dev_iterate_end(iter);
blkid_put_cache(cache);
return (0);
}
/*
* Linux persistent device strings for vdev labels
*
* based on libudev for consistency with libudev disk add/remove events
*/
typedef struct vdev_dev_strs {
char vds_devid[128];
char vds_devphys[128];
} vdev_dev_strs_t;
#ifdef HAVE_LIBUDEV
/*
* Obtain the persistent device id string (describes what)
*
* used by ZED vdev matching for auto-{online,expand,replace}
*/
int
zfs_device_get_devid(struct udev_device *dev, char *bufptr, size_t buflen)
{
struct udev_list_entry *entry;
const char *bus;
char devbyid[MAXPATHLEN];
/* The bus based by-id path is preferred */
bus = udev_device_get_property_value(dev, "ID_BUS");
if (bus == NULL) {
const char *dm_uuid;
/*
* For multipath nodes use the persistent uuid based identifier
*
* Example: /dev/disk/by-id/dm-uuid-mpath-35000c5006304de3f
*/
dm_uuid = udev_device_get_property_value(dev, "DM_UUID");
if (dm_uuid != NULL) {
(void) snprintf(bufptr, buflen, "dm-uuid-%s", dm_uuid);
return (0);
}
/*
* For volumes use the persistent /dev/zvol/dataset identifier
*/
entry = udev_device_get_devlinks_list_entry(dev);
while (entry != NULL) {
const char *name;
name = udev_list_entry_get_name(entry);
if (strncmp(name, ZVOL_ROOT, strlen(ZVOL_ROOT)) == 0) {
(void) strlcpy(bufptr, name, buflen);
return (0);
}
entry = udev_list_entry_get_next(entry);
}
/*
* NVME 'by-id' symlinks are similar to bus case
*/
struct udev_device *parent;
parent = udev_device_get_parent_with_subsystem_devtype(dev,
"nvme", NULL);
if (parent != NULL)
bus = "nvme"; /* continue with bus symlink search */
else
return (ENODATA);
}
/*
* locate the bus specific by-id link
*/
(void) snprintf(devbyid, sizeof (devbyid), "%s%s-", DEV_BYID_PATH, bus);
entry = udev_device_get_devlinks_list_entry(dev);
while (entry != NULL) {
const char *name;
name = udev_list_entry_get_name(entry);
if (strncmp(name, devbyid, strlen(devbyid)) == 0) {
name += strlen(DEV_BYID_PATH);
(void) strlcpy(bufptr, name, buflen);
return (0);
}
entry = udev_list_entry_get_next(entry);
}
return (ENODATA);
}
/*
* Obtain the persistent physical location string (describes where)
*
* used by ZED vdev matching for auto-{online,expand,replace}
*/
int
zfs_device_get_physical(struct udev_device *dev, char *bufptr, size_t buflen)
{
const char *physpath = NULL;
struct udev_list_entry *entry;
/*
* Normal disks use ID_PATH for their physical path.
*/
physpath = udev_device_get_property_value(dev, "ID_PATH");
if (physpath != NULL && strlen(physpath) > 0) {
(void) strlcpy(bufptr, physpath, buflen);
return (0);
}
/*
* Device mapper devices are virtual and don't have a physical
* path. For them we use ID_VDEV instead, which is setup via the
* /etc/vdev_id.conf file. ID_VDEV provides a persistent path
* to a virtual device. If you don't have vdev_id.conf setup,
* you cannot use multipath autoreplace with device mapper.
*/
physpath = udev_device_get_property_value(dev, "ID_VDEV");
if (physpath != NULL && strlen(physpath) > 0) {
(void) strlcpy(bufptr, physpath, buflen);
return (0);
}
/*
* For ZFS volumes use the persistent /dev/zvol/dataset identifier
*/
entry = udev_device_get_devlinks_list_entry(dev);
while (entry != NULL) {
physpath = udev_list_entry_get_name(entry);
if (strncmp(physpath, ZVOL_ROOT, strlen(ZVOL_ROOT)) == 0) {
(void) strlcpy(bufptr, physpath, buflen);
return (0);
}
entry = udev_list_entry_get_next(entry);
}
/*
* For all other devices fallback to using the by-uuid name.
*/
entry = udev_device_get_devlinks_list_entry(dev);
while (entry != NULL) {
physpath = udev_list_entry_get_name(entry);
if (strncmp(physpath, "/dev/disk/by-uuid", 17) == 0) {
(void) strlcpy(bufptr, physpath, buflen);
return (0);
}
entry = udev_list_entry_get_next(entry);
}
return (ENODATA);
}
/*
* A disk is considered a multipath whole disk when:
* DEVNAME key value has "dm-"
* DM_NAME key value has "mpath" prefix
* DM_UUID key exists
* ID_PART_TABLE_TYPE key does not exist or is not gpt
*/
static boolean_t
udev_mpath_whole_disk(struct udev_device *dev)
{
const char *devname, *type, *uuid;
devname = udev_device_get_property_value(dev, "DEVNAME");
type = udev_device_get_property_value(dev, "ID_PART_TABLE_TYPE");
uuid = udev_device_get_property_value(dev, "DM_UUID");
if ((devname != NULL && strncmp(devname, "/dev/dm-", 8) == 0) &&
((type == NULL) || (strcmp(type, "gpt") != 0)) &&
(uuid != NULL)) {
return (B_TRUE);
}
return (B_FALSE);
}
static int
udev_device_is_ready(struct udev_device *dev)
{
#ifdef HAVE_LIBUDEV_UDEV_DEVICE_GET_IS_INITIALIZED
return (udev_device_get_is_initialized(dev));
#else
/* wait for DEVLINKS property to be initialized */
return (udev_device_get_property_value(dev, "DEVLINKS") != NULL);
#endif
}
#else
/* ARGSUSED */
int
zfs_device_get_devid(struct udev_device *dev, char *bufptr, size_t buflen)
{
return (ENODATA);
}
/* ARGSUSED */
int
zfs_device_get_physical(struct udev_device *dev, char *bufptr, size_t buflen)
{
return (ENODATA);
}
#endif /* HAVE_LIBUDEV */
/*
* Wait up to timeout_ms for udev to set up the device node. The device is
* considered ready when libudev determines it has been initialized, all of
* the device links have been verified to exist, and it has been allowed to
* settle. At this point the device the device can be accessed reliably.
* Depending on the complexity of the udev rules this process could take
* several seconds.
*/
int
zpool_label_disk_wait(const char *path, int timeout_ms)
{
#ifdef HAVE_LIBUDEV
struct udev *udev;
struct udev_device *dev = NULL;
char nodepath[MAXPATHLEN];
char *sysname = NULL;
int ret = ENODEV;
int settle_ms = 50;
long sleep_ms = 10;
hrtime_t start, settle;
if ((udev = udev_new()) == NULL)
return (ENXIO);
start = gethrtime();
settle = 0;
do {
if (sysname == NULL) {
if (realpath(path, nodepath) != NULL) {
sysname = strrchr(nodepath, '/') + 1;
} else {
(void) usleep(sleep_ms * MILLISEC);
continue;
}
}
dev = udev_device_new_from_subsystem_sysname(udev,
"block", sysname);
if ((dev != NULL) && udev_device_is_ready(dev)) {
struct udev_list_entry *links, *link = NULL;
ret = 0;
links = udev_device_get_devlinks_list_entry(dev);
udev_list_entry_foreach(link, links) {
struct stat64 statbuf;
const char *name;
name = udev_list_entry_get_name(link);
errno = 0;
if (stat64(name, &statbuf) == 0 && errno == 0)
continue;
settle = 0;
ret = ENODEV;
break;
}
if (ret == 0) {
if (settle == 0) {
settle = gethrtime();
} else if (NSEC2MSEC(gethrtime() - settle) >=
settle_ms) {
udev_device_unref(dev);
break;
}
}
}
udev_device_unref(dev);
(void) usleep(sleep_ms * MILLISEC);
} while (NSEC2MSEC(gethrtime() - start) < timeout_ms);
udev_unref(udev);
return (ret);
#else
int settle_ms = 50;
long sleep_ms = 10;
hrtime_t start, settle;
struct stat64 statbuf;
start = gethrtime();
settle = 0;
do {
errno = 0;
if ((stat64(path, &statbuf) == 0) && (errno == 0)) {
if (settle == 0)
settle = gethrtime();
else if (NSEC2MSEC(gethrtime() - settle) >= settle_ms)
return (0);
} else if (errno != ENOENT) {
return (errno);
}
usleep(sleep_ms * MILLISEC);
} while (NSEC2MSEC(gethrtime() - start) < timeout_ms);
return (ENODEV);
#endif /* HAVE_LIBUDEV */
}
/*
* Encode the persistent devices strings
* used for the vdev disk label
*/
static int
encode_device_strings(const char *path, vdev_dev_strs_t *ds,
boolean_t wholedisk)
{
#ifdef HAVE_LIBUDEV
struct udev *udev;
struct udev_device *dev = NULL;
char nodepath[MAXPATHLEN];
char *sysname;
int ret = ENODEV;
hrtime_t start;
if ((udev = udev_new()) == NULL)
return (ENXIO);
/* resolve path to a runtime device node instance */
if (realpath(path, nodepath) == NULL)
goto no_dev;
sysname = strrchr(nodepath, '/') + 1;
/*
* Wait up to 3 seconds for udev to set up the device node context
*/
start = gethrtime();
do {
dev = udev_device_new_from_subsystem_sysname(udev, "block",
sysname);
if (dev == NULL)
goto no_dev;
if (udev_device_is_ready(dev))
break; /* udev ready */
udev_device_unref(dev);
dev = NULL;
if (NSEC2MSEC(gethrtime() - start) < 10)
(void) sched_yield(); /* yield/busy wait up to 10ms */
else
(void) usleep(10 * MILLISEC);
} while (NSEC2MSEC(gethrtime() - start) < (3 * MILLISEC));
if (dev == NULL)
goto no_dev;
/*
* Only whole disks require extra device strings
*/
if (!wholedisk && !udev_mpath_whole_disk(dev))
goto no_dev;
ret = zfs_device_get_devid(dev, ds->vds_devid, sizeof (ds->vds_devid));
if (ret != 0)
goto no_dev_ref;
/* physical location string (optional) */
if (zfs_device_get_physical(dev, ds->vds_devphys,
sizeof (ds->vds_devphys)) != 0) {
ds->vds_devphys[0] = '\0'; /* empty string --> not available */
}
no_dev_ref:
udev_device_unref(dev);
no_dev:
udev_unref(udev);
return (ret);
#else
return (ENOENT);
#endif
}
/*
* Rescan the enclosure sysfs path for turning on enclosure LEDs and store it
* in the nvlist * (if applicable). Like:
* vdev_enc_sysfs_path: '/sys/class/enclosure/11:0:1:0/SLOT 4'
*/
static void
update_vdev_config_dev_sysfs_path(nvlist_t *nv, char *path)
{
char *upath, *spath;
/* Add enclosure sysfs path (if disk is in an enclosure). */
upath = zfs_get_underlying_path(path);
spath = zfs_get_enclosure_sysfs_path(upath);
if (spath) {
nvlist_add_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH, spath);
} else {
nvlist_remove_all(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH);
}
free(upath);
free(spath);
}
/*
* This will get called for each leaf vdev.
*/
static int
sysfs_path_pool_vdev_iter_f(void *hdl_data, nvlist_t *nv, void *data)
{
char *path = NULL;
if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) != 0)
return (1);
/* Rescan our enclosure sysfs path for this vdev */
update_vdev_config_dev_sysfs_path(nv, path);
return (0);
}
/*
* Given an nvlist for our pool (with vdev tree), iterate over all the
* leaf vdevs and update their ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH.
*/
void
update_vdevs_config_dev_sysfs_path(nvlist_t *config)
{
nvlist_t *nvroot = NULL;
verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
&nvroot) == 0);
for_each_vdev_in_nvlist(nvroot, sysfs_path_pool_vdev_iter_f, NULL);
}
/*
* Update a leaf vdev's persistent device strings
*
* - only applies for a dedicated leaf vdev (aka whole disk)
* - updated during pool create|add|attach|import
* - used for matching device matching during auto-{online,expand,replace}
* - stored in a leaf disk config label (i.e. alongside 'path' NVP)
* - these strings are currently not used in kernel (i.e. for vdev_disk_open)
*
* single device node example:
* devid: 'scsi-MG03SCA300_350000494a8cb3d67-part1'
* phys_path: 'pci-0000:04:00.0-sas-0x50000394a8cb3d67-lun-0'
*
* multipath device node example:
* devid: 'dm-uuid-mpath-35000c5006304de3f'
*
* We also store the enclosure sysfs path for turning on enclosure LEDs
* (if applicable):
* vdev_enc_sysfs_path: '/sys/class/enclosure/11:0:1:0/SLOT 4'
*/
void
update_vdev_config_dev_strs(nvlist_t *nv)
{
vdev_dev_strs_t vds;
char *env, *type, *path;
uint64_t wholedisk = 0;
/*
* For the benefit of legacy ZFS implementations, allow
* for opting out of devid strings in the vdev label.
*
* example use:
* env ZFS_VDEV_DEVID_OPT_OUT=YES zpool import dozer
*
* explanation:
* Older OpenZFS implementations had issues when attempting to
* display pool config VDEV names if a "devid" NVP value is
* present in the pool's config.
*
* For example, a pool that originated on illumos platform would
* have a devid value in the config and "zpool status" would fail
* when listing the config.
*
* A pool can be stripped of any "devid" values on import or
* prevented from adding them on zpool create|add by setting
* ZFS_VDEV_DEVID_OPT_OUT.
*/
env = getenv("ZFS_VDEV_DEVID_OPT_OUT");
if (env && (strtoul(env, NULL, 0) > 0 ||
!strncasecmp(env, "YES", 3) || !strncasecmp(env, "ON", 2))) {
(void) nvlist_remove_all(nv, ZPOOL_CONFIG_DEVID);
(void) nvlist_remove_all(nv, ZPOOL_CONFIG_PHYS_PATH);
return;
}
if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0 ||
strcmp(type, VDEV_TYPE_DISK) != 0) {
return;
}
if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) != 0)
return;
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, &wholedisk);
/*
* Update device string values in the config nvlist.
*/
if (encode_device_strings(path, &vds, (boolean_t)wholedisk) == 0) {
(void) nvlist_add_string(nv, ZPOOL_CONFIG_DEVID, vds.vds_devid);
if (vds.vds_devphys[0] != '\0') {
(void) nvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH,
vds.vds_devphys);
}
update_vdev_config_dev_sysfs_path(nv, path);
} else {
/* Clear out any stale entries. */
(void) nvlist_remove_all(nv, ZPOOL_CONFIG_DEVID);
(void) nvlist_remove_all(nv, ZPOOL_CONFIG_PHYS_PATH);
(void) nvlist_remove_all(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH);
}
}